KR20120008370A - Anti-cancer composition comprising extract from hylocereus undatus - Google Patents

Anti-cancer composition comprising extract from hylocereus undatus Download PDF

Info

Publication number
KR20120008370A
KR20120008370A KR1020100069185A KR20100069185A KR20120008370A KR 20120008370 A KR20120008370 A KR 20120008370A KR 1020100069185 A KR1020100069185 A KR 1020100069185A KR 20100069185 A KR20100069185 A KR 20100069185A KR 20120008370 A KR20120008370 A KR 20120008370A
Authority
KR
South Korea
Prior art keywords
extract
pitaya
cancer
composition
activity
Prior art date
Application number
KR1020100069185A
Other languages
Korean (ko)
Other versions
KR101230918B1 (en
Inventor
김소미
최형균
김영석
Original Assignee
중앙대학교 산학협력단
제주대학교 산학협력단
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단, 제주대학교 산학협력단, 이화여자대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Priority to KR1020100069185A priority Critical patent/KR101230918B1/en
Publication of KR20120008370A publication Critical patent/KR20120008370A/en
Application granted granted Critical
Publication of KR101230918B1 publication Critical patent/KR101230918B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/308Foods, ingredients or supplements having a functional effect on health having an effect on cancer prevention
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/30Extraction of the material
    • A61K2236/33Extraction of the material involving extraction with hydrophilic solvents, e.g. lower alcohols, esters or ketones
    • A61K2236/331Extraction of the material involving extraction with hydrophilic solvents, e.g. lower alcohols, esters or ketones using water, e.g. cold water, infusion, tea, steam distillation, decoction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2236/00Isolation or extraction methods of medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicine
    • A61K2236/30Extraction of the material
    • A61K2236/33Extraction of the material involving extraction with hydrophilic solvents, e.g. lower alcohols, esters or ketones
    • A61K2236/333Extraction of the material involving extraction with hydrophilic solvents, e.g. lower alcohols, esters or ketones using mixed solvents, e.g. 70% EtOH

Abstract

PURPOSE: An anticancer composition containing Hylocereus undatus extract is provided to suppress cancer cell proliferation and to ensure anticancer efficiency. CONSTITUTION: An anticancer composition contains Hylocereus undatus extract as an active ingredient. The Hylocereus undatus is isolated from peel or pulp of Hylocereus undatus using water, anhydrous or hydrous low alcohol of 1-4 carbon atoms, acetone, ethyl acetate, butyl acetate, or 1,3-butyelen glycol. The composition is a pharmaceutical composition for preventing or treating cancer or a food composition for relieving cancer. The daily dose of the pharmaceutical composition is 0.001-1000 mg/kg(body weight).

Description

백색 피타야 추출물을 유효성분으로 포함하는 항암용 조성물{Anti-Cancer Composition Comprising Extract from Hylocereus undatus} Anti-cancer composition Comprising extract from Hylocereus undatus containing white pitaya extract as an active ingredient

본 발명은 백색 피타야(Hylocereus undatus) 추출물을 유효성분으로 포함하는 항암용 조성물에 관한 것이다.
The present invention relates to an anticancer composition comprising a white pitaya ( Hylocereus undatus ) extract as an active ingredient.

수요자들의 합성 항산화제 대한 염려는 천연의 항산화 물질에 대한 요구를 증대시켜왔다(Shahidi 1997). 식용 과실로부터의 과실 쥬스 및 펄프의 항산화 특성에 대한 다양한 연구결과가 보고되어 왔다(Mokbel and Hashinaga 2006). 과실은 자유 라디칼 소거에 중요한 역할을 하는 화합물이 풍부하기 때문에 이들의 항산화 활성은 주목받아 왔다. 사과(Wolfe and others 2003), 포도씨(Chidambara-Murthy and others 2002), 딸기(Meyers and others 2003), 일반 야채(Chu and others 2002), 및 라스베리(Liu and others 2002)에 관한 다양한 연구들에 의하면, 이들 과일 및 야채들은 항증식 효과를 갖는다고 보고되어 있다. 그러나, 식물 유래의 다른 식품의 항산화 및 항증식 활성은 잘 연구되어 있지 않고, 아열대 과일의 의약 및 영양학적 값에 대해서 얻을 수 있는 정보는 매우 제한되어 있다. Consumers' concerns about synthetic antioxidants have increased the need for natural antioxidants (Shahidi 1997). Various studies have been reported on the antioxidant properties of fruit juices and pulp from edible fruits (Mokbel and Hashinaga 2006). Fruits have been noted for their antioxidant activity because they are rich in compounds that play an important role in free radical scavenging. Various studies on apples (Wolfe and others 2003), grape seeds (Chidambara-Murthy and others 2002), strawberries (Meyers and others 2003), common vegetables (Chu and others 2002), and raspberries (Liu and others 2002) These fruits and vegetables are reported to have antiproliferative effects. However, the antioxidant and antiproliferative activities of other plant-derived foods are not well studied, and the information available on the medicinal and nutritional values of subtropical fruits is very limited.

피타야(Pitaya)는 아즈텍 종족에게서 매우 널리 알려진 과일이었다는 것이 역사 문서에 언급되어 있다. 멕시코와 중앙 아메리카 및 남미가 원산지인 이 과일은 서반구에서 오랫동안 소비되어 왔다(Mizrahi and others 1997). 현재 최근의 기후가 피타야의 재배에 적합하게 변화되고 있는 한국의 제주도에서도 재배되고 있다. 피타야의 껍질은 포엽(bract) 또는 비늘(scale)으로 덮여 있어 용과(dragon fruit)으로보 불리운다. 이들의 과피 및 펄프 색깔에 기초하여, 피타야는 백색 피타야(Hylocereus undatus), 적색 피타야(H. costaricensis) 및 노란색 피타야(Selenicereus megalanthus)로 분류되어 왔다(Nerd and others 2002, Hoa and others 2006). 피타야 과일은 식품으로서 매우 뛰어난 색깔과 경제적인 가치 이외에도 건강에 유익한 특성을 가졌다는 점 때문에 많은 관심을 끌고 있다(Chen and He 2007, Li and others 2003). 예를 들어, 적색 피타야는 베타시아닌 함유에 의해 부여되는 항산화 특성 뿐만 아니라 항암 효능, 항-염증 및 항-당뇨 효능과 심혈관 질환의 사망률 감소를 포함하여 매우 다양한 효능을 갖는 것으로 보고되었다(Cos and others 2004, Stintzing and others 2002; Wybranice and Mizrahi 2002). 백색 피타야 씨앗의 지방 오일은 심장-보호성, 항-당뇨 및 항균 특성을 갖는 리놀레산(linoleic acid)을 포함하는 것으로 알려져 있다(Das 2000, Szentmihㅱlyi 2002). 최근, 적색 및 백색 피타야의 과육 추출물로부터 폴리페놀과 플라보노이드의 함량을 측정한 보고가 있었으며, 적색 과육 추출물에 대해 DPPH (1,1-diphenyl-2-picrylhydrazyl) 자유 라디칼 소거 활성 및 HeLa 세포에 대한 항증식 활성을 측정한 결과가 보고되어 있다(Asmah and others, 2008). 또한, 적색 피타야는 B16F10 멜라노마 세포에 의해 유도되는 인간 구강암세포 전이 단계에서 세포독성효과를 보여주었다(Menon and others 1995). 또한, 피타야내의 베타레인(betalain)에 대한 화학적 연구 노력이 경주되고 있다(Wybranice and Mizrahi 2002, Stintzing and others 2004). 피타야의 건강상의 이점 및 이러한 이점을 부여하는 물질을 확인하려는 시도가 있지만, 피타야의 껍질 추출물에 대한 연구는 거이 이루어져 있지 않다.
It is mentioned in the historical documents that Pitaya was a very popular fruit from the Aztec race. Native to Mexico, Central and South America, this fruit has long been consumed in the Western Hemisphere (Mizrahi and others 1997). It is also grown on Jeju Island in Korea, where the current climate is changing to suit the cultivation of pitaya. The skin of a pitaya is covered with a bract or scale and is called a dragon fruit. Based on their skin and pulp color, pitaya has been classified as white pitaya (Hylocereus undatus), red pitaya (H. costaricensis) and yellow pitaya (Selenicereus megalanthus) (Nerd and others 2002, Hoa and others 2006). Pitaya fruit attracts a lot of attention because of its health benefits in addition to its excellent color and economic value as a food (Chen and He 2007, Li and others 2003). For example, red pitaya has been reported to have a wide variety of efficacy, including anticancer efficacy, anti-inflammatory and anti-diabetic efficacy, and reduced mortality of cardiovascular disease, as well as antioxidant properties conferred by beta cyanine content (Cos and others 2004, Stintzing and others 2002; Wybranice and Mizrahi 2002). Fatty oils of white pitaya seeds are known to contain linoleic acid with cardio-protective, anti-diabetic and antibacterial properties (Das 2000, Szentmihtmlyi 2002). Recently, there have been reports of polyphenol and flavonoid content from the flesh extracts of red and white pitaya, and the DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging activity against HeLa cells The results of measuring antiproliferative activity have been reported (Asmah and others, 2008). In addition, red pitaya showed a cytotoxic effect at the stage of metastasis of human oral cancer cells induced by B16F10 melanoma cells (Menon and others 1995). In addition, chemical research efforts on betalain in pitaya are underway (Wybranice and Mizrahi 2002, Stintzing and others 2004). Attempts have been made to identify the health benefits of pitaya and the substances contributing these benefits, but little research has been done on pitaya's bark extracts.

본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.
Numerous papers and patent documents are referenced and cited throughout this specification. The disclosures of cited papers and patent documents are incorporated herein by reference in their entirety, and the level of the technical field to which the present invention belongs and the contents of the present invention are more clearly explained.

본 발명자들은 천연물 원천으로부터 항산화 및 항증식 물질을 개발하기 위한 연구의 일환으로써 아열대성 과일인 피타야(Pitaya)의 추출물의 항산화활성 및 항암활성을 분석하였다. 그 결과, 피타야 추출물에 페놀성 화합물 및 플라보노이드 화합물이 매우 풍부하게 포함되어 있어 다양한 종류의 자유 라디칼에 대한 항산화 활성이 뛰어나며, 암세포주의 증식을 효과적으로 억제함을 확인하여 본 발명을 완성하였다.
The present inventors analyzed the antioxidant and anticancer activity of extracts of the subtropical fruit, Pitaya, as part of research to develop antioxidant and antiproliferative substances from natural sources. As a result, the phytic extract and the flavonoid compound contained very rich in phytaya extract, excellent in antioxidant activity against various kinds of free radicals, and effectively inhibited the proliferation of cancer cell lines to complete the present invention.

따라서, 본 발명의 목적은 백색 피타야(Hylocereus undatus) 추출물을 유효성분으로 포함하는 항암용 조성물을 제공하는 것에 있다.
Therefore, an object of the present invention is to provide an anticancer composition comprising a white pitaya ( Hylocereus undatus ) extract as an active ingredient.

