KR20120016888A - A method of adsorbing and immobillizing heavy metals in contaminated soil using modified clays and phosphates - Google Patents

A method of adsorbing and immobillizing heavy metals in contaminated soil using modified clays and phosphates Download PDF

Info

Publication number
KR20120016888A
KR20120016888A KR1020100079406A KR20100079406A KR20120016888A KR 20120016888 A KR20120016888 A KR 20120016888A KR 1020100079406 A KR1020100079406 A KR 1020100079406A KR 20100079406 A KR20100079406 A KR 20100079406A KR 20120016888 A KR20120016888 A KR 20120016888A
Authority
KR
South Korea
Prior art keywords
heavy metal
phosphate
contaminated soil
clay
modified
Prior art date
Application number
KR1020100079406A
Other languages
Korean (ko)
Other versions
KR101243487B1 (en
Inventor
신원식
박준형
박혜옥
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Priority to KR1020100079406A priority Critical patent/KR101243487B1/en
Publication of KR20120016888A publication Critical patent/KR20120016888A/en
Application granted granted Critical
Publication of KR101243487B1 publication Critical patent/KR101243487B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/08Reclamation of contaminated soil chemically
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/02Soil-conditioning materials or soil-stabilising materials containing inorganic compounds only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Soil Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Processing Of Solid Wastes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE: A method for adsorbing and immobilizing heavy metal polluted soil using modified clay and a phosphate-based compound is provided to improve the eliminating effect of heavy metals by eliminating heavy metals from polluted soil and immobilizing the heavy metals. CONSTITUTION: Heavy metals are eliminated from polluted soil by mixing modified clay and the polluted soil. The modified clay is modified with iron oxide or manganese oxide. A phosphate-based compound is further used with the modified clay. The clay is diatomate, montmorillonite, bentonite, zeolite, smectite, phyllosilicate, saponite, beidellite, nontronite, vermiculite, kaolinite, halloysite, mica, muscovite, paragonite, dickite, nacrite, halloysite, antigorite, chrysotile, hectorite, clintonite, donbassite, cookeite, silica, or the combination of the same. The phosphate-based compound is diammonium phosphate, hydroxyapatite, waste phosphoric acid, K_3PO_4, K_2PO_4, KH_2PO_4, CaHPO_4, FeH_2PO_4, FeHPO_4, AlH_2PO_4, Na_2HPO_4, NaH_2PO_4, or the combination of the same.

Description

개질점토와 인산염계 화합물을 이용한 중금속 오염토양의 흡착 및 고정화 처리 방법{A method of adsorbing and immobillizing heavy metals in contaminated soil using modified clays and phosphates}A method of adsorbing and immobillizing heavy metals in contaminated soil using modified clays and phosphates

본 발명은 개질점토와 인산염계 화합물을 이용한 중금속 오염토양의 흡착 및 고정화 처리 방법에 관한 것으로, 더욱 상세하게는 중금속으로 오염된 토양에 중금속 흡착 능력이 개선된 철 또는 망간 산화물 개질 점토 및 인산염계 화합물을 처리함으로써 오염 토양 내 중금속을 제거할 수 있는 중금속 오염 토양의 처리 방법에 관한 것이다.
The present invention relates to a method for adsorbing and immobilizing heavy metal contaminated soil using modified clay and phosphate-based compounds, and more specifically, iron or manganese oxide-modified clay and phosphate-based compounds having improved heavy metal adsorption capacity to soils contaminated with heavy metals. The present invention relates to a method for treating heavy metal contaminated soil that can remove heavy metals in contaminated soil.

토양의 오염은, 폐유의 무단방류 및 사고에 의한 유출, 폐광에서의 중금속의 지하수 유입, 소각장 및 자동차 배출가스에서 나오는 다이옥신의 강우에 의한 지표수 흡수 그리고 매립장의 침출수에 의하여, 꾸준히 증가하고 있으며 처리에 어려움을 겪고 있다. Soil pollution is steadily increasing due to unauthorized discharge and accidental discharge of waste oil, groundwater inflow of heavy metals from waste mines, surface water uptake by dioxin rainfall from incinerators and vehicle emissions, and leachate from landfills. I'm having a hard time.

특히, 중금속은 유해 유기물과는 달리 토양에 유입되면 자연적으로 처리되는 시간이 길기 때문에 반영구적으로 토양 내에 잔존하게 된다. 토양에 존재하는 많은 중금속들은 토양 내의 유기물질과 결합하여 용해도가 낮은 상태로 존재하여 주변 환경으로 쉽게 이동할 수 있어 주변의 생태계에 있어 장기적인 누출에 의한 악영향을 미치고 있다. 이와 같은 토양 내 중금속 오염을 처리하기 위해 종래에 사용되고 있는 방법으로는 토양세척, 식물정화, 고형화/안정화 방법이 있다. 그러나 토양세척의 경우 세척용액에 의한 2차 오염이 발생하며 처리비용이 많이 드는 단점이 있고, 식물정화법의 경우 오염물의 농도에 따른 식물의 적용이 제한되고 정기적으로 식물을 제거해야 하며 먹이사슬을 통해 생태계 오염이 유발되는 단점이 있고, 고형화/안정화의 경우 토양 내 독성이 잠재적으로 남아있다는 문제점을 안고 있어 이러한 문제를 해결할 수 있는 새로운 기술개발이 요구되고 있다.In particular, heavy metals remain in the soil semi-permanently because of the long processing time, unlike harmful organic substances. Many heavy metals in the soil are combined with organic materials in the soil, so that they exist in low solubility and can easily move to the surrounding environment, which is adversely affected by long-term leakage in the surrounding ecosystem. Conventionally used methods for treating such heavy metal contamination in the soil include soil washing, plant purification, solidification / stabilization method. However, in the case of soil washing, secondary pollution by washing solution occurs and the processing cost is high.In the case of the plant purification method, the application of plants according to the concentration of contaminants is restricted and the plants must be removed on a regular basis. There is a disadvantage of causing ecosystem pollution, and in the case of solidification / stabilization, there is a problem that the toxicity in the soil remains. Therefore, new technology development is required to solve this problem.

한편, 중금속으로 오염된 토양에 인산염 용액을 이용하여 복원하는 방법(대한민국 특허 제 10-2003-0021646호), 환경 유해 유기물의 선택적 흡착 및 여과, 촉매제로의 응용이 가능한 다공성 가교화 점토의 제조 방법(대한민국 특허 제 10-2000-0010120호), 환경에 유해한 금속이온을 제오라이트류(zeolite), 고토소석회(Ca(OH)2.Mg(OH)2) 등을 토양 속에 넣어 신광물상으로 전환시켜 오염토양을 안정화 시키는 방법(대한민국 특허 제 10-2004-0025437호), 다수의 안정화 제재의 조합을 통한 중금속 오염토양의 안정화 처리 방법(대한민국 특허 제 10-2009-0129847), 인산염과 초음파를 이용한 중금속의 고정화 방법(대한민국 특허 제 10-2009-0127550) 등이 보고되고 있다. On the other hand, the method of restoring using a phosphate solution in soil contaminated with heavy metals (Korean Patent No. 10-2003-0021646), selective adsorption and filtration of environmentally harmful organics, a method for producing porous crosslinked clay that can be applied as a catalyst (Korean Patent No. 10-2000-0010120), a metal ion that is harmful to the environment is converted into a new mineral phase by putting zeolites, goto-lime lime (Ca (OH) 2 .Mg (OH) 2 ), etc. in the soil. Method of stabilizing soil (Korean Patent No. 10-2004-0025437), Method of stabilization of heavy metal contaminated soil through the combination of a number of stabilizing agents (Korean Patent No. 10-2009-0129847), heavy metals using phosphate and ultrasonic Immobilization method (Korean Patent No. 10-2009-0127550) and the like have been reported.

