KR20110134852A - Cathode active material for lithium secondary battery, manufacturing method for the same and lithium secondary battery comprising the same - Google Patents
Cathode active material for lithium secondary battery, manufacturing method for the same and lithium secondary battery comprising the same Download PDFInfo
- Publication number
- KR20110134852A KR20110134852A KR1020110055678A KR20110055678A KR20110134852A KR 20110134852 A KR20110134852 A KR 20110134852A KR 1020110055678 A KR1020110055678 A KR 1020110055678A KR 20110055678 A KR20110055678 A KR 20110055678A KR 20110134852 A KR20110134852 A KR 20110134852A
- Authority
- KR
- South Korea
- Prior art keywords
- carbon
- active material
- secondary battery
- lithium secondary
- group
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/003—Titanates
- C01G23/005—Alkali titanates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/12—Manganates manganites or permanganates
- C01G45/1221—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
- C01G45/1235—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]2-, e.g. Li2Mn2O4, Li2[MxMn2-x]O4
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/009—Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Cobaltates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Cobaltates
- C01G51/42—Cobaltates containing alkali metals, e.g. LiCoO2
- C01G51/44—Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
- C01G51/52—Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [Mn2O4]2-, e.g. Li2(CoxMn2-x)O4, Li2(MyCoxMn2-x-y)O4
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/52—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [Mn2O4]2-, e.g. Li2(NixMn2-x)O4, Li2(MyNixMn2-x-y)O4
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/10—Solid density
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
본 발명은 리튬 이차전지용 양극 활 물질 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 Li2MM'O4 입자상 표면에 균일하게 분산, 함유된 탄소원 또는 리튬티탄산화물(LTO)에 의하여 향상된 비용량과 전기전도도를 갖는 리튬이차전지용 양극 활 물질 복합체, 그 제조방법 및 이를 포함하는 리튬이차전지에 관한 것이다.The present invention relates to a cathode active material for a lithium secondary battery and a manufacturing method thereof, and more particularly to Li 2 MM'O 4. The present invention relates to a cathode active material composite for a lithium secondary battery having a specific amount and electrical conductivity improved by a carbon source or lithium titanium oxide (LTO) uniformly dispersed on a particulate surface, a method of manufacturing the same, and a lithium secondary battery including the same.
최근 휴대전화, 휴대용 개인정보단말기(PDA), 노트북 PC, MP3 등의 휴대용 소형 전자기기 및 전기 자동차 등의 전원 및 동력원으로서의 리튬 이차전지의 수요가 급격히 늘어나고 있다. 이에 따라 리튬 이차전지의 고용량화와 사이클 수명 연장에 대한 요구도 증가하고 있다.Recently, the demand for lithium secondary batteries as a power source and power source for portable small electronic devices such as mobile phones, portable personal digital assistants (PDAs), notebook PCs, MP3s, and electric vehicles has been increasing rapidly. Accordingly, the demand for higher capacity and longer cycle life of lithium secondary batteries is increasing.
리튬 이차전지의 양극 활 물질로서는 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 및 리튬 복합금속 산화물 등이 사용되고 있다. 그 외에도 저가격 고안정성의 스피넬형 리튬 망간 산화물(LiMn2O4), 올리빈형 인산철, 인산 망간 및 인산 복합금속 리튬 화합물도 주목받고 있다.Lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium composite metal oxide, and the like are used as positive electrode active materials of lithium secondary batteries. In addition, low-cost high-stable spinel-type lithium manganese oxide (LiMn 2 O 4 ), olivine-type iron phosphate, manganese phosphate and a composite metal lithium phosphate compound has attracted attention.
하지만, 리튬 코발트 산화물이나 리튬 니켈 산화물, 리튬 복합금속 산화물은 기본적인 전지 특성은 우수하지만, 열 안정성과 과충전 안전성 등이 충분하지 않다. 따라서 이를 개선하기 위한 별도의 안전장치가 추가로 필요하며, 또한 활 물질 자체의 가격이 비싼 단점이 있다. However, lithium cobalt oxide, lithium nickel oxide, and lithium composite metal oxide have excellent basic battery characteristics, but insufficient thermal stability and overcharge safety. Therefore, there is a need for a separate safety device to improve this, and also has the disadvantage that the price of the active material itself is expensive.
또한, 리튬 망간 산화물 LiMn2O4의 경우 +3가의 망간 양이온에 기인하는 얀-텔러 뒤틀림 (Jahn-Teller distortion)이라는 구조변이 때문에 수명 특성이 좋지 않다는 치명적인 단점을 나타낸다. 이는 또한 낮은 전기용량으로 인해 고에너지 밀도에 대한 요구를 충분히 만족시키지 못한다. 올리빈형 인산철 및 인산망간 리튬 화합물은 전기 전도성이 상당히 낮기 때문에 우수한 전지 특성을 기대하기 어렵고 또한 평균 작동전위가 낮아 고용량화에 대한 요구를 충분히 만족시키지 못한다.In addition, the lithium manganese oxide LiMn 2 O 4 exhibits a fatal disadvantage of poor life characteristics due to a structural variation called Jahn-Teller distortion due to a + trivalent manganese cation. It also does not fully meet the demand for high energy density due to low capacitance. The olivine-type iron phosphate and manganese phosphate compounds are difficult to expect excellent battery characteristics because of their extremely low electrical conductivity, and do not sufficiently satisfy the demand for high capacity due to low average operating potential.
이에 반해 오르쏘실리케이트계 화합물(orthosilicate, Li2MSiO4, M=Fe, Mn, Ni, Co)은 가격이 저렴할 뿐만 아니라 높은 열안정성을 가지며 및 환경친화적인 물질로 여겨지고 있다. 더 나아가, Li2MSiO4는 330 mAh/g로 올리빈형 보다 높은 이론적 용량을 가지고 있다고 알려져 있지만, 전기전도성이 나쁘다는 단점을 가지고 있다.On the other hand, orthosilicate compounds (orthosilicate, Li 2 MSiO 4 , M = Fe, Mn, Ni, Co) are not only inexpensive, but also have high thermal stability and environmentally friendly materials. Furthermore, Li 2 MSiO 4 is known to have a higher theoretical capacity than the olivine type at 330 mAh / g, but has a disadvantage of poor electrical conductivity.
따라서, 본 발명이 해결하려는 과제는 높은 전기 전도성을 갖는 Li2MM'SiO4 기반의 리튬이차전지용 양극 활 물질을 제공하는 것이다.Therefore, the problem to be solved by the present invention is Li 2 MM'SiO 4 having a high electrical conductivity To provide a cathode active material for a lithium secondary battery based.