본 발명의 목적 및 장점은 하기의 발명의 상세한 설명, 청구의 범위 및 도면에 의해 보다 명확하게 된다.
The objects and advantages of the invention will become apparent from the following detailed description, claims and drawings.

본 발명의 일 양태에 따르면, 본 발명은 백색 피타야 (Hylocereus undatus) 추출물을 유효성분으로 포함하는 항암용 조성물을 제공한다. According to one aspect of the invention, the present invention provides a composition for anticancer comprising a white pitaya ( Hylocereus undatus ) extract as an active ingredient.

본 발명의 바람직한 구현예에 의하면, 상기 백색 피타야 추출물은 백색 피타야의 껍질 또는 과육으로부터의 추출물이다. According to a preferred embodiment of the present invention, the white pitaya extract is an extract from the skin or flesh of the white pitaya.

본 발명에서 백색 피타야 추출물은 천연물로부터 추출물을 추출하는 당업계에 공지된 통상적인 방법에 따라, 즉, 통상적인 온도, 압력의 조건 하에서 통상적인 용매를 사용하여 분리할 수 있다. 본 발명의 백색 피타야 추출물을 추출하기 위한 추출 용매로는 추출공정에서 일반적으로 사용할 수 있는 용매를 사용할 수 있는데, 예를 들어 물, 탄소수 1-4개의 무수 또는 함수 저급 알코올, 아세톤, 에틸아세테이트, 부틸아세테이트 및 1,3-부틸렌 글리콜로 구성된 군으로부터 선택되는 용매를 사용하여 추출하는 것이 바람직하다. The white pitaya extract in the present invention can be separated according to conventional methods known in the art for extracting extracts from natural products, that is, using conventional solvents under the conditions of conventional temperature, pressure. As an extraction solvent for extracting the white pitaya extract of the present invention, a solvent that can be generally used in the extraction process may be used. For example, water, anhydrous or hydrous lower alcohol having 1 to 4 carbon atoms, acetone, ethyl acetate, Preference is given to using a solvent selected from the group consisting of butyl acetate and 1,3-butylene glycol.

본 발명의 보다 바람직한 구현예에 의하면, 본 발명의 백색 피타야 추출물은 탄소수 1-4개의 무수 또는 함수 저급 알코올을 용매로 사용한 추출물이다.According to a more preferred embodiment of the present invention, the white pitaya extract of the present invention is an extract using anhydrous or hydrous lower alcohol having 1 to 4 carbon atoms as a solvent.

본 발명의 유효성분 백색 피타야 (Hylocereus undatus) 추출물은 폴리페놀성 화합물과 플라보노이드 화합물을 포함하고 있으며, 다양한 종류의 암세포에 대해 암세포 증식 억제 활성을 갖는다. The active ingredient white pitaya ( Hylocereus undatus ) extract of the present invention contains a polyphenolic compound and a flavonoid compound, and has cancer cell proliferation inhibitory activity against various kinds of cancer cells.

본 발명의 바람직한 구현예에 의하면, 본 발명의 조성물은 암의 치료 또는 예방 용도의 약제학적 조성물의 형태로 제조될 수 있다. According to a preferred embodiment of the present invention, the composition of the present invention may be prepared in the form of a pharmaceutical composition for the treatment or prophylaxis of cancer.

본 발명의 다른 바람직한 구현예에 의하면, 본 발명에서의 치료 대상 암은 특정 암으로 한정되지 않으며, 예를 들어 유방암, 폐암, 위암, 간암, 혈액암, 뼈암, 췌장암, 피부암, 머리 또는 목암(head or neck cancer), 피부 또는 안구 흑색종, 자궁육종, 난소암, 직장암, 항문암, 대장암, 난관암, 자궁내막암, 자궁경부암, 소장암, 내분비암, 갑상선암, 부갑상선암, 신장암, 연조직종양, 요도암, 전립선암, 기관지암 또는 골수암을 들 수 있으며, 보다 바람직하게는 위암, 유방암 또는 자궁경부암이다. According to another preferred embodiment of the invention, the cancer to be treated in the present invention is not limited to a specific cancer, for example breast cancer, lung cancer, stomach cancer, liver cancer, blood cancer, bone cancer, pancreatic cancer, skin cancer, head or neck cancer (head or neck cancer), skin or eye melanoma, uterine sarcoma, ovarian cancer, rectal cancer, anal cancer, colon cancer, fallopian tube cancer, endometrial cancer, cervical cancer, small intestine cancer, endocrine cancer, thyroid cancer, parathyroid cancer, kidney cancer, soft tissue Tumors, urethral cancer, prostate cancer, bronchial cancer or bone marrow cancer, and more preferably gastric cancer, breast cancer or cervical cancer.

본 발명의 약제학적 조성물에는 유효성분으로서 백색 피타야 추출물 이외에 약제학적으로 허용되는 담체를 포함한다. The pharmaceutical composition of the present invention includes a pharmaceutically acceptable carrier in addition to the white pitaya extract as an active ingredient.

본 발명의 약제학적 조성물에 포함되는 약제학적으로 허용되는 담체는 제제시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. Pharmaceutically acceptable carriers included in the pharmaceutical compositions of the present invention are those commonly used in the preparation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, Calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, and the like It doesn't happen.

본 발명의 약제학적 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다. 적합한 약제학적으로 허용되는 담체 및 제제는 Remington's Pharmaceutical Sciences (19th ed., 1995)에 상세히 기재되어 있다. In addition to the above components, the pharmaceutical composition of the present invention may further include a lubricant, a humectant, a sweetener, a flavoring agent, an emulsifier, a suspending agent, a preservative, and the like. Suitable pharmaceutically acceptable carriers and formulations are described in detail in Remington's Pharmaceutical Sciences (19th ed., 1995).

본 발명의 약제학적 조성물의 적합한 투여량은 제제화 방법, 투여 방식, 환자의 연령, 체중, 성, 병적 상태, 음식, 투여 시간, 투여 경로, 배설 속도 및 반응 감응성과 같은 요인들에 의해 다양하게 처방될 수 있다. 한편, 본 발명의 약제학적 조성물의 경구 투여량은 바람직하게는 1일 당 0.001-1000 mg/kg(체중)이다. Suitable dosages of the pharmaceutical compositions of the present invention may vary depending on factors such as the formulation method, mode of administration, age, weight, sex, morbidity, condition of food, time of administration, route of administration, rate of excretion and response to response of the patient. Can be. On the other hand, the oral dosage of the pharmaceutical composition of the present invention is preferably 0.001-1000 mg / kg (body weight) per day.

본 발명의 약제학적 조성물은 경구 또는 비경구로 투여할 수 있고, 비경구로 투여되는 경우, 피부에 국소적으로 도포, 정맥내 주입, 피하 주입, 근육 주입, 복강 주입, 경피 투여 등으로 투여할 수 있다. The pharmaceutical composition of the present invention may be administered orally or parenterally, and when administered parenterally, may be administered topically to the skin, intravenous injection, subcutaneous injection, intramuscular injection, intraperitoneal injection, transdermal administration, and the like. .

본 발명의 조성물에 포함되는 유효성분인 백색 피타야 추출물의 농도는 치료 목적, 환자의 상태, 필요기간 등을 고려하여 결정할 수 있으며 특정 범위의 농도로 한정되지 않는다. The concentration of the white pitaya extract, which is an active ingredient included in the composition of the present invention, may be determined in consideration of the purpose of treatment, the condition of the patient, the period of time, etc., and is not limited to a specific range of concentration.

본 발명의 약제학적 조성물은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약제학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 함으로써 단위 용량 형태로 제조되거나 또는 다용량 용기내에 내입시켜 제조될 수 있다. 이때 제형은 오일 또는 수성 매질중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캅셀제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수 있다. The pharmaceutical composition of the present invention may be formulated into a unit dose form by formulating it using a pharmaceutically acceptable carrier and / or excipient according to a method which can be easily carried out by a person having ordinary skill in the art to which the present invention belongs. Or by intrusion into a multi-dose container. The formulations may be in the form of solutions, suspensions or emulsions in oils or aqueous media, or in the form of excipients, powders, granules, tablets or capsules, and may additionally contain dispersing or stabilizing agents.

본 발명의 다른 바람직한 구현예에 의하면, 본 발명의 조성물은 암의 완화 또는 개선 용도의 기능성 식품 조성물의 형태로 제조될 수 있다. According to another preferred embodiment of the present invention, the composition of the present invention may be prepared in the form of a functional food composition for use in alleviating or ameliorating cancer.

본 발명의 기능성 식품 조성물은 식품 제조 시에 통상적으로 첨가되는 성분을 포함하며, 예를 들어, 단백질, 탄수화물, 지방, 영양소 및 조미제를 포함한다. 예컨대, 드링크제로 제조되는 경우에는 유효성분으로서 백색 피타야 추출물 이외에 향미제 또는 천연 탄수화물을 추가 성분으로서 포함시킬 수 있다. 예를 들어, 천연 탄수화물은 모노사카라이드(예컨대, 글루코오스, 프럭토오스 등); 디사카라이드(예컨대, 말토스, 수크로오스 등); 올리고당; 폴리사카라이드(예컨대, 덱스트린, 시클로덱스트린 등); 및 당알코올(예컨대, 자일리톨, 소르비톨, 에리쓰리톨 등)을 포함한다. 향미제로서 천연 향미제(예컨대, 타우마틴, 스테비아 추출물 등) 및 합성 향미제(예컨대, 사카린, 아스파르탐 등)을 이용할 수 있다. Functional food compositions of the present invention include ingredients that are commonly added in the manufacture of food, and include, for example, proteins, carbohydrates, fats, nutrients and seasonings. For example, when prepared with a drink, it may be included as an additional ingredient a flavor or natural carbohydrate in addition to the white pitaya extract as an active ingredient. For example, natural carbohydrates include monosaccharides (eg, glucose, fructose, etc.); Disaccharides (eg maltose, sucrose, etc.); oligosaccharide; Polysaccharides (eg, dextrins, cyclodextrins, etc.); And sugar alcohols (eg, xylitol, sorbitol, erythritol, and the like). As the flavoring agent, natural flavoring agents (e.g., taumartin, stevia extract, etc.) and synthetic flavoring agents (e.g., saccharin, aspartame, etc.) can be used.

본 발명의 특징 및 이점을 요약하면 다음과 같다: The features and advantages of the present invention are summarized as follows:

(i) 본 발명은 백색 피타야 (Hylocereus undatus) 추출물의 신규한 항암 용도에 관한 것이다. (i) The present invention relates to a novel anticancer use of white pitaya ( Hylocereus undatus ) extract.

(ⅱ) 본 발명의 백색 피타야 (Hylocereus undatus) 추출물은 암세포의 증식을 억제하는 효능을 갖는다. (Ii) The white pitaya extract of the present invention ( Hylocereus undatus ) has the effect of inhibiting the proliferation of cancer cells.