또한, 인산염계 유리를 이용한 납 오염토양 및 지하수 정화에 대한 연구(Cho et. al., 대한환경공학회춘계학술연구발표회 논문 초록집, 1998), 중금속 오염토양에 대한 액상인산염 복원기술의 적용성 평가(Lee et. al., 한국페기물학회지, 제21권 제7호, 2004), 액상 인산염을 이용한 납 오염 토양 복원에 관한 연구(Jang et. al., 상명대학교 석사학위논문, 2004) 등과 같은 연구에서 토양 내 중금속이 인산과 화학적으로 결합을 하여 불용성의 하이드록시파이로모르파이트(hydroxypyromorphite)를 형성하는 결과를 도출한 바 있다.
In addition, a study on the purification of lead-contaminated soil and groundwater using phosphate-based glass (Cho et. Al., Journal of Korean Society for Environmental Engineering Spring Conference, 1998), Evaluation of Applicability of Liquid Phosphate Restoration Technology to Heavy Metal-Contaminated Soil ( Lee et al., Korean Journal of Waste Science, Vol. 21, No. 7, 2004), and research on restoration of lead-contaminated soil using liquid phosphate (Jang et. Al., Master's Thesis, Sangmyung University, 2004). Heavy metals in the soil chemically combine with phosphoric acid to form insoluble hydroxypyromorphite.

그러나, 이와 같은 종래의 기술에서는 인산염을 이용한 중금속 오염 토양에 대한 고정화 처리의 경우 오염물질의 깊이에 따라 적용의 제한과 높은 처리 비용 및 안정적인 처리를 위한 소요 시간이 길다는 문제점을 가지고 있으며, 개질점토를 이용한 흡착처리의 경우 대부분이 대기오염물질 처리나 페놀과 같은 유기오염물질의 처리에 국한되어 있다는 단점이 있다.However, this conventional technique has a problem in that the immobilization treatment for heavy metal contaminated soil using phosphate has a long application limitation, a high treatment cost, and a long time for stable treatment, depending on the depth of the pollutant. In the case of using the adsorption treatment, most of them are limited to the treatment of air pollutants or organic pollutants such as phenol.

이에 본 발명자는 상기와 같은 점을 감안하여 연구하던 중 중금속으로 오염된 토양에 중금속 흡착 능력이 개선된 철 또는 망간 산화물 개질 점토를 처리함으로써 이동성이 큰 중금속을 흡착 처리하여 제거할 수 있으며, 이와 동시에 인산염계 화합물을 추가로 처리함으로써 중금속 고정화를 이루어 중금속 제거 효과를 더욱 향상시킬 수 있음을 확인하고 본 발명을 완성하였다.Therefore, the present inventors can treat and remove heavy metals with high mobility by treating iron or manganese oxide-modified clays with improved heavy metal adsorption capacity in heavy metal contaminated soils. By further treating the phosphate-based compound was confirmed that the heavy metal immobilization can be further improved the heavy metal removal effect and completed the present invention.

본 발명의 목적은 중금속으로 오염된 토양에 중금속 흡착 능력이 개선된 철 또는 망간 산화물 개질 점토 및 인산염계 화합물을 처리함으로써 오염 토양 내 중금속을 제거할 수 있는 중금속 오염 토양의 처리 방법을 제공하고자 하는 것이다.It is an object of the present invention to provide a method for treating heavy metal contaminated soils that can remove heavy metals from contaminated soil by treating iron or manganese oxide modified clays and phosphate-based compounds with improved heavy metal adsorption capacity on heavy metal contaminated soils. .

상기 과제를 해결하기 위해, 본 발명은 중금속으로 오염된 토양으로부터 효율적이고 안정적으로 중금속을 제거할 수 있는 중금속 오염 토양의 처리 방법을 제공한다.In order to solve the above problems, the present invention provides a method for treating heavy metal contaminated soil that can efficiently and stably remove heavy metal from soil contaminated with heavy metal.

하나의 양태로서 본 발명은 중금속 흡착 능력이 개선된 철(Fe) 산화물 또는 망간(Mn) 산화물로 개질된 개질 점토를 중금속으로 오염된 토양과 혼합하여 상기 오염 토양 내 중금속을 제거하는 단계를 포함하는 중금속 오염 토양의 처리 방법을 제공한다.In one embodiment, the present invention includes the step of removing the heavy metal in the contaminated soil by mixing modified clay modified with iron (Fe) oxide or manganese (Mn) oxide with improved heavy metal adsorption capacity with the soil contaminated with heavy metal. Provides a method for treating heavy metal contaminated soil.

더 나아가, 본 발명은 상기 개질 점토와 함께 인산염계 화합물을 추가로 혼합하여 사용함으로써 오염 토양 내 중금속의 제거 효율이 현저히 상승된 중금속 오염 토양의 처리 방법을 제공할 수 있다.Furthermore, the present invention can provide a method for treating heavy metal contaminated soil in which the efficiency of removing heavy metals in contaminated soil is significantly increased by further mixing and using a phosphate compound with the modified clay.

본 발명에서 사용되는 용어 "개질 점토"란, 천연 점토를 표면 개질제로 개질시켜 중금속에 대한 흡착용량을 개선시킨 점토를 의미한다. 구체적으로, 개질 점토는 물 속에서 팽창하며, 양이온에 대한 흡착능과 이온교환성, 흡수성이 크고 표면적이 넓어 중금속을 효과적으로 처리할 수 있는 장점을 가진 점토를 표면전하가 큰 금속산화물인 철(Fe) 또는 망간(Mn) 산화물을 이용하여 개질시킴으로써 얻을 수 있다. 이와 같이 개질된 점토는 중금속에 대한 흡착 용량이 개선됨으로써 효율적이고 안정적으로 중금속의 흡착 효율을 극대화 시킬 수 있다.As used herein, the term "modified clay" means clay that has improved its adsorption capacity for heavy metals by modifying natural clay with a surface modifier. Specifically, modified clay expands in water, and iron (Fe), which is a metal oxide with a large surface charge, is a clay having the advantage of effectively absorbing heavy metals due to its high adsorption capacity, ion exchangeability, and high absorption, and surface area. Or by modifying it with manganese (Mn) oxide. The modified clay can maximize the adsorption efficiency of heavy metals efficiently and stably by improving the adsorption capacity for heavy metals.

