KR20120019078A - Method for manufacturing carbon-ceramic composite - Google Patents

Method for manufacturing carbon-ceramic composite Download PDF

Info

Publication number
KR20120019078A
KR20120019078A KR1020100082203A KR20100082203A KR20120019078A KR 20120019078 A KR20120019078 A KR 20120019078A KR 1020100082203 A KR1020100082203 A KR 1020100082203A KR 20100082203 A KR20100082203 A KR 20100082203A KR 20120019078 A KR20120019078 A KR 20120019078A
Authority
KR
South Korea
Prior art keywords
molded body
carbonized
silicon
sintered
derivative
Prior art date
Application number
KR1020100082203A
Other languages
Korean (ko)
Other versions
KR101175756B1 (en
Inventor
배연숙
김정일
정용희
홍지민
최정철
Original Assignee
주식회사 데크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 데크 filed Critical 주식회사 데크
Priority to KR1020100082203A priority Critical patent/KR101175756B1/en
Publication of KR20120019078A publication Critical patent/KR20120019078A/en
Application granted granted Critical
Publication of KR101175756B1 publication Critical patent/KR101175756B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives

Abstract

PURPOSE: A manufacturing method of carbon ceramic composite is provided to manufacture the carbon ceramic composite with uniformly distributed silicon carbide by covering a formed body which is carbonized by a sintering inducing material. CONSTITUTION: A manufacturing method of carbon ceramic composite comprises the following steps: making a molding product(21); carbonizing the molding product; manufacturing a sintering derivative(31) which infiltrates silicon into the carbonized molding product; melting the silicon included in the sintering derivative; and infiltrating the silicon into to the carbonized molding product. The step of manufacturing a sintering derivative comprises the following steps: making a compound powder using silicon carbide powder, oxide ceramics powder, and silicon powder; dissolving an organic binder in distilled water and mixing the compound powder with the distilled water; covering the carbonized molding product with the mixture(the compound powder + an organic binder + the distilled water); and heating and drying the covered and carbonized molding product.

Description

탄소세라믹복합체를 만드는 방법{METHOD FOR MANUFACTURING CARBON-CERAMIC COMPOSITE}How to make a carbon ceramic composite {METHOD FOR MANUFACTURING CARBON-CERAMIC COMPOSITE}

본 발명은 탄소세라믹복합체를 만드는 방법에 관한 것이다.The present invention relates to a method of making a carbon ceramic composite.

탄소세라믹복합체는, 고강도이며, 내부식성, 내마모성이 뛰어나다.Carbon ceramic composites have high strength and are excellent in corrosion resistance and abrasion resistance.

탄소세라믹복합체는, 성형체를 만드는 단계, 성형체를 탄화시키는 단계, 탄화된 성형체에 규소(Si)를 침투시키는 단계를 거쳐 만들어진다.The carbon ceramic composite is made through a step of forming a molded body, carbonizing the molded body, and infiltrating silicon (Si) into the carbonized molded body.

탄화된 성형체에 규소를 침투시키는 방법으로, 규소액상반응소결법(Silicon Liquid Phase Reaction Sintering)이 사용된다.As a method of infiltrating silicon into the carbonized molded body, silicon liquid phase reaction sintering is used.

규소액상반응소결법이란, 진공이나 불활성 분위기(Ar,N2)에서 탄화된 성형체에 규소를 녹여 침투시킴으로써, 탄화된 성형체내 탄화규소(Silicon Carbide, SiC)를 만드는 방법이다.The silicon liquid phase reaction sintering method is a method of making silicon carbide in a carbonized body (Silicon Carbide, SiC) by dissolving silicon in a carbonized body in a vacuum or inert atmosphere (Ar, N2).

규소액상반응소결법은, 소결과정 중 탄화된 성형체의 수축, 팽창이 없어, 최종 가공비용이 적게 든다. 또한, 고상소결법(약2000℃)보다 비교적 낮은 온도(1500℃~1600℃)에서 탄화된 성형체내에 탄화규소를 만들 수 있다. 이로 인해, 규소액상반응소결법은 탄화된 성형체내에 탄화규소를 만드는 방법으로 널리 사용된다.The silicon liquid phase reaction sintering method has no shrinkage and expansion of the carbonized molded body during the sintering process, resulting in low final processing cost. In addition, silicon carbide can be produced in a carbonized molded body at a temperature (1500 ° C to 1600 ° C) relatively lower than the solid state sintering method (about 2000 ° C). For this reason, the silicon liquid phase reaction sintering method is widely used as a method of making silicon carbide in a carbonized molded body.

이하, 종래 탄화된 성형체내에 탄화규소를 만드는 방법과, 본 발명에 따른 탄화된 성형체내에 탄화규소를 만드는 방법은, 모두 규소액상반응소결법을 사용한다는 점에서는 공통된다.Hereinafter, the method of making silicon carbide in the conventional carbonized molded body and the method of making silicon carbide in the carbonized molded body which concerns on this invention are common in the point which uses the silicon liquid-phase reaction sintering method.

도 1은, 진공저항가열로안에 흑연도가니가 놓여 진 상태를 나타낸 도면으로, 흑연도가니 안에는 규소와 탄화된 소형성형체가 놓여 진다. 소형성형체는, 높이(H)가 50cm미만인 성형체이다.FIG. 1 is a view showing a state where a graphite crucible is placed in a vacuum resistance heating furnace, in which silicon and a carbonized compact molded object are placed. The compact molded product is a molded product whose height H is less than 50 cm.

도 1에 도시된 소형성형체는 정사각형 형상을 가진다. 물론, 소형성형체는 직사각형, 사다리꼴등 다양한 형상을 가질 수 있다. The compact body shown in FIG. 1 has a square shape. Of course, the compact body may have various shapes such as rectangular and trapezoidal.

도 1에 도시된 바와 같이, 흑연도가니(1, graphite crucible)의 내벽에는 질화붕소막(2)이 형성된다. 질화붕소막(2)의 두께는 1mm이하이다. 질화붕소막(2)으로 인해, 흑연도가니(1)가 규소(5)와 접촉하여 반응하는 것이 방지된다.As shown in FIG. 1, a boron nitride film 2 is formed on the inner wall of the graphite crucible. The thickness of the boron nitride film 2 is 1 mm or less. Due to the boron nitride film 2, the graphite crucible 1 is prevented from contacting and reacting with the silicon 5.

이하, 도 1을 참조하여, 탄화된 소형성형체에 규소를 침투시키는, 종래의 방법을 자세히 설명한다.Hereinafter, referring to FIG. 1, a conventional method of infiltrating silicon into a carbonized compact is described in detail.