(ⅲ) 본 발명의 백색 피타야 (Hylocereus undatus) 추출물은 암의 치료, 예방 또는 개선 용도의 약제학적 조성물 또는 기능성 식품 조성물로 개발될 수 있다.
(Iii) The white phytaya ( Hylocereus undatus ) extract of the present invention can be developed into a pharmaceutical composition or a functional food composition for use in the treatment, prevention or amelioration of cancer.

본 발명은 백색 피타야 (Hylocereus undatus) 추출물의 신규한 항암 용도에 관한 것이다. 본 발명의 백색 피타야 (Hylocereus undatus) 추출물은 암세포의 증식을 억제하는 항암효능을 갖는다. 본 발명의 백색 피타야 (Hylocereus undatus) 추출물은 암의 치료, 예방 또는 개선 용도의 약제학적 조성물 또는 기능성 식품 조성물로 개발될 수 있다.
The present invention relates to a novel anticancer use of white pitaya ( Hylocereus undatus ) extract. White pitaya extract of the present invention ( Hylocereus undatus ) has an anticancer effect of inhibiting the proliferation of cancer cells. The white pitaya ( Hylocereus undatus ) extract of the present invention can be developed into a pharmaceutical composition or a functional food composition for use in the treatment, prevention or amelioration of cancer.

도 1a 내지 도 1c는 백색 및 적색 피타야의 과육 및 껍질 추출물의 폴리페놀 및 플라보노이드 함량과 자유 라디칼 소거 활성과의 상관관계에 관한 결과를 보여준다.
도 1a는 히드록시 라디칼 소거 활성(%) vs. 폴리페놀 및 플라보노이드 함량과의 관계를 보여준다.
도 1b는 알킬 라디칼 소거 활성(%) vs. 폴리페놀 및 플라보노이드 함량과의 관계를 보여준다.
도 1c는 DPPH 라디칼 소거 활성(%) vs. 폴리페놀 및 플라보노이드 함량과의 관계를 보여준다.
도 2는 여러 가지 암세포주의 세포 생존능과 백색 및 적색 피타야 과육 및 껍질 추출물의 DPPH 라디칼 소거 활성과의 상관관계를 보여준다.
1A-1C show the results of the correlation between the polyphenol and flavonoid content and free radical scavenging activity of the pulp and bark extracts of white and red pitaya.
1A shows hydroxy radical scavenging activity (%) vs. The relationship with polyphenol and flavonoid content is shown.
Figure 1b shows alkyl radical scavenging activity (%) vs. The relationship with polyphenol and flavonoid content is shown.
Figure 1C shows DPPH radical scavenging activity (%) vs. The relationship with polyphenol and flavonoid content is shown.
Figure 2 shows the correlation between the cell viability of various cancer cell lines and DPPH radical scavenging activity of the white and red pitaya pulp and bark extract.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .

실시예 Example

실험 재료 및 방법 Materials and Methods

1. 화합물 1. Compound

Folin-Ciocalteu 페놀시약, 루틴(rutin), 갈산(gallic acid), 과산화수소(hydrogen peroxide), 황산제1철 (ferrous sulfate), DPPH, DMPO(5,5-dimethyl-1-pyrroline-N-oxide), AAPH[ [2,2'-azobis(2-amidinopropane)hydrochloride], 및 4-POBN[α-(4-pyridyl-1-oxide)-N-t-butylnitrone]은 Sigma Chemical Co. (St. Louis, MO, USA)으로부터 구입하였다. DMSO (Dimethyl sulfoxide) 및 MTT[3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]은 Amresco Inc. (Solon, OH, USA)으로부터 구입하였다. RPMI 1640 배지, DMEM (Dulbecco's modified Eagle's medium), 트립신/EDTA, FBS(fetal bovine serum), 페니실린 및 스트렙토마이신은 Invitrogen Inc. (Grand Island, NY, USA)으로부터 구입하였다. 다른 모든 화합물들과 시약은 분석용 등급의 것을 사용하였다.
Folin-Ciocalteu Phenolic Reagent, Rutin, Gallic Acid, Hydrogen Peroxide, Ferrous Sulfate, DPPH, DMPO (5,5-dimethyl-1-pyrroline-N-oxide) , AAPH [[2,2'-azobis (2-amidinopropane) hydrochloride], and 4-POBN [α- (4-pyridyl-1-oxide) -Nt-butylnitrone] are described in Sigma Chemical Co. (St. Louis, MO, USA). Dimethyl sulfoxide (DMSO) and MTT [3- (4, 5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide] are available from Amresco Inc. (Solon, OH, USA). RPMI 1640 medium, DMEM (Dulbecco's modified Eagle's medium), trypsin / EDTA, fetal bovine serum (FBS), penicillin and streptomycin are described by Invitrogen Inc. (Grand Island, NY, USA). All other compounds and reagents were of analytical grade.

2. 과일 2. Fruit

백색 및 적석 피타야(pitaya) 과일은 제주도의 한림공원 근처 농장에서 수집하였다. 모든 과일들을 세척하고 껍질을 조심스럽게 제거하였다. 과육 및 껍질을 작고 얇은 조각으로 자르고, 분석 실험에 사용하기 전까지 -70℃에서 보관하였다.
White and red pitaya fruits were collected on farms near Hallim Park in Jeju Island. All fruits were washed and the skin was carefully removed. The pulp and shells were cut into small thin slices and stored at −70 ° C. until used in the assay.

3. 샘플 준비 3. Sample preparation

과육 및 껍질 샘플들을 2일간 감압하에 동결건조하고 이어서 분말화하였다. 80% 메탄올에서의 추출은 소니케이션(sonication)과 함께 3일간 상온에서 수행하였다. 생성된 추출물을 Whatman No. 1 필터 페이퍼를 통해 여과시키고 40℃ 감압 로터리 증발기를 사용하여 농축시킨 후에 동결건조하였다. 이들을 DMSO 내에서 용해시키고 PBS(phosphate-buffered saline, pH 7.4)내에서 희석하여 최종 사용 농도로 제조하였다. 각 식물체로부터 얻은 메탄올 추출물에 대해 페놀 화합물 총함량, DPPH 라디칼 소거 활성 및 세포독성을 측정하였다.
The pulp and skin samples were lyophilized under reduced pressure for 2 days and then powdered. Extraction in 80% methanol was performed at room temperature for 3 days with sonication. The resulting extract was Whatman No. It was filtered through 1 filter paper and concentrated using a 40 ° C. reduced pressure rotary evaporator and then lyophilized. They were dissolved in DMSO and diluted in PBS (phosphate-buffered saline, pH 7.4) to prepare to final use concentrations. Methanol extracts from each plant were measured for total phenolic compound content, DPPH radical scavenging activity and cytotoxicity.

4. 총 폴리페놀 및 플라보노이드 수준의 측정 4. Determination of Total Polyphenols and Flavonoid Levels

총 폴리페놀 및 플라보노이드 수준은 약간의 수정을 가한 Cheung 방법(Cheung and others 2003)에 따라 측정하였다. 샘플 부분 표본(1.5㎖)을 0.5 ㎖의 Folin-Ciocalteu 페놀 시약과 혼합하였다. 5분 후에, 1 ㎖의 10% (w/v) Na2CO3를 각 반응 혼합액에 첨가하였다. 반응은 암조건에서 30분간 수행하였고, 725nm 에서의 흡광도는 UV 1800 분광계(Shimadzu, Tokyo, Japan)를 사용하여 기록하였다. 결과는 갈산 당량(gallic acid equivalent, GAE)(건조된 샘플의 mg GAE/g)으로 표시하였다. 플라보노이드 함량은 공지된 비색분석법(colorimetric assay)을 사용하여 측정하였다(Zhishen and others 1999). 흡광도는 블랭크(PBS)에 대해 510 nm에서 측정하고, 플라보노이드 함량은 루틴 당량(rutin equivalents, RE)(건조된 샘플의 mg RE/g)으로 표시하였다. 모든 분석은 적어도 3회 수행하였다.
Total polyphenol and flavonoid levels were measured according to the Cheung method (Cheung and others 2003) with minor modifications. Sample aliquots (1.5 mL) were mixed with 0.5 mL of Folin-Ciocalteu phenolic reagent. After 5 minutes, 1 ml of 10% (w / v) Na 2 CO 3 was added to each reaction mixture. The reaction was carried out under dark conditions for 30 minutes, and the absorbance at 725 nm was recorded using a UV 1800 spectrometer (Shimadzu, Tokyo, Japan). Results are expressed as gallic acid equivalent (GAE) (mg GAE / g of dried sample). Flavonoid content was measured using known colorimetric assays (Zhishen and others 1999). Absorbance was measured at 510 nm for blank (PBS) and flavonoid content was expressed in rutin equivalents (RE) (mg RE / g of dried sample). All analyzes were performed at least three times.

5. 5. DPPHDPPH 라디칼Radical 소거능Scatters ( ( DPPHDPPH radicalradical scavengingscavenging ) )

DPPH 라디칼 소거능은 이미 기술된 방법에 따라 측정하였다(Nanjo and others 1996). PBS 내에서 희석한 각 샘플의 30 μl 부분 표본 (또는 대조군으로서 PBS 단독)을 에탄올내의 30 μL DPPH (60 μM)에 추가하였다. 각각의 피타야 추출물의 최종 농도는 25 μg/㎖이었다. 10 초간 심하게 혼합한 후, 용액을 50 μL의 테프론 캐필러리 튜브안에 넣고, JES-FA 전자 스핀 공명(ESR, electron spin resonance) 분광기(JEOL, Tokyo, Japan)안으로 삽입하였다. 이어서 스핀 부가생성물을 2 분에 측정하였다. 측정 조건은 다음과 같았다: 중앙 필드 3475 G, 조절 진동수 100 kHz, 조절 진폭 2G, 마이크로웨이브 전력 5 mW, 게인(gain) 6.3 X 105 및 온도 297 K. 피타야 추출물의 라디칼 소거능은 다음의 공식에 따라 계산하였다: 소거 속도(scavenging rate) = (h0-hx)/h0 X 100%, 여기에서 h0 및 hx는 각각 추출물을 포함하고 있는 샘플 또는 포함하지 않는 샘플의 ESR 시그널 강도이다.
DPPH radical scavenging activity was determined according to the methods previously described (Nanjo and others 1996). 30 μl aliquots (or PBS alone as controls) of each sample diluted in PBS were added to 30 μL DPPH (60 μM) in ethanol. The final concentration of each pitaya extract was 25 μg / ml. After vigorous mixing for 10 seconds, the solution was placed in 50 μL of Teflon capillary tube and inserted into a JES-FA electron spin resonance (ESR) spectrometer (JEOL, Tokyo, Japan). The spin adduct was then measured at 2 minutes. The measurement conditions were as follows: center field 3475 G, control frequency 100 kHz, control amplitude 2G, microwave power 5 mW, gain 6.3 X 10 5 and temperature 297 K. The radical scavenging ability of the pitaya extract was Calculated according to: scavenging rate = (h 0 -h x ) / h 0 X 100%, where h 0 and h x are the ESR signal strengths of the sample with or without the extract, respectively to be.