본 발명에서, 상기 점토로는 규조토(diatomate), 몬모릴로나이트(montmorillonite), 벤토나이트(bentonite), 제올라이트(zeolite), 스멕타이트(smectite), 필로실리케이트(phyllosilicate), 사포나이트(saponite), 베이델라이트(beidellite), 논트로나이트(nontronite), 버미큘라이트(vermiculite), 카올리나이트(kaolinite), 할로사이트로(halloysite) 운모(mica), 백운모(muscovite), 파라고나이트(paragonite), 디카이트(dickite), 내크라이트(nacrite), 핼로이사이트(halloysite), 안티코라이트(antigorite), 크리소타일(chrysotile), 헥토라이트(hectorite), 클린토나이트(clintonite), 돈바사이트(donbassite), 쿡케이트(cookeite), 실리카(silica) 또는 이들의 조합을 사용할 수 있으며, 이에 제한되지는 않는다.In the present invention, the clay is diatomate, montmorillonite, montmorillonite, bentonite, zeolite, zemite, smectite, phyllosilicate, saponite, beydellite ), Nontronite, vermiculite, kaolinite, halloysite mica, muscovite, paragonite, dickite, nakrite (nacrite), halloysite, antigorite, chrysotile, hectorite, clintonite, donbassite, cookeite, Silica or a combination thereof may be used, but is not limited thereto.

본 발명의 일 실시예에서는, 상기 점토의 구체적인 예로 점토의 구조적 차이를 가지는 규조토(diatomate)와 몬모릴로나이트(montmorillonite)를 각각 표면 개질제로서 철(Fe) 산화물 또는 망간(Mn) 산화물로 개질하여 사용하였다. 규조토는 비정질의 비결정 구조를 가진 천연 점토이며 몬모릴로나이트는 2:1 판상 구조를 가지는 스멕타이트(smectite)계 천연 점토이다.In one embodiment of the present invention, diatomite and montmorillonite having structural differences of clay are used as the surface modifiers of iron (Fe) oxide or manganese (Mn) oxide, respectively. Diatomaceous earth is a natural clay having an amorphous amorphous structure and montmorillonite is a smectite-based natural clay having a 2: 1 plate structure.

본 발명의 실험예를 통해, 상기 개질 점토로는 망간(Mn)으로 개질된 비결정 구조의 규조토가 오염 토양 내 중금속 제거 효율면에서 가장 바람직한 것으로 확인되었다.Through the experimental example of the present invention, the modified clay as the manganese (Mn) amorphous diatomaceous earth was confirmed that the most preferable in terms of efficiency of heavy metal removal in contaminated soil.

본 발명에서, 상기 개질 점토는 바람직하기로는 오염 토양 100 중량부에 대하여 0.1 내지 10 중량부로 혼합되는 것이 좋다. 만일 개질 점토가 0.1 중량부보다 적게 혼합되면 중금속 제거 효율이 떨어지게 되고 10 중량부보다 많이 혼합되더라도 중금속 제거 효율이 크게 증가하지 않아 비경제적이다.In the present invention, the modified clay is preferably mixed with 0.1 to 10 parts by weight with respect to 100 parts by weight of contaminated soil. If the modified clay is mixed less than 0.1 parts by weight, the heavy metal removal efficiency is lowered, and even if mixed with more than 10 parts by weight heavy metal removal efficiency does not increase significantly is uneconomical.

본 발명에서, 상기 개질 점토는 오염 토양 100 중량부에 대하여 5 중량부로 혼합되는 것이 가장 바람직하다.In the present invention, the modified clay is most preferably mixed in 5 parts by weight based on 100 parts by weight of contaminated soil.

본 발명에서, 상기 인산염계 화합물은 128 mg as P/g 인산염계 화합물 이상인 인산염계 화합물이면 적용이 가능하다. 본 발명에서는 원활한 공급과 경제성을 고려하여 상업용 비료로서, 수용성 인산으로 비료 내 인의 함량이 128 mg as P/g 인산염계 화합물 이상인 것을 사용하였다.In the present invention, the phosphate-based compound is applicable if the phosphate-based compound is more than 128 mg as P / g phosphate-based compound. In the present invention, as a commercial fertilizer in consideration of the smooth supply and economical efficiency, a water-soluble phosphoric acid, a phosphorus content of more than 128 mg as P / g phosphate compound was used.

본 발명에서, 구체적으로 사용 가능한 인산염계 화합물로는 디암모늄 포스페이트, 하이드록시아파타이트, 폐인산, K3PO4, K2PO4, KH2PO4, CaHPO4, FeH2PO4, FeHPO4, AlH2PO4, AlHPO4, Na2HPO4, NaH2PO4 또는 이들의 조합이 있다.In the present invention, specifically phosphate-based compounds that can be used include diammonium phosphate, hydroxyapatite, waste phosphoric acid, K 3 PO 4 , K 2 PO 4 , KH 2 PO 4 , CaHPO 4 , FeH 2 PO 4 , FeHPO 4 , AlH 2 PO 4 , AlHPO 4 , Na 2 HPO 4 , NaH 2 PO 4 or a combination thereof.

본 발명의 일 실시예에서는, 경제성을 고려하여 상기 인산염계 화합물로 디암모늄 포스페이트(diammonium phosphate, DAP)를 사용하였다.In one embodiment of the present invention, diammonium phosphate (DAP) was used as the phosphate compound in consideration of economical efficiency.

본 발명에서, 상기 인산염계 화합물은 오염 토양 100 중량부에 대하여 0.3 내지 3 중량부로 혼합되는 것이 바람직하다. In the present invention, the phosphate-based compound is preferably mixed in 0.3 to 3 parts by weight based on 100 parts by weight of contaminated soil.

본 발명의 실험예를 통해, 상기 인산염계 화합물을 오염 토양 100 중량부에 대하여 0.3 내지 3 중량부로 혼합하는 것이 바람직한 것으로 확인되었다.Through the experimental example of the present invention, it was confirmed that it is preferable to mix the phosphate-based compound in 0.3 to 3 parts by weight with respect to 100 parts by weight of contaminated soil.

더 나아가, 본 발명의 실험예를 통해 개질 점토와 인산염계 화합물을 동시에 처리한 경우 각각을 단독으로 처리한 경우에 비해 안정적이고 효과적인 중금속 제거 효율을 나타냄을 확인할 수 있었다.
Furthermore, the experimental examples of the present invention showed that when the modified clay and the phosphate-based compound were treated at the same time, they showed more stable and effective heavy metal removal efficiency than when each was treated alone.

본 발명은 중금속으로 오염된 토양에 중금속 흡착 능력이 개선된 철 또는 망간 산화물 개질 점토를 처리함으로써 이동성이 큰 중금속을 흡착 처리하여 제거할 수 있으며, 이와 동시에 인산염계 화합물을 추가로 처리함으로써 중금속 고정화를 이루어 중금속 제거 효과를 더욱 향상시킬 수 있는 중금속 오염 토양의 처리 방법을 제공할 수 있는 효과가 있다.
The present invention can be removed by the adsorption treatment of heavy mobile metals by treating iron or manganese oxide-modified clay with improved heavy metal adsorption capacity in the soil contaminated with heavy metals, and at the same time by further treating the phosphate-based compound to fix the heavy metals There is an effect that can provide a method for treating heavy metal contaminated soil that can further improve the heavy metal removal effect.