흑연도가니(1) 안에 규소(5)를 넣는다.The silicon 5 is put in the graphite crucible 1.

흑연도가니(1) 안에 탄화된 소형성형체(10)의 하부를 규소(5)에 묻히게 넣는다.In the graphite crucible 1, the lower part of the carbonized compact 10 is buried in the silicon 5.

탄화된 소형성형체(10)의 상면에 규소(5)를 쌓는다.Silicon (5) is stacked on the upper surface of the carbonized compact (10).

진공저항가열로(3) 안에 흑연도가니(1)를 넣는다.A graphite crucible (1) is placed in a vacuum resistance heating furnace (3).

진공저항가열로(3)는, 진공이나 불활성 분위기에서 흑연도가니(1)를 분당 1~20℃로 승온시켜, 1500℃~1600℃로 가열한다.The vacuum resistance heating furnace 3 heats the graphite crucible 1 to 1-20 degreeC per minute in a vacuum or inert atmosphere, and heats it at 1500 degreeC-1600 degreeC.

탄화된 소형성형체(10)의 기공(porosity)으로 규소(5)가 녹아 침투한다.The silicon 5 melts and penetrates into the porosity of the carbonized compact 10.

탄화된 소형성형체(10)의 기공으로 규소(5)가 원활하게 침투하기 위해서, 규소(5)의 직경은 1mm이상이고, 규소(5)의 무게는 소형성형체(10) 무게의 200%wt이하이다. 침투된 규소(5)와 탄화된 소형성형체(10)에 포함된 탄소가 반응하여 탄화규소가 만들어진다.In order for the silicon 5 to penetrate smoothly into the pores of the carbonized compacts 10, the diameter of the silicon 5 is 1 mm or more, and the weight of the silicon 5 is 200% wt or less of the weight of the compacts 10. to be. Infiltrated silicon 5 and carbon contained in the carbonized compacts 10 react to form silicon carbide.

한편, 종래에는, 탄화된 소형성형체(10)의 상면에 규소를 쌓은 후 규소를 녹여 침투시키기 때문에, 탄화된 소형성형체(10)의 상면에 또 다른 탄화된 소형성형체를 올려 놓을 수 없다. 그 이유는, 탄화된 소형성형체(10)의 상면에 또 다른 탄화된 소형성형체를 올려놓고 규소를 침투시킨다면, 탄화된 소형성형체(10)와 또 다른 탄화된 소형성형체가 서로 달라 붙어버리기 때문이다. 따라서, 진공저항가열로(3)의 내부공간(S)을 100% 활용할 수 없어, 대량으로 탄소세라믹복합체를 생산할 수 없다.On the other hand, in the related art, since the silicon is accumulated on the upper surface of the carbonized compact molded body 10 and then the silicon is melted and infiltrated, it is not possible to place another carbonized compact molded body on the upper surface of the carbonized compact molded body 10. The reason for this is that when the carbonized compacts are placed on the upper surface of the carbonized compacts 10 and the silicon is infiltrated, the carbonized compacts 10 and the other carbonized compacts stick to each other. Therefore, the internal space S of the vacuum resistance heating furnace 3 cannot be utilized 100%, and a large amount of carbon ceramic composites cannot be produced.

도 2는, 진공저항가열로안에 흑연도가니가 놓여 진 상태를 나타낸 도면으로, 흑연도가니 안에는 규소와, 탄화된 대형성형체가 놓여 진다. 대형성형체는, 높이(H)가 50cm이상인 성형체이다. 도 2에 도시된 대형성형체는 사다리꼴 형상을 가진다. 물론, 대형성형체는 정사각형, 직사각형등 다양한 형상을 가질 수 있다.Fig. 2 is a view showing a state where a graphite crucible is placed in a vacuum resistance heating furnace, in which silicon and a carbonized large molded body are placed. A large molded object is a molded object whose height H is 50 cm or more. The large molding shown in FIG. 2 has a trapezoidal shape. Of course, the large molded body may have various shapes such as square and rectangular.

대형성형체(11)인 경우, 대형성형체(11)의 하부와 상부에서 탄소와 규소의 반응 차이가 생긴다.In the case of the large molded body 11, there is a difference in reaction between carbon and silicon in the lower part and the upper part of the large molded body 11.

보다 구체적으로 설명하면, 대형성형체(11)의 하부에 포함된 탄소는 침투된 규소(5)와 충분한 시간을 두고 반응을 한다. 반면, 대형성형체(11)의 상부에 포함된 탄소는 침투된 규소(5)와 충분한 시간을 두고 반응을 할 수 없다.In more detail, the carbon contained in the lower part of the large molded body 11 reacts with the silicon 5 infiltrated with sufficient time. On the other hand, the carbon contained in the upper portion of the large molded body 11 can not react with the silicon 5 infiltrated with sufficient time.

왜냐하면, 대형성형체(11)의 상면에 놓여 진 규소(5)가 대형성형체(11)의 상부에 포함된 탄소와 충분히 반응하기도 전에 중력에 의해 아래로 내려와 버리기 때문이다. 참고로, 높이가 50cm 미만인 소형성형체(10)에서는 모세관력과 중력이 균형을 이루기 때문에 이러한 문제점은 발생하지 않는다.This is because the silicon 5 placed on the upper surface of the large-scale molded body 11 descends by gravity before it sufficiently reacts with the carbon contained in the upper portion of the large-scale molded body 11. For reference, in the compact body 10 having a height of less than 50 cm, such a problem does not occur because the capillary force and gravity are balanced.

이러한 문제점을 해결하기 위하여, 종래에는 규소가 1차로 침투된 대형성형체(11)를 뒤집어, 아래로 내려온 대형성형체(11)의 상부에 규소(5)를 2차로 침투시켰다. 그러나, 대형성형체(11)의 하부가 윗쪽으로 올라가므로, 윗쪽으로 올라간 대형성형체(11)의 하부에 1차로 침투된 규소가 녹아서 아래로 내려오는 문제점이 발생하였다.In order to solve this problem, conventionally, the large-scale molded body 11 into which silicon has been infiltrated first is turned upside down, and the silicon 5 is infiltrated into the upper part of the large-scale molded body 11 which has been lowered. However, since the lower portion of the large molded body 11 is upward, the first penetrated silicon in the lower portion of the large molded object 11 that has been raised upward has melted down.

한편, 상술한 종래의 방법으로는, 복잡한 형상을 가진 탄화된 성형체에 규소를 균일하게 침투시키기도 어렵다.On the other hand, with the conventional method mentioned above, it is difficult to evenly infiltrate silicon into the carbonized molded body which has a complicated shape.