6. 히드록실 라디칼 소거능 6. hydroxyl radical scavenging ability

히드록실 라디칼(hydroxyl radical)은 펜톤 반응(Fenton reaction)에 의해 생성되고 니트론 스핀 트랩(nitrone spin trap) DMPO 와 빠르게 반응하였다. 생성된 DMPO-OH 반응부가물은 ESR에 의해 측정하였다(Rosen and Rauckman 1984). ESR 스펙트럼은 20 μL의 0.3 M DMPO, 20 μL의 10 mM FeSO4 및 20 μL의 10 mM H2O2를 첨가한 포스페이트 완충용액(pH 7.4)으로 혼합한 후 2.5 분에 다음의 조건하에서 측정하였다: 중앙 필드 3475 G, 조절 진동수 100 kHz, 조절 진폭 2 G, 마이크로 웨이브 전력 1 mW, 게인(gain) 6.3 X 105 및 온도 298 K. 각 피타야(pitaya) 추출물의 최종 농도는 2 mg/㎖ 이었다. 피타야 추출물의 라디칼 소거능은 다음의 공식에 따라 계산하였다: 소거 속도(scavenging rate) = (h0-hx)/h0 X 100%, 여기에서 h0 및 hx는 각각 추출물을 포함한 샘플과 추출물을 포함하지 않은 샘플의 ESR 시그널 강도이다.
The hydroxyl radical was produced by the Fenton reaction and reacted rapidly with the nitrone spin trap DMPO. The resulting DMPO-OH reaction adduct was measured by ESR (Rosen and Rauckman 1984). ESR spectra were measured in 2.5 minutes after mixing with 20 μL of 0.3 M DMPO, 20 μL of 10 mM FeSO 4 and 20 μL of 10 mM H 2 O 2 in phosphate buffer (pH 7.4) under the following conditions: : Center field 3475 G, adjustable frequency 100 kHz, adjustable amplitude 2 G, microwave power 1 mW, gain 6.3 X 10 5 and temperature 298 K. The final concentration of each pitaya extract is 2 mg / ml It was. The radical scavenging ability of the pitaya extract was calculated according to the following formula: scavenging rate = (h 0 -h x ) / h 0 X 100%, where h 0 and h x are the samples containing the extract, respectively ESR signal intensity of the sample without extract.

7. 알킬 라디칼 소거능 7. Alkyl radical scavenging ability

알킬 라디칼은 AAPH에 의해 생성되었다. 40 mM AAPH, 40 mM 4-POBN 및 PBS (pH 7.4)으로 희석하여 지시된 농도로 제조한 테스트 샘플을 함유하는 반응 혼합물을 37℃의 수조에서 30 분간 인큐베이션하고(Hiramoto and others 1993), 테프론 캐필러리 튜브에 넣었다. 각 피타야 추출물의 최종 농도는 200 μg/mL이었다. 스핀 부가 생성물은 ESR 분광기를 사용하여 기록하였다. 다음의 측정 조건을 사용하였다: 중앙 필드 3475 G, 조절 진동수 100 kHz, 조절 진폭 2 G, 마이크로웨이브 전력 10 mW, 게인(gain) 6.3 X 105, 및 온도 298 K. 피타야 추출물의 라디칼 소거능은 다음의 공식에 따라 계산하였다: 소거 속도(scavenging rate) = (h0-hx)/h0 X 100%, 여기에서 h0 및 hx는 각각 추출물을 포함한 샘플과 추출물을 포함하지 않은 샘플의 ESR 시그널 강도이다.
Alkyl radicals were produced by AAPH. The reaction mixture containing test samples prepared at the indicated concentrations diluted with 40 mM AAPH, 40 mM 4-POBN and PBS (pH 7.4) was incubated for 30 minutes in a 37 ° C. water bath (Hiramoto and others 1993) and Teflon Carb Placed in a filler tube. The final concentration of each pitaya extract was 200 μg / mL. Spin addition products were recorded using an ESR spectrometer. The following measurement conditions were used: center field 3475 G, control frequency 100 kHz, control amplitude 2 G, microwave power 10 mW, gain 6.3 X 10 5 , and temperature 298 K. The radical scavenging ability of the pitaya extract was Calculated according to the following formula: scavenging rate = (h 0 -h x ) / h 0 X 100%, where h 0 and h x are the samples with and without extract, respectively. ESR signal strength.

8. 세포의 배양 8. Culture of Cells

암세포주 AGS (인간 위암 세포주), HeLa (인간 자궁경부암 세포주), 및 MCF-7 (인간 유방암 세포주)는 한국 세포주은행(KCLB, Seoul, Korea)으로부터 얻었다. 이들 세포주들을 10%(v/v) 열-불활성화 FBS (fetal bovine serum), 100 units/㎖의 페니실린, 및 100 μg/㎖의 스트렙토마이신이 첨가된 DMEM 또는 RPMI 1640 배지를 이용하여 습화된 인큐베이터내에서 37℃, 5% CO2 분위기하에서 배양하였다.
Cancer cell lines AGS (human gastric cancer cell line), HeLa (human cervical cancer cell line), and MCF-7 (human breast cancer cell line) were obtained from the Korea Cell Line Bank (KCLB, Seoul, Korea). These cell lines were incubated with DMEM or RPMI 1640 medium supplemented with 10% (v / v) heat-inactivated fetal bovine serum (FBS), 100 units / ml penicillin, and 100 μg / ml streptomycin. Incubated in a 37 ° C., 5% CO 2 atmosphere.

9. 암세포의 생존능 분석 9. Viability Analysis of Cancer Cells

피타야 추출물의 다양한 암세포주읨 생존능에 대한 영향은 MTT 비색 분석법에 의해 측정하였다(Hansen and others 1989). 간략하게 설명하면, 대수기에 있는 암세포를 96-웰 플레이트(웰 당 2 X 103 내지 1 X 104 세포)에 분주하였다. 추출물의 다양한 농도(125 내지 1000 μg/mL) 또는 표준 물질(케르세틴(quercetin); 12.5 내지 200 μM/mL)의 존재하에서 72 시간 동안 인큐베이션하였다. 0.1 mg 의 MTT를 각 웰에 추가하고 세포들을 37℃에서 4 시간 동안 인큐베이션하였다. 이어서, 성장 배지를 조심스럽게 제거하였고, 형성된 포르마잔 결정을 용해시키기 위해 DMSO(150 μl)를 각 웰에 첨가하였다. 570 nm에서의 흡광도는 마이크로플레이트 리더 (Tecan, Salzburg, Austria)를 사용하여 즉시 기록하였다. 세포 생존능은 처리하지 않은 대조군 세포에 대해 백분율로서 표시하였다.
The effect of pitaya extract on the viability of various cancer cell lines was measured by MTT colorimetric assay (Hansen and others 1989). Briefly, cancer cells in log phase were dispensed into 96-well plates (2 × 10 3 to 1 × 10 4 cells per well). Incubated for 72 hours in the presence of various concentrations of extract (125-1000 μg / mL) or standard material (quercetin; 12.5-200 μM / mL). 0.1 mg of MTT was added to each well and the cells were incubated at 37 ° C. for 4 hours. The growth medium was then carefully removed and DMSO (150 μl) was added to each well to dissolve the formazan crystals formed. Absorbance at 570 nm was recorded immediately using a microplate reader (Tecan, Salzburg, Austria). Cell viability is expressed as a percentage of untreated control cells.

10. 생-활성 인덱스(bioactivity index) 측정 10. Determination of the bioactivity index

생-활성 지수(bioactivity index, BI)는 소비자가 유익한 특성에 기초하여 과일 또는 야채를 선택하는데 사용할 수 있다. 또한, 이는 전염병학 연구에 있어서 랭킹 데이터에 대한 도구로서 사용될 수 있다(Sun and others 2002). 최근의 연구에 의하면 BI는 다음의 방정식에 의해 결정되었다: BI = (총 항산화 활성 값 + 항증식 활성 값)/2, 여기에서 총 항산화활성 값 = 샘플 값/가장 높은 항산화 값, 항증식 활성 값 = 가장 높은 IC50 값/샘플 IC50 값.
The bioactivity index (BI) can be used by consumers to select fruits or vegetables based on beneficial properties. It can also be used as a tool for ranking data in epidemiological studies (Sun and others 2002). According to a recent study, BI was determined by the following equation: BI = (total antioxidant activity value + antiproliferative activity value) / 2, where total antioxidant activity value = sample value / highest antioxidant value, antiproliferative activity value = Highest IC 50 value / sample IC 50 value.

11. 통계적 분석 11. Statistical Analysis

모든 분석은 3회 반복 수행하였고 데이터는 평균 ㅁ SD 값으로 표현하였다. IC50 값은 용량-반응 곡선으로부터 계산하였고, 필요한 경우 다음의 공식을 사용하였다: Y = 100*A1/(X + A1), 여기에서 A1 = IC50, Y = 반응 및 X = 억제 농도(Y = 100%, X = 0인 경우). IC50 값은 paired Student's t-test에 의해 평가하였다. 시그마 플롯 소프트웨어 Version 9.0 (Jandel CoRPP., San Raphael, CA, USA)을 사용한 변수 회귀 분석에 의해 독립적인 변수간에 통계학적으로 유의한 관계가 확인되었다. p-값 < 0.05를 통계학적으로 의미있는 것으로 간주하였다. 폴리페놀 및 플라보노이드 함량과 세포 생존능 비율 사이의 관련성을 분석하기 위해 시그마 스태트 소프트웨어 Version 3.1 (Jandel CoRPP., San Raphael, CA, USA)을 사용하여 피어스 상관 분석(Pearson's correlation analysis)을 행하였다.
All analyzes were performed three times and data were expressed as mean W SD values. IC 50 values were calculated from dose-response curves and if necessary the following formula was used: Y = 100 * A1 / (X + A1), where A1 = IC 50 , Y = response and X = inhibitory concentration (Y = 100%, X = 0). IC 50 values were assessed by paired Student's t-test. Variable regression analysis using Sigma plot software Version 9.0 (Jandel CoRPP., San Raphael, Calif., USA) confirmed statistically significant relationships between independent variables. The p-value <0.05 was considered statistically significant. Pearson's correlation analysis was performed using Sigma State Software Version 3.1 (Jandel CoRPP., San Raphael, Calif., USA) to analyze the relationship between polyphenol and flavonoid content and cell viability ratio.