도 1은 몬모릴로나이트의 개질 전후 표면 형태 변화를 보여주는 SEM 분석 결과이다. 이때 (a)는 개질 전의 Montmorillonite, (b)는 Fe-Montmorillonite, (c)는 Mn-Montmorillonite이다.
도 2는 규조토의 개질 전후 표면 변화를 보여주는 SEM 분석 결과이다. 이때 (a)는 개질 전의 Diatomite, (b)는 Fe-Diatomite, (c)는 Mn-Diatomite이다.
도 3은 몬모릴로나이트의 개질 점토에 대한 Pb 흡착 결과를 나타낸 것이다.
도 4는 규조토의 개질 점토에 대한 Pb 흡착 결과를 나타낸 것이다.
도 5는 인산염(DAP)을 이용한 Pb 고정화 결과를 나타낸 것이다.
도 6은 개질점토 Mn-Diatomite와 인산염(DAP)을 혼합한 시료에 대한 중금속 흡착 및 고정화 후 용출 실험결과를 나타낸 그래프이다. 이때 (a)는 DAP 0.0039 g을 처리한 경우, (b)는 DAP 0.0077 g, (c)는 DAP 0.0155 g, (d)는 DAP 0.0310 g을 각각 처리한 경우이다. 아울러, Fraction 1(exchangeable)은 양이온교환에 의한 흡착에 대한 것으로 중금속의 이동성과 생이용성이 가장 큰 단계이고, Fraction 2(carbonate)는 무기탄소와의 결합에 의한 Me(CO3)의 형성에 대한 것으로 Fraction 2에서의 중금속은 탄산염과 결합하여 침전된 상태를 의미하며, Fraction 3(reducible)은 Metal oxide(Iron, manganese oxide)와의 결합에 대한 것으로 중금속이 광물의 결정성 격자(crystalline lattice) 내에 존재하여 이동성이 떨어지는 상태이며, Fraction 4(organic material)는 토양내 존재하는 biomass, humic substance와 결합된 부분을 의미하며, Fraction 5(residual)는 토양내 존재하는 phosphate, sulfur, hydroxide 등과 결합한 상태를 의미한다.
도 7은 개질점토인 Mn-Diatomite와 인산염(DAP)을 이용하여 Pb 오염토양의 흡착 및 고정화 처리 후 Pb 오염 토양에 대한 XRD 분석 결과를 나타낸 것이다.
1 is a SEM analysis showing the surface morphology change before and after the modification of montmorillonite. (A) is Montmorillonite before modification, (b) is Fe-Montmorillonite, and (c) is Mn-Montmorillonite.
Figure 2 is a SEM analysis showing the surface change before and after the modification of the diatomaceous earth. (A) is Diatomite before modification, (b) is Fe-Diatomite, and (c) is Mn-Diatomite.
Figure 3 shows the results of Pb adsorption on the modified clay of montmorillonite.
Figure 4 shows the results of Pb adsorption on modified clay of diatomaceous earth.
5 shows the results of Pb immobilization using phosphate (DAP).
FIG. 6 is a graph showing the results of elution experiments after heavy metal adsorption and immobilization on samples mixed with modified clay Mn-Diatomite and phosphate (DAP). In this case, (a) is 0.0039 g of DAP, (b) is 0.0077 g of DAP, (c) is 0.0155 g of DAP, and (d) is 0.0310 g of DAP, respectively. In addition, Fraction 1 (exchangeable) is the most important step for the adsorption by cation exchange, the mobility and bioavailability of heavy metals, Fraction 2 (carbonate) for the formation of Me (CO 3 ) by binding to inorganic carbon The heavy metal in Fraction 2 is the precipitated state combined with carbonate, and Fraction 3 (reducible) refers to the binding of metal oxide (Iron, manganese oxide). Heavy metal is present in the crystalline lattice of mineral. Mobility is inferior, and Fraction 4 (organic material) refers to the part combined with biomass and humic substance in soil, and Fraction 5 (residual) refers to the state combined with phosphate, sulfur, hydroxide, etc. in soil. do.
FIG. 7 shows the results of XRD analysis of Pb-contaminated soils after adsorption and immobilization of Pb-contaminated soils using modified clays Mn-Diatomite and phosphate (DAP).

이하, 실시예를 통해 본 발명의 구성 및 효과를 보다 더 구체적으로 설명하고자 하나, 이들 실시예는 본 발명의 예시적인 기재일뿐 본 발명의 범위가 이들 실시예에만 한정되는 것은 아니다.
Hereinafter, the configuration and effects of the present invention will be described in more detail with reference to examples, but these examples are merely illustrative of the present invention, and the scope of the present invention is not limited only to these examples.

실시예 1: 철 산화물로 개질된 몬모릴로나이트의 제조Example 1 Preparation of Montmorillonite Modified with Iron Oxide

먼저, FeCl3(7.8g/L, 28mmol/L)와 FeSO4(3.9g/L, 14mmol/L)의 혼합용액 400 ml에 15g의 몬모릴로나이트(Montmorillonite)를 넣고 NaOH(100ml, 5M)를 공급하여 산화철(Iron oxide)의 형성을 유도하였다. 이때 산화철(Iron oxide)의 입자 하나하나가 독립적으로 합성되도록 교반하였으며, 충분하게 반응이 진행되도록 수산화나트륨(NaOH)은 느린 속도(0.8 ml/min)로 공급하였다. 제조된 Fe-Montmorillonite는 Montmorillonite/Iron oxide의 무게비로 1:1에 해당하는 양이며, Fe-Montmorillonite는 공기 중에서 충분히 산화시키고 60℃에서 건조한 후 유리병에 보관하여 사용하였다.
First, 15 g of montmorillonite was added to 400 ml of a mixed solution of FeCl 3 (7.8 g / L, 28 mmol / L) and FeSO 4 (3.9 g / L, 14 mmol / L), and NaOH (100 ml, 5 M) was supplied. The formation of iron oxide was induced. At this time, each of the particles of iron oxide (Iron oxide) was stirred so as to be independently synthesized, and sodium hydroxide (NaOH) was supplied at a slow rate (0.8 ml / min) so that the reaction proceeded sufficiently. The prepared Fe-Montmorillonite is an amount corresponding to 1: 1 by weight ratio of Montmorillonite / Iron oxide, Fe-Montmorillonite was sufficiently oxidized in air, dried at 60 ℃ and stored in a glass bottle was used.

실시예 2: 망간 산화물로 개질된 몬모릴로나이트의 제조Example 2: Preparation of Montmorillonite Modified with Manganese Oxide

표면 개질제로 FeCl3와 FeSO4 대신 MnCl2 (5.6g/L, 28mmol/L)와 MnSO4 (2.4g/L, 14mmol/L)를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 Mn-Montmorillonite를 제조하였다.
MnCl 2 (5.6 g / L, 28 mmol / L) and MnSO 4 (2.4 g / L, 14 mmol / L) instead of FeCl 3 and FeSO 4 as surface modifiers in the same manner as in Example 1 Montmorillonite was prepared.

실시예 3: 철 산화물로 개질된 규조토의 제조Example 3: Preparation of Diatomaceous Earth Modified with Iron Oxide

천연 점토로 몬모릴로나이트 대신 규조토를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 Fe-Diatomite를 제조하였다.
Fe-Diatomite was prepared in the same manner as in Example 1, except that diatomaceous earth was used instead of montmorillonite as natural clay.

실시예 4: 망간 산화물로 개질된 규조토의 제조Example 4 Preparation of Diatomite Modified with Manganese Oxide

표면 개질제로 FeCl3와 FeSO4 대신 MnCl2 (5.6g/L, 28mmol/L)와 MnSO4 (2.4g/L, 14mmol/L)를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 Mn-Diatomite를 제조하였다.
MnCl 2 (5.6 g / L, 28 mmol / L) and MnSO 4 (2.4 g / L, 14 mmol / L) instead of FeCl 3 and FeSO 4 as surface modifiers in the same manner as in Example 1 -Diatomite was prepared.