본 발명이 해결하려는 또 다른 과제는 높은 전기 전도성을 갖는 Li2MM'SiO4 기반의 리튬이차전지용 양극 활 물질의 경제적인 제조방법을 제공하는 것이다.Another problem to be solved by the present invention is Li 2 MM'SiO 4 having a high electrical conductivity To provide an economical manufacturing method of the cathode active material for lithium secondary battery based.
본 발명이 해결하려는 또 다른 과제는 높은 전도성 및 기계적 특성의 양극 활 물질을 포함하는 리튬이차전지를 제공하는 것이다.Another object of the present invention is to provide a lithium secondary battery including a positive electrode active material of high conductivity and mechanical properties.
상기 과제를 해결하기 위하여, 본 발명은 리튬이차전지용 양극 활 물질로서, 상기 양극 활 물질은 LinMO4 / X의 복합체를 포함하며, 여기에서 M은 Mn, Fe, Co, Ni, Al, Mn, V, Cr, Fe, Co, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W 및 Pb로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 원소이며, X는 탄소원 또는 리튬티탄산화물(Lithium Titanium Oxide, Li4Ti5O12) 또는 이들의 혼합물이고, n은 정수인 것을 특징으로 하는 리튬이차전지용 양극 활 물질을 제공한다. In order to solve the above problems, the present invention is a cathode active material for a lithium secondary battery, the cathode active material is Li n MO 4 Contains a complex of / X, Where M is Mn, Fe, Co, Ni, Al, Mn, V, Cr, Fe, Co, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W and Pb is one or two or more elements selected from the group consisting of, X is a carbon source or lithium titanium oxide (Lithium Titanium Oxide, Li 4 Ti 5 O 12 ) or a mixture thereof, n is an integer It provides a cathode active material for a lithium secondary battery.
본 발명의 일 실시예에서 상기 M은 mm'이며, 여기에서 m은 Mn, Fe, Co 및 Ni로 이루어진 군으로부터 선택되며, m'는 Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W 및 Pb로 이루어진 군으로부터 선택된 1종 이상의 원소이며, 상기 탄소원은 탄소나노튜브, 탄소나노와이어, 탄소나노섬유, 흑연, 활성탄 및 그래핀으로 이루어진 군으로부터 선택된 1종 이상이다 .In one embodiment of the present invention, M is mm ', wherein m is selected from the group consisting of Mn, Fe, Co and Ni, m' is Al, V, Cr, Zn, Zr, Nb, Mo, Ag , Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W and Pb, at least one element selected from the group consisting of carbon nanotubes, carbon nanowires, carbon nanofibers, graphite, It is at least one member selected from the group consisting of activated carbon and graphene.
본 발명의 또 다른 일 실시예에서 상기 탄소원은 탄소나노튜브, 탄소나노와이어, 탄소나노섬유, 흑연, 활성탄 및 그래핀으로 이루어진 군으로부터 선택된 1종 이상의 물질 및 글루코스(glucose), 수크로스(scurose), 폴리에틸렌글리콜(poly ethylene glycol), 폴리비닐알콜(poly vinyl alcohol), 폴리비닐클로라이드(poly vinyl chloride), 구연산(citric acid)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 모두 포함하며, 상기 탄소원 또는 리튬티탄산화물은 LinMO4 입자 표면을 코팅한다.In another embodiment of the present invention the carbon source is one or more materials selected from the group consisting of carbon nanotubes, carbon nanowires, carbon nanofibers, graphite, activated carbon and graphene, glucose (glucose), sucrose (scurose) , Polyethylene glycol (poly ethylene glycol), poly vinyl alcohol (poly vinyl alcohol), poly vinyl chloride (poly vinyl chloride), including all one or more materials selected from the group consisting of citric acid, the carbon source or lithium Titanium oxide is Li n MO 4 The particle surface is coated.
본 발명은 또한 상술한 리튬이차전지용 양극 활 물질을 포함하는 리튬이차전지용 양극 활 물질을 제공한다.The present invention also provides a cathode active material for a lithium secondary battery comprising the cathode active material for a lithium secondary battery described above.
본 발명은 상기 또 다른 과제를 해결하기 위하여, (a) LinMO4 중 MO4 를 이루는 금속 또는 무기 염 또는 이들의 혼합 염과 탄소원 또는 리튬티탄산화물 또는 이들의 혼합물을 용액에 혼합하여, 분산시키는 단계; (b) 상기 혼합물을 세척하는 단계; (c) 상기 세척된 혼합물에 리튬염을 혼합하는 단계; (d) 상기 리튬염이 혼합된 상기 혼합물을 용액에 분산시킨 후, 반응시키는 단계; (e) 상기 반응의 반응물을 건조하는 단계; 및 (f) 상기 건조된 반응물을 열처리 하는 단계를 포함하며, 여기에서 (a) 단계의 M은 Mn, Fe, Co, Ni, Al, Mn, V, Cr, Fe, Co, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W 및 Pb로 이루어진 군으로부터 선택된 1종 이상의 원소이고, n은 정수인 것을 특징으로 하는 리튬이차전지용 양극 활 물질 제조방법을 제공한다. The present invention to solve the above another problem, (a) Li n MO 4 Mixing or dispersing a metal or an inorganic salt or a mixed salt thereof and a carbon source or a lithium titanium oxide or a mixture thereof to form a solution of MO 4 ; (b) washing the mixture; (c) mixing a lithium salt with the washed mixture; (d) dispersing the mixture containing the lithium salt in a solution and then reacting; (e) drying the reactants of the reaction; And (f) heat-treating the dried reactant, wherein M in step (a) is Mn, Fe, Co, Ni, Al, Mn, V, Cr, Fe, Co, Zn, Zr, Nb , Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W and Pb is at least one element selected from the group consisting of, n is an integer positive electrode active material for lithium secondary battery It provides a manufacturing method.
본 발명은 또 다른 일 실시예에서 상기 (a) 및 (d) 단계 중 적어도 어느 하나의 단계에서 상기 분산은 초음파 가진 또는 기계적 교반 방식으로 수행되며, 상기 M은 mm'이며, 여기에서 m은 Mn, Fe, Co 및 Ni로 이루어진 군으로부터 선택되며, m'는 Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W 및 Pb로 이루어진 군으로부터 선택된 1종 이상의 원소이다. In another embodiment of the invention the dispersion in at least one of the steps (a) and (d) is carried out by ultrasonic excitation or mechanical stirring, wherein M is mm ', where m is Mn , Fe, Co and Ni, m 'is Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, At least one element selected from the group consisting of W and Pb.