실험결과 Experiment result

1. 총 폴리페놀 및 플라보노이드 함량 1. Total Polyphenol and Flavonoid Content

적색 및 백색 피타야(pitaya)의 과육 및 껍질의 총 페놀 성분 함량은 Folin-Ciocalteu 방법에 따라 측정하였다(Wu and others 2006). 적색 피타야의 껍질 및 과육으로부터의 추출 가능한 총 페놀 성분의 함량은 각각 14.82±1.07 mg GAE/g 및 4.91±0.55 mg GAE/g 이었고, 적색 피타야의 경우는 각각 15.94±0.93 mg GAE/g 및 3.52±0.60 mg GAE/g 이었다. 표 1에는 상이한 피타야 추출물에서 폴리페놀 및 플라보노이드 함량과 %수율을 나타내었다. 표 1에서 나타난 바와 같이, 적색 피타야 껍질(red pitaya peel, RPP) 및 백색 피타야 껍질(white pitaya peel, WPP)의 메탄올 추출의 폴리페놀 함량은 적색 피타야 과육(red pitaya flesh, RPF) 및 백색 피타야 과육 (white pitaya flesh, WPF)의 것 보다 약 3-배 및 5-배 높았다. RPP는 플라보노이드 함량이 가장 높았고(18.16 ± 1.00 RE/g), 이어서, WPP (14.33 ± 0.58 RE/g), RPF (9.56 ± 0.11 RE/g), 및 WPF (3.52 ± 0.12 RE/g)순 이었다. The total phenolic content of the flesh and skin of red and white pitaya was measured according to the Folin-Ciocalteu method (Wu and others 2006). The total extractable phenolic content from the skin and pulp of red pitaya was 14.82 ± 1.07 mg GAE / g and 4.91 ± 0.55 mg GAE / g, respectively, and 15.94 ± 0.93 mg GAE / g and 3.52 ± 0.60 mg GAE / g. Table 1 shows the polyphenol and flavonoid contents and% yields in different pitaya extracts. As shown in Table 1, the polyphenol content of the methanol extraction of the red pitaya peel (RPP) and the white pitaya peel (WPP) is shown in the red pitaya flesh (RPF) and It was about 3- and 5-fold higher than that of the white pitaya flesh (WPF). RPP had the highest flavonoid content (18.16 ± 1.00 RE / g), followed by WPP (14.33 ± 0.58 RE / g), RPF (9.56 ± 0.11 RE / g), and WPF (3.52 ± 0.12 RE / g). .

Figure pat00001
Figure pat00001

상기 표 1에서 결과는 평균±표준편차로서 표현하였다. 대조군과 비교한 *P < 0.05이었다.
The results in Table 1 are expressed as mean ± standard deviation. * P <0.05 compared to control.

종합하여 설명하면, RPP 및 WPP는 폴리페놀과 플라보노이드의 함량은 비슷한 수준이었으며, 반면 RPF는 WPF에 비해 더욱 많은 양의 폴리페놀과 플라보노이드를 함유하고 있었다.
Taken together, RPP and WPP had similar levels of polyphenols and flavonoids, while RPF contained more polyphenols and flavonoids than WPF.

2. 자유 라디칼 소거 활성 2. Free radical scavenging activity

항산화 활성 평가의 통상적인 방법은 오직 하나의 특성에만 특이적이기 때문에 생물학적 물질의 항산화 활성을 평가하는 때에 주요한 이슈 중의 하나는 분석 방법의 선택이다. 많은 화학적 분석 방법은 특정 자유 라디칼, 예를 들어 수퍼옥사이드 음이온 또는 히드록실 또는 퍼옥시 라디칼에 의한 타겟 기질의 산화를 테스트되는 물질이 억제하는 능력을 측정한다(Hassimotto and others 2005). ESR은 반응성 종(species)을 민감하고, 직접적이며 정확하게 모니터링할 수 있는 것으로 알려져 있기 때문에(Guo and others 1999), 카테킨을 표준물질로 사용하여, 적색 및 백색 피타야 과육 및 껍질의 80% 메탄올 추출물의 DPPH, 히드록실 및 알킬 라디칼 소거능과 비교하는데 사용하였다.
Since conventional methods of antioxidant activity assessment are specific to only one property, one of the major issues when evaluating the antioxidant activity of biological materials is the choice of analytical method. Many chemical analysis methods measure the ability of a tested substance to inhibit the oxidation of a target substrate by certain free radicals such as superoxide anions or hydroxyl or peroxy radicals (Hassimotto and others 2005). Since ESR is known for sensitive, direct and accurate monitoring of reactive species (Guo and others 1999), 80% methanol extract of red and white pitaya pulp and bark using catechins as a standard It was used to compare DPPH, hydroxyl and alkyl radical scavenging ability of.

3. DPPH 라디칼 소거능 3. DPPH radical scavenging ability

DPPH는 프로톤 라디칼 소거제에 노출시키면 이의 수준이 크게 감소하는 안정한 자유 라디칼이다(Sanchez-Moreno 2002). 하기 표 2에서 보여지는 바와 같이, WPP의 80% 메탄올 추출물은 가장 높은 DPPH 라디칼 소거능을 나타내었고(68.12 ± 2.87%), 이어서, RPP (56.85 ± 5.65%), RPF (33.25 ± 1.84 %), 및 WPF (23.83 ± 3.33%)이었다. 여기서 모든 추출물들의 농도는 25 μg/㎖ 이었다. 예상된 바와 같이, 카테킨(catechin)은 우수한 항산화 활성(10 μg/㎖에서 83.76 ± 2.3)을 나타내었다. 추출물의 페놀성 함량과 DPPH 라디칼 소거 활성간에는 명확한 상관성이 존재하였다: 선형 상관계수, r2 = 0.949 (도 1). DPPH is a stable free radical whose level is greatly reduced upon exposure to proton radical scavengers (Sanchez-Moreno 2002). As shown in Table 2 below, the 80% methanol extract of WPP showed the highest DPPH radical scavenging activity (68.12 ± 2.87%), followed by RPP (56.85 ± 5.65%), RPF (33.25 ± 1.84%), and WPF (23.83 ± 3.33%). The concentration of all extracts here was 25 μg / ml. As expected, catechin showed good antioxidant activity (83.76 ± 2.3 at 10 μg / ml). There was a clear correlation between the phenolic content of the extract and the DPPH radical scavenging activity: linear correlation coefficient, r 2 = 0.949 (FIG. 1).

페놀 성분들은 과일에서 공통적으로 발견되고 항산화 활성을 나타내는 것으로 보고되고 있는데, 이는 이들의 페놀 부분의 반응성으로부터 유래한 것이며 수소 또는 전자 주기를 통해 자유 라디칼을 소거한다고 알려져 있다(Shahidi and Wanasundara 1992). DPPH 시스템에서 RPP와 비교하여 WPP의 보다 강한 항산화 활성은 WPP가 더 높은 수준의 폴리페놀 함량을 나타내는 것에 기인한다: 플라보노이드 함량에 대한 상관계수 (r2 = 0.785)는 폴리페놀의 것 보다 낮았다(도 1). 반면에 RPP는 WPP에 비해 높은 플라보노이드 함량을 나타내었다(표 1 참조). 따라서, WPP는 DPPH 자유 라디칼 소거제로서 더 유용할 것으로 보여진다.
Phenolic components are commonly found in fruits and have been reported to exhibit antioxidant activity, which is derived from the reactivity of their phenolic moieties and is known to eliminate free radicals via hydrogen or electron cycles (Shahidi and Wanasundara 1992). The stronger antioxidant activity of WPP compared to RPP in the DPPH system is due to the higher levels of polyphenol content of WPP: the correlation coefficient (r 2 = 0.785) for flavonoid content was lower than that of polyphenols (FIG. One). RPP, on the other hand, showed a higher flavonoid content compared to WPP (see Table 1). Thus, WPP appears to be more useful as a DPPH free radical scavenger.

4. 히드록실 라디칼 소거활성 4. hydroxyl radical scavenging activity

본 실험에서 Fe2+/H2O2 시스템내에서 생성된 히드록실 라디칼은 DMPO-형성 스핀 부가생성물에 의해 포집되었고, ESR 분광기(Saito and others 2008)를 사용하여 측정하였다. 식물로부터 유도된 페놀성 화합물들은 페놀성 화합물들의 산화 생성물은 알데히드 및 다이머들이다(Halliwel and Gutteridge 1999). 표 2에 나타낸 바와 같이, RPP, RPF, WPP 및 WPF 추출물의 소거 활성은 각각 64.45 ± 5.29%, 47.14 ± 4.47%, 62.12 ± 5.36%, 및 58.85 ± 3.82%이었다. 추출물의 농도는 모두 2 mg/mL 이었다. 카테킨(catechin)은 0.1 mg/mL의 농도에서 81.11 ± 1.8%의 히드록실 라디칼 소거 활성을 나타내었다. RPP 및 WPP 모두 다량의 폴리페놀과 플라보노이드를 함유하고 있으므로 수긍할 만한 활성을 나타내었다. 반면, WPF는 가장 적은 양의 폴리페놀과 플라보노이드를 함유하고 있음에도 불구하고 RPF보다 높은 활성을 보였다. 따라서, 폴리페놀 및 플라보노이드 함량과 히드록실 라디칼 소거 활성간에는 뚜렷한 상관관계가 확인되지는 않았다. 도 1에 보여지는 바와 같이, 폴리페놀 및 플라보노이드 함량과 히드록실 라디칼 소거 활성 간의 상관관계는 매우 약하였다: r2 = 0.496 및 r2 = 0.224. 이들의 높은 반응성 때문에 히드록실 라디칼은 비-장소-특이적 방법에서 산화적 방어를 부여하는 항산화 분자의 능력을 정확하게 반영하지 못 할 수도 있다(Adebajo and Gesser 2001). 그럼에도 불구하고 본 실험 결과는 적색 및 백색 피타야 과육 및 껍질 메탄올 추출물이 히드록실 라디칼에 대해 어떠한 방어를 제공할 수 있다는 것을 암시한다. The hydroxyl radicals generated in the Fe 2+ / H 2 O 2 system in this experiment were captured by DMPO-forming spin adducts and measured using an ESR spectrometer (Saito and others 2008). For phenolic compounds derived from plants, the oxidation product of phenolic compounds is aldehydes and dimers (Halliwel and Gutteridge 1999). As shown in Table 2, the scavenging activities of the RPP, RPF, WPP and WPF extracts were 64.45 ± 5.29%, 47.14 ± 4.47%, 62.12 ± 5.36%, and 58.85 ± 3.82%, respectively. The concentrations of the extracts were all 2 mg / mL. Catechin exhibited hydroxyl radical scavenging activity of 81.11 ± 1.8% at a concentration of 0.1 mg / mL. Since both RPP and WPP contained large amounts of polyphenols and flavonoids, they showed acceptable activity. WPF, on the other hand, showed higher activity than RPF despite containing the lowest amount of polyphenols and flavonoids. Thus, no clear correlation was found between polyphenol and flavonoid content and hydroxyl radical scavenging activity. As shown in FIG. 1, the correlation between polyphenol and flavonoid content and hydroxyl radical scavenging activity was very weak: r 2 = 0.496 and r 2 = 0.224. Because of their high reactivity, hydroxyl radicals may not accurately reflect the ability of antioxidant molecules to confer oxidative defenses in non-place-specific methods (Adebajo and Gesser 2001). Nevertheless, the results of this experiment suggest that red and white pitaya pulp and bark methanol extracts can provide some protection against hydroxyl radicals.