제조예 1: 중금속 오염 토양의 제조Preparation Example 1 Preparation of Heavy Metal Contaminated Soil

자연 토양 50g에 PbNO3(Aldrich Chemical Co, >98%) 1500ppm을 투입하여 25℃에서 200rpm으로 3일간 인공적으로 오염시켜 Pb 인공오염 토양을 제조하였다.
PbNO 3 (Aldrich Chemical Co,> 98%) 1500ppm in 50g of natural soil was artificially contaminated at 200rpm at 25 ℃ for 3 days to prepare a Pb artificial soil.

실험예 1: 개질점토의 표면 형태 변화 조사Experimental Example 1: Investigation of surface morphology of modified clay

개질 전의 몬모릴로나이트와 규조토의 표면과, 상기 실시예 1 내지 4와 같이 개질된 개질 점토의 표면의 형태 변화를 조사하기 위하여 각각의 천연 점토와 개질 점토의 표면을 주사전자현미경(SEM)을 이용하여 조사하였다. In order to investigate the morphological changes of the surface of montmorillonite and diatomaceous earth before the modification and the surface of the modified clays modified as in Examples 1 to 4, the surfaces of natural clays and modified clays were examined using a scanning electron microscope (SEM). It was.

그 결과, 몬모릴로나이트의 개질 전후 표면 형태 변화는 도 1에 나타내었으며, 규조토의 개질 전후 표면 변화는 도 2에 나타내었다. 도 1에서 (a)는 개질 전의 Montmorillonite, (b)는 Fe-Montmorillonite, (c)는 Mn-Montmorillonite이며, 도 2에서 (a)는 개질 전의 Diatomite, (b)는 Fe-Diatomite, (c)는 Mn-Diatomite이다.As a result, the surface shape change before and after the modification of montmorillonite is shown in Figure 1, the surface change before and after the modification of the diatomaceous earth is shown in Figure 2. In Figure 1 (a) is Montmorillonite before reforming, (b) is Fe-Montmorillonite, (c) is Mn-Montmorillonite, in Figure 2 (a) is Diatomite before reforming, (b) is Fe-Diatomite, (c) Is Mn-Diatomite.

도 1 및 도 2를 통해, 개질 후 산화물의 형성으로 인하여 몬모릴로나이트 및 규조토의 표면적이 더욱 넓어졌음을 확인할 수 있었다.
1 and 2, it was confirmed that the surface area of montmorillonite and diatomaceous earth was wider due to the formation of oxide after modification.

실험예 2: 개질점토를 이용한 중금속 흡착 효율 측정Experimental Example 2: Measurement of Heavy Metal Adsorption Efficiency Using Modified Clay

상기 실시예 1 내지 4에서 제조된 개질점토를 이용하여 중금속 수용액에서 중금속 흡착 효율을 측정하였다. Heavy metal adsorption efficiency was measured in the aqueous heavy metal solution using the modified clay prepared in Examples 1 to 4.

구체적으로, 상기 제조예 1에서 제조된 Pb 오염토양 1g에 실시예 1 내지 4에서 제조된 Fe-Montmorillonite, Mn-Montmorillonite, Fe-Diatomite, Mn-Diatomite를 각각 약 0.05 g씩 각각의 50ml vial에 담고 균일하게 혼합한 후 수분함량이 50%가 되도록 MES((2-N-Morpholino)Ethanesulphonic Acid) buffer를 이용하여 제조한 pH 완충용액을 주입하여 중금속을 고정화 시켰다. 고정화 실험 후 시료를 원심분리(2,000 rpm, 20 min)시킨 후 0.2 μm cellulose nitrate membrane filter(Whatman)를 이용하여 상등액의 입자성 물질과 용존성 물질을 분리하고 일정하게 희석시킨 후 원자흡수분광광도계(Atomic Absorption Spectrometer, AAS)를 이용하여 농도를 측정하였다.Specifically, 1 g of Pb-contaminated soil prepared in Preparation Example 1 contained Fe-Montmorillonite, Mn-Montmorillonite, Fe-Diatomite, and Mn-Diatomite, which were prepared in Examples 1 to 4, in each 50 ml vial. After homogeneously mixing, a pH buffer solution prepared using MES ((2-N-Morpholino) Ethanesulphonic Acid) buffer was injected so that the water content was 50%, and the heavy metals were immobilized. After the immobilization experiment, the sample was centrifuged (2,000 rpm, 20 min), and then separated with a 0.2 μm cellulose nitrate membrane filter (Whatman). Concentration was measured using an Atomic Absorption Spectrometer (AAS).

도 3 내지 도 4에 몬모릴로나이트 및 규조토 각각의 개질 점토에 대한 Pb 흡착 결과를 나타내었다.3 to 4 show Pb adsorption results for modified clay of montmorillonite and diatomaceous earth, respectively.

도 3 내지 도 4를 통해, 천연 점토에 비해 철 산화물 또는 망간 산화물로 개질된 개질 점토에서 중금속 흡착량이 현저하게 증가함을 확인할 수 있었다.3 to 4, it was confirmed that the amount of heavy metal adsorption increased significantly in the modified clay modified with iron oxide or manganese oxide compared to natural clay.

한편, 하기 표 1에 개질 전후의 몬모릴로나이트(Montmorillonite)와 규조토(Diatomite)의 중금속 최대 흡착량을 나타내었다.Meanwhile, Table 1 shows the maximum adsorption amounts of heavy metals of montmorillonite and diatomite before and after reforming.

개질점토의 Pb 최대 흡착량Maximum adsorption amount of Pb in modified clay 최대흡착량Max adsorption amount 규조토Diatomaceous earth Fe-
diatomite
Fe-
diatomite
Mn-
diatomite
Mn-
diatomite
몬모릴로나이트Montmorillonite Fe-
montmorillonite
Fe-
montmorillonite
Mn-
montmorillonite
Mn-
montmorillonite
mmol/gmmol / g 0.02480.0248 0.450.45 1.071.07 0.2330.233 0.3290.329 0.1780.178 mg/gmg / g 5.135.13 93.293.2 221.69221.69 47.6747.67 68.1768.17 148.76148.76

상기 표 1에서 확인할 수 있는 바와 같이, Fe와 Mn으로 개질 후 몬모릴로나이트(Montmorillonite)와 규조토(Diatomite)의 최대 흡착량은 mg/g 기준으로 Mn으로 개질한 몬모릴로나이트(Montmorillonite)의 경우 약 3배 이상, 규조토(Diatomite)의 경우 약 40배 이상으로 향상되었으며 Fe로 개질한 몬모릴로나이트(Montmorillonite)의 경우 약 18배 이상, 규조토(Diatomite)의 경우 약 1.4배 정도 향상된 것으로 확인할 수 있다.
As can be seen in Table 1, the maximum adsorption amount of Montmorillonite (Diatomite) and diatomite (Diatomite) after the modification with Fe and Mn is about three times or more in the case of Montmorillonite (Montmorillonite) modified with Mn based on mg / g, Diatomite has been improved by about 40 times or more, and it has been improved by about 18 times in the case of montmorillonite modified with Fe and about 1.4 times in the case of diatomite.