본 발명의 목적은, 탄화된 성형체의 크기와 형상에 관계없이, 탄화된 성형체로 규소를 균일하게 침투시켜, 탄화규소가 균일하게 분포된 탄소세라믹복합체를 만드는 데 있다.An object of the present invention is to make a carbon ceramic composite in which silicon carbide is uniformly infiltrated by infiltrating silicon uniformly into a carbonized molded body, regardless of the size and shape of the carbonized molded body.

본 발명의 다른 목적은, 진공저항가열로의 공간을 충분히 활용하여, 탄소세라믹복합체를 대량으로 만드는 데 있다.Another object of the present invention is to make a large amount of carbon ceramic composite by making full use of the space in a vacuum resistance heating furnace.

상기 목적을 달성하기 위한 탄소세라믹복합체를 만드는 방법은, 성형체를 만드는 단계; 상기 성형체를 탄화시키는 단계; 상기 탄화된 성형체에 규소를 침투시키는, 소결유도체를 만드는 단계; 및 상기 소결유도체에 포함된 규소를 녹여, 상기 탄화된 성형체로 침투시키는 단계;를 포함한다.Method for making a carbon ceramic composite to achieve the above object, the step of making a molded body; Carbonizing the molded body; Making a sintered derivative, in which silicon is infiltrated into the carbonized molded body; And melting silicon contained in the sintered derivative and infiltrating the carbonized molded body.

본 발명은, 소결유도체로 탄화된 성형체를 감싸거나, 소결유도체를 탄화된 성형체의 내부로 삽입한다. 그리고, 소결유도체를 가열하여, 소결유도체에 포함된 규소를 녹여 탄화된 성형체에 침투시킨다. 이로 인해, 탄화된 성형체의 크기와 형상에 관계없이, 탄화된 성형체로 규소가 균일하게 침투한 후 탄화된 성형체에 포함된 탄소와 반응하여 탄화규소를 만든다. 따라서, 본 발명을 사용하면, 탄화규소가 균일하게 분포된 탄소세라믹복합체가 만들 수 있다.The present invention wraps the molded body carbonized with the sintered derivative or inserts the sintered derivative into the carbonized molded body. Then, the sintered derivative is heated to dissolve silicon contained in the sintered derivative and infiltrate into the carbonized molded body. For this reason, regardless of the size and shape of the carbonized molded body, silicon is uniformly penetrated into the carbonized molded body and then reacts with the carbon contained in the carbonized molded body to form silicon carbide. Therefore, using the present invention, a carbon ceramic composite in which silicon carbide is uniformly distributed can be produced.

또한, 본 발명을 사용하면, 탄화된 성형체를 감싸는 소결유도체위에, 또 다른 탄화된 성형체를 감싸는 소결유도체를 올려놓은 상태로, 한꺼번에 탄화된 성형체들에 규소를 녹여 침투시킬 수 있다. 따라서, 진공저항가열로의 공간을 충분히 활용할 수 있어 대량으로 탄소세라믹복합체를 만들 수 있다.In addition, by using the present invention, the silicon can be dissolved and infiltrated into the carbonized molded bodies at once while the sintered derivative surrounding the carbonized molded body is placed on the sintered derivative surrounding the carbonized molded body. Therefore, it is possible to make full use of the space in the vacuum resistance heating furnace, thereby making it possible to make a carbon ceramic composite in large quantities.

도 1은, 진공저항가열로안에 흑연도가니가 놓여 진 상태를 나타낸 도면으로, 흑연도가니 안에는 규소와 탄화된 소형성형체가 놓여 진다.
도 2는, 진공저항가열로안에 흑연도가니가 놓여 진 상태를 나타낸 도면으로, 흑연도가니 안에는 규소와, 탄화된 대형성형체가 놓여 진다.
도 3은, 본 발명의 일 실시예에 따른, 탄소세라믹복합체를 만드는 방법을 나타낸 순서도이다.
도 4는, 진공저항가열로안에 흑연도가니가 놓여 진 상태를 나타낸 도면으로, 흑연도가니 안에는 소결유도체로 감싼 탄화된 대형성형체가 놓여 진다.
도 5는, 도 4의 A부분을 확대한 도면이다.
도 6은, 도 4의 소결유도체에 포함된 규소가 탄화된 대형성형체로 균일하게 침투하는 상태를 나타낸 도면이다.
도 7은, 진공저항가열로안에 흑연도가니가 놓여 진 상태를 나타낸 도면으로, 흑연도가니 안에는 소결유도체로 감싼 탄화된 소형성형체 2개가 서로 적층되어 놓여 진다.
FIG. 1 is a view showing a state where a graphite crucible is placed in a vacuum resistance heating furnace, in which silicon and a carbonized compact molded object are placed.
Fig. 2 is a view showing a state where a graphite crucible is placed in a vacuum resistance heating furnace, in which silicon and a carbonized large molded body are placed.
3 is a flowchart illustrating a method of making a carbon ceramic composite according to one embodiment of the present invention.
4 is a view showing a state in which a graphite crucible is placed in a vacuum resistance heating furnace, in which a carbonized large molded body wrapped with a sintered derivative is placed.
FIG. 5 is an enlarged view of a portion A of FIG. 4.
FIG. 6 is a view illustrating a state in which silicon included in the sintered conductor of FIG. 4 uniformly penetrates into a carbonized large molded body.
Fig. 7 is a view showing a state in which graphite crucibles are placed in a vacuum resistance heating furnace. In the graphite crucible, two small carbonized compacts wrapped with a sintering conductor are stacked on each other.

이하, 본 발명의 일 실시예에 따른, 탄소세라믹복합체를 만드는 방법을 설명한다.Hereinafter, a method of making a carbon ceramic composite according to an embodiment of the present invention will be described.

도 3은, 본 발명의 일 실시예에 따른, 탄소세라믹복합체를 만드는 방법을 나타낸 순서도이다. 도 3에 도시된 바와 같이, 탄소세라믹복합체를 만드는 방법은, 성형체를 만드는 단계(S11), 성형체를 탄화시키는 단계(S12), 탄화된 성형체에 규소를 침투시키는, 소결유도체를 만드는 단계(S13), 소결유도체에 포함된 규소를 녹여 탄화된 성형체로 침투시키는 단계(S14)를 포함한다. 상술한 본 발명의 일 실시예에 따른, 탄소세라믹복합체를 만드는 방법은, 성형체의 크기가 대형이든 소형이든 동일하게 적용된다.3 is a flowchart illustrating a method of making a carbon ceramic composite according to one embodiment of the present invention. As shown in FIG. 3, the method of making a carbon ceramic composite includes a step of making a molded body (S11), a step of carbonizing the molded body (S12), and a step of making a sintered derivative (S13) that infiltrates silicon into the carbonized molded body. , Melting the silicon contained in the sintered derivative and infiltrating the carbonized molded body (S14). The method for producing a carbon ceramic composite according to the embodiment of the present invention described above is equally applicable whether the molded body is large or small.

이하, 성형체를 만드는 단계(S11)를 설명한다.Hereinafter, the step (S11) of making a molded body will be described.

활성탄소 분말, 열분해 탄소, 피치, 탄화규소 분말을 혼합하여 혼합물을 만든다. 최종 완성된 탄소세라믹복합체내에서 활성탄소 분말, 열분해 탄소, 피치의 무게는 10~50%wt인 것이 바람직하다.Activated carbon powder, pyrolytic carbon, pitch, silicon carbide powder are mixed to form a mixture. The weight of the activated carbon powder, pyrolytic carbon, and pitch in the final carbon ceramic composite is preferably 10 to 50% wt.

탄소세라믹복합체의 내구성을 향상시키기 위해 유기바인더를 혼합물에 첨가할 수 있다. 유기바인더로는, 비닐계의 바인더 또는 셀룰로오스계의 바인더가 사용될 수 있다.An organic binder may be added to the mixture to improve the durability of the carbon ceramic composite. As the organic binder, a vinyl binder or a cellulose binder may be used.

혼합물을 프레스로 가압하여, 성형체를 만든다. 필요 시, 프레스에 히터를 설치하여, 가압과 동시에 혼합물을 가열할 수도 있다.The mixture is pressed with a press to form a shaped body. If necessary, a heater may be installed in the press to heat the mixture simultaneously with pressurization.

이하, 성형체를 탄화시키는 단계(S12)를 설명한다.Hereinafter, the step (S12) of carbonizing the molded body will be described.

진공이나 불활성 분위기에서 성형체를 탄화시킨다. 성형체에 포함된 유기화합물(활성탄소 분말, 열분해 탄소, 피치, 탄화규소 분말)이 열분해되어 탄소가 된다. 유기화합물이 열분해되고 남은 자리에는 기공들이 형성된다.The molded product is carbonized in a vacuum or inert atmosphere. Organic compounds (active carbon powder, pyrolytic carbon, pitch, silicon carbide powder) contained in the molded product are thermally decomposed to carbon. The organic compound is thermally decomposed and pores are formed in the remaining position.

이하, 탄화된 성형체를 감싸는 소결유도체를 만드는 단계(S13)를 설명한다.Hereinafter, the step (S13) of making the sintered conductor surrounding the carbonized molded body will be described.

첫 번째로, 탄화규소분말(5~10%wt), 산화물세라믹스분말(10~30%wt), 규소분말(50~90%wt)을 혼합하여 혼합분말을 만든다. 산화물세라믹스분말은, 실리카, 알루미나, 지르코니아, 티타니아로 구성된다. 혼합분말의 평균크기는 1㎛ ~ 3000㎛이다.First, silicon carbide powder (5 ~ 10% wt), oxide ceramic powder (10 ~ 30% wt), silicon powder (50 ~ 90% wt) is mixed to make a mixed powder. The oxide ceramic powder is composed of silica, alumina, zirconia and titania. The average size of the mixed powder is 1 µm to 3000 µm.

탄화규소분말과 산화물세라믹스 분말은, 소결유도체가 고온에서 초기 성형상태를 유지시키도록 도와준다. 또한, 규소가 응집되는 것을 막아, 탄화된 성형체에 포함된 탄소와 규소가 균일하게 반응하도록 도와준다.Silicon carbide powder and oxide ceramic powders help the sintered derivatives to maintain their initial forming at high temperatures. In addition, silicon is prevented from agglomerating, so that the carbon contained in the carbonized molded body and the silicon are reacted uniformly.

한편, 탄화된 성형체에 포함된 탄소와 규소가 반응하여 탄화규소를 만들 때 필요한 규소의 양과 탄화된 성형체의 기공을 채우는 규소의 양을 계산하면, 혼합분말에서 규소분말의 무게는 50~90%wt인 것이 바람직하다. 계산의 근거로, 탄소와 규소는 1:1 공유결합하며, 탄소와 규소의 무게비는 1:4이고, 탄화된 성형체에 포함된 탄소의 무게는 20~70%wt라 설정하였다.On the other hand, when the carbon contained in the carbonized compact and silicon react to calculate the amount of silicon required to make silicon carbide and the amount of silicon filling the pores of the carbonized compact, the weight of the silicon powder in the mixed powder is 50-90% wt Is preferably. Based on the calculation, carbon and silicon were 1: 1 covalently bonded, the weight ratio of carbon to silicon was 1: 4, and the weight of carbon contained in the carbonized molded body was set to 20 to 70% wt.

한편, 탄화된 성형체의 무게가 100%wt일 때, 탄화된 성형체를 감싸는 소결유도체의 무게는 100~300%wt인 것이 바람직하다. On the other hand, when the weight of the carbonized molded body is 100% wt, the weight of the sintered derivative surrounding the carbonized molded body is preferably 100 ~ 300% wt.

한편, 탄화된 성형체를 감싸는 소결유도체의 두께는, 탄화된 성형체 두께의 20%인 것이 바람직하다.On the other hand, it is preferable that the thickness of the sintering derivative surrounding the carbonized molded body is 20% of the thickness of the carbonized molded body.

한편, 내부가 빈(예를 들어 튜브) 탄화된 성형체인 경우는, 내부로 소결유도체를 삽입시켜 규소를 침투시킨다. 이 경우, 소결유도체의 두께가 탄화된 성형체 두께의 -20%인 것이 바람직하다.On the other hand, when the inside is a hollow (for example, tube) carbonized molded body, the sintered derivative is inserted into the inside to permeate silicon. In this case, it is preferable that the thickness of the sintered conductor is -20% of the thickness of the carbonized molded body.

한편, 탄화된 성형체의 두께가 두꺼워지면, 탄소와 반응할 규소의 양도 증가하므로, 소결유도체의 두께도 두꺼워진다. 소결유도체의 두께가 두꺼워지면, 소결유도체의 내부 결속력은 강해지나, 탄화된 성형체에 규소가 침투된 후 소결유도체를 분리시키기가 어렵다. 이를 방지하기 위하여, 혼합분말에서 규소분말을 제외한 나머지 분말들의 크기를 1000㎛이상으로 크게 한다.On the other hand, when the thickness of the carbonized molded body becomes thicker, the amount of silicon to react with carbon also increases, so that the thickness of the sintered derivative becomes thicker. When the thickness of the sintered conductor becomes thick, the internal binding force of the sintered conductor becomes strong, but it is difficult to separate the sintered derivative after silicon has penetrated into the carbonized molded body. In order to prevent this, the size of the remaining powder except the silicon powder in the mixed powder is increased to 1000㎛ or more.

한편, 탄화된 성형체의 두께가 얇아지면, 탄소와 반응할 규소의 양도 감소하므로, 소결유도체의 두께도 얇아진다. 소결유도체의 두께가 얇아지면, 탄화된 성형체에 규소가 침투된 후 소결유도체를 분리시키기는 쉬우나, 소결유도체의 내부 결속력은 약해진다. 이를 방지하기 위하여, 혼합분말에서 규소분말을 제외한 나머지 분말들의 크기를 1000㎛미만으로 작게 한다.On the other hand, when the thickness of the carbonized molded body becomes thin, the amount of silicon to react with carbon also decreases, so that the thickness of the sintered derivative becomes thin. When the thickness of the sintered derivative becomes thin, it is easy to separate the sintered derivative after silicon has penetrated the carbonized molded body, but the internal binding force of the sintered derivative is weakened. In order to prevent this, the size of the remaining powder except the silicon powder in the mixed powder is reduced to less than 1000㎛.

한편, 탄화된 성형체의 내부가 비어있는 경우에는, 내부의 윗부분에서 아랫부분으로 규소가 녹아 떨어질 수 있으므로, 규소분말의 크기를 매우 작게(100㎛미만) 한다.On the other hand, when the inside of the carbonized molded body is empty, silicon may melt from the upper part to the lower part of the inside, so that the size of the silicon powder is made very small (less than 100 µm).

두 번째로, 유기바인더를 증류수에 용해시키고, 유기바인더를 용해한 증류수(1~5%wt)를 혼합분말에 혼합한다. 1~5%wt는 혼합분말에 대한 무게비이다.Secondly, the organic binder is dissolved in distilled water, and distilled water (1-5% wt) in which the organic binder is dissolved is mixed in the mixed powder. 1 to 5% wt is the weight ratio to the mixed powder.

상기 유기바인더는 복잡한 형상 또는 대형성형체의 형상을 상온에서 유지시켜 준다.The organic binder maintains a complex shape or the shape of a large molded body at room temperature.

세 번째로, 탄화된 성형체를 밀폐용 비닐 백에 넣는다. 혼합물(혼합분말+유기바인더+증류수)을 비닐 백에 넣는다. 비닐 백의 내부를 진공상태로 만든다. 비닐 백이 수축하면서 혼합물을 가압하여, 혼합물이 탄화된 성형체를 감싸게 만든다. 비닐 백을 밀봉한다. 비닐 백의 외부에서, 진동을 주면서 0.1~1kgf/cm²로 가압한다. 혼합물이 감싼 탄화된 성형체를 비닐 백으로부터 꺼낸다. 혼합물이 감싼 탄화된 성형체를 50℃~ 150℃의 온도로 가열하여 건조한다. 혼합물이 굳으면서 분말들 사이에 미세기공(31a, 도 5참조)이 형성된다. 혼합물이 굳으면 탄화된 성형체를 감싼 소결유도체가 최종 만들어진다.Third, the carbonized molded body is placed in a sealed plastic bag. The mixture (mixed powder + organic binder + distilled water) is placed in a plastic bag. Vacuum the inside of the plastic bag. The vinyl bag shrinks and presses the mixture, causing the mixture to encapsulate the carbonized moldings. Seal the plastic bag. On the outside of the plastic bag, it is pressurized to 0.1-1 kgf / cm² with vibration. The carbonized moldings in which the mixture is wrapped are taken out of the plastic bag. The carbonized molded body wrapped in the mixture is dried by heating to a temperature of 50 ℃ to 150 ℃. As the mixture hardens, micropores 31a (see FIG. 5) are formed between the powders. When the mixture is hardened, a sintered derivative is formed that wraps the carbonized molded body.

한편, 내부가 빈 탄화된 성형체인 경우는, 탄화된 성형체의 내부에 소결유도체를 만든다. 탄화된 성형체의 내부에 소결유도체를 만드는 방법은,On the other hand, when the inside is an empty carbonized molded body, a sintered derivative is made inside the carbonized molded body. The method of making a sintered derivative in the carbonized molded body,

탄화규소분말, 산화물세라믹스분말, 규소분말을 혼합하여 혼합분말을 만드는 단계; 유기바인더를 증류수에 용해시키고, 유기바인더를 용해한 증류수를 상기 혼합분말에 혼합하는 단계; 혼합물(상기 혼합분말+상기 유기바인더+상기 증류수)을, 상기 탄화된 성형체의 내부에 삽입하는 단계; 및 상기 혼합물이 삽입된 탄화된 성형체를 가열하여 건조시키는 단계;를 포함한다.Preparing a powder by mixing silicon carbide powder, oxide ceramic powder, and silicon powder; Dissolving an organic binder in distilled water and mixing distilled water in which the organic binder is dissolved in the mixed powder; Inserting a mixture (the mixed powder + the organic binder + the distilled water) into the carbonized molded body; And heating and drying the carbonized molded body into which the mixture is inserted.

상기 탄화된 성형체의 내부에 소결유도체를 만드는 방법은, 탄화된 성형체의 내부에 혼합물을 삽입시키는 단계를 제외하고는, 탄화된 성형체를 감싸는 소결유도체를 만드는 방법과 동일하므로, 자세한 설명을 생략한다.The method of making the sintered derivative in the carbonized molded body is the same as the method of making the sintered derivative wrapped around the carbonized molded body, except for inserting the mixture into the carbonized molded body, and thus, detailed description thereof will be omitted.

이하, 소결유도체에 포함된 규소를 녹여, 탄화된 성형체에 침투시키는 단계(S14)를, 탄화된 성형체의 크기가 대형인 경우와 소형인 경우를 나누어 설명한다.Hereinafter, the step (S14) of melting the silicon contained in the sintered derivative and penetrating the carbonized molded body will be described by dividing the case where the size of the carbonized molded body is large and small.

먼저, 탄화된 성형체의 크기가 대형인 경우를 설명한다.First, the case where the size of the carbonized molded body is large is demonstrated.

도 4는, 진공저항가열로안에 흑연도가니가 놓여 진 상태를 나타낸 도면으로, 흑연도가니 안에는 소결유도체로 감싼 탄화된 대형성형체가 놓여 진다. 탄화된 대형성형체에 도면부호 21을 부여한다. 또한, 탄화된 대형성형체를 감싼 소결유도체에 도면부호 31을 부여한다. 4 is a view showing a state in which a graphite crucible is placed in a vacuum resistance heating furnace, in which a carbonized large molded body wrapped with a sintered derivative is placed. Carbonized large parts are given reference numeral 21. Also, reference numeral 31 is given to the sintered derivative wrapped with the carbonized large molded product.

도 5는, 도 4의 A부분을 확대한 도면이다. 도 6은, 도 4의 소결유도체에 포함된 규소가 탄화된 대형성형체로 균일하게 침투하는 상태를 나타낸 도면이다. 실선화살표는 규소의 흐름을 나타낸다.FIG. 5 is an enlarged view of a portion A of FIG. 4. FIG. 6 is a view illustrating a state in which silicon included in the sintered conductor of FIG. 4 uniformly penetrates into a carbonized large molded body. Solid arrows indicate the flow of silicon.

도 4에 도시된 바와 같이, 흑연도가니(1) 안에 소결유도체(31)로 감싼 탄화된 대형성형체(21)를 놓는다.As shown in FIG. 4, the carbonized large molded body 21 wrapped with the sintered derivative 31 is placed in the graphite crucible 1.

흑연도가니(1)를 진공저항가열로(3) 안에 넣는다.The graphite crucible (1) is placed in a vacuum resistance heating furnace (3).

진공저항가열로(3)는, 진공이나 불활성 분위기에서 흑연도가니(1)를 분당 1~20℃로 승온시켜, 1500℃~1600℃로 가열한다.The vacuum resistance heating furnace 3 heats the graphite crucible 1 to 1-20 degreeC per minute in a vacuum or inert atmosphere, and heats it at 1500 degreeC-1600 degreeC.

탄화된 대형성형체(21)를 감싸는 소결유도체(31)에 포함된 규소가, 탄화된 대형성형체(21)의 기공으로 녹아 침투한다. 침투한 규소(6, 도 5참조)와 탄화된 대형성형체(21)에 포함된 탄소가 반응하여 탄화규소를 만든다.The silicon contained in the sintered derivative 31 surrounding the carbonized large molded body 21 melts and penetrates into pores of the carbonized large molded body 21. Infiltrated silicon (6, see Fig. 5) and the carbon contained in the carbonized large molded body 21 reacts to form silicon carbide.

한편, 규소는 녹는점(1413℃)에 도달하더라도 100% 녹지 않는다. 규소를 100% 녹이기 위해서, 규소의 녹는점보다 높은 온도(1500℃)에서 10분 이상 가열시켜야 한다. 이때, 규소는 표면부터 내부로 녹아 들어간다. 대형성형체(21)는 중력이 모세관력보다 크기 때문에, 규소가 녹을 때, 중력에 의해 아래로 흘러내린다.On the other hand, silicon does not melt 100% even when it reaches a melting point (1413 ° C). In order to melt the silicon 100%, it must be heated for at least 10 minutes at a temperature higher than the melting point of silicon (1500 ° C.). At this time, silicon melts from the surface to the inside. Since the large-size molded object 21 has gravity greater than capillary force, when the silicon melts, it flows down by gravity.

그러나, 도 5에 도시된 바와 같이, 소결유도체(31)는, 미세기공(31a) 내에 녹은 규소(6)를 채워두어, 규소(6)가 중력에 의해 아래로 흘러내리지 못하게 한다. 그리고, 녹은 규소(6)를 탄화된 대형성형체(21)와 지속적으로 접촉시킨다.However, as shown in FIG. 5, the sintered derivative 31 fills the molten silicon 6 in the micropores 31a to prevent the silicon 6 from flowing down by gravity. Then, the molten silicon 6 is continuously contacted with the carbonized large molded body 21.

이로 인해, 도 6에 도시된 바와 같이, 미세기공(31a) 내에 채워진 규소가 탄화된 대형성형체(21)의 내부로 충분한 시간을 두고 균일하게 침투할 수 있다.As a result, as shown in FIG. 6, the silicon filled in the micropores 31a may be uniformly infiltrated into the carbonized large molded body 21 with sufficient time.

한편, 탄화된 대형성형체(21)에 포함된 탄소와 규소(6) 사이에 탄화규소를 만드는 반응은, 녹은 규소(6)가 설정된 양만큼 있어야 비로소 일어난다. 소결유도체(31)는, 미세기공(31a)내에 반응이 일어날 만큼의 녹은 규소(6)를 채워둔다. 이로 인해, 탄화된 대형성형체(21)에 포함된 탄소와 규소(6) 사이에 탄화규소를 만드는 반응이 활발하게 일어난다.On the other hand, the reaction to form silicon carbide between the carbon contained in the carbonized large molded body 21 and silicon 6 does not occur until the amount of molten silicon 6 is set. The sintered derivative 31 fills the molten silicon 6 as much as reaction occurs in the micropores 31a. For this reason, the reaction which makes silicon carbide between the carbon 6 and the silicon 6 contained in the carbonized large molded object 21 takes place actively.

탄화된 대형성형체(21)로 녹은 규소(6)가 침투되어 탄화규소가 만들어짐으로써, 탄소세라믹복합체가 최종 만들어진다.The molten silicon 6 penetrates into the carbonized large molded body 21 to form silicon carbide, whereby a carbon ceramic composite is finally made.

이후, 탄소세라믹복합체를 감싸고 있는 소결유도체를 샌드블라스트(Sandblast)로 제거한다. 그리고, 탄소세라믹복합체의 표면에 남아 있는 규소덩어리를 샌드블라스트(Sandblast)로 제거한다.Subsequently, the sintered conductor surrounding the carbon ceramic composite is removed by sandblasting. Then, the silicon lump remaining on the surface of the carbon ceramic composite is removed by sandblasting.

다음으로, 탄화된 성형체의 크기가 소형인 경우를 설명한다.Next, the case where the size of the carbonized molded body is small will be described.

도 7은, 진공저항가열로안에 흑연도가니가 놓여 진 상태를 나타낸 도면으로, 흑연도가니 안에는 소결유도체로 감싼 탄화된 소형성형체 2개가 서로 적층되어 놓여 진다.Fig. 7 is a view showing a state in which graphite crucibles are placed in a vacuum resistance heating furnace. In the graphite crucible, two small carbonized compacts wrapped with a sintering conductor are stacked on each other.

탄화된 소형성형체에 도면부호 22를 부여하고, 탄화된 소형성형체를 감싼 소결유도체에 도면부호 32를 부여한다. 또 다른 탄화된 소형성형체에 도면부호 23을 부여하고, 탄화된 소형성형체를 감싼 소결유도체에 도면부호 33을 부여한다. Reference numeral 22 is given to the carbonized compact, and reference 32 is given to the sintered conductor wrapped with the carbonized compact. Another carbonized compact is denoted by reference numeral 23, and the carbonized compact is denoted by 33.

탄화된 성형체가 소형인 경우에는, 모세관력과 중력이 균형을 이루기 때문에 녹은 규소가 탄화된 소형성형체와 지속적으로 접촉할 수 있을 뿐만 아니라, 소결유도체(32,33)로 인해, 녹은 규소가 탄화된 소형성형체(22,23)와 지속적으로 접촉할 수 있다.If the carbonized compact is small, the capillary force and gravity are balanced so that not only the molten silicon can be in continuous contact with the carbonized compact, but the sintered derivatives 32 and 33 allow the molten silicon to be carbonized. It can be in constant contact with the compacts 22 and 23.

또한, 도 7에 도시된 바와 같이, 소결유도체(32)로 감싼 탄화된 소형성형체(22)위에 또 다른 소결유도체(33)로 감싼 탄화된 소형성형체(23)를 올려놓고 한꺼번에 규소를 침투시킬 수 있다.In addition, as illustrated in FIG. 7, the carbonized compacted body 23 wrapped with another sintered derivative 33 may be placed on the carbonized compacted body 22 wrapped with the sintered conductor 32 and the silicon may be infiltrated at once. have.

그 이유는, 탄화된 소형성형체(22)를 감싼 소결유도체(32)와, 또 다른 탄화된 소형성형체(23)를 감싼 소결유도체(33)가, 탄화된 소형성형체(22)와 또 다른 탄화된 소형성형체(23)가 규소침투시 서로 달라붙는 것을 막아주기 때문이다.The reason is that the sintered inductor 32 wrapped with the carbonized compacts 22 and the sintered inductor 33 wrapped with another carbonized compacts 23 are carbonized with the compacted compact 22 and another carbonized product. This is because the compact molded body 23 prevents the silicon compact from sticking together.

이로 인해, 진공저항가열로(3)의 내부공간(S)을 충분히 활용할 수 있다.For this reason, the internal space S of the vacuum resistance heating furnace 3 can fully be utilized.

Claims (10)

성형체를 만드는 단계;
상기 성형체를 탄화시키는 단계;
상기 탄화된 성형체에 규소를 침투시키는, 소결유도체를 만드는 단계; 및
상기 소결유도체에 포함된 규소를 녹여, 상기 탄화된 성형체로 침투시키는 단계;를 포함하는 탄소세라믹복합체를 만드는 방법.
Making a shaped body;
Carbonizing the molded body;
Making a sintered derivative, in which silicon is infiltrated into the carbonized molded body; And
Dissolving silicon contained in the sintered derivative and infiltrating the carbonized molded body.
제1항에 있어서, 상기 탄화된 성형체에 규소를 침투시키는, 소결유도체를 만드는 단계는,
탄화규소분말, 산화물세라믹스분말, 규소분말을 혼합하여 혼합분말을 만드는 단계;
유기바인더를 증류수에 용해시키고, 유기바인더를 용해한 증류수를 상기 혼합분말에 혼합하는 단계;
혼합물(상기 혼합분말+상기 유기바인더+상기 증류수)로, 상기 탄화된 성형체를 감싸는 단계; 및
상기 혼합물이 감싸진 탄화된 성형체를 가열하여 건조시키는 단계;를 포함하는 탄소세라믹복합체를 만드는 방법.
The method of claim 1, wherein the step of making silicon sintered in the carbonized molded body,
Preparing a powder by mixing silicon carbide powder, oxide ceramic powder, and silicon powder;
Dissolving an organic binder in distilled water and mixing distilled water in which the organic binder is dissolved in the mixed powder;
Wrapping the carbonized molded body with a mixture (the mixed powder + the organic binder + the distilled water); And
Heating and drying the carbonized molded article wrapped with the mixture.
제2항에 있어서, 상기 혼합물로, 상기 탄화된 성형체를 감싸는 단계는,
상기 탄화된 성형체를 비닐 백에 넣는 단계;
상기 혼합물을 상기 비닐 백에 넣는 단계;
상기 비닐 백의 내부를 진공상태로 만드는 단계;
상기 비닐 백이 수축되면서 상기 혼합물을 가압하여, 상기 혼합물이 상기 탄화된 성형체를 감싸는 단계;
상기 비닐 백을 밀봉하는 단계;
상기 비닐 백의 외부에서, 진동을 주면서 가압하는 단계; 및
상기 혼합물로 감싸진 탄화된 성형체를 상기 비닐 백으로부터 꺼내는 단계;를 포함하는 탄소세라믹복합체를 만드는 방법.
The method of claim 2, wherein the step of wrapping the carbonized molded body comprises
Placing the carbonized molded body in a plastic bag;
Placing the mixture in the plastic bag;
Vacuuming the interior of the plastic bag;
Pressurizing the mixture as the vinyl bag shrinks, so that the mixture surrounds the carbonized molded body;
Sealing the vinyl bag;
Externally pressing the vibrating bag; And
And removing the carbonized molded article wrapped with the mixture from the vinyl bag.
제1항에 있어서, 상기 소결유도체에는 미세기공이 구비되며,
상기 소결유도체에 포함된 규소를 녹여, 상기 탄화된 성형체로 침투시키는 단계에서, 상기 미세기공에 채워진 규소가 상기 탄화된 성형체로 침투하는 탄소세라믹복합체를 만드는 방법.
The method of claim 1, wherein the sintered derivative is provided with fine pores,
Dissolving silicon contained in the sintered derivative and penetrating the carbonized molded body, wherein the silicon filled in the micropores penetrates into the carbonized molded body.
제4항에 있어서, 상기 소결유도체로 감싼 탄화된 성형체의 크기는 대형인 탄소세라믹복합체를 만드는 방법.5. The method according to claim 4, wherein the carbonized molded body wrapped with the sintered derivative is large in size. 제4항에 있어서, 상기 소결유도체로 감싼 탄화된 성형체의 크기는 소형이며, 상기 소결유도체로 감싼 탄화된 소형성형체들을 서로 적층하고, 한꺼번에 규소를 녹여 침투시키는 탄소세라믹복합체를 만드는 방법.The method of claim 4, wherein the carbonized compacts wrapped with the sintered derivative are small in size, and the carbonized compacts wrapped with the sintered derivative are laminated to each other, and silicon is melted and impregnated at once. 제1항에 있어서, 상기 탄화된 성형체의 무게가 100%wt일 때, 상기 탄화된 성형체를 감싸는 상기 소결유도체의 무게는 100~300%wt이고,
상기 탄화된 성형체를 감싸는 상기 소결유도체의 두께는, 상기 탄화된 성형체 두께의 20%인 탄소세라믹복합체를 만드는 방법.
The method of claim 1, wherein when the weight of the carbonized molded body is 100% wt, the weight of the sintered derivative surrounding the carbonized molded body is 100 ~ 300% wt,
And a thickness of the sintered derivative surrounding the carbonized molded body is 20% of the carbonized molded body thickness.
제2항 내지 제7항 중 어느 한 항에 있어서,
상기 탄화된 성형체의 두께가 두꺼워지면, 상기 소결유도체의 두께도 두꺼워지고,
상기 탄화된 성형체의 두께가 얇아지면, 상기 소결유도체의 두께도 얇아지는 탄소세라믹복합체를 만드는 방법.
8. The method according to any one of claims 2 to 7,
When the thickness of the carbonized molded body becomes thick, the thickness of the sintered derivative also becomes thick,
When the thickness of the carbonized molded body is thin, the thickness of the sintered derivative is also made a carbon ceramic composite.
제2항 내지 제7항 중 어느 한 항에 있어서,
상기 탄화된 성형체의 두께가 두꺼워지면, 상기 혼합분말에서 규소분말을 제외한 나머지 분말들의 크기가 커지고,
상기 탄화된 성형체의 두께가 얇아지면, 상기 혼합분말에서 규소분말을 제외한 나머지 분말들의 크기가 작아지는 탄소세라믹복합체를 만드는 방법.
8. The method according to any one of claims 2 to 7,
When the thickness of the carbonized molded body becomes thick, the size of the remaining powders except the silicon powder in the mixed powder is increased,
When the thickness of the carbonized molded body is thin, the size of the remaining powder except the silicon powder in the mixed powder to make a carbon ceramic composite.
제1항에 있어서, 상기 탄화된 성형체의 내부가 빈 경우에, 상기 탄화된 성형체에 규소를 침투시키는, 소결유도체를 만드는 단계는,
탄화규소분말, 산화물세라믹스분말, 규소분말을 혼합하여 혼합분말을 만드는 단계;
유기바인더를 증류수에 용해시키고, 유기바인더를 용해한 증류수를 상기 혼합분말에 혼합하는 단계;
혼합물(상기 혼합분말+상기 유기바인더+상기 증류수)을, 상기 탄화된 성형체의 내부에 삽입하는 단계; 및
상기 혼합물이 삽입된 탄화된 성형체를 가열하여 건조시키는 단계;를 포함하는 탄소세라믹복합체를 만드는 방법.
The method of claim 1, wherein the step of making a sintered derivative, in which silicon is infiltrated into the carbonized molded body when the inside of the carbonized molded body is empty,
Preparing a powder by mixing silicon carbide powder, oxide ceramic powder, and silicon powder;
Dissolving an organic binder in distilled water and mixing distilled water in which the organic binder is dissolved in the mixed powder;
Inserting a mixture (the mixed powder + the organic binder + the distilled water) into the carbonized molded body; And
Heating the carbonized molded body into which the mixture is inserted and drying the method; forming a carbon ceramic composite.
KR1020100082203A 2010-08-24 2010-08-24 Method for manufacturing carbon-ceramic composite KR101175756B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100082203A KR101175756B1 (en) 2010-08-24 2010-08-24 Method for manufacturing carbon-ceramic composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100082203A KR101175756B1 (en) 2010-08-24 2010-08-24 Method for manufacturing carbon-ceramic composite

Publications (2)

Publication Number Publication Date
KR20120019078A true KR20120019078A (en) 2012-03-06
KR101175756B1 KR101175756B1 (en) 2012-08-21

Family

ID=46128121

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100082203A KR101175756B1 (en) 2010-08-24 2010-08-24 Method for manufacturing carbon-ceramic composite

Country Status (1)

Country Link
KR (1) KR101175756B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101970952B1 (en) 2017-05-23 2019-04-22 주식회사 맥테크 Manufacturing method of plasma resistant and conductive ceramic-nanocarbon composite

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6403158B1 (en) 1999-03-05 2002-06-11 General Electric Company Porous body infiltrating method

Also Published As

Publication number Publication date
KR101175756B1 (en) 2012-08-21

Similar Documents

Publication Publication Date Title
CN103547549B (en) With the method and relevant apparatus of the second infiltration porous material
US4789506A (en) Method of producing tubular ceramic articles
AU2012283408C1 (en) Composite refractory for an inner lining of a blast furnace
US20080095692A1 (en) Method For Producing Fabricated Parts Based On Beta-Sic For Using In Aggressive Media
UA48196C2 (en) Method for introduction of melted silicon-based composition into porous substrates
CS354790A3 (en) Process for producing composite bodies with a metallic matrix and bodies being produced in such a manner
CN109928756B (en) Silicon carbide reinforced carbon-based composite material and preparation method thereof
IT201800006916A1 (en) "SUMMARY IN SITU, DENSIFICATION AND CONFORMATION OF NON-OXIDIC CERAMICS BY MEANS OF VACUUM ADDITIVE PRODUCTION TECHNOLOGIES"
KR101175756B1 (en) Method for manufacturing carbon-ceramic composite
JP7112215B2 (en) Silicon melting crucible, method for manufacturing silicon melting crucible, and method for manufacturing reaction-sintered SiC
CN104529442B (en) Non-pressure infiltration preparation process of functionally graded piezoelectric material (FGPM)
US10086544B2 (en) Laminate resin transfer molding of fibrous preforms using particle filled resin systems
US8668865B2 (en) Ceramic materials containing spherical shaped carbon particles
US5071685A (en) Ceramic articles, methods and apparatus for their manufacture
CN102438965A (en) Glue and coating for refractory materials and ceramics
WO2001046486A1 (en) Method for producing metal-based composite material
JP7049869B2 (en) Silicon impregnated ceramic composite manufacturing method, friction plate manufacturing method, and brake disc manufacturing method
US5125822A (en) Apparatus for the production of ceramic articles
JP5308296B2 (en) Method for producing titanium silicon carbide ceramics
WO2003093194A1 (en) Method of manufacturing reaction-bonded silicon carbide
KR100299099B1 (en) Manufacturing Method of Silicon Carbide Ceramic Seals by Liquid Phase Reaction Sintering
KR100958097B1 (en) Fabrication method of reaction bonded silicon carbide porous body by continuous process
CA1328347C (en) Tubular ceramic articles, methods and apparatus for their manufacture
CN109627691A (en) A kind of preparation method of silicon carbide/epoxy resin composite material
JP4744722B2 (en) Method for producing metal-ceramic composite material having hollow structure

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150622

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160629

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170802

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180719

Year of fee payment: 7