Figure pat00002
Figure pat00002

5. 알킬 라디칼 소거 활성 5. Alkyl radical scavenging activity

알킬 라디칼은 다양한 탄화수소 반응에서 주요한 중간체이고, ESR에 의해 쉽게 검출될 수 있다(Kim and others 2010). DPPH 라디칼 소거 활성과 유사하게, RPP 및 WPP 추출물은 RPF 및 WPF 추출물의 것(33.84 ± 4.61% 및 27.62 ± 5.60%)과 비교하여 약간 높은 정도의 라디칼 소거 활성을 나타내었다(49.98 ± 2.52% 및 42.36 ± 5.00%). 실험에 사용한 추출물들의 농도는 모두 200 μg/mL 이었다. 카테킨(catechin)은 12.5 μg/mL의 농도에서 강한 알킬 라디칼 소거능 (90.25 ± 3.1%)을 나타내었다(표 2 참조). 총 폴리페놀 및 플라보노이드 함량과 알킬 라디칼 소거 활성 사이의 상관 관계는 유의성이 매우 높은 수준이었다: r2 = 0.821 및 r2 = 0.977 (도 1). 상기 결과는 보편적이지는 않지만 플라보노이드도 매우 중요한 항산화성 페놀 화합물이라는 것을 암시한다. 페놀성 항산화제가 퍼옥시 라디칼을 포획하여 유기물질을 산화적 분해로부터 보호한다는 것이 공지되어 있으나, 자기 산화는 연쇄 담체로서 작용하는 퍼옥시 및 알킬 라디칼을 포함하고 있기 때문에 알킬 라디칼을 포집하여 산화적 분해로부터 보호하는 것 또한 중요하다(Nisizawa and others 1987). 소거능의 면에서, 적색 및 백색 피타야의 껍질(과육이 아닌)이 알킬 라디칼 소거능의 풍부한 원천으로서 가능성을 보여주었다.
Alkyl radicals are major intermediates in various hydrocarbon reactions and can be easily detected by ESR (Kim and others 2010). Similar to the DPPH radical scavenging activity, the RPP and WPP extracts exhibited a slightly higher degree of radical scavenging activity compared to that of the RPF and WPF extracts (33.84 ± 4.61% and 27.62 ± 5.60%) (49.98 ± 2.52% and 42.36 ± 5.00%). The concentrations of the extracts used in the experiment were all 200 μg / mL. Catechin showed strong alkyl radical scavenging activity (90.25 ± 3. 1%) at a concentration of 12.5 μg / mL (see Table 2). The correlation between total polyphenol and flavonoid content and alkyl radical scavenging activity was very significant: r 2 = 0.821 and r 2 = 0.977 (FIG. 1). The results suggest that, although not universal, flavonoids are also very important antioxidant phenolic compounds. Phenolic antioxidants are known to capture peroxy radicals to protect organics from oxidative degradation, but since self-oxidation involves peroxy and alkyl radicals that act as chain carriers, oxidative degradation can be achieved by trapping alkyl radicals. Protection from is also important (Nisizawa and others 1987). In terms of scavenging activity, the red (and not flesh) skins of red and white pitaya have shown potential as a rich source of alkyl radical scavenging activity.

6. 피타야 추출물의 암세포주의 생존능에 미치는 효과 6. Effect of Pitaya Extract on the Viability of Cancer Cell Lines

적색 및 백색 피타야의 과육 및 껍질 추출물의 3가지 종류의 암세포주, 인간 위암 세포주(AGS), 인간 자궁경부암 세포주(HeLa), 및 인간 유방암 세포주(MCF-7)에 대한 인 비트로 성장을 억제하는 효과에 대해서는 상기 표 2에 나타내었다. 각기 다른 피타야 추출물은 각기 다른 종류의 세포주에 대해 각기 다른 항증식 효과를 나타내었다. 이들 추출물은 다음과 같은 순위로 암세포주에 대해 생존 억제 효능을 나타내었다: WPP>RPP>RPF>WPF (표 2). 특히, 백색 및 적색 피타야의 껍질 추출물이 인간위암세포주 AGS와 유방암세포주 MCF-7에 대해 뛰어난 증식 억제 활성을 나타내었다. 항증식 활성이 폴리페놀 및 플라보노이드 함량과 상관관계가 있다는 것이 관찰되었다. 테스트된 추출물의 폴리페놀 및 플라보노이드 함량과 세포 생존능 비율을 측정하였다. Inhibits growth in vitro against three types of cancer cell lines, human gastric cancer cell line (AGS), human cervical cancer cell line (HeLa), and human breast cancer cell line (MCF-7) of red and white Pitaya pulp and bark extract The effects are shown in Table 2 above. Different pitaya extracts showed different antiproliferative effects on different cell lines. These extracts showed survival inhibitory effects against cancer cell lines in the following rankings: WPP> RPP> RPF> WPF (Table 2). In particular, the bark extract of white and red pitaya showed excellent proliferation inhibitory activity against human gastric cancer cell line AGS and breast cancer cell line MCF-7. It was observed that antiproliferative activity correlated with polyphenol and flavonoid content. Polyphenol and flavonoid content and cell viability ratio of the tested extracts were determined.

표 3은 추출물에 대해 행해진 모든 분석에 대한 Pearson's 상관 계수를 보여준다. Table 3 shows Pearson's correlation coefficients for all assays performed on the extracts.

Figure pat00003
Figure pat00003

a 는 p < 0.05에서 유의성 있는 값이고, b는 p < 0.01에서 유의성 있는 값을 의미한다. a is a significant value at p <0.05, b is a significant value at p <0.01.

HeLa, AGS, 및 MCF-7 암세포주의 세포 생존능 비율과 RPP, RPF, WPP, 및 WPF의 총 폴리페놀 함량과의 음성(negative) 상관관계 발견되었다 (r = -0.133 내지 -0.960). 이와 유사하게, 백색 및 적색 피타야 추출물의 플라보노이드 함량과 AGS, HeLa, 및 MCF-7 세포의 증식 사이의 음성(negative) 상관 계수가 발견되었다. 전체적으로, 테스트된 세포주에 관계없이 피타야의 껍질 추출물이 과육 추출물에 비해 높은 암세포 항증식 활성을 나타내었다. 이들 결과들은 피타야 추출물들의 암세포주에 대해 항-증식 효과가 이들이 함유하고 있는 폴리페놀 및 플라보노이드의 조합된 효과로부터 유래된 것일 수 있다는 것을 암시한다.
A negative correlation was found between the percentage of cell viability of HeLa, AGS, and MCF-7 cancer cell lines and the total polyphenol content of RPP, RPF, WPP, and WPF (r = −0.133 to −0.960). Similarly, a negative correlation coefficient was found between the flavonoid content of the white and red pitaya extract and the proliferation of AGS, HeLa, and MCF-7 cells. Overall, regardless of the cell lines tested, Pitaya's bark extract showed higher cancer cell antiproliferative activity than the pulp extract. These results suggest that the anti-proliferative effect on pitaya extracts on cancer cell lines may be derived from the combined effects of the polyphenols and flavonoids they contain.

7. 항산화 활성 및 항증식 효과 사이의 상관관계 7. Correlation Between Antioxidant Activity and Antiproliferative Effect

본 발명의 실험결과 고함량의 폴리페놀과 DPPH 라디칼 소거 활성을 갖는 WPP 추출물이 암세포주에 대해 가장 강력한 항증식 효과를 나타낸다는 것을 확인하였다. 그러나, 항산화 활성과 항증식 영향 사이에는 직접적인 상관관계는 없었다. 상이한 피타야 추출물의 암세포에 대한 항증식 활성은 항산화 활성과 뚜렷한 상관관계를 보여주지는 못하였다(도 2). DPPH 라디칼 소거활성은 HeLa 세포 성장 IC50에 대해 가장 강력한 상관관계를 보여주었다(r2 = .0965). 피타야 추출물에 의한 암세포 증식의 억제는 이들의 폴리페놀 함량만으로는 설명될 수 없다. 이는 특정 페놀 화합물이 추출물의 항증식 활성에 개별적으로 기여하는 것이 아니며, 대신 폴리페놀 및 플라보노이드 및/또는 추출물에 존재하는 다른 피토케미칼(phytochemical) 조합의 상승적 작용으로부터 얻어지는 결과일 수 있다는 것을 암시한다. 또한, 상기 결과는 테스트된 피타야 추출물에 존재하는 폴리페놀이 중요한 항산화 역할을 수행한다는 것을 암시한다.
Experimental results of the present invention confirmed that the WPP extract having a high content of polyphenols and DPPH radical scavenging activity shows the strongest antiproliferative effect against cancer cell lines. However, there was no direct correlation between antioxidant activity and antiproliferative effects. Antiproliferative activity against cancer cells of different pitaya extracts did not show a clear correlation with antioxidant activity (FIG. 2). DPPH radical scavenging activity showed the strongest correlation for HeLa cell growth IC 50 (r 2 = .0965). Inhibition of cancer cell proliferation by pitaya extract cannot be explained by their polyphenol content alone. This suggests that certain phenolic compounds do not contribute individually to the antiproliferative activity of the extract but may instead result from the synergistic action of polyphenols and flavonoids and / or other phytochemical combinations present in the extract. The results also suggest that the polyphenols present in the tested pitaya extract play an important antioxidant role.

8. 생-활성 지수의 중요성 8. Importance of Bioactivity Index

수요자의 과일 구매시에 어떤 과일을 선택할지에 대해 간단한 참조를 제공할 수 있는 BI(생-활성 지수, bioactivity index)를 제공한다. WPP는 DPPH 라디칼의 가장 강력한 소거자이고 대부분의 테스트된 암세포주의 성장 억제자이기 때문에, 다른 추출물들의 BI 값의 산출에 대한 상대적인 참조로써 사용되었다. 표 2에 나타난 바와 같이, 백색 피타야의 껍질 및 과육 추출물은 대응하는 적색 피타야 추출물에 비해 더 높은 BI 값을 가졌다. 총 항산화 활성 또는 항증식 활성 자체와 비교하여 BI는 추출물 활성 판단에서 더 유용한 값이다.
It provides a bioactivity index (BI) that can provide a brief reference on which fruit to choose when buying a consumer's fruit. Since WPP is the most potent scavenger of DPPH radicals and the growth inhibitor of most tested cancer cell lines, it was used as a relative reference to the calculation of BI values of other extracts. As shown in Table 2, the skin and pulp extracts of the white pitaya had higher BI values compared to the corresponding red pitaya extract. Compared to total antioxidant activity or antiproliferative activity itself, BI is a more useful value in determining extract activity.

9. 결론 9. Conclusion

결론적으로, 본 발명자들은 적색 및 백색 피타야 과육 및 껍질의 폴리페놀 및 플라보노이드 함량에 있어서 상당한 차이가 있다는 것을 증명하였고, 백색 피타야의 껍질에 다양한 항산화 및 항증식 물질들이 풍부하게 존재한다는 것을 실험적으로 확인하였다. 또한, 피타야 추출물들은 암세포주의 항-증식 효과를 나타내어, 암과 같은 만성질환의 예방 및 치료를 돕는 매우 가치 있는 물질임을 증명하였다.
In conclusion, the present inventors have demonstrated that there are significant differences in the polyphenol and flavonoid content of red and white phytaya pulp and bark, and experimentally that the abundance of various antioxidant and antiproliferative substances are present in the bark of white pitaya. Confirmed. In addition, phytaya extracts have anti-proliferative effects in cancer cell lines, proving that they are very valuable substances that help prevent and treat chronic diseases such as cancer.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the present invention. Thus, the substantial scope of the present invention will be defined by the appended claims and equivalents thereof.

참조문헌 References

Adebajo MO, Gesser HD. 2001. ESR study of alkyl radicals adsorbed on porous Vycor glass. I. Build up of mehyl and ethyl radicals. App SuRPF Sci 171:120-4.Adebajo MO, Gesser HD. 2001. ESR study of alkyl radicals adsorbed on porous Vycor glass. I. Build up of mehyl and ethyl radicals. App SuRPF Sci 171: 120-4.

Alothman M, Bhat R, Karim AA. 2009. Antioxidant capacity and phenolic content of selected tropical fruits form Malaysia, extracted with different solvents. Food chem 115:785-98.Alothman M, Bhat R, Karim AA. 2009. Antioxidant capacity and phenolic content of selected tropical fruits form Malaysia, extracted with different solvents. Food chem 115: 785-98.

Asmah R, Laili MN, Fadzelly ABM. 2008. Free radical scavenging activity of two Hylocereus species (Cactaceae) and their effect on the proliferation of HeLa and MDA-MB-231 cancer cell lines. Proceedings of the 7th Joint Meeting of GA, AFERPP, ASP, PSE & SIF, Planta medica 74: PA 5.Asmah R, Laili MN, Fadzelly ABM. 2008.Free radical scavenging activity of two Hylocereus species (Cactaceae) and their effect on the proliferation of HeLa and MDA-MB-231 cancer cell lines. Proceedings of the 7th Joint Meeting of GA, AFERPP, ASP, PSE & SIF, Planta medica 74: PA 5.

Chen X, He B. 2007. Oxygen free radical scavenging activity and anti-lipid peroxidation of tea polyphenol. Zhong Yao Cai 21:141-5Chen X, He B. 2007. Oxygen free radical scavenging activity and anti-lipid peroxidation of tea polyphenol. Zhong Yao Cai 21: 141-5

Cheung LM, Cheung PC, Ooi VE. 2003. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem 81:249-55.Cheung LM, Cheung PC, Ooi VE. 2003. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem 81: 249-55.

Chidambara-Murthy KN, Singh RPP, Jayaprakasha GK. 2002. Antioxidant activities of grape Vitis vinifera pomace extracts. J Agri Food Chem 50:5909-14. Chidambara-Murthy KN, Singh RPP, Jayaprakasha GK. 2002.Antioxidant activities of grape Vitis vinifera pomace extracts. J Agri Food Chem 50: 5909-14.

Chu Y, Sun J, Wu X, Liu RH. 2002. Antioxidant and antiproliferative activity of common vegetables. J Agric Food Chem 50:6910-16. Chu Y, Sun J, Wu X, Liu RH. 2002. Antioxidant and antiproliferative activity of common vegetables. J Agric Food Chem 50: 6910-16.

Cos P, Bruyne DT, Hermans N, Apers S, Berghe DV, Vlietinck AJ. 2004. Proanthocyanidins in health care: current and new trends. Curr Medi Chem 11:1345-59.Cos P, Bruyne DT, Hermans N, Apers S, Berghe DV, Vlietinck AJ. 2004. Proanthocyanidins in health care: current and new trends. Curr Medi Chem 11: 1345-59.

Das, UN. 2000. Beneficial effects of n-3 fatty acids in cardiovascular diseases: but, why and how? Prostag Leukotr Ess 63:351-2.Das, UN. 2000. Beneficial effects of n-3 fatty acids in cardiovascular diseases: but, why and how? Prostag Leukotr Ess 63: 351-2.

Guo Q, Zhao B, Shen S, Hou J, Hu J, Xin W. 1999. ESR study on the structure antioxidant activity relationship of tea catechins and their epimers. Biochim Biophys Acta 1427:13-23.Guo Q, Zhao B, Shen S, Hou J, Hu J, Xin W. 1999. ESR study on the structure antioxidant activity relationship of tea catechins and their epimers. Biochim Biophys Acta 1427: 13-23.

Halliwel B, Gutteridge JMC. 1999. Chemistry of biologically important radicals, In: Free Radicals in Biology and Medicine (3rd edn). New York: Oxford University Press. p 48-82.Halliwel B, Gutteridge JMC. 1999. Chemistry of biologically important radicals, In: Free Radicals in Biology and Medicine (3rd edn). New York: Oxford University Press. p 48-82.

Hansen MB, Nielsen SE, Berg K. 1989. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Imm Meth 119:203-10.Hansen MB, Nielsen SE, Berg K. 1989. Re-examination and further development of a precise and rapid dye method for measuring cell growth / cell kill. J Imm Meth 119: 203-10.

Hassimotto NMA, Genovese MI, Lajolo FM. 2005. Antioxidant activity of dietary fruits, vegetables, and Commercial frozen fruit pulps. J Agri Food chem 53:2928-35.Hassimotto NMA, Genovese MI, Lajolo FM. 2005. Antioxidant activity of dietary fruits, vegetables, and Commercial frozen fruit pulps. J Agri Food chem 53: 2928-35.

Hiramoto K, Johkoh H, Sako K, Kikugawa K. 1993. DNA breaking activity of the carbon-centered radical generated from 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH). Free Radi Res Comm 19:323-32.Hiramoto K, Johkoh H, Sako K, Kikugawa K. 1993. DNA breaking activity of the carbon-centered radical generated from 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH). Free Radi Res Comm 19: 323-32.

Hoa TT, Clark CJ, Waddell BC, Woolf AB. 2006. Postharvest quality of Dragon fruit (Hylocereus undatus) following disinfesting hot air treatments. Postharvest Bio Tech 41:62-9.Hoa TT, Clark CJ, Waddell BC, Woolf AB. 2006. Postharvest quality of Dragon fruit (Hylocereus undatus) following disinfesting hot air treatments. Postharvest Bio Tech 41: 62-9.

Huang X, Dai J, Fournier J, Ali AM, Zhang Q, Frenkel K. 2002. Ferrous ion autoxidation and its chelation in iron-loaded human liver Hep G2 cells. Free Radi Bio Med 32:84-72.Huang X, Dai J, Fournier J, Ali AM, Zhang Q, Frenkel K. 2002. Ferrous ion autoxidation and its chelation in iron-loaded human liver Hep G2 cells. Free Radi Bio Med 32: 84-72.

Kim H, Moon JY, Kim HJ, Lee DH, Cho M, Choi HK, Kim YS, Mosaddik MA, Cho SK. 2010;. Antioxidant and antiproliferative activities of mango (Mangifera indica L.) flesh and peel. Food Chem 121: 429-36.Kim H, Moon JY, Kim HJ, Lee DH, Cho M, Choi HK, Kim YS, Mosaddik MA, Cho SK. 2010 ;. Antioxidant and antiproliferative activities of mango (Mangifera indica L.) flesh and peel. Food Chem 121: 429-36.

Li SF, Liu XM, Wu JJ, Chen ZY, Shu N, Zhu ZW. 2003. The development of pitaya. Sci Tech Food Indus 7:88-90.Li SF, Liu XM, Wu JJ, Chen ZY, Shu N, Zhu ZW. 2003. The development of pitaya. Sci Tech Food Indus 7: 88-90.

Liu M, Li XQ, Weber C, Lee CY, Brown J, Liu RH. 2002. Antioxidant and antiproliferative activities of raspberries. J Agri Food Chem 50:2926-30.Liu M, Li XQ, Weber C, Lee CY, Brown J, Liu RH. 2002. Antioxidant and antiproliferative activities of raspberries. J Agri Food Chem 50: 2926-30.

Mahattanatawee K, Manthey JA, Luzio G, Talcott ST, Goodner K, Baldwin EA. 2006. Total antioxidant activity and content of select Florida-Grown tropical fruits. J Agri Food Chem 54:7355-63.Mahattanatawee K, Manthey JA, Luzio G, Talcott ST, Goodner K, Baldwin EA. 2006. Total antioxidant activity and content of select Florida-Grown tropical fruits. J Agri Food Chem 54: 7355-63.

Menon LG, Kuttan R, Kuttan G. 1995. Inhibition of lung metastasis in mice induced by B16F10 melanoma cells by polyphenolic compounds. Can lett 95:221-5.Menon LG, Kuttan R, Kuttan G. 1995. Inhibition of lung metastasis in mice induced by B16F10 melanoma cells by polyphenolic compounds. Can lett 95: 221-5.

Meyers KJ, Watkins CB, Pritts MP, Lui RH. 2003. Antioxidant and antiproliferative activities of strawberries. J Agri Food Chem 51:6887-92. Meyers KJ, Watkins CB, Pritts MP, Lui RH. 2003. Antioxidant and antiproliferative activities of strawberries. J Agri Food Chem 51: 6887-92.

Mizrahi Y, Nerd A, Nobel PS. 1997. Cacti as Crops. Horti revie 18:291-320.Mizrahi Y, Nerd A, Nobel PS. 1997. Cacti as Crops. Horti revie 18: 291-320.

Mokbel MS, Hashinaga F. 2006. Evaluation of the antioxidant activity of extracts from buntan (Citrus grandis Osbeck) fruit tissues. Food Chem 94:529-34.Mokbel MS, Hashinaga F. 2006. Evaluation of the antioxidant activity of extracts from buntan (Citrus grandis Osbeck) fruit tissues. Food Chem 94: 529-34.

Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y. 1996. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radi Bio Med 21:895-902.Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y. 1996. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radi Bio Med 21: 895-902.

Nerd A, Sitrita Y, Kaushika RA, Mizrahi Y. 2002. High summer temperatures inhibit flowering in vine pitaya crops (Hylocereus spp). Scientia Horticulturae 96:343-50.Nerd A, Sitrita Y, Kaushika RA, Mizrahi Y. 2002. High summer temperatures inhibit flowering in vine pitaya crops (Hylocereus spp). Scientia Horticulturae 96: 343-50.

Nisizawa K, Noda H, Kikuchi R, Watamaba T. 1987. The main seaweed foods in Japan. Hydrobiologia 151/152:5-29.Nisizawa K, Noda H, Kikuchi R, Watamaba T. 1987. The main seaweed foods in Japan. Hydrobiologia 151/152: 5-29.

Rosen GM, Rauckman EJ. 1984. Spin trapping of superoxide and hydroxyl radicals. Meth in Enzymo 105:198-209.Rosen GM, Rauckman EJ. 1984. Spin trapping of superoxide and hydroxyl radicals. Meth in Enzymo 105: 198-209.

Saito K, Kohno M, Yoshizaki F, Niwano Y. 2008. Antioxidant properties of herbal extracts selected from screening for potent scavenging activity against superoxide anions. J Sci Food Agri 88:2707-12.Saito K, Kohno M, Yoshizaki F, Niwano Y. 2008. Antioxidant properties of herbal extracts selected from screening for potent scavenging activity against superoxide anions. J Sci Food Agri 88: 2707-12.

Sanchez-Moreno. 2002. Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci Tech Int 8:121-37.Sanchez-Moreno. 2002. Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci Tech Int 8: 121-37.

Shahidi F, Wanasundara PK. 1992. Phenolic antioxidants. Crit Rev Food Sci Nutri 32:67-103.Shahidi F, Wanasundara PK. 1992. Phenolic antioxidants. Crit Rev Food Sci Nutri 32: 67-103.

Shahidi F. 1997. Natural antioxidants: An overview, In: Shahidi F (ed), Natural antioxidants, chemistry, health effects and applications. IL: Champaign, AOCS press. p 1-11.Shahidi F. 1997. Natural antioxidants: An overview, In: Shahidi F (ed), Natural antioxidants, chemistry, health effects and applications. IL: Champaign, AOCS press. p 1-11.

Singh U, Kunwar A, Srinivasan R, Nanjan MJ, Priyadarsini KI. 2009. Differential free scavenging activity and radioprotection of Caesalpinia digyna extracts and its active constituent. J Radiat Res 50:425-33.Singh U, Kunwar A, Srinivasan R, Nanjan MJ, Priyadarsini KI. 2009. Differential free scavenging activity and radioprotection of Caesalpinia digyna extracts and its active constituent. J Radiat Res 50: 425-33.

Soo-Jin H, Kim JP, Jung WK, Lee NH, Kang HS, Jun EM, Park SH, Kang SM, Lee YJ, Park PJ, Jeon YJ. 2008. Identification of chemical structure and free radical scavenging activity of diphlorethohydroxycarmalol isolated form a brown alga, Ishige okamurae. J Micro Biotech 18:676-81. Soo-Jin H, Kim JP, Jung WK, Lee NH, Kang HS, Jun EM, Park SH, Kang SM, Lee YJ, Park PJ, Jeon YJ. 2008. Identification of chemical structure and free radical scavenging activity of diphlorethohydroxycarmalol isolated form a brown alga, Ishige okamurae. J Micro Biotech 18: 676-81.

Stintzing FC, Conrad J, Klaiber I, Beifuss U, Carle R. 2004. Structural investigations on betacyanin pigments by LC NMR and 2D NMR spectroscopy. Phytochemistry 65:415-22. Stintzing FC, Conrad J, Klaiber I, Beifuss U, Carle R. 2004. Structural investigations on betacyanin pigments by LC NMR and 2D NMR spectroscopy. Phytochemistry 65: 415-22.

Stintzing FC, Schieber A, Carle R. 2002. Betacyanins in fruits from red-purple pitaya, Hylocereus polyrhizus (Weber) Britton & Rose. Food Chem 77:101-6.Stintzing FC, Schieber A, Carle R. 2002. Betacyanins in fruits from red-purple pitaya, Hylocereus polyrhizus (Weber) Britton & Rose. Food Chem 77: 101-6.

Sun J, Chu Y, Wu X, Liu R. 2002. Antioxidant and antiproliferative activities of common fruits. J Agri Food Chem 50:7449-54.Sun J, Chu Y, Wu X, Liu R. 2002. Antioxidant and antiproliferative activities of common fruits. J Agri Food Chem 50: 7449-54.

Szentmihㅱlyi K, Vinkler P, Lakatos B, Illㅹs V, Then M. 2002. Rose hip (Rosa canina L.) oil obtained from waste hip seeds by different extraction methods. Bioresou Tech 82:195-201.Szentmihlyi K, Vinkler P, Lakatos B, Ill's V, Then M. 2002. Rose hip (Rosa canina L.) oil obtained from waste hip seeds by different extraction methods. Bioresou Tech 82: 195-201.

Tachakittirungrod S, Olonogi S, Chowwanapoonpohn S. 2007. Study on antioxidant activity of certain plants in Thailand: Mechanism of antioxidant action of guava leaf extract, Food Chem 103:381-88. Tachakittirungrod S, Olonogi S, Chowwanapoonpohn S. 2007. Study on antioxidant activity of certain plants in Thailand: Mechanism of antioxidant action of guava leaf extract, Food Chem 103: 381-88.

Wolfe K, We X, Liu RH. 2003. Antioxidant activity of apple peels. J Agri Food Chem 51:609-4. Wolfe K, We X, Liu RH. 2003. Antioxidant activity of apple peels. J Agri Food Chem 51: 609-4.

Wu L, Hsu HW, Chen YC, Chiu CC, Lin YI, Ho JA. 2006. Antioxidant and antiproliferative activities of red pitaya. Food Chem 95:319-27.Wu L, Hsu HW, Chen YC, Chiu CC, Lin YI, Ho JA. 2006.Antioxidant and antiproliferative activities of red pitaya. Food Chem 95: 319-27.

Wybranice S, Mizrahi Y. 2002. Fruit flesh betacyanin pigments in hyloceruus Cacti. J Agri Food Chem 50:6086-89. Wybranice S, Mizrahi Y. 2002. Fruit flesh betacyanin pigments in hyloceruus Cacti. J Agri Food Chem 50: 6086-89.

Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555-69.
Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555-69.

Claims (5)

백색 피타야 (Hylocereus undatus) 추출물을 유효성분으로 포함하는 항암용 조성물.
Anticancer composition comprising a white pitaya ( Hylocereus undatus ) extract as an active ingredient.
제 1 항에 있어서, 상기 백색 피타야 추출물은 껍질 또는 과육 추출물인 것을 특징으로 하는 조성물.
The composition of claim 1, wherein the white pitaya extract is a bark or pulp extract.
제 1 항에 있어서, 상기 피타야 추출물은 물, 탄소수 1-4 개의 무수 또는 함수 저급 알코올, 아세톤, 에틸아세테이트, 부틸아세테이트 또는 1,3-부틸렌 글리콜의 용매 추출물인 것을 특징으로 하는 조성물.
The composition of claim 1, wherein the pitaya extract is a solvent extract of water, anhydrous or hydrous lower alcohol having 1 to 4 carbon atoms, acetone, ethyl acetate, butyl acetate or 1,3-butylene glycol.
제 1 항에 있어서, 상기 조성물은 암의 치료 또는 예방을 위한 약제학적 조성물 형태인 것을 특징으로 하는 조성물.
The composition of claim 1, wherein the composition is in the form of a pharmaceutical composition for the treatment or prevention of cancer.
제 1 항에 있어서, 상기 조성물은 암의 완화 또는 개선을 위한 기능성 식품 조성물 형태인 것을 특징으로 하는 조성물.





The composition of claim 1, wherein the composition is in the form of a functional food composition for alleviating or ameliorating cancer.





KR1020100069185A 2010-07-16 2010-07-16 Anti-Cancer Composition Comprising Extract from Hylocereus undatus KR101230918B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100069185A KR101230918B1 (en) 2010-07-16 2010-07-16 Anti-Cancer Composition Comprising Extract from Hylocereus undatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100069185A KR101230918B1 (en) 2010-07-16 2010-07-16 Anti-Cancer Composition Comprising Extract from Hylocereus undatus

Publications (2)

Publication Number Publication Date
KR20120008370A true KR20120008370A (en) 2012-01-30
KR101230918B1 KR101230918B1 (en) 2013-02-07

Family

ID=45613392

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100069185A KR101230918B1 (en) 2010-07-16 2010-07-16 Anti-Cancer Composition Comprising Extract from Hylocereus undatus

Country Status (1)

Country Link
KR (1) KR101230918B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013100596A1 (en) 2012-01-27 2013-08-01 Samsung Electronics Co. Ltd. Method for performing overwriting operation in e.g. vertical NOT-AND (NAND) flash memory device used in e.g. mobile telephone, involves providing memory cell with different program modes, if respective-bit-data is stored

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013100596A1 (en) 2012-01-27 2013-08-01 Samsung Electronics Co. Ltd. Method for performing overwriting operation in e.g. vertical NOT-AND (NAND) flash memory device used in e.g. mobile telephone, involves providing memory cell with different program modes, if respective-bit-data is stored

Also Published As

Publication number Publication date
KR101230918B1 (en) 2013-02-07

Similar Documents

Publication Publication Date Title
Chen et al. Antioxidant activities and contents of free, esterified and insoluble-bound phenolics in 14 subtropical fruit leaves collected from the south of China
Nabavi et al. Antioxidant activity of flower, stem and leaf extracts of Ferula gummosa Boiss
Kim et al. Antioxidant and antiproliferative activities of mango (Mangifera indica L.) flesh and peel
Airaodion et al. Comparative assessment of phytochemical content and antioxidant potential of Azadirachta indica and Parquetina nigrescens leaves
Ebrahimzadeh et al. Antioxidant and free radical scavenging activity of H. officinalis L. var. angustifolius, V. odorata, B. hyrcana and C. speciosum
Shah et al. Antioxidant potential, DNA protection, and HPLC-DAD analysis of neglected medicinal Jurinea dolomiaea roots
Nabavi et al. The antioxidant activity of wild medlar (Mespilus germanica L.) fruit, stem bark and leaf
Miceli et al. Phenolic composition and biological activities of Juniperus drupacea Labill. berries from Turkey
Megala et al. Free radical-scavenging and H+, K+-ATPase inhibition activities of Pithecellobium dulce
Serteser et al. Antioxidant properties of some plants growing wild in Turkey
Dhaouadi et al. Commercial Lawsonia inermis L. dried leaves and processed powder: Phytochemical composition, antioxidant, antibacterial, and allelopathic activities
Zendehbad et al. Flavonoids and phenolic content in wheat grass plant (Triticum aestivum)
Rakholiya et al. Comparative analysis and simultaneous quantification of antioxidant capacity of four terminalia species using various photometric assays
Chew et al. Evaluation and comparison of antioxidant activity of leaves, pericarps and pulps of three Garcinia species in Malaysia
Sabtain et al. A narrative review on the phytochemistry, nutritional profile and properties of prickly pear fruit
Forouzani et al. Evaluation of three methods for the extraction of antioxidants from Cucumis melo L. fruit and leaves
Veskoukis et al. Grape stem extracts from three native Greek vine varieties exhibit strong antioxidant and antimutagenic properties
Gacche et al. Antioxidant potential of selected vegetables commonly used in diet in Asian subcontinent
Khalid et al. Free radical scavenging and total phenolic content of Saccharum spontaneum L. root extracts
D'Angelo et al. Protective effect of polyphenols from Glycyrrhiza glabra against oxidative stress in Caco-2 cells
Terzić et al. Could elderberry fruits processed by modern and conventional drying and extraction technology be considered a valuable source of health-promoting compounds?
Hemali et al. Evaluation of antioxidant efficacy of different fractions of Tagetes erecta L. Flowers
Ayşe et al. Medical and cosmetic applications of persimmon (Diospyros Kaki): Toxicity assessment-A review
Deshpande et al. In-vitro antioxidant activity of different fraction of roots of Cassia auriculata Linn.
KR101230918B1 (en) Anti-Cancer Composition Comprising Extract from Hylocereus undatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160119

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170103

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171227

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190613

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191204

Year of fee payment: 8