실험예 3: 인산염계 화합물을 이용한 중금속 고정화 효율 측정Experimental Example 3: Measurement of Heavy Metal Immobilization Efficiency Using Phosphate Compound

인산염계 화합물로서 디암모늄 포스페이트(DAP)를 이용하여 중금속 수용액에서 중금속 고정화 효율을 측정하였다. The heavy metal immobilization efficiency was measured in a heavy metal aqueous solution using diammonium phosphate (DAP) as a phosphate compound.

구체적으로, 상기 제조예 1에서 제조된 중금속으로 오염된 토양 1g에 DAP(Diammonium phosphate)를 하기 표 2에 나타낸 바와 같이 각 농도별로 50ml vial에 담고 Tumbler(20℃, 10 rpm)에서 24시간 동안 고정화 시켰다. 이때 수분함량이 50%가 되도록 MES((2-N-Morpholino)Ethanesulphonic Acid) buffer 용액을 주입하였다. 고정화 실험 후 시료를 원심분리(2,000 rpm, 20 min) 시킨 후 0.2 μm cellulose nitrate membrane filter(Whatman)를 이용하여 상등액의 입자성 물질과 용존성 물질을 분리하고 일정하게 희석시킨 후 원자흡수분광광도계(Atomic Absorption Spectrometer, AAS)를 이용하여 농도를 측정하였다.Specifically, DAP (Diammonium phosphate) in 1 g of the soil contaminated with heavy metals prepared in Preparation Example 1 was added to 50 ml vial for each concentration, as shown in Table 2, and immobilized in a tumbler (20 ° C., 10 rpm) for 24 hours. I was. At this time, MES ((2-N-Morpholino) Ethanesulphonic Acid) buffer solution was injected to have a water content of 50%. After the immobilization experiment, the sample was centrifuged (2,000 rpm, 20 min), and then separated with a 0.2 μm cellulose nitrate membrane filter (Whatman). Concentration was measured using an Atomic Absorption Spectrometer (AAS).

구분(DAP mmol)Classification (DAP mmol) 중금속오염토양(g)Heavy metal contaminated soil (g)  DAP(g)DAP (g) 00 1One 00 1616 1One 0.00390.0039 3232 0.00770.0077 6464 0.01550.0155 128128 0.03100.0310

도 5에 인산염(DAP)을 이용한 Pb 고정화 결과를 나타내었다.5 shows the results of Pb immobilization using phosphate (DAP).

도 5를 통해, 인산염을 처리한 경우 중금속인 납(Pb)이 고정화되어 토양 시료로부터 중금속 용출량이 증가함을 확인할 수 있었다.
5, when the phosphate treatment was confirmed that lead (Pb) is a heavy metal is increased heavy metal elution from the soil sample.

실험예 4: 개질점토와 인산염계 화합물을 이용한 중금속 흡착 및 고정화 복합 효율 측정Experimental Example 4: Measurement of Heavy Metal Adsorption and Immobilization Complex Efficiency Using Modified Clay and Phosphate Compound

상기 실시예 1 내지 4에서 제조된 개질점토와 인산염계 화합물로서 디암모늄 포스페이트(DAP)를 이용하여 중금속 수용액에서 중금속 흡착 및 고정화 효율을 측정하였다. Heavy metal adsorption and immobilization efficiency in heavy metal aqueous solution was measured using diammonium phosphate (DAP) as the modified clay and the phosphate compound prepared in Examples 1 to 4.

하기 표 3과 같이 중금속 오염 토양에 개질점토로서 상기 실험예 2에서 흡착 능력이 가장 좋은 것으로 나타난 개질 점토 Mn-Diatomite와 DAP(Diammonium phosphate)를 각각의 50ml vial에 담고 상기 실험예 2 및 3과 동일한 방법으로 중금속 흡착 및 고정화 실험 후 용출 실험을 수행하였다.As shown in Table 3, the modified clay Mn-Diatomite and DAP (Diammonium phosphate), which were shown to have the best adsorption capacity in Experimental Example 2 as modified clay in heavy metal contaminated soil, were contained in each 50ml vial, and were the same as those of Experimental Examples 2 and 3. The dissolution experiment was performed after heavy metal adsorption and immobilization experiments.

구분division 중금속오염토양(g)Heavy metal contaminated soil (g) Mn-Diatomite(g)Mn-Diatomite (g)  DAP(g)DAP (g) (a)(a) 1One 0.050.05 0.00390.0039 (b)(b) 0.00770.0077 (c)(c) 0.01550.0155 (d)(d) 0.03100.0310

도 6은 개질점토 Mn-Diatomite와 인산염(DAP)을 혼합한 시료에 대한 중금속 흡착 및 고정화 후 용출 실험결과를 나타낸 그래프이다. 도 6에서 확인할 수 있는 바와 같이, 개질점토와 인산염(DAP)을 혼합하여 주입한 경우 중금속 용출시 개질점토만을 이용한 중금속 흡착과 인산염(DAP)만을 이용한 중금속 고정화 처리 보다 안정적이고 효과적인 중금속 처리 효율을 나타냄을 알 수 있었다. FIG. 6 is a graph showing the results of elution experiments after heavy metal adsorption and immobilization on samples mixed with modified clay Mn-Diatomite and phosphate (DAP). As can be seen in FIG. 6, when mixed clay and phosphate (DAP) were mixed and mixed, heavy metal adsorption using only modified clay and heavy metal immobilization treatment using only phosphate (DAP) during heavy metal dissolution showed stable and effective heavy metal treatment efficiency. And it was found.

또한, 도 7은 개질점토인 Mn-Diatomite와 인산염(DAP)을 이용하여 Pb 오염토양의 흡착 및 고정화 처리 후 Pb 오염 토양에 대한 XRD 분석 결과를 나타낸 것이다. 도 7을 통해, 중금속 오염 토양에 대해 개질점토와 인산염을 이용한 흡착 및 고정화 처리 시에도, 인산염만을 이용한 고정화 처리 시와 같이, 불용성의 hydroxypyromorphite를 형성하게 되어 중금속의 안정적인 처리가 가능함을 확인할 수 있다. In addition, Figure 7 shows the results of XRD analysis on Pb contaminated soil after the adsorption and immobilization of Pb contaminated soil using Mn-Diatomite and phosphate (DAP) modified clay. 7, it can be confirmed that even in the adsorption and immobilization treatment using modified clay and phosphate on heavy metal contaminated soil, insoluble hydroxypyromorphite is formed, as in the immobilization treatment using only phosphate, and stable treatment of heavy metals is possible.

따라서, 상기 실험 결과를 종합하여 볼 때 본 발명에 따른 실시예 1 내지 4에서 제조된 철 산화물 또는 망간 산화물을 포함한 개질점토와 인산염계 화합물을 이용한 중금속 처리는 개질점토만을 이용한 중금속 흡착 혹은 인산염계 화합물만을 이용한 중금속 고정화 효율 보다 개질점토와 인산염계 화합물을 복합적으로 사용함으로써 오염된 토양 내 중금속 처리에 보다 안정적이고 효율적임을 알 수 있다.Therefore, in view of the above experimental results, heavy metal treatment using modified clay and phosphate-based compound including iron oxide or manganese oxide prepared in Examples 1 to 4 according to the present invention is a heavy metal adsorption or phosphate-based compound using only modified clay. It can be seen that it is more stable and efficient for the treatment of heavy metals in contaminated soil by using a combination of modified clay and phosphate compound than the heavy metal immobilization efficiency using only bay.

Claims (10)

철(Fe) 산화물 또는 망간(Mn) 산화물로 개질된 개질 점토를 중금속으로 오염된 토양과 혼합하여 상기 오염 토양 내 중금속을 제거하는 단계를 포함하는 중금속 오염 토양의 처리 방법.
A method of treating heavy metal contaminated soil, comprising: mixing modified clay modified with iron (Fe) oxide or manganese (Mn) oxide with soil contaminated with heavy metal to remove heavy metal in the contaminated soil.
제1항에 있어서, 상기 개질 점토와 함께 인산염계 화합물을 추가로 사용하는 중금속 오염 토양의 처리 방법.
The method for treating heavy metal contaminated soil according to claim 1, further comprising a phosphate compound in combination with the modified clay.
제1항에 있어서, 상기 점토는 규조토(diatomate), 몬모릴로나이트(montmorillonite), 벤토나이트(bentonite), 제올라이트(zeolite), 스멕타이트(smectite), 필로실리케이트(phyllosilicate), 사포나이트(saponite), 베이델라이트(beidellite), 논트로나이트(nontronite), 버미큘라이트(vermiculite), 카올리나이트(kaolinite), 할로사이트로(halloysite) 운모(mica), 백운모(muscovite), 파라고나이트(paragonite), 디카이트(dickite), 내크라이트(nacrite), 핼로이사이트(halloysite), 안티코라이트(antigorite), 크리소타일(chrysotile), 헥토라이트(hectorite), 클린토나이트(clintonite), 돈바사이트(donbassite), 쿡케이트(cookeite), 실리카(silica) 또는 이들의 조합인 중금속 오염 토양의 처리 방법.
The clay according to claim 1, wherein the clay is diatomate, montmorillonite, bentonite, zeolite, smectite, phyllosilicate, saponite, and saponite. beidellite, nontronite, vermiculite, kaolinite, halloysite mica, muscovite, paragonite, dickite, nak Nacrite, halloysite, anticorite, chrysotile, hectorite, clintonite, donbassite, cookeite A method of treating heavy metal contaminated soil, which is silica or a combination thereof.
제1항에 있어서, 상기 점토는 규조토 또는 몬모릴로나이트인 중금속 오염 토양의 처리 방법.
The method of claim 1, wherein the clay is diatomaceous earth or montmorillonite.
제1항에 있어서, 상기 개질 점토는 망간(Mn)으로 개질된 규조토인 중금속 오염 토양의 처리 방법.
The method of claim 1, wherein the modified clay is diatomaceous earth modified with manganese (Mn).
제1항에 있어서, 상기 개질 점토는 오염 토양 100 중량부에 대하여 0.1 내지 10 중량부로 혼합되는 중금속 오염 토양의 처리 방법.
The method of claim 1, wherein the modified clay is mixed with 0.1 to 10 parts by weight with respect to 100 parts by weight of contaminated soil.
제6항에 있어서, 상기 개질 점토는 오염 토양 100 중량부에 대하여 5 중량부로 혼합되는 중금속 오염 토양의 처리 방법.
The method of claim 6, wherein the modified clay is mixed in 5 parts by weight with respect to 100 parts by weight of contaminated soil.
제1항에 있어서, 상기 인산염계 화합물은 128 mg as P/g 인산염계 화합물 이상인 인산염계 화합물인 중금속 오염 토양의 처리 방법.
The method of claim 1, wherein the phosphate compound is a phosphate compound that is greater than or equal to 128 mg as P / g phosphate compound.
제8항에 있어서, 상기 인산염계 화합물은 디암모늄 포스페이트, 하이드록시아파타이트, 폐인산, K3PO4, K2PO4, KH2PO4, CaHPO4, FeH2PO4, FeHPO4, AlH2PO4, AlHPO4, Na2HPO4, NaH2PO4 또는 이들의 조합인 중금속 오염 토양의 처리 방법.
The method of claim 8, wherein the phosphate compound is diammonium phosphate, hydroxyapatite, waste phosphoric acid, K 3 PO 4 , K 2 PO 4 , KH 2 PO 4 , CaHPO 4 , FeH 2 PO 4 , FeHPO 4 , AlH 2 A method of treating heavy metal contaminated soil, which is PO 4 , AlHPO 4 , Na 2 HPO 4 , NaH 2 PO 4, or a combination thereof.
제1항에 있어서, 상기 인산염계 화합물은 오염 토양 100 중량부에 대하여 0.3 내지 3 중량부로 혼합되는 중금속 오염 토양의 처리 방법.
The method of claim 1, wherein the phosphate compound is mixed in an amount of 0.3 to 3 parts by weight based on 100 parts by weight of the contaminated soil.
KR1020100079406A 2010-08-17 2010-08-17 A method of adsorbing and immobillizing heavy metals in contaminated soil using modified clays and phosphates KR101243487B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100079406A KR101243487B1 (en) 2010-08-17 2010-08-17 A method of adsorbing and immobillizing heavy metals in contaminated soil using modified clays and phosphates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100079406A KR101243487B1 (en) 2010-08-17 2010-08-17 A method of adsorbing and immobillizing heavy metals in contaminated soil using modified clays and phosphates

Publications (2)

Publication Number Publication Date
KR20120016888A true KR20120016888A (en) 2012-02-27
KR101243487B1 KR101243487B1 (en) 2013-03-13

Family

ID=45839017

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100079406A KR101243487B1 (en) 2010-08-17 2010-08-17 A method of adsorbing and immobillizing heavy metals in contaminated soil using modified clays and phosphates

Country Status (1)

Country Link
KR (1) KR101243487B1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101334836B1 (en) * 2012-11-20 2013-12-05 서울대학교산학협력단 Remediation method of soil contaminated with explosives and heavy metals in firing ranes
KR101348806B1 (en) * 2013-08-19 2014-01-29 김영선 Method for soil remediation in reclaimed land and salty land
WO2015108347A1 (en) * 2014-01-20 2015-07-23 부경대학교 산학협력단 Heavy metal adsorption-removing method using expanded vermiculite
CN106315909A (en) * 2015-06-29 2017-01-11 宝山钢铁股份有限公司 Device and method for removing COD and two heavy metals (iron and nickel) in cold rolling dilute alkali wastewater
KR20180056345A (en) * 2016-11-18 2018-05-28 가톨릭관동대학교산학협력단 Fe-crosslink-Sericite beads for enhanced arsenate removal from water and the manufacturing method thereof
CN108976074A (en) * 2018-06-30 2018-12-11 浙江瑞美生态建设股份有限公司 A kind of heavy metal-polluted soil passivation renovation agent and its restorative procedure
RU2675866C1 (en) * 2018-03-14 2018-12-25 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Method of obtaining composition sorbent
CN109135753A (en) * 2018-07-12 2019-01-04 深圳市铁汉生态环境股份有限公司 A kind of reparation medicament and its restorative procedure administered for soil polluted by manganese
CN109499523A (en) * 2018-11-28 2019-03-22 北京工业大学 A kind of FeOOH/MnO2The preparation method of@diatomite composite material
CN109809949A (en) * 2019-04-04 2019-05-28 贵州净界科技有限公司 Fertilizer for repairing manganese-polluted soil and preparation method thereof
KR102359809B1 (en) * 2020-08-13 2022-02-07 명지대학교 산학협력단 Ground pollutant adsorption complex and manufacturing method thereof
CN114702962A (en) * 2022-04-24 2022-07-05 广东省地质实验测试中心 Iron-based modified nano hydroxyapatite material, preparation method thereof and application thereof in Cd-contaminated soil remediation
KR102425793B1 (en) * 2022-04-13 2022-07-27 박기호 Natural mineral Lumilite ecosystem restorating agent and method
CN115155516A (en) * 2022-09-09 2022-10-11 淄博正河净水剂有限公司 Heavy metal wastewater adsorbent and preparation method thereof
KR20230028631A (en) * 2021-08-19 2023-03-02 건국대학교 산학협력단 Material and method for purifying contaminant using Acrylic acid modified Clay mineral

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0182996B1 (en) * 1996-05-30 1999-10-15 조재연 Absorbent for treating heavy metal using clay mineral
KR20040087629A (en) * 2003-04-07 2004-10-15 이의상 A method for remediation of heavy metal-contaminated soil using liquefied phosphate
KR20090127550A (en) * 2008-06-09 2009-12-14 한국해양대학교 산학협력단 Method for heavy metal immobilization using phosphate and ultrasound

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101334836B1 (en) * 2012-11-20 2013-12-05 서울대학교산학협력단 Remediation method of soil contaminated with explosives and heavy metals in firing ranes
KR101348806B1 (en) * 2013-08-19 2014-01-29 김영선 Method for soil remediation in reclaimed land and salty land
WO2015108347A1 (en) * 2014-01-20 2015-07-23 부경대학교 산학협력단 Heavy metal adsorption-removing method using expanded vermiculite
CN106315909A (en) * 2015-06-29 2017-01-11 宝山钢铁股份有限公司 Device and method for removing COD and two heavy metals (iron and nickel) in cold rolling dilute alkali wastewater
KR20180056345A (en) * 2016-11-18 2018-05-28 가톨릭관동대학교산학협력단 Fe-crosslink-Sericite beads for enhanced arsenate removal from water and the manufacturing method thereof
RU2675866C1 (en) * 2018-03-14 2018-12-25 Федеральное государственное автономное образовательное учреждение высшего образования "Белгородский государственный национальный исследовательский университет" (НИУ "БелГУ") Method of obtaining composition sorbent
CN108976074A (en) * 2018-06-30 2018-12-11 浙江瑞美生态建设股份有限公司 A kind of heavy metal-polluted soil passivation renovation agent and its restorative procedure
CN109135753A (en) * 2018-07-12 2019-01-04 深圳市铁汉生态环境股份有限公司 A kind of reparation medicament and its restorative procedure administered for soil polluted by manganese
CN109499523A (en) * 2018-11-28 2019-03-22 北京工业大学 A kind of FeOOH/MnO2The preparation method of@diatomite composite material
CN109499523B (en) * 2018-11-28 2021-11-05 北京工业大学 FeOOH/MnO2Preparation method of @ diatomite composite material
CN109809949A (en) * 2019-04-04 2019-05-28 贵州净界科技有限公司 Fertilizer for repairing manganese-polluted soil and preparation method thereof
KR102359809B1 (en) * 2020-08-13 2022-02-07 명지대학교 산학협력단 Ground pollutant adsorption complex and manufacturing method thereof
KR20230028631A (en) * 2021-08-19 2023-03-02 건국대학교 산학협력단 Material and method for purifying contaminant using Acrylic acid modified Clay mineral
KR102425793B1 (en) * 2022-04-13 2022-07-27 박기호 Natural mineral Lumilite ecosystem restorating agent and method
KR102438279B1 (en) * 2022-04-13 2022-08-29 박기호 Natural mineral Lumilite ecosystem restorating agent and method
WO2023200046A1 (en) * 2022-04-13 2023-10-19 박기호 Ecological restoration agent using natural mineral lumilite and preparation method therefor
CN114702962A (en) * 2022-04-24 2022-07-05 广东省地质实验测试中心 Iron-based modified nano hydroxyapatite material, preparation method thereof and application thereof in Cd-contaminated soil remediation
CN114702962B (en) * 2022-04-24 2023-11-03 广东省地质实验测试中心 Iron-based modified nano hydroxyapatite material, preparation method thereof and application thereof in restoring Cd-polluted soil
CN115155516A (en) * 2022-09-09 2022-10-11 淄博正河净水剂有限公司 Heavy metal wastewater adsorbent and preparation method thereof

Also Published As

Publication number Publication date
KR101243487B1 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
KR101243487B1 (en) A method of adsorbing and immobillizing heavy metals in contaminated soil using modified clays and phosphates
Huang et al. Remediation of lead-contaminated sediment by biochar-supported nano-chlorapatite: Accompanied with the change of available phosphorus and organic matters
Wang et al. Stabilization of an elevated heavy metal contaminated site
Mondal et al. A comprehensive review on removal of arsenic using activated carbon prepared from easily available waste materials
Biswal et al. Biochar-based bioretention systems for removal of chemical and microbial pollutants from stormwater: A critical review
Arif et al. Synthesis, characteristics and mechanistic insight into the clays and clay minerals-biochar surface interactions for contaminants removal-A review
Vareda et al. Heavy metals in Iberian soils: Removal by current adsorbents/amendments and prospective for aerogels
Nzihou et al. Role of phosphate in the remediation and reuse of heavy metal polluted wastes and sites
O'Day et al. Mineral-based amendments for remediation
Zhang et al. Mineral materials as feasible amendments to stabilize heavy metals in polluted urban soils
Chaturvedi et al. Sorption kinetics and leachability of heavy metal from the contaminated soil amended with immobilizing agent (humus soil and hydroxyapatite)
Zhang et al. Stabilization/solidification (S/S) of mercury-contaminated hazardous wastes using thiol-functionalized zeolite and Portland cement
CN102921142B (en) Heavy metal contaminants immobilized reagent composition and immobilization administering method
CN106903158B (en) Soil oxidation-solidification stabilization remediation agent and using method thereof
Moghal et al. Sorptive response of chromium (Cr+ 6) and mercury (Hg+ 2) from aqueous solutions using chemically modified soils
Brown et al. Immobilization of heavy metals on pillared montmorillonite with a grafted chelate ligand
Ma et al. Investigation of an eco-friendly aerogel as a substrate for the immobilization of MoS2 nanoflowers for removal of mercury species from aqueous solutions
Cui et al. Heavy metal stabilization remediation in polluted soils with stabilizing materials: a review
ElShazly et al. Feasibility of using natural mineral ores for removing Cs and Sr from contaminated water
Safonov et al. Investigation of materials for reactive permeable barrier in removing cadmium and chromium (VI) from aquifer near a solid domestic waste landfill
Peng et al. Heavy metal leachability in soil amended with zeolite-or biochar-modified contaminated sediment
Usman et al. Recent trends in the use of fly ash for the adsorption of pollutants in contaminated wastewater and soils: Effects on soil quality and plant growth
Yang et al. Capture and recover dissolved phosphorous from aqueous solutions by a designer biochar: Mechanism and performance insights
Es-saidi et al. Characterization and valorization of natural phosphate in removing of heavy metals and toxic organic species from water
Saber et al. Decontamination of potential toxic elements in sewaged soils by inorganic amendments

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160225

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170203

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180306

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190304

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20200302

Year of fee payment: 8