본 발명의 일 실시예에서 상기 탄소원은 탄소나노튜브, 탄소나노와이어, 탄소나노섬유, 흑연, 활성탄 및 그래핀으로 이루어진 군으로부터 선택된 1종 이상이며, 상기 탄소원은 탄소나노튜브, 탄소나노와이어, 탄소나노섬유, 흑연, 활성탄 및 그래핀으로 이루어진 군으로부터 선택된 1종 이상의 물질 및 글루코스(glucose), 스쿠로스(scurose), 폴리에틸렌글리콜(poly ethylene glycol), 폴리비닐알콜(poly vinyl alcohol), 폴리비닐클로라이드(poly vinyl chloride), 구연산(citric acid)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함한다. In one embodiment of the present invention, the carbon source is one or more selected from the group consisting of carbon nanotubes, carbon nanowires, carbon nanofibers, graphite, activated carbon and graphene, and the carbon source is carbon nanotubes, carbon nanowires, carbon At least one substance selected from the group consisting of nanofibers, graphite, activated carbon and graphene and glucose, squarose, polyethylene glycol, polyvinyl alcohol, polyvinylchloride (poly vinyl chloride), citric acid (citric acid) includes at least one substance selected from the group consisting of.
본 발명에 따르면, 경제적인 방식으로 우수한 전기 전도도 및 기계적 특성을 갖는 리튬이차전지용 양극 활 물질이 제조될 수 있다. 특히, 상기 LinMO4 입자상 표면에 균일하게 분산, 함유된 탄소원 또는 리튬티탄산화물(LTO)은 리튬이차전지용 양극 활 물질 복합체로 하여금 향상된 전기 전도도를 갖게 한다. 또한, 본 발명에 따른 양극 활 물질은 이차전지에 적용하기 적합한 에너지 밀도를 가지고, 안정성과 안전성이 뛰어나며, 우수한 전지특성을 유지하면서도 사이클 수명이 긴 장점을 갖는다.According to the present invention, a cathode active material for a lithium secondary battery having excellent electrical conductivity and mechanical properties can be produced in an economical manner. In particular, the Li n MO 4 The carbon source or lithium titanium oxide (LTO) uniformly dispersed and contained on the particulate surface makes the cathode active material composite for lithium secondary batteries have improved electrical conductivity. In addition, the positive electrode active material according to the present invention has an energy density suitable for application to a secondary battery, has excellent stability and safety, and has a long cycle life while maintaining excellent battery characteristics.
도 1은 본 발명의 일 실시예에 따른 리튬이차전지용 양극 활 물질 제조방법의 단계도이다.
도 2는 본 발명에 따라 제조된 복합 양극 활물질의 구조를 X선 회절계(XRD, Rigaku)를 사용하여 분석한 결과이다.
도 3 내지 6은 본 발명에 따라 제조된 복합 양극 활물질의 입자형태를 FE-SEM(전계 주사현미경)으로 관찰한 결과이다.
도 7은 본 발명에 따라 제조된 복합 양극 활물질을 포함하는 리튬 이차전지에 대한 충방전 특성 분석 결과이다.1 is a step diagram of a method of manufacturing a cathode active material for a lithium secondary battery according to an embodiment of the present invention.
2 is a result of analyzing the structure of the composite cathode active material prepared according to the present invention using an X-ray diffractometer (XRD, Rigaku).
3 to 6 are the results of observing the particle form of the composite positive electrode active material prepared according to the present invention with an FE-SEM (field scanning microscope).
7 is a result of charge and discharge characteristics analysis of a lithium secondary battery including a composite cathode active material prepared according to the present invention.
이하, 본 발명을 도면을 참조하여 상세하게 설명하고자 한다. 다음에 소개되는 실시예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 이하 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있으며, 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will now be described in detail with reference to the drawings. The following embodiments are provided as examples to ensure that the spirit of the present invention to those skilled in the art will fully convey. Therefore, the present invention is not limited to the embodiments described below, but may be embodied in other forms. And, in the drawings, the width, length, thickness, etc. of the components may be exaggerated for convenience, the same reference numerals throughout the specification represent the same components.
본 발명은 상술한 바와 같이 리튬이차전지용 양극 활 물질로서 LinMO4 / X 형태의 복합체를 제공한다. 특히 본 발명은 Li 계열의 활성 입자 상에 X로 표시되는 탄소원(여기에서 탄소원은 탄소를 구성원소로 포함하는 임의의 탄소 화합물을 모두 지칭하며, 예를 들면, 탄소나노튜브, 탄소나노섬유, 탄소나노와이어, 그래핀, 흑연 등이 상기 탄소원에 속한다) 또는 리튬티탄산화물(Li4Ti5O12) 또는 이들의 혼합물을 코팅시킴으로써, 활성 입자로 하여금 높은 전도성을 갖게 한다. 여기에서 M은 Mn, Fe, Co, Ni, Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W 및 Pb로 이루어진 군으로부터 선택된 1종 이상의 원소이다. 본 발명의 일 실시예에서 상기 M은 두 종류의 원소(mm')로 이루어지며, 여기에서 m은 Mn, Fe, Co 및 Ni로 이루어진 군으로부터 선택되며, m'는 Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W 및 Pb로 이루어진 군으로부터 선택된 1종 이상의 원소이며, 본 발명의 일 실시예에서 상기 m'는 실리콘(Si), m은 Mn, Fe, Co 및 Ni로 이루어진 군으로부터 선택되었으나, 본 발명의 범위는 이에 제한되지 않는다. 또한 n은 정수로서, 1, 2, 3 등을 포함한다. As described above, the present invention provides Li n MO 4 as a cathode active material for a lithium secondary battery. Provide a complex of / X form. In particular, the present invention refers to the carbon source represented by X on the Li-based active particles (where the carbon source refers to any carbon compound containing carbon as a member element, for example, carbon nanotubes, carbon nanofibers, carbon nano Wire, graphene, graphite, etc. belong to the carbon source) or lithium titanium oxide (Li 4 Ti 5 O 12 ) or a mixture thereof to make the active particles have high conductivity. Where M is Mn, Fe, Co, Ni, Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W and Pb At least one element selected from the group consisting of: In one embodiment of the present invention M is composed of two kinds of elements (mm '), where m is selected from the group consisting of Mn, Fe, Co and Ni, m' is Al, V, Cr, Zn , Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W and Pb is one or more elements selected from the group consisting of, m in one embodiment of the present invention 'Is selected from the group consisting of silicon (Si), m is Mn, Fe, Co and Ni, but the scope of the present invention is not limited thereto. In addition, n is an integer and contains 1, 2, 3, etc.
본 발명의 일 실시예에서 상기 탄소원은 상술한 바와 같이 탄소를 구성원소로 하는 임의 형태의 화합물로, 예를 들면 탄소나노튜브, 탄소나노와이어, 탄소나노섬유 및 그래핀으로 이루어진 군으로부터 선택된 1종 이상이 될 수 있다. 본 발명의 또 다른 일 실시예에서 상기 탄소원은 탄소를 구성성분으로 포함하는 전구체 형태로서 글루코스(glucose), 스쿠로스(scurose), 폴리에틸렌글리콜(poly ethylene glycol), 폴리비닐알콜(poly vinyl alcohol), 폴리비닐클로라이드(poly vinyl chloride), 구연산(citric acid)의 일종 또는 이종 이상, 바람직하게는 글루코스, 스쿠로스 및 구연산으로 이루어진 군으로부터 선택된 하나 이상일 수 있다. 본 발명의 일 실시예에서는 탄소나노튜브, 탄소나노와이어, 탄소나노섬유 및 그래핀으로 이루어진 군에서 선택되는 제 1 탄소원과 글루코스(glucose), 스쿠로스(scurose), 폴리에틸렌글리콜(poly ethylene glycol), 폴리비닐알콜(poly vinyl alcohol), 폴리비닐클로라이드(poly vinyl chloride), 구연산(citric acid)으로 이루어진 군에서 선택되는 제 2 탄소원을 혼합 사용하여, 활성 입자를 코팅하는 경우, 매우 우수한 전지 특성을 나타내었다. In one embodiment of the present invention, the carbon source is any type of compound having carbon as a member as described above, for example, at least one selected from the group consisting of carbon nanotubes, carbon nanowires, carbon nanofibers, and graphene. This can be In another embodiment of the present invention, the carbon source is a precursor containing carbon as a component, such as glucose, squash, polyethylene glycol, polyvinyl alcohol, It may be at least one selected from the group consisting of polyvinyl chloride, citric acid or one or more species, preferably glucose, squarose and citric acid. In one embodiment of the present invention, the first carbon source selected from the group consisting of carbon nanotubes, carbon nanowires, carbon nanofibers and graphene, glucose (glucose), squash (scurose), polyethylene glycol (polyethylene glycol), When the active particles are coated by using a second carbon source selected from the group consisting of polyvinyl alcohol, poly vinyl chloride, and citric acid, very good battery characteristics are exhibited. It was.
본 발명은 상기 또 다른 과제를 해결하기 위하여, 상술한 양극 활 물질의 제조방법을 제공한다.The present invention provides a method for producing the positive electrode active material described above, in order to solve the above another problem.
도 1은 본 발명의 일 실시예에 따른 양극 활 물질의 단계도이다.1 is a step diagram of a positive electrode active material according to an embodiment of the present invention.
도 1을 참조하면, 먼저 상술한 LinMO4 중 MO4 를 이루는 금속 또는 무기 염 또는 이들의 혼합 염과 탄소원 또는 리튬티탄산화물 또는 이들의 혼합물을 용액에 혼합하여, 분산시킨다. 이때 상기 분산은 초음파의 가진 또는 기계적 교반 방식 또는 이 둘 다가 모두 사용될 수 있다. 즉, 본 발명에서 전구체 분말(금속염 등)은 탄소원 또는 리튬티탄산화물과 습식혼합되는 단계로부터 양극 활 물질이 제조된다. Referring to Figure 1, first described above Li n MO 4 The metal or inorganic salt or mixed salt thereof and the carbon source or lithium titanium oxide or a mixture thereof, which form MO 4 in Mn, are mixed in a solution and dispersed. At this time, the dispersion may be used in the ultrasonic wave or mechanical stirring method or both. That is, in the present invention, the precursor powder (metal salt or the like) is prepared from the step of wet mixing with a carbon source or lithium titanium oxide to prepare a cathode active material.
이후, 상기 분산되어 습식 혼합된 혼합물은 세척된다. 다시, 상기 세척된 혼합물에 리튬염이 혼합되며, 상기 리튬염이 혼합된 상기 혼합물은 다시 용액에 혼입되어, 분산된 후, 반응과정을 거치게 된다. 본 발명의 일 실시예에서 상기 리튬염은 Li2NO3, Li2CO3, LiOH 등을 사용하였다. 특히 본 발명의 일 실시예에서는 상기 분산 및 반응 과정에서 일정한 에너지를 음파 형태로 공급하는 음향화학(Sonochemistry) 기반의 초음파 가진 공정이 독립적으로 또는 기계적 교반과 함께 사용되어, 입자상에 탄소원 등이 코팅된 양극 활 물질 복합체를 효과적이고 경제적인 방식으로 제조하였다. 이후, 상기 반응물은 건조되며, 상기 건조된 반응물은 열처리된다. The dispersed and wet mixed mixture is then washed. Again, lithium salt is mixed in the washed mixture, and the mixture, in which the lithium salt is mixed, is again mixed into a solution, dispersed, and then subjected to a reaction process. In one embodiment of the present invention, the lithium salt used Li 2 NO 3 , Li 2 CO 3 , LiOH and the like. Particularly, in one embodiment of the present invention, a sonication-based ultrasonic wave excitation process for supplying a constant energy in the form of sound waves in the dispersion and reaction process is used independently or with mechanical agitation, whereby a carbon source or the like is coated on the particles. Anode active material composites were prepared in an effective and economical manner. Thereafter, the reactants are dried, and the dried reactants are heat treated.
본 발명에 따른 상기 습식 혼합은 전구체 분말을 수용액에 혼입한 후, 이를 분산시키는 방식인데, 상기 분산은 초음파 가진(음향화학, Sonochemistry), 또는 기계적 교반 방식으로 수행될 수 있다. 상기 열처리 공정은 비활성 또는 환원분위기에서 수행되어 상기 금속 화합물, 예를 들면 철이 산화되는 것을 억제하는 것이 바람직하며, 온도 조건은 500~1000 ℃에서 0.5~10 시간 열처리하여 얻어지는 입자 크기가 500nm 이하가 되도록 하는 것이 바람직하다. 왜냐하면, 500nm를 초과하는 경우, 각 성분들간의 균일한 밀도를 얻기 어렵기 때문이다.
The wet mixing according to the present invention is a method of dispersing the precursor powder in an aqueous solution and then dispersing it. The dispersion may be performed by ultrasonic excitation (acoustics, Sonochemistry), or mechanical stirring. The heat treatment process is preferably carried out in an inert or reducing atmosphere to inhibit the oxidation of the metal compound, for example, iron, and the temperature conditions are such that the particle size obtained by heat treatment at 500 to 1000 ° C. for 0.5 to 10 hours is 500 nm or less. It is desirable to. This is because when it exceeds 500 nm, it is difficult to obtain a uniform density between the components.
실시예Example 1 One
Mn(Ac)2·6H2O 0.3M 수용액 중에 나노 중공 섬유형 탄소인 탄소나노튜브(CNT) 2 중량%를 균일하게 분산시켜 분산액을 제조한다. 나노 중공 섬유형 탄소의 분산은 초음파 분산 방법 과 고압분산 방법을 이용하였다. 이어서 상기 분산액을 연속적으로 흘려주면서 Na2SiO3·12H2O 0.15M을 이용, 분사하여 MnSiO3를 형성시키며, 원심분리기를 이용하여 Na을 제거하였다. Na가 제거된 염에 LiOH 0.1M, 수크로스(sucrose), 구연산(citric acid(Li2MnSiO3:citricacid:sucrose=1:0.3:0.05)) 수용액을 MnSiO3 수용액에 첨가 한 후 1시간 교반 후, 반응기 내의 반응계를 저속으로 충분히 교반하거나 또는 상기 반응계에 초음파를 1시간 가진(음향화학, Sonochemistry)하였다. 이때 순환식항온조를 이용하여 반응기 내 온도를 30℃로 유지하고, 운전 주파수는 200 kHz 강도는 300 W, 반응기 내의 압력을 3 atm으로 일정하게 가압하였으며, 반응기 내부에는 아르곤 가스를 이용하였다. 반응 후 스프레이 건조기에서 150도에서 건조하였다. 건조 후 질소 분위기에서 750℃에서 24시간 소성하였다. 이로써, Li2MnSiO4 활성입자 상에 탄소나노튜브 및 수크로스와 같은 탄소원이 코팅된 복합 양극 활 물질을 제조하였다.
A dispersion is prepared by uniformly dispersing 2 wt% of carbon nanotubes (CNT), which are nano hollow fiber carbons, in an aqueous solution of Mn (Ac) 2 .6H 2 O. Dispersion of nano hollow fiber type carbon was used by ultrasonic dispersion method and high pressure dispersion method. Subsequently, the dispersion was sprayed continuously using 0.15 M Na 2 SiO 3 .12H 2 O to form MnSiO 3 , and Na was removed using a centrifuge. The Na salt is removed, 0.1M LiOH, sucrose (sucrose), citric acid (citric acid (Li2MnSiO 3: citricacid : sucrose = 1: 0.3: 0.05)) and then stirred for 1 hour and then was added to the aqueous solution MnSiO 3, the reactor The reaction system in the reaction system was sufficiently stirred at low speed, or the reaction system was subjected to ultrasonic waves for 1 hour (Sonic Chemistry, Sonochemistry). In this case, the temperature in the reactor was maintained at 30 ° C. using a circulating constant temperature bath, the operating frequency was 200 kHz, the intensity was 300 W, the pressure in the reactor was constantly pressurized to 3 atm, and argon gas was used inside the reactor. After the reaction was dried at 150 degrees in a spray dryer. After drying, the product was calcined at 750 ° C. for 24 hours in a nitrogen atmosphere. As a result, a composite cathode active material coated with carbon sources such as carbon nanotubes and sucrose on Li 2 MnSiO 4 active particles was prepared.
실시예Example 2 2
Mn(Ac)2·6H2O 0.28M에 Fe(NO3) 0.02M을 소량 첨가한 것을 제외하고는 실시예 1과 동일한 방식으로 리튬 이차전지용 복합 양극 활 물질을 제조하였다.
A composite cathode active material for a lithium secondary battery was prepared in the same manner as in Example 1 except that a small amount of Fe (NO 3 ) 0.02M was added to 0.28M of Mn (Ac) 2 .6H 2 O.
실시예Example 3 3
탄소나노튜브 대신 LiOH, TiO2를 넣은 것을 제외하고는 실시예 1과 동일한 방법으로 복합 양극 활 물질을 제조하였다.
A composite cathode active material was prepared in the same manner as in Example 1, except that LiOH and TiO 2 were added instead of carbon nanotubes.
비교예Comparative example 1 One
실시예 1에서 sucrose, citric acid, CNT와 같은 탄소원을 넣지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 복합 양극 활 물질을 제조하였다.
In Example 1 A composite cathode active material was prepared in the same manner as in Example 1, except that no carbon source such as sucrose, citric acid, and CNT was added.
시험예Test Example 1 One
X선 X-ray 회절diffraction 분석 analysis
실시예에서 제조된 복합 양극 활물질의 구조를 X선 회절계(XRD, Rigaku)를 사용하여 분석하고, 그 결과를 도 2에 나타내었다. 도 2의 결과로부터 알 수 있는 바와 같이, 본 발명에 따라 제조된 복합 양극 활물질에서 Li2MnSiO4의 특성 피크와 아주 잘 일치하는 것을 알 수 있다.
The structure of the composite cathode active material prepared in Example was analyzed using an X-ray diffractometer (XRD, Rigaku), and the results are shown in FIG. 2. As can be seen from the results of FIG. 2, it can be seen that the composite peak active material according to the present invention is in good agreement with the characteristic peak of Li 2 MnSiO 4 .
시험예Test Example 2 2
FE-SEMFE-SEM
FE-SEM(전계 주사현미경)으로 실시예에서 제조된 복합 양극 활물질의 입자형태를 관찰하였으며, 그 결과를 도 3 내지 도 6에 나타내었다. 도 3 내지 6에서 보는 바와 같이 복합 양극 활물질의 입자에 CNT가 잘 분산되어 있으며, 입자 평균 입자 크기가 약 10 마이크로 나타나는 것을 알 수 있다.
Particle morphology of the composite cathode active material prepared in Example was observed by FE-SEM (field scanning microscope), and the results are shown in FIGS. 3 to 6. As shown in FIGS. 3 to 6, CNTs are well dispersed in the particles of the composite cathode active material, and the particle average particle size is about 10 microns.
시험예Test Example 3 3
입도 분석Particle size analysis
레이져회절식의 입도 분포계를 이용하여 재료의 입도 분석을 하였다. 누적 입도 분포의 결과로부터 누적 제적이 10%, 50% 및 90%에 도달하는 지점에서의 입도를 확인하여, 각각 d10, d50, 및 d90으로 하였으며, 이에 대한 결과는 표 1에 나타내었다. Particle size analysis was performed using a laser diffraction particle size distribution system. From the results of the cumulative particle size distribution, the particle size at the point where the cumulative volume reaches 10%, 50%, and 90% was confirmed, and d10, d50, and d90 were obtained, respectively, and the results are shown in Table 1.
(μm)Particle size
(μm)
(g/cc)Tap density
(g / cc)
시험예Test Example 4 4
탭 밀도Tap density
탭 밀도는 실린더에 재료 50g을 투입하고, 탭 횟수 2000회 후의 부피를 측정하여 탭 밀도를 계산하였으며, 그 결과를 상기 표 1에 나타내었다. 복합 양극 활물질에 탄소물질과 CNT가 포함될수록 탭 밀도는 다소 감소하나, 최종적인 전지 평가에 나타난 전지 성능은 제 1 탄소원(수크로스)과 제 2 탄소원인 CNT가 포함될수록 전지 성능은 증가하였다. 따라서, 상기 결과는 본 발명에 따른 양극 활 물질은 망간의 문제점인 전기 전도성을 향상시켜, 우수한 전지 성능을 발생시키는 점을 나타낸다. 특히 탄소나노튜브와 탄소원인 수크로스를 함께 사용한 경우, 그 효과는 보다 명확해진다.
The tap density was calculated by tapping 50 g of material into the cylinder, measuring the volume after 2000 taps, and calculating the tap density. The results are shown in Table 1 above. As the composite cathode active material includes carbon material and CNT, the tap density decreased slightly. However, the battery performance shown in the final battery evaluation increased as the first carbon source (sucrose) and the second carbon source CNT were included. Thus, the results indicate that the positive electrode active material according to the present invention improves electrical conductivity, which is a problem of manganese, resulting in excellent battery performance. In particular, when the carbon nanotubes and sucrose which is a carbon source are used together, the effect becomes clear.
시험예Test Example 5 5
전지 평가Battery rating
전지 평가를 위하여 본 발명에 따라 제조된 복합 양극 활물질 : 도전재 : 바인더를 85 : 8 : 7의 중량 비율로 칭량하였다. 혼합된 물질을 슬러리화한 후 알루미늄 박막에 도포 후 120℃에서 8시간 건조 하여 극판을 제조하였으며, 제조된 극판을 프레스 하였다. 음극으로는 Li 메탈을 이용하고, 2030 형 코인 셀을 제조하였으며, 전해액으로 1M-LiPF6를 EC-DEC(체적비1 : 1)에 용해시킨 것을 이용하였다. 충전 조건을 4.4V, 방전 조건을 3.0V로 충방전을 실시하였고, 그 결과를 도 7에 나타내었다. For the battery evaluation, the composite positive electrode active material: conductive material: binder prepared according to the present invention was weighed in a weight ratio of 85: 8: 7. After mixing the slurry of the mixed material to the aluminum thin film and dried for 8 hours at 120 ℃ to prepare a pole plate, the prepared pole plate was pressed. Li metal was used as a negative electrode, a 2030 type coin cell was prepared, and 1M-LiPF6 dissolved in EC-DEC (volume ratio 1: 1) was used as an electrolyte. Charging and discharging were performed at 4.4 V for charging conditions and 3.0 V for discharging conditions, and the results are shown in FIG. 7.
도 7에서 나타난 바와 같이 탄소물질과 CNT를 동시에 포함하지 않는 양극 활물질은 방전 비용량이 아주 좋지 않음을 알 수 있으며, CNT와 탄소물질이 동시에 포함 복합 양극 활물질이 아주 좋은 방전 비용량을 가진다. 이는 탄소물질과 CNT가 전기 전도성을 향상 시켜 주는 것을 알 수 있다. 또한, 탄소 물질과 LTO가 동시에 첨가된 실시예 1에서 아주 좋은 비용량을 보였다. 이는 LTO가 전극물질의 안정성을 높여 일어난 현상으로 보인다.As shown in FIG. 7, it can be seen that the positive electrode active material not including the carbon material and the CNT at the same time has a very good discharge specific capacity. The composite positive electrode active material containing the CNT and the carbon material at the same time has a very good discharge specific capacity. It can be seen that the carbon material and CNT improve the electrical conductivity. In addition, very good specific capacity was shown in Example 1, in which carbon material and LTO were simultaneously added. This seems to be caused by LTO to increase the stability of the electrode material.
Claims (11)
LinMO4 / X의 복합체를 포함하며, 여기에서 M은 Mn, Fe, Co, Ni, Al, Mn, V, Cr, Fe, Co, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W 및 Pb로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 원소이며, X는 탄소원 또는 리튬티탄산화물(Lithium Titanium Oxide, Li4Ti5O12) 또는 이들의 혼합물이고, n은 정수인 것을 특징으로 하는 리튬이차전지용 양극 활 물질.A cathode active material for a lithium secondary battery, wherein the cathode active material is
Li n MO 4 Contains a complex of / X, Where M is Mn, Fe, Co, Ni, Al, Mn, V, Cr, Fe, Co, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W and Pb is one or two or more elements selected from the group consisting of, X is a carbon source or lithium titanium oxide (Lithium Titanium Oxide, Li 4 Ti 5 O 12 ) or a mixture thereof, n is an integer Cathode active material for lithium secondary batteries.
상기 M은 mm'이며, 여기에서 m은 Mn, Fe, Co 및 Ni로 이루어진 군으로부터 선택되며, m'는 Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W 및 Pb로 이루어진 군으로부터 선택된 1종 이상의 원소인 것을 특징으로 하는 리튬이차전지용 양극 활 물질.The method of claim 1,
M is mm ', where m is selected from the group consisting of Mn, Fe, Co and Ni, m' is Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, A cathode active material for a lithium secondary battery, characterized in that at least one element selected from the group consisting of Si, S, Ca, Ti, Cu, Ba, W and Pb.
상기 탄소원은 탄소나노튜브, 탄소나노와이어, 탄소나노섬유, 흑연, 활성탄 및 그래핀으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 리튬이차전지용 양극 활 물질.The method of claim 1,
The carbon source is at least one selected from the group consisting of carbon nanotubes, carbon nanowires, carbon nanofibers, graphite, activated carbon, and graphene.
상기 탄소원은 탄소나노튜브, 탄소나노와이어, 탄소나노섬유, 흑연, 활성탄 및 그래핀으로 이루어진 군으로부터 선택된 1종 이상의 물질 및 글루코스(glucose), 스쿠로스(scurose), 폴리에틸렌글리콜(poly ethylene glycol), 폴리비닐알콜(poly vinyl alcohol), 폴리비닐클로라이드(poly vinyl chloride), 구연산(citric acid)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 모두 포함하는 것을 특징으로 하는 리튬이차전지용 양극 활 물질.The method of claim 3, wherein
The carbon source is at least one material selected from the group consisting of carbon nanotubes, carbon nanowires, carbon nanofibers, graphite, activated carbon and graphene, glucose, squash, polyethylene glycol, A cathode active material for a lithium secondary battery, comprising all of at least one material selected from the group consisting of poly vinyl alcohol, poly vinyl chloride, and citric acid.
상기 탄소원 또는 리튬티탄산화물은 LinMO4 입자 표면을 코팅하는 것을 특징으로 하는 리튬이차전지용 양극 활 물질.The method of claim 1,
The carbon source or lithium titanium oxide is Li n MO 4 A cathode active material for a lithium secondary battery, characterized by coating a particle surface.
(b) 상기 혼합물을 세척하는 단계;
(c) 상기 세척된 혼합물에 리튬염을 혼합하는 단계;
(d) 상기 리튬염이 혼합된 상기 혼합물을 용액에 분산시킨 후, 반응시키는 단계;
(e) 상기 반응의 반응물을 건조하는 단계; 및
(f) 상기 건조된 반응물을 열처리 하는 단계를 포함하며, 여기에서 (a) 단계의 M은 Mn, Fe, Co, Ni, Al, Mn, V, Cr, Fe, Co, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W 및 Pb로 이루어진 군으로부터 선택된 1종 이상의 원소이고, n은 정수인 것을 특징으로 하는 리튬이차전지용 양극 활 물질 제조방법.(a) Li n MO 4 Mixing or dispersing a metal or an inorganic salt or a mixed salt thereof and a carbon source or a lithium titanium oxide or a mixture thereof to form a solution of MO 4 ;
(b) washing the mixture;
(c) mixing a lithium salt with the washed mixture;
(d) dispersing the mixture containing the lithium salt in a solution and then reacting;
(e) drying the reactants of the reaction; And
(f) heat-treating the dried reactant, wherein M in step (a) is Mn, Fe, Co, Ni, Al, Mn, V, Cr, Fe, Co, Zn, Zr, Nb, At least one element selected from the group consisting of Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W, and Pb, n is an integer, the positive electrode active material for lithium secondary battery Way.
상기 (a) 및 (d) 단계 중 적어도 어느 하나의 단계에서 상기 분산은 초음파 가진 또는 기계적 교반 방식으로 수행되는 것을 특징으로 하는 리튬이차전지용 양극 활 물질 제조방법. The method of claim 7, wherein
In at least one of the steps (a) and (d), the dispersion is a method of producing a positive electrode active material for a lithium secondary battery, characterized in that is performed by ultrasonic excitation or mechanical stirring.
상기 M은 mm'이며, 여기에서 m은 Mn, Fe, Co 및 Ni로 이루어진 군으로부터 선택되며, m'는 Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Si, S, Ca, Ti, Cu, Ba, W 및 Pb로 이루어진 군으로부터 선택된 1종 이상의 원소인 것을 특징으로 하는 리튬이차전지용 양극 활 물질 제조방법. The method of claim 7, wherein
M is mm ', where m is selected from the group consisting of Mn, Fe, Co and Ni, m' is Al, V, Cr, Zn, Zr, Nb, Mo, Ag, Ge, Sn, Mg, Method for producing a cathode active material for a lithium secondary battery, characterized in that at least one element selected from the group consisting of Si, S, Ca, Ti, Cu, Ba, W and Pb.
상기 탄소원은 탄소나노튜브, 탄소나노와이어, 탄소나노섬유, 흑연, 활성탄 및 그래핀으로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 리튬이차전지용 양극 활 물질 제조방법. The method of claim 7, wherein
Wherein the carbon source is carbon nanotubes, carbon nanowires, carbon nanofibers, graphite, activated carbon and graphene, the positive electrode active material for a lithium secondary battery, characterized in that at least one selected from the group consisting of graphene.
상기 탄소원은 탄소나노튜브, 탄소나노와이어, 탄소나노섬유, 흑연, 활성탄 및 그래핀으로 이루어진 군으로부터 선택된 1종 이상의 물질 및 글루코스(glucose), 스쿠로스(scurose), 폴리에틸렌글리콜(poly ethylene glycol), 폴리비닐알콜(poly vinyl alcohol), 폴리비닐클로라이드(poly vinyl chloride), 구연산(citric acid)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함하는 것을 특징으로 하는 리튬이차전지용 양극 활 물질 제조방법. The method of claim 10,
The carbon source is at least one material selected from the group consisting of carbon nanotubes, carbon nanowires, carbon nanofibers, graphite, activated carbon and graphene, glucose, squash, polyethylene glycol, A method for producing a cathode active material for a lithium secondary battery, comprising at least one material selected from the group consisting of poly vinyl alcohol, poly vinyl chloride, and citric acid.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20100054224 | 2010-06-09 | ||
KR1020100054224 | 2010-06-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110134852A true KR20110134852A (en) | 2011-12-15 |
KR101393651B1 KR101393651B1 (en) | 2014-05-13 |
Family
ID=45098542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110055678A KR101393651B1 (en) | 2010-06-09 | 2011-06-09 | Cathode active material for lithium secondary battery, manufacturing method for the same and lithium secondary battery comprising the same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101393651B1 (en) |
WO (1) | WO2011155781A2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015016548A1 (en) * | 2013-07-30 | 2015-02-05 | 주식회사 엘지화학 | Cathode mix for secondary battery having irreversible additive |
CN104549201A (en) * | 2013-10-11 | 2015-04-29 | 天津大学 | Photocatalyst graphene oxide-doped titanium dioxide nanofiber and preparation method and application thereof |
US10020502B2 (en) | 2014-11-21 | 2018-07-10 | Samsung Sdi Co., Ltd. | Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same |
KR101985372B1 (en) * | 2018-10-24 | 2019-06-03 | 한국지질자원연구원 | Manufacturing method of lithium-nickel oxide from lithium compounds |
KR20190134824A (en) * | 2016-07-05 | 2019-12-04 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103682278B (en) * | 2013-12-26 | 2016-05-11 | 山东精工电子科技有限公司 | The preparation method of the coated lithium titanate anode material of a kind of nanometer carbon |
US11094927B2 (en) | 2016-10-12 | 2021-08-17 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material particle and manufacturing method of positive electrode active material particle |
KR102469157B1 (en) | 2017-05-12 | 2022-11-18 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Positive electrode active material particles |
DE202018006889U1 (en) | 2017-05-19 | 2024-02-05 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material and secondary battery |
CN118335885A (en) | 2017-06-26 | 2024-07-12 | 株式会社半导体能源研究所 | Method for producing positive electrode active material, and secondary battery |
CN108539131A (en) * | 2018-03-27 | 2018-09-14 | 宁夏汉尧石墨烯储能材料科技有限公司 | A kind of graphene is modified the preparation method of nickelic system's positive electrode |
CN108922795B (en) * | 2018-07-15 | 2019-09-03 | 重庆文理学院 | A kind of preparation method of the excellent graphene-based composite conductive thin film of electric conductivity |
CN109449439B (en) * | 2018-11-12 | 2022-05-24 | 吉林大学 | Preparation method and application of cobalt-molybdenum-sulfur/graphene composite material |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2270771A1 (en) * | 1999-04-30 | 2000-10-30 | Hydro-Quebec | New electrode materials with high surface conductivity |
CA2534276A1 (en) * | 2006-01-26 | 2007-07-26 | Hydro Quebec | Co-ground mixture composed of an active material and a conducting material, its preparation methods and applications |
WO2008110466A1 (en) * | 2007-03-09 | 2008-09-18 | Basf Se | Nitroxides for lithium-ion batteries |
CN102037601B (en) * | 2007-07-12 | 2014-04-23 | A123系统公司 | Multifunctional mixed metal olivines for lithium ion batteries |
KR101122715B1 (en) * | 2009-09-29 | 2012-03-07 | 한국과학기술연구원 | Method for preparing cathode materials for lithum ion secondary Battery |
-
2011
- 2011-06-09 KR KR1020110055678A patent/KR101393651B1/en not_active IP Right Cessation
- 2011-06-09 WO PCT/KR2011/004239 patent/WO2011155781A2/en active Application Filing
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015016548A1 (en) * | 2013-07-30 | 2015-02-05 | 주식회사 엘지화학 | Cathode mix for secondary battery having irreversible additive |
US10218002B2 (en) | 2013-07-30 | 2019-02-26 | Lg Chem, Ltd. | Positive electrode mix for secondary batteries including irreversible additive |
CN104549201A (en) * | 2013-10-11 | 2015-04-29 | 天津大学 | Photocatalyst graphene oxide-doped titanium dioxide nanofiber and preparation method and application thereof |
US10020502B2 (en) | 2014-11-21 | 2018-07-10 | Samsung Sdi Co., Ltd. | Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same |
KR20190134824A (en) * | 2016-07-05 | 2019-12-04 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery |
US11043660B2 (en) | 2016-07-05 | 2021-06-22 | Semiconductor Energy Laboratory Co., Ltd. | Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide |
KR101985372B1 (en) * | 2018-10-24 | 2019-06-03 | 한국지질자원연구원 | Manufacturing method of lithium-nickel oxide from lithium compounds |
Also Published As
Publication number | Publication date |
---|---|
KR101393651B1 (en) | 2014-05-13 |
WO2011155781A3 (en) | 2012-04-19 |
WO2011155781A2 (en) | 2011-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101393651B1 (en) | Cathode active material for lithium secondary battery, manufacturing method for the same and lithium secondary battery comprising the same | |
Wang et al. | NASICON-structured NaTi2 (PO4) 3@ C nanocomposite as the low operation-voltage anode material for high-performance sodium-ion batteries | |
Wu et al. | Solvothermal coating LiNi0. 8Co0. 15Al0. 05O2 microspheres with nanoscale Li2TiO3 shell for long lifespan Li-ion battery cathode materials | |
KR100796687B1 (en) | Active material for rechargeable lithium battery, method of preparing thereof and rechargeable lithium battery comprising same | |
Venkateswara Rao et al. | Investigations on electrochemical behavior and structural stability of Li1. 2Mn0. 54Ni0. 13Co0. 13O2 lithium-ion cathodes via in-situ and ex-situ Raman spectroscopy | |
JP5879761B2 (en) | Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery | |
KR20110124728A (en) | Active material for secondary lithium battery, manufacturing method thereof, and secondary lithium battery comprising the same | |
Wu et al. | Low-temperature synthesis of nano-micron Li4Ti5O12 by an aqueous mixing technique and its excellent electrochemical performance | |
Pandit et al. | Hexagonal δ-MnO2 nanoplates as efficient cathode material for potassium-ion batteries | |
Zou et al. | Improvement of electrochemical performance for Li-rich spherical Li 1.3 [Ni 0.35 Mn 0.65] O 2+ x modified by Al 2 O 3 | |
Hou et al. | Facile synthesis of ZnFe 2 O 4 with inflorescence spicate architecture as anode materials for lithium-ion batteries with outstanding performance | |
Lyu et al. | Carbon composite spun fibers with in situ formed multicomponent nanoparticles for a lithium-ion battery anode with enhanced performance | |
Razmjoo Khollari et al. | Electrochemical Performance and elevated temperature properties of the TiO2-coated Li [Ni0. 8Co0. 1Mn0. 1] O2 cathode material for high-safety Li-ion batteries | |
Durai et al. | Electrochemical properties of BiFeO3 nanoparticles: anode material for sodium-ion battery application | |
Vujković et al. | Hydrothermal synthesis of Li4Ti5O12/C nanostructured composites: morphology and electrochemical performance | |
Chen et al. | Superior wide-temperature lithium storage in a porous cobalt vanadate | |
JP2021048137A (en) | Cathode active material for lithium secondary battery | |
Ma et al. | Three-dimensional MnO/reduced graphite oxide composite films as anode materials for high performance lithium-ion batteries | |
KR20140082225A (en) | Nano particle-graphene-carbon composites containing internally dispersed graphene, method for preparing the composite, and application thereof | |
JP2019091691A (en) | Positive electrode active material composition for lithium secondary battery and lithium secondary battery including the same | |
Xu et al. | Hydrothermal synthesis of manganese oxides/carbon nanotubes composites as anode materials for lithium ion batteries | |
Wei et al. | Synthesis of a High-Capacity α-Fe2O3@ C Conversion Anode and a High-Voltage LiNi0. 5Mn1. 5O4 Spinel Cathode and Their Combination in a Li-Ion Battery | |
KR101907240B1 (en) | Method for preparing electrode materials and electrode materials produce therefrom | |
Liu et al. | LiMn2O4 Cathode materials with excellent performances by synergistic enhancement of double-cation (Na+, Mg2+) doping and 3DG coating for power lithium-ion batteries | |
Zhang et al. | Improvement of capacity and cycling performance of spinel LiMn2O4 cathode materials with TiO2-B nanobelts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20170502 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180222 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |