KR20120033237A - Polyurethane degraded product, polyurethane and method of forming a polyurethane - Google Patents
Polyurethane degraded product, polyurethane and method of forming a polyurethane Download PDFInfo
- Publication number
- KR20120033237A KR20120033237A KR1020110088801A KR20110088801A KR20120033237A KR 20120033237 A KR20120033237 A KR 20120033237A KR 1020110088801 A KR1020110088801 A KR 1020110088801A KR 20110088801 A KR20110088801 A KR 20110088801A KR 20120033237 A KR20120033237 A KR 20120033237A
- Authority
- KR
- South Korea
- Prior art keywords
- polyurethane
- decomposition
- group
- glycol
- compound
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C235/00—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
- C07C235/70—Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
- C08J11/04—Recovery or working-up of waste materials of polymers
- C08J11/10—Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/17—Amines; Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/20—Recycled plastic
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Polyurethanes Or Polyureas (AREA)
- Refrigerator Housings (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
Abstract
Description
본 발명은 폴리우레탄을 형성하는 폴리올에 함유되는 아민의 개질 방법에 관한 것이다.The present invention relates to a process for modifying amines contained in polyols that form polyurethane.
지구 온난화, 오존층 파괴 등의 지구 환경 문제에 대한 의식의 고조와 함께, 최근 폐기물 처리 기술, 특히 폐플라스틱의 리사이클 기술의 연구 개발이 급속하게 진행되고 있다. 폐플라스틱의 리사이클 기술로서 화학적 처리에 의해 원료로서 재생하는 케미컬 리사이클은 자원의 순환 이용의 관점에서 유용하다.With the growing awareness of global environmental issues such as global warming and ozone depletion, the recent research and development of waste treatment technologies, especially waste plastic recycling technologies, is rapidly progressing. As a recycling technique of waste plastics, chemical recycling, which is recycled as a raw material by chemical treatment, is useful in view of the circulating use of resources.
폴리우레탄의 케미컬 리사이클 기술의 하나로서 글리콜 분해법이 알려져 있다(특허문헌 1). 글리콜 분해법은 폐폴리우레탄을 과잉의 디올 중에서 가열 혼합함으로써 분해시켜, 폴리올을 생성 회수하는 방법이다. 이 글리콜 분해법에 있어서는 폴리올 화합물과 함께 1급 아민을 갖는 화합물, 예를 들어 방향족 디아민류인 톨루엔디아민(TDA) 및 메틸렌디아닐린(MDA) 등이 생성된다.The glycol decomposition method is known as one of the chemical recycling techniques of polyurethane (patent document 1). The glycol decomposition method is a method in which waste polyurethane is decomposed by heating and mixing in an excess of diol to produce and recover a polyol. In this glycol decomposition method, the compound which has a primary amine with polyol compound, for example, toluenediamine (TDA), methylenedianiline (MDA), etc. which are aromatic diamines are produced | generated.
글리콜 분해법에 의해 얻어진 분해물(폴리올)을 폴리우레탄 원료의 일부로서 폴리우레탄을 재형성하는 경우, 분해물 중의 1급 아민류의 양이 중요해진다. 아민류, 예를 들어 TDA 및 MDA는 폴리우레탄을 형성할 때의 발포, 경화 속도에 영향을 미치기 때문에, 우레탄 원료 중의 양을 일정하게 할 필요가 있다. 그러나, 우레탄을 분해할 때에 발생하는 아민은 분해하는 폐기 우레탄이나 분해 조건, 건조 조건에 따라 생성되는 양이 다르다.When reforming a polyurethane as a part of a polyurethane raw material from the decomposition product (polyol) obtained by the glycol decomposition method, the quantity of the primary amines in a decomposition product becomes important. Since amines, such as TDA and MDA, affect the foaming and hardening rate at the time of forming a polyurethane, it is necessary to make the quantity in a urethane raw material constant. However, the amount of amine generated when the urethane is decomposed varies depending on the waste urethane to decompose, the decomposition conditions, and the drying conditions.
따라서, 폴리우레탄 분해물 중의 방향족 디아민류인 톨루엔디아민(TDA) 및 메틸렌디아닐린(MDA)을 폴리올로 변환하는 방법으로서, 특허문헌 2 내지 3에 알킬렌옥시드를 아민과 반응시킴으로써 아민을 폴리올로 변환하는 방법이 나타나 있다. TDA는 2개 이소시아네이트기와 반응하여, 2급의 아미노기를 2개 갖는 화합물로 변환된다. 특허문헌 2에 의하면 글리콜 분해법에 의해 얻어진 분해 혼합물 중의 1급 아민을 알킬렌옥시드와 반응시켜, 폴리올로 변환하는 것이 기재되어 있다. 예를 들어, 톨루엔디아민과 반응시킬 경우, 생성되는 알코올은 분자 내에 2급 아미노기를 2개와 알코올성 수산기를 2개 갖고 있다. 이 TDA가 알킬렌옥시드와 반응해서 형성되는 화합물은 2개의 이소시아네이트기와 반응하여, 2급의 아미노기를 2개 갖는 화합물로 변환된다. 즉, TDA도 알킬렌옥시드와의 반응에 의해 얻어지는 화합물도 동일량의 이소시아네이트기와 반응하기 때문에, 반응점은 증가하지 않는다.Therefore, as a method for converting toluenediamine (TDA) and methylenedianiline (MDA), which are aromatic diamines in a polyurethane decomposition product, to a polyol, a method of converting an amine into a polyol by reacting an alkylene oxide with an amine in Patent Documents 2 to 3 Is shown. TDA reacts with two isocyanate groups and is converted into a compound having two secondary amino groups. According to patent document 2, it is described by making the primary amine in the decomposition mixture obtained by the glycol decomposition method react with alkylene oxide, and converting it into a polyol. For example, when reacted with toluenediamine, the resulting alcohol has two secondary amino groups and two alcoholic hydroxyl groups in the molecule. The compound formed by reaction of this TDA with the alkylene oxide is reacted with two isocyanate groups and converted into a compound having two secondary amino groups. That is, since TDA and the compound obtained by reaction with alkylene oxide also react with the same amount of isocyanate group, reaction point does not increase.
한편, 회수 폴리우레탄 글리콜 분해법에 의해 얻어지는 분해물은 다양한 회수 폴리우레탄을 포함하고, 폴리우레탄의 원료인 미사용의 폴리올과 혼합해서 이소시아네이트와 반응시킴으로써 폴리우레탄을 형성할 수 있다. 그러나, 회수 폴리우레탄글리콜 분해법에 의해 얻어지는 분해물을 혼합함으로써, 생성되는 폴리올의 강도 저하가 발생하게 되는 등의 문제가 있다. On the other hand, the decomposition products obtained by the recovered polyurethane glycol decomposition method include various recovered polyurethanes, and can be formed by mixing with an unused polyol which is a raw material of polyurethane and reacting with isocyanate to form polyurethane. However, there exists a problem of the intensity | strength fall of the produced polyol generate | occur | producing, by mixing the decomposed | disassembled material obtained by collect | recovered polyurethane glycol decomposition method.
본 발명의 목적은 폴리우레탄 분해물 중의 1급 아민을 2급 아민으로 변환시킴과 동시에, 폴리우레탄 분해물을 사용한 재형성 폴리우레탄의 압축 강도를 향상시키는 데에 있다.It is an object of the present invention to convert primary amines in polyurethane degradation products to secondary amines and to improve the compressive strength of reformed polyurethanes using polyurethane degradation products.
본 발명의 폴리우레탄은 화학식 1로 나타내는 구조를 포함하는 것을 특징으로 한다.The polyurethane of the present invention is characterized by including a structure represented by the formula (1).
(식 중, R은 로 표시되는 어느 하나의 기를 나타내고, R'은 를 나타내고, 여기서 n은 0 내지 6을 나타내고, X는 O 또는 COO기를 나타냄)Where R is Represents any group represented by R 'is Wherein n represents 0 to 6 and X represents O or a COO group)
또한, 본 발명의 폴리우레탄 분해물은 폴리우레탄의 글리콜 분해물 중에 포함되는 아민류, 예를 들면 톨루엔디아민 및/또는 메틸렌디아닐린을 분자 중에 카르복실산 무수물과 카르복실기 또는 수산기를 갖는 화합물과 반응시키는 것을 특징으로 한다. In addition, the polyurethane decomposition product of the present invention is characterized by reacting amines, such as toluenediamine and / or methylenedianiline, contained in the glycol decomposition products of the polyurethane with a compound having a carboxylic anhydride and a carboxyl or hydroxyl group in the molecule. do.
본 발명에 따르면, 폴리우레탄 분해물 중의 1급 아민을 2급 아민으로 변환시킬 수 있음과 동시에, 본 발명의 폴리우레탄 분해물을 사용해서 폴리우레탄을 재 형성할 때에, 폴리우레탄 분해물을 사용한 재형성 폴리우레탄의 압축 강도를 향상시킬 수 있다. According to the present invention, the reforming polyurethane using the polyurethane decomposition product when converting the primary amine in the polyurethane decomposition product into the secondary amine and re-forming the polyurethane using the polyurethane decomposition product of the present invention. Can improve the compressive strength.
[도 1] 도 1은 4점 주입에 의해 경질 폴리우레탄 폼을 충전하는 외부 상자 철판과 내부 상자 수지벽으로 이루어지는 냉장고 상자체, 및 특성 평가용으로 채취한 폼의 모식도다.BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1: is a schematic diagram of the refrigerator box body which consists of an outer box iron plate and an inner box resin wall which fill a rigid polyurethane foam by 4-point injection, and the foam | collected form for characteristics evaluation.
이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명은 폴리우레탄을 글리콜에 의해 분해하여, 얻어진 분해액을 사용해서 다시 형성하는 폴리우레탄에 관한 것이다.TECHNICAL FIELD This invention relates to the polyurethane which decomposes a polyurethane by glycol and forms again using the obtained decomposition liquid.
폴리우레탄 분해제에는 각종 글리콜을 사용할 수 있다. 예를 들면, 디에틸렌글리콜, 에틸렌글리콜, 프로필렌글리콜, 디프로필렌글리콜, 트리메틸렌글리콜, 1,4-부탄디올, 1,5-펜탄디올, 1,6-헥산디올, 폴리옥시에틸렌글리콜, 폴리옥시프로필렌글리콜 등의 2가 알코올, 1,2,6-헥산트리올, 글리세린 등의 3가 알코올 및 폴리에틸렌글리콜 등의 중합체를 들 수 있다.Various glycols can be used for a polyurethane decomposition agent. For example, diethylene glycol, ethylene glycol, propylene glycol, dipropylene glycol, trimethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, polyoxyethylene glycol, polyoxypropylene Dihydric alcohols such as glycol, trihydric alcohols such as 1,2,6-hexanetriol and glycerin, and polymers such as polyethylene glycol.
폴리우레탄의 분해에 사용하는 분해제의 양은 폴리우레탄을 액상화할 수 있으면 되고, 폴리우레탄의 중량에 대하여, 30 내지 200%를 사용할 수 있다. 사용하는 분해제의 양이 많으면, 재형성하는 폴리우레탄 중의 폴리우레탄 분해물의 양이 적어져 버린다. 또한, 분해제의 양이 적으면 폴리우레탄을 충분히 액체로 분해할 수 없다.The amount of the disintegrating agent used for the decomposition of the polyurethane only needs to be able to liquefy the polyurethane, and 30 to 200% can be used with respect to the weight of the polyurethane. When there is much quantity of the disintegrating agent to be used, the quantity of the polyurethane decomposition product in the polyurethane to be reformed will become small. In addition, when the amount of the decomposing agent is small, the polyurethane cannot be sufficiently decomposed into the liquid.
폴리우레탄의 글리콜 분해시에는 폴리우레탄 및 분해제의 글리콜 중에 포함되는 물에 의한 가수분해, 또는 열 분해에 의해 톨루엔디아민(TDA)이나 메틸렌디아닐린(MDA) 등의 1급 아민류가 생성된다. 본 발명의 폴리우레탄 분해물은 폴리우레탄의 글리콜 분해물 중에 포함되는 1급 아민류, 예를 들면 TDA 및/또는 MDA를 분자 중에 카르복실기 또는 수산기와 카르복실산 무수물을 갖는 화합물과 반응시키는 것을 특징으로 한다. 아민류, 예를 들면 TDA는 분자 중에 카르복실기와 카르복실산 무수물을 갖는 화합물, 예를 들면 트리멜리트산 무수물과 반응함으로써 화학식 2로 나타내는 화합물을 생성한다. 화학식 2로 나타내는 화합물은 분자 내에 3개의 카르복실기를 갖고 있으며, TDA에 비해 이소시아네이트와 반응하는 부분이 많이 존재하고 있다. 마찬가지로, 아민류, 예를 들면 MDA는 분자 중에 카르복실기와 카르복실산 무수물을 갖는 화합물, 예를 들어 트리멜리트산 무수물과 반응함으로써 화학식 2로 나타내는 화합물을 생성한다.At the time of glycol decomposition of a polyurethane, primary amines, such as toluenediamine (TDA) and methylenedianiline (MDA), are produced | generated by hydrolysis by water contained in the glycol of a polyurethane and a decomposition agent, or thermal decomposition. The polyurethane decomposition product of the present invention is characterized by reacting primary amines, such as TDA and / or MDA, contained in the glycol degradation product of polyurethane with a compound having a carboxyl group or hydroxyl group and carboxylic anhydride in the molecule. Amines such as TDA produce a compound represented by the formula (2) by reacting with a compound having a carboxyl group and a carboxylic anhydride in the molecule, for example trimellitic anhydride. The compound represented by the formula (2) has three carboxyl groups in the molecule, and there are more portions reacting with the isocyanate than TDA. Likewise, amines such as MDA produce a compound represented by the formula (2) by reacting with a compound having a carboxyl group and a carboxylic anhydride in the molecule, for example trimellitic anhydride.
(식 중, R은 로 표시되는 어느 하나의 기를 나타내고, R'은 를 나타내고, 여기서 n은 0 내지 6을 나타내고, X는 OH기 또는 COOH기를 나타냄)Where R is Represents any group represented by R 'is Wherein n represents 0 to 6 and X represents an OH group or a COOH group)
화학식 2로 나타내는 화합물은 분자 내에 3개의 카르복실기를 갖고 있으며, 톨루엔디아민에 비해 이소시아네이트와 반응하는 부분이 많이 존재하고 있다. 이소시아네이트와 반응하는 부분이 증가함으로써, 형성된 폴리우레탄의 압축 강도를 증가시킬 수 있다.The compound represented by the formula (2) has three carboxyl groups in the molecule, and there are more portions reacting with the isocyanate than toluenediamine. By increasing the portion reacting with the isocyanate, it is possible to increase the compressive strength of the polyurethane formed.
분해액 중의 아민류 반응시키는 카르복실기를 갖는 카르복실산 무수물은 분자 내에 카르복실기와 산 무수물을 갖는 화합물일 수 있고, 예를 들면 트리멜리트산 무수물을 사용할 수 있다. 트리멜리트산 무수물의 경우, 융점이 160 ℃ 이상인 고체이지만, 분해제인 글리콜, 예를 들면 디에틸렌글리콜에 가용이므로, 분해액 중에 용해시켜, 분해액 중의 아민류와 반응시킬 수 있다.The carboxylic anhydride having a carboxyl group to be reacted with the amines in the decomposition solution may be a compound having a carboxyl group and an acid anhydride in a molecule, and for example, trimellitic anhydride can be used. In the case of trimellitic anhydride, although the melting point is a solid having a melting point of 160 ° C. or higher, it is soluble in glycol which is a decomposition agent, for example, diethylene glycol, so that it can be dissolved in the decomposition solution and reacted with amines in the decomposition solution.
분해액 중의 1급 아민류와 카르복실기 또는 수산기와 카르복실산 무수물을 갖는 화합물을 반응시키는 경우, 반응 온도는 100 ℃ 이하가 바람직하다. 반응 온도가 높으면 카르복실기와 아미노기의 축합이나 폴리우레탄의 분해제인 알코올과 산 무수물이 반응하게 되므로 바람직하지 않다. 또한, 반응 온도가 낮으면 아민류와 산 무수물이 충분히 반응하지 않아, 충분한 효과를 기대할 수 없다.When reacting the compound which has a primary amine, a carboxyl group, or a hydroxyl group and a carboxylic anhydride in a decomposition liquid, 100 degreeC or less is preferable. If the reaction temperature is high, alcohol and acid anhydride, which are condensation of carboxyl group and amino group or decomposition agent of polyurethane, will react. Moreover, when reaction temperature is low, amines and acid anhydride will not fully react, and sufficient effect cannot be expected.
분해액 중의 1급 아민류와 카르복실기 또는 수산기를 갖는 카르복실산 무수물을 반응시키는 양은 폴리우레탄 분해액 중에 포함되는 1급 아미노기와 동일량인 것이 바람직하지만, 과잉으로 카르복실기를 갖는 산 무수물을 첨가하면, 생성된 2급 아민과의 반응이나 폴리우레탄을 재형성할 때에 사용하는 아민계 촉매와의 반응 등이 예측되어 바람직하지는 않지만, 분해액에 과잉으로 카르복실기를 갖는 카르복실산 무수물 화합물을 첨가한 경우에도 카르복실기 및 산 무수물은 폴리우레탄 재형성시에 첨가되는 이소시아네이트와 용이하게 반응하여, 수지를 형성한다.The amount of reacting the primary amines in the decomposition solution with the carboxylic anhydride having a carboxyl group or a hydroxyl group is preferably the same amount as the primary amino group contained in the polyurethane decomposition solution, but when an acid anhydride having a carboxyl group is added excessively, The reaction with the secondary amine or the amine catalyst used for reforming the polyurethane is predicted and is not preferable, but the carboxyl group is used even when an excessively carboxylic anhydride compound having a carboxyl group is added to the decomposition solution. And acid anhydrides readily react with isocyanates added during polyurethane reforming to form resins.
분해액 중의 1급 아민류의 양은 분해액에 첨가하는 카르복실기 또는 수산기를 갖는 카르복실산 무수물의 양에 의해 제어할 수 있지만, 분해액에 첨가하는 카르복실기 또는 수산기를 갖는 카르복실산 무수물의 양을 분해액 중의 1급 아민의 양보다도 과잉으로 첨가한 경우라도, 아민과의 반응 후, 용액의 온도를 올려, 산 무수물을 2급 아민이나 수산기와 반응시켜서 소비한 후, 다시 TDA나 MDA 등의 1급 아민을 첨가함으로써 폴리우레탄 원료 중의 1급 아민량을 제어할 수 있다.The amount of the primary amines in the decomposition solution can be controlled by the amount of the carboxylic anhydride having a carboxyl group or a hydroxyl group added to the decomposition solution, but the amount of the carboxylic anhydride having a carboxyl group or a hydroxyl group added to the decomposition solution is decomposed. Even in the case where the amount of the primary amine is excessively added, the temperature of the solution is raised after the reaction with the amine, and the acid anhydride is reacted with a secondary amine or a hydroxyl group to be consumed, followed by primary amines such as TDA and MDA. By adding, the amount of primary amine in the polyurethane raw material can be controlled.
분해액을 사용해서 폴리우레탄을 재형성하는 경우, 1급 아민류, 예를 들면 TDA를 분자 중에 카르복실기 또는 수산기와 카르복실산 무수물을 갖는 화합물, 예를 들면 트리멜리트산 무수물과 반응시켜서 얻어진 분해액은 이소시아네이트와 반응시킴으로써 화학식 1로 나타내는 구조를 갖는 폴리우레탄을 형성할 수 있다.When reforming a polyurethane using a decomposition solution, the decomposition solution obtained by reacting a primary amine such as TDA with a compound having a carboxyl group or a hydroxyl group and a carboxylic anhydride in the molecule, for example trimellitic anhydride, By reacting with an isocyanate, a polyurethane having a structure represented by the formula (1) can be formed.
<화학식 1><Formula 1>
(식 중, R은 로 표시되는 어느 하나의 기를 나타내고, R'은 를 나타내고, 여기서 n은 0 내지 6을 나타내고, X는 O 또는 COO기를 나타냄)Where R is Represents any group represented by R 'is Wherein n represents 0 to 6 and X represents O or a COO group)
이 때에 분해물을 임의의 비율로 분해물 이외의 폴리올과 혼합하여 이소시아네이트와 반응시킬 수도 있다.At this time, the decomposition products may be mixed with polyols other than the decomposition products at any ratio to react with the isocyanate.
사용할 수 있는 분해물 이외의 폴리올은 분자 내에 수산기를 2개 이상 갖는 화합물이면 특별히 한정되지 않는다. 예를 들면, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 트리메틸렌글리콜, 1,3-부틸렌글리콜, 테트라메틸렌글리콜, 글리세린, 소르비톨, 자당, 비스페놀 A 등의 다관능 알코올을 사용할 수 있다.The polyols other than the decomposition products that can be used are not particularly limited as long as they are compounds having two or more hydroxyl groups in the molecule. For example, polyfunctional alcohols, such as ethylene glycol, diethylene glycol, triethylene glycol, trimethylene glycol, 1, 3- butylene glycol, tetramethylene glycol, glycerin, sorbitol, sucrose, bisphenol A, can be used.
분해액 중의 1급 아민류와 카르복실기 또는 수산기를 갖는 카르복실산 무수물을 반응시킴으로써 얻어지는 분해액을 사용해서 재형성한 폴리우레탄은 분해액 중의 아민류를 제거하지 않고 사용해서 재형성한 폴리우레탄에 비하여 압축 강도가 높아져 있다. 이것은 카르복실기를 갖는 산 무수물과 아민류를 반응시킴으로써, 가교점이 증가한 것에 의한 효과이다.Polyurethane reformed by using a decomposition solution obtained by reacting a primary amine in a decomposition solution with a carboxylic anhydride having a carboxyl group or a hydroxyl group has a compressive strength as compared with a polyurethane that is formed without removing the amines in the decomposition solution. Is high. This is an effect by which the crosslinking point increased by making acid anhydride which has a carboxyl group, and amine react.
폴리우레탄 분해제의 일부 또는 전부에 아민을 사용한 경우에도 본 발명은 유효하다. 분해제에 아민 화합물이 포함되는 경우, 분해제에 포함되는 아민 화합물과도 카르복실기를 갖는 산 무수물은 반응하고, 아민 화합물이 이소시아네이트와 반응하는 부분을 증가시킬 수 있다.The present invention is effective even when an amine is used for part or all of the polyurethane disintegrator. When an amine compound is included in a decomposition agent, the acid anhydride which has a carboxyl group may also react with the amine compound contained in a decomposition agent, and may increase the part which an amine compound reacts with an isocyanate.
[실시예][Example]
이하, 본 발명의 실시예를 설명한다.Hereinafter, embodiments of the present invention will be described.
[실시예 1]Example 1
이하, 시료 1에 대해서, 그의 제작 방법과, 물성값의 측정 방법을 설명한다.Hereinafter, about the sample 1, the manufacturing method and the measuring method of a physical property value are demonstrated.
폐기 냉장고로부터 분별 회수한 폴리우레탄 30 g에 디에틸렌글리콜 30 g을 가하고, 180 ℃에서 가열하여, 5시간 교반함으로써, 폴리우레탄의 글리콜 분해 용액 60 g을 얻었다. GC에서 분석한 바 얻어진 분해액 중에는 1.5 중량%의 4,4-메틸렌디아닐린이 포함되어 있었다. 얻어진 폴리우레탄 분해 용액을 여과하고, 트리멜리트산 무수물을 1.2 g 첨가하여, 80 ℃에서 30분 교반하였다. 얻어진 용액은 액체 크로마토그래피 질량 분석법(LC-MS)으로 화학식 3의 화합물의 생성을 확인하였다.30 g of diethylene glycol was added to 30 g of the polyurethane fractionated and collected from the waste refrigerator, and heated at 180 ° C. and stirred for 5 hours to obtain 60 g of a glycol decomposition solution of polyurethane. 1.5 wt% of 4,4-methylenedianiline was contained in the decomposition liquid obtained by analysis by GC. The obtained polyurethane decomposition solution was filtered, 1.2 g of trimellitic anhydride was added, and it stirred at 80 degreeC for 30 minutes. The obtained solution confirmed the production of the compound of
(식 중, R은 로 표시되는 기를 나타냄)Where R is Represents a group represented by)
계속하여, 톨릴렌디아민계 폴리에테르폴리올과 트리에탄올아민계 폴리에테르폴리올 및 비스페놀 A계 폴리에테르 등을 적당량 혼합한 폴리올에 폴리우레탄 분해 용액을 10 중량% 첨가하여 200 g으로 한 후, 발포제로서 시클로펜탄, 실리콘계 정포제, 촉매를 혼합한 것에 보조 발포제에 물을 적당량 혼합한 폴리올 프리믹스액으로 하였다. 폴리올 프리믹스액에 폴리메틸렌폴리페닐디이소시아네이트(MDI)계 이소시아네이트를 첨가하고, 고압 발포기에 의해 도 1에 나타내는 외부 상자 철판과 내부 상자 수지벽으로 이루어지는 냉장고 상자체에 충전하여, 단열 상자체를 얻었다. 그 때, 자유 발포시의 폴리우레탄 폼량에 대하여 110%의 혼합액을 40 ℃에서 가열하여, 발포하였다. 도 1에 4점 주입에 의해 경질 폴리우레탄 폼을 충전하는 외부 상자 철판과 내부 상자 수지벽으로 이루어지는 냉장고 상자체, 및 특성 평가용으로 채취한 폼의 모식도를 나타내었다.Subsequently, 10 weight% of polyurethane decomposition solutions were added to the polyol which mixed an appropriate amount of tolylene diamine polyether polyol, triethanolamine polyether polyol, bisphenol A polyether, etc. to make 200 g, and it was cyclopentane as a foaming agent. And a silicone foam stabilizer and a catalyst were used as the polyol premixed liquid in which water was mixed with an auxiliary blowing agent in an appropriate amount. Polymethylene polyphenyl diisocyanate (MDI) type isocyanate was added to the polyol premix liquid, and it filled in the refrigerator box body which consists of an outer box iron plate and an inner box resin wall shown in FIG. 1 by the high pressure foaming machine, and obtained the heat insulation box body. At that time, 110% of the liquid mixture was heated and foamed at 40 degreeC with respect to the amount of polyurethane foam at the time of free foaming. The schematic diagram of the refrigerator box body which consists of an outer box iron plate and an inner box resin wall which filled a rigid polyurethane foam by four point injection in FIG. 1, and the foam sample collected for the characteristic evaluation are shown.
형성한 폴리우레탄의 압축 강도는 우레탄 주입구에서 적어도 500 mm 이상 떨어진 우레탄 충전된 단열재 부분으로부터, 50 mm×50 mm×35 (t)mm의 폼을 이송 속도 5 mm/분으로 부하하여, 10% 변형시의 응력에서 측정하였다.The compressive strength of the formed polyurethane was 10% deformation by loading a 50 mm × 50 mm × 35 (t) mm foam at a feed rate of 5 mm / min from the urethane-filled insulation part at least 500 mm away from the urethane inlet. It measured at the stress in time.
시료 2 내지 5의 제작 방법은 이하와 같다.The production method of Samples 2 to 5 is as follows.
시료 2: 시료 1에서 사용한 트리멜리트산 무수물의 1/2배의 양을 사용하여, 시료 1과 동일하게 폴리우레탄 분해액을 트리멜리트산 무수물에서 처리하고, 시료 1과 동일한 방법에 의해, 폴리우레탄을 재형성하여, 시료 2를 얻었다.Sample 2: Using the amount of 1/2 the amount of trimellitic anhydride used in Sample 1, the polyurethane decomposition solution was treated in trimellitic anhydride in the same manner as in Sample 1, and the polyurethane was Was reformed to obtain Sample 2.
시료 3: 시료 1에서 사용한 트리멜리트산 무수물의 2배의 양을 사용하여, 시료 1과 동일하게 폴리우레탄 분해액을 트리멜리트산 무수물에서 처리하고, 시료 1과 동일한 방법에 의해, 폴리우레탄을 재형성하여, 시료 3을 얻었다.Sample 3: Using a double amount of trimellitic anhydride used in Sample 1, the polyurethane decomposition solution was treated in trimellitic anhydride in the same manner as in Sample 1, and the polyurethane was re-used by the same method as in Sample 1. It formed and the
시료 4: 시료 1과 동일한 방법에 의해 폴리우레탄 분해물을 형성한 후, 폴리우레탄 분해물에 트리멜리트산 무수물을 첨가해서 가열할 때, 120 ℃에서 가열하고, 시료 1과 동일한 방법에 의해 폴리우레탄을 재형성하여, 시료 4를 얻었다.Sample 4: After forming a polyurethane decomposition product by the same method as Sample 1, when trimellitic anhydride is added and heated to a polyurethane decomposition product, it heats at 120 degreeC, and reprocesses a polyurethane by the same method as Sample 1. It formed and the sample 4 was obtained.
시료 5: 시료 1과 동일한 방법에 의해 폴리우레탄 분해물을 형성하고, 폴리우레탄 분해물에 트리멜리트산 무수물을 첨가해서 가열한 후, 톨릴렌디아민계 폴리에테르폴리올과 트리에탄올아민계 폴리에테르폴리올 및 비스페놀 A계 폴리에테르 등을 적당량 혼합한 폴리올에 폴리우레탄 분해 용액을 20 중량% 첨가하고, 시료 1과 동일한 방법에 의해 폴리우레탄을 재형성하여, 시료 5를 얻었다.Sample 5: A polyurethane decomposition product was formed in the same manner as in Sample 1, trimellitic anhydride was added to the polyurethane decomposition product, followed by heating, followed by tolylene diamine polyether polyol, triethanolamine polyether polyol, and bisphenol A system. 20 weight% of polyurethane decomposition solutions were added to the polyol which mixed a suitable amount of polyether, etc., and polyurethane was reformed by the method similar to the sample 1, and the sample 5 was obtained.
[비교예 1]Comparative Example 1
이하, 시료 6과 7에 대해서, 그의 제작 방법 및 물성값의 측정 방법을 설명한다.Hereinafter, the manufacturing method and the measuring method of a physical property value about Samples 6 and 7 are demonstrated.
시료 6: 실시예 1과 동일한 방법에 의해 폴리우레탄 분해물을 형성한 후, 트리멜리트산 무수물을 첨가하지 않고 실시예 1과 동일한 방법에 의해 폴리우레탄을 재형성하였다.Sample 6: The polyurethane decomposition product was formed by the same method as in Example 1, and then polyurethane was reformed by the same method as in Example 1 without addition of trimellitic anhydride.
시료 7: 실시예 1과 동일한 방법에 의해 폴리우레탄 분해물을 형성한 후, 폴리우레탄 분해물에 트리멜리트산 무수물을 첨가해서 가열할 때, 180 ℃에서 가열하고, 실시예 1과 동일한 방법에 의해 폴리우레탄을 재형성하였다.Sample 7: After forming a polyurethane decomposition product by the same method as Example 1, when trimellitic anhydride is added and heated to a polyurethane decomposition product, it heats at 180 degreeC, and is a polyurethane by the method similar to Example 1 Was reformed.
시료 1 내지 7을 사용해서 형성한 폴리우레탄의 압축 응력을 비교하면, 실시예 1의 시료 1 내지 5 중 어느 시료에 있어서도, 비교예 1의 시료 6에 나타낸 트리멜리트산 무수물에 의한 처리를 행하지 않은 분해액을 사용해서 형성한 폴리우레탄에 비해 높은 압축 응력이었다. 또한, 120 ℃ 및 80 ℃에서 트리멜리트산 무수물에 의한 처리를 행한 분해액을 사용해서 형성한 실시예 1의 어느 시료에 있어서도, 비교예 1의 시료 7에 나타낸 180 ℃에서 트리멜리트산 무수물에 의한 처리를 행한 분해액을 사용해서 형성한 폴리우레탄에 비해 높은 압축 응력이었다.Comparing the compressive stress of the polyurethanes formed using Samples 1 to 7, in any of Samples 1 to 5 of Example 1, the treatment with trimellitic anhydride shown in Sample 6 of Comparative Example 1 was not performed. It was high compressive stress compared with the polyurethane formed using the decomposition liquid. In addition, in any of the samples of Example 1 formed by using a decomposition solution subjected to treatment with trimellitic anhydride at 120 ° C and 80 ° C, the trimellitic anhydride at 180 ° C shown in Sample 7 of Comparative Example 1 It was high compressive stress compared with the polyurethane formed using the decomposition liquid which processed.
본 발명의 폴리우레탄은, 예를 들면 냉장고용의 단열재에 적용할 수 있고, 냉장고용 폴리우레탄의 리사이클 이용에 적합하다. The polyurethane of the present invention can be applied to, for example, a heat insulator for a refrigerator, and is suitable for recycling use of the polyurethane for a refrigerator.
1 우레탄 주입 헤드
2 우레탄 주입구
3 단열 상자체
4 외부 상자 철판
5 내부 상자 수지벽
6 특성 평가 샘플 채취 위치 1 urethane injection head
2 urethane inlets
3 thermal insulation box
4 outer box griddle
5 inner box resin wall
6 Characteristic evaluation sampling position
Claims (5)
<화학식 1>
(식 중, R은 로 표시되는 어느 하나의 기를 나타내고, R'은 를 나타내고, 여기서 n은 0 내지 6을 나타내고, X는 O 또는 COO기를 나타냄)Polyurethane comprising a structure represented by the formula (1).
<Formula 1>
Where R is Represents any group represented by R 'is Wherein n represents 0 to 6 and X represents O or a COO group)
<화학식 2>
(식 중, R은 로 표시되는 어느 하나의 기를 나타내고, R'은 를 나타내고, 여기서 n은 0 내지 6을 나타내고, X는 OH기 또는 COOH기를 나타냄)Glycolyte decomposition products of the polyurethane comprising the compound represented by Formula (2).
<Formula 2>
Where R is Represents any group represented by R 'is Wherein n represents 0 to 6 and X represents an OH group or a COOH group)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010218062A JP2012072280A (en) | 2010-09-29 | 2010-09-29 | Polyurethane decomposed matter, polyurethane, and method for forming polyurethane |
JPJP-P-2010-218062 | 2010-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20120033237A true KR20120033237A (en) | 2012-04-06 |
Family
ID=45981192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110088801A KR20120033237A (en) | 2010-09-29 | 2011-09-02 | Polyurethane degraded product, polyurethane and method of forming a polyurethane |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2012072280A (en) |
KR (1) | KR20120033237A (en) |
CN (1) | CN102432816A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210059342A (en) * | 2019-11-15 | 2021-05-25 | 에스케이씨솔믹스 주식회사 | Polyol recycled from polishing pad and preparation method thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5358635B2 (en) * | 2011-09-06 | 2013-12-04 | 株式会社日立製作所 | Polyurethane decomposition liquid and method for forming polyurethane decomposition liquid |
CN114835872B (en) * | 2022-06-07 | 2023-10-20 | 格力电器(武汉)有限公司 | High-flame-retardance low-heat-conductivity polyurethane foam material and preparation method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5300530A (en) * | 1992-12-11 | 1994-04-05 | Air Products And Chemicals, Inc. | Process for modifying the glycolysis reaction product of polyurethane scrap |
CN1275587A (en) * | 1999-06-01 | 2000-12-06 | 徐玉良 | Water phase decomposition recovery process for polyurethane waste material |
US6660779B2 (en) * | 2000-04-28 | 2003-12-09 | Matsushita Refrigeration Company | Method of manufacturing rigid polyurethane foam material, method of manufacturing refrigerator, and refrigerator |
CN101058645A (en) * | 2006-04-17 | 2007-10-24 | 于同亮 | Continuously chemical recovery method for polyurethane foam plastic |
-
2010
- 2010-09-29 JP JP2010218062A patent/JP2012072280A/en active Pending
-
2011
- 2011-09-02 KR KR1020110088801A patent/KR20120033237A/en not_active Application Discontinuation
- 2011-09-05 CN CN2011102603298A patent/CN102432816A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210059342A (en) * | 2019-11-15 | 2021-05-25 | 에스케이씨솔믹스 주식회사 | Polyol recycled from polishing pad and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2012072280A (en) | 2012-04-12 |
CN102432816A (en) | 2012-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5357006A (en) | Preparation of recyclate polyols, and the use thereof in the preparation of polyurethanes | |
Molero et al. | Recovery of polyols from flexible polyurethane foam by “split-phase” glycolysis: Study on the influence of reaction parameters | |
EP2183311B1 (en) | Method of recycling waste polyurethane foams | |
WO2007020904A1 (en) | Composition for polyurethane foam, polyurethane foam obtained from the composition, and use thereof | |
US5300530A (en) | Process for modifying the glycolysis reaction product of polyurethane scrap | |
CN102002157A (en) | Aromatic polyester modified polyether polyol and preparation method thereof | |
Liu et al. | Opportunities in closed-loop molecular recycling of end-of-life polyurethane | |
EP2915850A1 (en) | Resin premix composition, composition for hard polyurethane foam, and hard polyurethane foam | |
KR20120033237A (en) | Polyurethane degraded product, polyurethane and method of forming a polyurethane | |
Alavi Nikje et al. | Microwave assisted “split-phase” glycolysis of polyurethane flexible foam wastes | |
CN106188475A (en) | A kind of bio-based Polyurethane Thermoplastic Elastomer and preparation method thereof | |
CN113278190B (en) | Preparation method of graphene/waste polyurethane composite material | |
Liu et al. | Degradation process investigation of thermoplastic polyurethane elastomer in supercritical methanol | |
Recupido et al. | Efficient recycling pathway of bio-based composite polyurethane foams via sustainable diamine | |
KR20100081133A (en) | Manufacturing method thereof of recycled polyol increased functionality and polyurethane using the same | |
Xue et al. | Synthesis of reprocessable lignin-based non-isocyanate poly (imine-hydroxyurethane) s networks | |
Tran et al. | Bio‐based polyurethanes from microbially converted castor oil | |
KR101207370B1 (en) | High strength polyurethane elastomers based on flexible polyurethane waste and method of manufacturing the same | |
EP4431538A1 (en) | Eco-friendly polyurethane foam using aldehyde compound and diels-alder reaction product of aldehyde compound and method for forming same | |
CN107522832A (en) | A kind of bio-based polyurethane polyalcohol and preparation method thereof and the hard polyurethane foam and the method for preparation using its preparation | |
KR20210059994A (en) | Manufacturing method for polyol using waste polyurethane | |
CN114106281B (en) | Method for modifying recycled polyol and application of modified polyol | |
DE112022003688T5 (en) | MODIFIED LIGNIN PRODUCTS FOR RIGID FOAMS | |
CA2242980A1 (en) | Reduction of the amine content of recycled polyols | |
KR101447247B1 (en) | Preparation method of recycled polyol using specific catalyst, production method of polyurethane foam using the recycled polyol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |