KR20110127982A - Petal-specific promoter - Google Patents

Petal-specific promoter Download PDF

Info

Publication number
KR20110127982A
KR20110127982A KR1020100047543A KR20100047543A KR20110127982A KR 20110127982 A KR20110127982 A KR 20110127982A KR 1020100047543 A KR1020100047543 A KR 1020100047543A KR 20100047543 A KR20100047543 A KR 20100047543A KR 20110127982 A KR20110127982 A KR 20110127982A
Authority
KR
South Korea
Prior art keywords
promoter
gene
seq
ans
expression
Prior art date
Application number
KR1020100047543A
Other languages
Korean (ko)
Other versions
KR101236314B1 (en
Inventor
임선형
하선화
김동헌
손성한
김재광
김영미
김정선
이종열
Original Assignee
대한민국(농촌진흥청장)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국(농촌진흥청장) filed Critical 대한민국(농촌진흥청장)
Priority to KR1020100047543A priority Critical patent/KR101236314B1/en
Publication of KR20110127982A publication Critical patent/KR20110127982A/en
Application granted granted Critical
Publication of KR101236314B1 publication Critical patent/KR101236314B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/823Reproductive tissue-specific promoters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8206Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by physical or chemical, i.e. non-biological, means, e.g. electroporation, PEG mediated

Abstract

PURPOSE: A promoter which petal-specifically induces expression of a foreign gene in a plant is provided to be used for transformation of various crops in a genetic engineering method. CONSTITUTION: A petal-specific promoter is a promoter of Nicotiana tabacum ANS(anthocyanidin synthase) gene of sequence number 1 or 2. The promoter induces the expression of petal-specific gene. The promoter has a base sequence of sequence number 3. A primer set for amplifying the promoter contains a primer of sequence number 4 and a primer of sequence number 5. A pBGWFS7-PNtANS expression vector contains the promoter. A method for petal-specifically expressing a foreign gene comprises: a step of preparing an expression vector containing the promoter and the foreign gene; and a step of transducing the expression vector to a plant.

Description

꽃잎 특이 프로모터{Petal-specific promoter}Petal-specific promoter

본 발명은 프로모터에 관한 것으로, 보다 상세하게는 식물체 내에 외래 유용 유전자의 발현 부위를 꽃잎 특이적으로 유도하는 프로모터에 관한 것이다.The present invention relates to a promoter, and more particularly, to a promoter that specifically induces the expression site of a foreign useful gene in a plant.

프로모터는 외래 유전자의 발현을 식물체의 전신 또는 특별한 조직에만 국한시켜 형질전환 목적을 달성할 수 있으며, 그 기능에 따라서 다음과 같이 분류할 수 있다.Promoters can achieve the purpose of transformation by confining the expression of foreign genes only to systemic or special tissues of plants, and can be classified as follows according to their function.

첫째로 전신발현 유도 프로모터를 들 수 있다. 식물 전신발현 유도 프로모터로는 꽃양배추 모자이크 바이러스(CaMV: cauliflower mosaic virus)의 35S RNA 유전자의 프로모터가 대표적인 쌍떡잎식물용 프로모터로 사용되고 있다. 벼 등의 외떡잎식물용 전신발현 유도 프로모터로는 벼 액틴(actin) 및 옥수수 유비퀴틴(ubiquithin) 유전자 프로모터들이 주로 이용되어 왔으며, 최근 벼 시토크롬 C유전자(OsOc1)의 프로모터가 국내 연구진에 의해 개발되어 사용 중에 있다(참조: 등록번호 10-0429335). 이들은 식물형질전환 기본 운반체 내에 선발마커로 이용되는 항생제나 제초제 저항성 유전자 및 리포터 유전자의 발현을 유도하기 위해 이미 내재되어 있으며, 연구적인 측면에서 목적하는 유전자의 식물체내 기능을 밝히고자 시도할 때 우선적으로 고려되는 프로모터들이다. First, systemic expression induction promoters can be cited. The promoter of the 35S RNA gene of CaMV: cauliflower mosaic virus (CaMV) is used as a representative dicotyledonous promoter. Rice actin and corn ubiquithin gene promoters have been mainly used as the systemic expression inducing promoters for monocotyledonous plants such as rice, and recently, a promoter of rice cytochrome C gene (OsOc1) has been developed and used by domestic researchers. (See Reg. No. 10-0429335). These are already inherent to induce the expression of antibiotic or herbicide resistance genes and reporter genes used as selection markers in the plant transformation basic carriers. Promoters are considered.

둘째로, 종자 특이적 프로모터를 들 수 있다. 대표적인 예로서 벼 주요 저장 단백질 유전자의 프로모터들로서 황금쌀(golden rice) 개발에 사용된 벼 글루테린(glutelin) 프로모터가 현재까지 외떡잎 식물의 종자 특이적 발현을 유도하는 경우에 많이 사용되고 있고, 쌍떡잎 식물의 종자 특이적 발현을 유도하는데 주로 사용되는 프로모터로는 콩 유래 렉틴(lectin) 프로모터, 배추 유래 나핀(napin) 프로모터 및 애기장대의 종자에서 감마 토코페롤 메틸기 전이효소(γ-tocopherol methyl transferase:γ-TMT) 유전자 발현을 유도함으로써 비타민 E 생성을 증진시킨 연구에 사용된 당근 유래 DC-3 프로모터, 들깨 유래 올레오신(oleosin) 프로모터의 종자 특이발현 유도 특허출원(참조: 특허출원번호 10-2006-0000783) 사례가 있다. 상기 종자 특이적 프로모터들은 주로 종자 자체가 식량이나 식품 또는 식품의 원료로 사용되는 주요 작물에서 유용 단백질 축적 및 유용 물질 생성 등을 목적으로 주로 사용되고 있다.Second, seed specific promoters can be mentioned. As a representative example, the rice gluten promoter used to develop golden rice as a promoter of the major storage protein gene of rice has been widely used to induce seed-specific expression of monocotyledonous plants. Promoters mainly used to induce seed specific expression include soybean-derived lectin promoters, cabbage-derived napin promoters, and gamma-tocopherol methyl transferase (γ-TMT) in seedlings of Arabidopsis. Induction of seed specific expression of carrot-derived DC-3 promoter and perilla-derived oleosin promoter used in studies that enhanced gene E production by inducing gene expression (see patent application No. 10-2006-0000783) There is. The seed specific promoters are mainly used for the purpose of accumulating useful proteins and producing useful substances in major crops in which the seeds themselves are used as food, food or food ingredients.

셋째로 뿌리 특이 발현 프로모터이다. 아직 상용화된 사례는 없으나 애기장대 퍼옥시다제(peroxidase, prxEa)가 분리되어 뿌리 특이적 발현을 확인하였고, 최근 고구마 유래의 매즈 유전자(ibMADS)와 당 유도성 에이디피 글루코즈 파이로포스파타제(ADP-glucose pyrophosphatase, AGPase) 유전자가 분리되어 해당 프로모터 가 뿌리에서 특이 발현을 유도하며 당근, 무에서 뿌리 특이적 일시적 발현을 유도함을 확인하여 특허 등록(대한민국 등록번호 제10-0604186호, 제10-0604191호)된 바 있다. Third is the root specific expression promoter. Although there is no commercialized case, Arabidopsis peroxidase (peroxidase, prxEa) was isolated and confirmed root-specific expression. Recently, the sweet potato-derived Maz gene (ibMADS) and sugar-induced ADP-glucose pyrophosphatase (ADP-glucose pyrophosphatase) , AGPase) gene is isolated to confirm that the promoter induces specific expression in the roots, and induces root-specific transient expression in carrots and radishes (patent registration No. 10-0604186, 10-0604191) There is a bar.

넷째로, 잎 등의 기타 조직 특이 프로모터를 들 수 있다. 잎 등의 광합성 조직에서만 강력한 유전자의 발현을 유도하는 벼와 옥수수 유래의 알비씨에스 (rbcS: ribulose bisphosphate carboxylase/oxygenase small subunit) 프로모터, 아그로박테리움 유래의 식물 뿌리 발현을 유도하는 RolD 프로모터, 감자 유래 괴경 특이 발현 유도 파타틴 (patatin) 프로모터, 토마토 유래의 과실 성숙 특이 발현 유도 피디에스 (PDS: phytoene synthase) 프로모터 등이 있다.Fourth, other tissue specific promoters, such as a leaf, can be mentioned. Rice and corn-derived albics (rbcS) promoters that induce potent gene expression only in photosynthetic tissues such as leaves, RolD promoters that induce plant root expression from Agrobacterium, and tubers from potato Specific expression-induced patatin promoters, tomato-derived fruit mature specific expression-induced phytoene synthase (PDS) promoters, and the like.

그 외에도 현재 개발이 계속 진행 중이지만, 개발자의 의도에 따라 보다 정밀하게 유전자 발현의 장소를 조절할 수 있는 새로운 프로모터, 예컨대 특정한 기관(예, 약, 꽃잎, 뿌리 등)에서만 발현되어야 하는 유전자(예, 화색, 응성 불임, 화형, 특정 대사관련 물질, 방어물질 등)를 형질전환시킬 경우, 특정 기관이나 시기에만 작동하는 프로모터들이 앞으로도 계속 개발될 필요성이 있다.Other developments are currently underway, but new promoters that can precisely regulate the location of gene expression according to the developer's intention, such as genes that need to be expressed only in certain organs (eg, medicine, petals, roots, etc.) In the case of transforming, infertility, burning, certain metabolic substances, and defenses, there is a need for further development of promoters that work only at specific organs or periods.

이에 본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로서, 꽃잎에 특이적으로 유전자의 발현을 유도하는 프로모터를 제공하는 것을 목적으로 한다.Accordingly, the present invention has been made to solve the problems of the prior art, an object of the present invention to provide a promoter for inducing the expression of genes specifically to the petals.

본 발명의 다른 목적은 꽃잎에 특이적으로 유전자의 발현을 유도하는 프로모터를 증폭하기 위한 프라이머 세트를 제공하는 것이다.Another object of the present invention is to provide a primer set for amplifying a promoter that induces expression of a gene specifically in petals.

본 발명의 또 다른 목적은 꽃잎에 특이적으로 유전자의 발현을 유도하는 프로모터를 포함하는 발현벡터를 제공하는 것이다. Still another object of the present invention is to provide an expression vector comprising a promoter for inducing the expression of genes specifically in petals.

본 발명의 또 다른 목적은 꽃잎에 특이적으로 유전자의 발현을 유도하는 프로모터를 포함하는 발현벡터로 형질전환된 형질전환체를 제공하는 것이다.Still another object of the present invention is to provide a transformant transformed with an expression vector comprising a promoter for inducing the expression of genes specifically in petals.

본 발명의 또 다른 목적은 외래 유전자를 꽃잎에 특이적으로 발현시키는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method for specifically expressing a foreign gene in a petal.

본 발명의 또 다른 목적은 꽃잎에 특이적으로 발현되는 신규한 담배 (Nicotiana tabacum) ANS(anthocyanidin synthase) 유전자를 제공하는 것이다.Still another object of the present invention is to provide a novel tobacco (Nicotiana tabacum) anthocyanidin synthase (ANS) gene that is specifically expressed in petals.

상기와 같은 목적을 달성하기 위하여, 본 발명자들은 식물의 조직 또는 기관 특이적인 유전자 발현을 조절할 수 있는 프로모터들을 발굴함으로써, 식물의 특정 조직 또는 기관에 국한시켜 목적 유전자를 특이적으로 발현 또는 저해할 수 있는 시스템을 확립하고자 하였다. 이 과정에서 담배의 ANS(anthocyanidin synthase) 유전자가 담배의 잎, 줄기, 뿌리, 수술, 암술, 종자에서는 발현되지 않고 꽃잎과 자방에서 특이적으로 발현이 이루어짐을 확인하였고, 이에 따라 상기 ANS 유전자의 프로모터를 확보하여 이를 포함하는 발현벡터를 제조한 후 이를 식물에 도입하여 형질전환시킨 형질전환체에서 꽃잎 특이적으로 리포터 유전자가 발현됨을 확인함으로써 본 발명을 완성하게 되었다.In order to achieve the above object, the present inventors can find promoters capable of regulating tissue or organ specific gene expression of plants, thereby limiting to specific tissues or organs of plants to specifically express or inhibit target genes. Attempted to establish an existing system. In this process, it was confirmed that the ANS (anthocyanidin synthase) gene of tobacco is not expressed in tobacco leaves, stems, roots, surgery, pistils, seeds, but specifically in petals and perilla. Thus, the promoter of the ANS gene The present invention was completed by confirming that the reporter gene was specifically expressed in the transformant transformed by preparing the expression vector including the same and then introducing the same into plants.

본 발명은 담배(Nicotiana tabacum) ANS(anthocyanidin synthase) 유전자의 프로모터로서 꽃잎에 특이적으로 유전자의 발현을 유도하는 것을 특징으로 하는 꽃잎 특이 프로모터를 제공한다.The present invention provides a petal-specific promoter characterized by inducing expression of genes specifically to petals as a promoter of tobacco (Nicotiana tabacum) anthocyanidin synthase (ANS) gene.

또한 본 발명은 서열번호 4의 염기서열을 갖는 프라이머 및 서열번호 5의 염기서열을 갖는 프라이머를 포함하는, 상기 프로모터 증폭용 프라이머 세트를 제공한다.In another aspect, the present invention provides a primer set for amplifying the promoter, comprising a primer having a nucleotide sequence of SEQ ID NO: 4 and a primer having a nucleotide sequence of SEQ ID NO: 5.

또한 본 발명은 상기 프로모터를 포함하는 발현벡터를 제공한다.In another aspect, the present invention provides an expression vector comprising the promoter.

또한 본 발명은 상기 발현벡터로 형질전환된 형질전환체를 제공한다.In another aspect, the present invention provides a transformant transformed with the expression vector.

또한 본 발명은 상기 프로모터 및 상기 프로모터에 작동 가능하게 연결된 외래 유전자를 포함하는 발현벡터를 제조하는 단계 및 상기 제조된 발현벡터를 식물에 도입하여 형질전환시키는 단계를 포함하는, 외래 유전자를 꽃잎 특이적으로 발현시키는 방법을 제공한다.In another aspect, the present invention comprises the steps of preparing an expression vector comprising the promoter and a foreign gene operably linked to the promoter and introducing the produced expression vector into a plant to transform the foreign gene, petal-specific It provides a method of expression.

또한 본 발명은 꽃잎에 특이적으로 발현되며 서열번호 1 또는 서열번호 2의 염기서열로 이루어진 신규한 담배(Nicotiana tabacum) ANS(anthocyanidin synthase) 유전자를 제공한다.In another aspect, the present invention provides a novel tobacco (Nicotiana tabacum) ANS (anthocyanidin synthase) gene consisting specifically of the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

프로모터는 유전자의 환경적, 시기적 및 조직적 발현을 조절하는 필수적인 요소로서, 본 발명에 따른 꽃잎 특이 프로모터를 사용하여 식물체 내에서 외래 유용 유전자의 발현 부위를 꽃잎 특이적으로 유도할 수 있다.A promoter is an essential element for regulating the environmental, temporal and histological expression of a gene. The petal specific promoter according to the present invention can be used to specifically induce the expression site of a foreign useful gene in a plant.

본 발명은 담배(Nicotiana tabacum) ANS(anthocyanidin synthase) 유전자의 프로모터로서, 외래 유전자의 발현이 꽃잎에 특이적으로 이루어지도록 유도하는 꽃잎 특이 프로모터(이하 ‘본 발명의 프로모터’라 함)를 제공한다.The present invention provides a promoter of the tobacco (Nicotiana tabacum) anthocyanidin synthase (ANS) gene, which provides a petal specific promoter (hereinafter referred to as the 'promoter of the present invention') that induces the expression of a foreign gene to be specific to the petal.

바람직하게는, 상기 프로모터는 서열번호 3 또는 도 9의 염기서열을 갖는 것이다.Preferably, the promoter has the nucleotide sequence of SEQ ID NO: 3 or FIG.

본 발명은 또한, 본 발명의 프로모터를 증폭하기 위한 프라이머 세트를 제공한다. 바람직하게는 상기 프라이머 세트는 서열번호 4의 염기서열을 갖는 프라이머(PANS-F: 5'-CCGGTCAACTCAAGACAACCTACCTATTTAA-3') 및 서열번호 5의 염기서열을 갖는 프라이머(PANS-R: 5'-CTCTGTATTATTCTTGCTTTTTCTTTCTTTCCC-3')를 포함한다.The invention also provides a primer set for amplifying the promoter of the invention. Preferably, the primer set comprises a primer having a nucleotide sequence of SEQ ID NO: 4 (PANS-F: 5'-CCGGTCAACTCAAGACAACCTACCTATTTAA-3 ') and a primer having a nucleotide sequence of SEQ ID NO: 5 (PANS-R: 5'-CTCTGTATTATTCTTGCTTTTTCTTTCTTTCCC-3). Contains').

본 발명은 또한, 본 발명의 프로모터를 포함하는 발현벡터를 제공한다.The present invention also provides an expression vector comprising the promoter of the present invention.

바람직하게는 상기 발현벡터는 꽃잎에 특이적으로 발현시키고자 하는 유용한 외래 유전자를 포함할 수 있다.Preferably, the expression vector may include useful foreign genes to be specifically expressed in petals.

상기 외래 유전자는 꽃의 색깔, 발달 및 향기 등과 같은 꽃의 특성과 관련된 것이면 무엇이든 무방하며, 바람직하게는 꽃의 색깔과 관련된 유전자로서 예컨대, 꽃잎의 주된 색소로 알려진 안토시아닌 생합성 유전자(DFR(dihydroflavonol reductase; AAN63056, ABY81885, AAZ57436, CAA70345, AAD26204, AAS46256, ABF74722, LOC100286107, AB011667), F3’5’H(flavonoid 3’5’ hydroxylase; AAX51796, AAB17562, ABQ96219, AAZ79451, ABH06585, ACX37698 XP_002467809, AF009516, GQ904194, GQ891056, U72654), ANS(anthocyanidin synthase; ABM66367, ACC66093, AAK52455, AAV88087, AAT02642, BAF81268 ABM53758, ABM63373, BAB71811, BAE54520, AAY15743, AK226417, GU598212, DQ884194, EU810810) 등), 카로티노이드 생합성 유전자(PSY(Phytoene synthase;, CAA85775, YP_003506175, NP_217914, AAA34187, CAA85775, FJ971176, DQ335097, BAE45299, CAC19567, ACP27623, ABB72444, AAT38474, ABW80612, AAL82578), CrtI(phytoene desaturase; AAA20109, YP_003508479, YP_003136107, YP_002566545, YP_001990702, ACM57475 ,ACL36586, ACQ71086, ACI64605, NC_013946.1 ) 등), 꽃의 발달과 관련된 유전자로서 예컨대, MADS box관련 TF유전자(CAL07982, ABM67697, AAF66690,BAG48168,NP_001105332,CAA19810,CAC13148,AAC27353,CAC86184, AAQ83834, AAN15183, AAF22139, AAD02250, AAB05559, BAD15367, BAD12462, ACY71503, AAG43855, AAG43854, AAC27145, NP_001078745, NP_199999, BT035373, AAQ11687, ABM67697, NP_001105332, ABD92703, AAR87240) 및 그밖에 꽃의 향기관련유전자(XM_002509543, AY705977, CBI41085.3, XP_002329899.1, ACU24041.1, Q50EX6.1, CBI24555.3, AAS10075.1) 등으로 이루어진 군에서 선택된 어느 하나 이상을 이용할 수 있다.The foreign gene may be anything related to the characteristics of the flower, such as the color, development and fragrance of the flower. Preferably, the foreign gene is an anthocyanin biosynthetic gene (DFR (dihydroflavonol reductase), which is known as the main pigment of the petal. ; AAN63056, ABY81885, AAZ57436, CAA70345, AAD26204, AAS46256, ABF74722, LOC100286107, AB011667), F3'5'H (flavonoid 3'5 'hydroxylase; AAX51796, AAB17562, ABQ96219, AAZ79451, ABH065194, AC002467809 XP00 GQ891056, U72654), ANS (anthocyanidin synthase; ABM66367, ACC66093, AAK52455, AAV88087, AAT02642, BAF81268 ABM53758, ABM63373, BAB71811, BAE54520, AAY15743, AK226417, GU598212, DQ884194, Synthetic Carrogene) ;, CAA85775, YP_003506175, NP_217914, AAA34187, CAA85775, FJ971176, DQ335097, BAE45299, CAC19567, ACP27623, ABB72444, AAT38474, ABW80612, AAL82578), Crt (phytoene desaturase; AAA20109, YP_ 08479, YP_003136107, YP_002566545, YP_001990702, ACM57475, ACL36586, ACQ71086, ACI64605, NC_013946.1), etc.), as genes related to the development of flowers, for example, MADS box-related TF genes (CAL07982, ABM67697, AAF66690, BAG48168, NPA19810332) CAC13148, AAC27353, CAC86184, AAQ83834, AAN15183, AAF22139, AAD02250, AAB05559, BAD15367, BAD12462, ACY71503, AAG43855, AAG43854, AAC27145, NP_001078745, NP_199999, BT035373, AAQ11687, AB92105332, BD00110597, BD Any one or more selected from the group consisting of genes (XM_002509543, AY705977, CBI41085.3, XP_002329899.1, ACU24041.1, Q50EX6.1, CBI24555.3, AAS10075.1) and the like can be used.

상기 발현벡터는 통상의 벡터에 본 발명의 프로모터를 도입한 것일 수 있으며, 이처럼 본 발명의 프로모터를 도입하여 발현벡터를 제조하는 것은 본 발명이 속하는 기술분야의 당업자라면 공지의 방법에 따라 용이하게 실시 가능하다.The expression vector may be a promoter of the present invention introduced into a conventional vector, the preparation of the expression vector by introducing the promoter of the present invention is easily carried out according to a known method to those skilled in the art to which the present invention pertains. It is possible.

상기 통상의 벡터는 본 발명의 프로모터를 도입할 수 있는 것이면 어떠한 것이든 무방하나, 바람직하게는 pUC 계열의 벡터, 예컨대, pBR322, pBI121, pBGWFS7, pCAMBIA, Gateway vector, Ti-plasmid 및 이에 파생된 벡터로 이루어진 군에서 선택된 어느 하나일 수 있다. The conventional vector may be any one capable of introducing the promoter of the present invention, but preferably, a vector of the pUC family, such as pBR322, pBI121, pBGWFS7, pCAMBIA, Gateway vector, Ti-plasmid, and a vector derived therefrom. It may be any one selected from the group consisting of.

바람직하게는 상기 발현벡터는 pBGWFS7 벡터에 본 발명의 프로모터를 도입한 도 3의 개열지도로 표현되는 pBGWFS7-PNtANS이다.Preferably, the expression vector is pBGWFS7-PNtANS represented by the cleavage map of FIG. 3 in which the promoter of the present invention is introduced into the pBGWFS7 vector.

본 발명은 또한, 상기 본 발명의 프로모터를 포함하는 발현벡터로 형질전환된 형질전환체를 제공한다. The present invention also provides a transformant transformed with the expression vector comprising the promoter of the present invention.

상기 ‘형질전환체’는 본 발명의 발현벡터를 사용하여 형질전환된 것으로서, 형질전환된 원형질체, 세포, 식물의 조직 또는 기관 및 이들을 공지의 방법에 따라 완전한 식물로 재생시킨 것을 모두 포함하는 것이다.The 'transformer' is transformed using the expression vector of the present invention, and includes all transformed protoplasts, cells, tissues or organs of plants, and those regenerated into complete plants according to known methods.

형질전환 방법으로는 칼슘/폴리에틸렌 글리콜법을 이용한 원형질체의 형질전환법, 전기 천공법, 미량주사법, (코팅된) 입자 충격 투입법(particle bombardment), 전기충격법(electrophration), 아그로박테리움을 매개로한 방법, 유전자 총 및 물리적 도입 등이 있으나, 이에 한정되지 않으며, 식물의 종류에 따라 적절히 조절할 수 있다.Transformation methods include protoplast transformation using calcium / polyethylene glycol, electroporation, microinjection, (coated) particle bombardment, electrophration, and Agrobacterium. Rohan method, gene gun and physical introduction, etc., but is not limited thereto, it can be appropriately adjusted according to the type of plant.

또한 이와 같은 직접적인 유전자 형질전환 방법 이외에도, 바이러스 벡터(예, 콜리플라워 모자이크 바이러스(CaMV)로부터 수득됨) 및 박테리아 벡터(예, 아그로박테리움 속으로부터 수득됨) 등의 벡터를 포함하는 형질전환 시스템을 널리 이용할 수 있다. 제조한 형질전환 식물을 선별 및/또는 스크리닝한 후, 형질전환된 원형질체, 세포 또는 식물의 조직 또는 기관을 공지의 방법에 따라 완전한 식물로 재생시킬 수 있다. 형질전환법 및/또는 재생기술의 선택은 당업자에게 자명한 사항이다.In addition to such direct gene transformation methods, transformation systems comprising vectors such as viral vectors (eg, obtained from Cauliflower Mosaic Virus (CaMV)) and bacterial vectors (eg, from the genus Agrobacterium) are also provided. Widely available. After selection and / or screening of the resulting transgenic plants, the transformed protoplasts, cells or tissues or organs of the plants can be regenerated into complete plants according to known methods. The choice of transformation and / or regeneration techniques is apparent to those skilled in the art.

본 발명에 따른 형질전환 대상이 되는 식물은 벼, 밀, 보리, 옥수수, 대두, 감자, 밀, 팥, 귀리 및 수수로 이루어진 군에서 선택된 식량 작물류; 애기장대, 배추, 무, 고추, 딸기, 토마토, 수박, 오이, 양배추, 참외, 호박, 파, 양파 및 당근으로 이루어진 군에서 선택된 채소 작물류; 인삼, 담배, 목화, 참깨, 사탕수수, 사탕무우, 들깨, 땅콩 및 유채로 이루어진 군에서 선택된 특용작물류; 사과나무, 배나무, 대추나무, 복숭아, 양다래, 포도, 감귤, 감, 자두, 살구 및 바나나로 이루어진 군에서 선택된 과수류; 장미, 글라디올러스, 거베라, 카네이션, 국화, 백합 및 튤립으로 이루어진 군에서 선택된 화훼류; 및 라이그라스, 레드클로버, 오차드그라스, 알파알파, 톨페스큐 및 페레니얼라이그라스로 이루어진 군에서 선택된 사료작물류일 수 있으며, 바람직하게는 담배이다. Plants subject to transformation according to the present invention is a food crop selected from the group consisting of rice, wheat, barley, corn, soybeans, potatoes, wheat, red beans, oats and sorghum; Vegetable crops selected from the group consisting of Arabidopsis, Chinese cabbage, radish, pepper, strawberry, tomato, watermelon, cucumber, cabbage, melon, pumpkin, green onion, onion, and carrot; Special crops selected from the group consisting of ginseng, tobacco, cotton, sesame, sugar cane, sugar beet, perilla, peanut and rapeseed; Fruit trees selected from the group consisting of apple trees, pear trees, jujube trees, peaches, lambs, grapes, citrus fruits, persimmons, plums, apricots and bananas; Flowers selected from the group consisting of roses, gladiolus, gerberas, carnations, chrysanthemums, lilies and tulips; And fodder crops selected from the group consisting of lygragrass, red clover, orchardgrass, alpha alpha, tolsque cue and perennial lygragrass, preferably tobacco.

본 발명은 또한, 본 발명의 프로모터, 및 상기 프로모터에 작동 가능하게 연결된 외래 유전자를 포함하는 발현벡터를 제조하는 단계 및 상기 제조된 발현벡터를 식물에 도입하여 형질전환시키는 단계를 포함하는, 외래 유전자를 꽃잎 특이적으로 발현시키는 방법을 제공한다.The present invention also includes the steps of preparing an expression vector comprising a promoter of the present invention, and a foreign gene operably linked to the promoter, and introducing and transforming the produced expression vector into a plant. It provides a method for expressing the petals specifically.

본 발명의 꽃잎 특이 프로모터는, 그 밖에도 유전자 데이터베이스를 이용한 검색, 서던 블롯 분석, PCR, 게놈 라이브러리 검색 및 숏건(shotgun) 등의 방법을 통하여, 조직 특이성을 갖는 프로모터를 검색하는 용도로 이용할 수 있으며, 검색된 프로모터에 의하여 발현이 조절되는 유전자 및 단백질을 조직 특이적 발현성을 갖는 유전자 및 단백질로 선별할 수 있다.In addition, the petal specific promoter of the present invention can be used to search for promoters having tissue specificity through methods such as search using a genetic database, Southern blot analysis, PCR, genomic library search, and shotgun. Genes and proteins whose expression is regulated by the retrieved promoters can be selected as genes and proteins having tissue specific expression.

프로모터는 유전자의 환경적, 시기적 및 조직적 발현을 조절하는 필수적인 요소로서, 본 발명에 따른 꽃잎 특이 프로모터를 사용하여 식물 생육에 영향을 주지 않고 식물체 내 외래 유용 유전자의 발현 부위를 꽃잎 특이적으로 유도할 수 있다. 이에 따라 농업적 형질 개량을 위해 담배를 비롯한 다양한 작물을 유전공학적 방법으로 형질전환시키고자 할 때, 본 발명의 꽃잎 특이 프로모터를 유용하게 사용할 수 있다. Promoters are essential factors for regulating the environmental, temporal and histological expression of genes. Petal specific promoters according to the present invention can be used to specifically induce the expression of foreign useful genes in plants without affecting plant growth. Can be. Accordingly, when you want to transform a variety of crops including tobacco for genetic transformation by genetic engineering method, the petal specific promoter of the present invention can be usefully used.

도 1은 담배 게놈 DNA를 각각의 제한효소로 절단한 후, ANS 유전자를 프로브로 이용하여 담배 게놈내 ANS 유전자수를 확인한 사진으로, EcoRⅠ, EcoRⅤ, BglⅡ, HindⅢ, KpnⅠ, XbaⅠ, BamHⅠ으로 절단한 결과, 2개 이상의 밴드가 관찰되어 ANS 유전자가 게놈내에 2 카피로 존재함을 밝힌 것이다.
도 2는 담배 각각의 조직으로부터 RNA를 분리한 후, ANS 유전자를 프로브로 이용하여 조직별 발현양상을 확인한 것으로, 꽃잎과 자방에서만 밴드가 관찰되어 ANS 유전자가 조직 특이적으로 발현됨을 밝힌 것이다.
도 3은 ANS 유전자의 프로모터 활성을 확인하기 위한 발현벡터의 모식도이다. 여기서 Bar는 제초제저항성 유전자, NtANS-P는 NtANS 프로모터, Egfp는 녹색형광단백질(green fluorescent protein) 유전자, Gus는 청색발색(ß-glucuronidase) 유전자, T35S는 꽃양배추바이러스 35S 터미네이터를 나타낸다.
도 4는 각각 pBGWFS7-PNtANS와 pBGWFS7-P35S로 형질전환된 담배의 유묘, 잎 및 꽃에서의 청색발색 반응을 관찰한 것이다.
도 5는 pBGWFS7-PNtANS와 pBGWFS7-P35S로 형질전환된 담배의 꽃잎에서 전체 단백질을 추출하고 청색발색 단백질의 발현을 정량하여 양성대조구인 비형질전환 애기장대에서의 청색발색 단백질의 발현과 비교한 것이다.
도 6은 pBGWFS7-PNtANS와 pBGWFS7-P35S로 형질전환된 담배의 각 조직에서 추출한 전체 RNA를 이용하여 역전사 반응 후, 청색발색 단백질 유전자 GUS와 양성 대조구인 담배 내재유전자 액틴 유전자를 각각 특이적으로 증폭하는 프라이머로 증폭된 유전자 밴드를 보여주는 전기영동 사진이다.
도 7은 본 발명의 실시예 1에 따른 완전장의 ANS 유전자 염기서열을 나타낸 것이다.
도 8은 본 발명의 실시예 2에 따른 ANS 유전자의 게놈 염기서열을 나타낸 것이다.
도 9는 본 발명에 따른 꽃잎 특이 프로모터의 염기서열을 나타낸 것이다.
1 is a photograph showing the number of ANS genes in the tobacco genome using the ANS gene as a probe after digesting the tobacco genomic DNA with respective restriction enzymes. As a result, two or more bands were observed, revealing that the ANS gene is present in two copies in the genome.
Figure 2 after separating the RNA from each tissue of the tobacco, using the ANS gene as a probe to confirm the expression pattern by tissue, the band is observed only in the petals and periphery revealed that the ANS gene is specifically expressed.
3 is a schematic diagram of an expression vector for confirming the promoter activity of the ANS gene. Bar represents herbicide resistance gene, NtANS-P represents NtANS promoter, Egfp represents green fluorescent protein gene, Gus represents ß-glucuronidase gene, and T35S represents cauliflower virus 35S terminator.
Figure 4 shows the blue color reaction in seedlings, leaves and flowers of tobacco transformed with pBGWFS7-PNtANS and pBGWFS7-P35S, respectively.
Figure 5 is extracted from the petals of tobacco transformed with pBGWFS7-PNtANS and pBGWFS7-P35S and quantified the expression of blue chromogenic protein compared with the expression of blue chromogenic protein in a nontransformed Arabidopsis, a positive control. .
Figure 6 shows the specific amplification of the blue chromogenic protein gene GUS and the tobacco intrinsic gene actin gene, respectively, after reverse transcription using total RNA extracted from each tissue of tobacco transformed with pBGWFS7-PNtANS and pBGWFS7-P35S. Electrophoresis picture showing gene band amplified with primers.
Figure 7 shows the full-length ANS gene sequence in accordance with Example 1 of the present invention.
Figure 8 shows the genomic base sequence of the ANS gene according to Example 2 of the present invention.
Figure 9 shows the nucleotide sequence of the petal specific promoter according to the present invention.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 또한, 하기의 실시예에서 특별히 언급되지 아니한 분자생물학적 실험기법들은 Sambrook 등의 Molecular Cloning: A Laboratory Manual(Cold Spring Harbor Laboratory Press, second edition, 1989)을 참조하였다.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited to the following examples. In addition, molecular biology experimental techniques not specifically mentioned in the following examples were referred to Samle et al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, second edition, 1989).

실시예Example 1. 담배 식물체  1. Tobacco Plants ANSANS 유전자의 분리 Isolation of genes

담배 ANS 유전자를 분리하기 위해서 먼저 담배 꽃잎으로부터 전체 RNA (total RNA)를 분리하여 역전사효소를 이용한 역전사중합효소연쇄반응(RT-PCR, Reverse Transcription - Polymerase Chain Reaction) 분석을 수행하였다. 전체 RNA 분리 과정을 상세히 설명하면, 약 1g의 각 시료를 액체질소를 이용하여 동결시킨 후, 막자사발로 분쇄하여 1.5 ㎖ 튜브에 옮긴 다음 각 튜브에 500 ㎕의 RNA 추출 완충액 (50mM 소듐 아세테이트 pH 5.5, 150mM LiCl, 5mM EDTA, 0.5% SDS)과 500㎕ 페놀을 넣고 혼합하였다. 혼합액을 65℃에서 10분 동안 처리한 후 상온에서 15분 동안 교반기(rotary shaker)를 이용해 섞어주었다. 4℃에서 원심분리(10000rpm, 10분)한 후 상등액 층을 조심스럽게 새 튜브에 옮기고, 클로로포름 500㎕를 첨가하여 잘 섞어준 후 다시 원심분리(14,000 rpm, 20분) 하여 상등액을 취하였다. 여기에 0.6배 부피의 8M 리튬 클로라이드 (LiCl)를 첨가한 후 -20℃에 2시간 이상 보관하였다. 4℃, 12,000rpm에서 20분간 원심분리 후 RNA 침전물을 4M LiCl와 80% 에탄올로 각각 한차례씩 씻어준 후 수득한 최종 RNA 침전물을 50㎕의 증류수에 녹였다. RNA 용출액은 자외선 흡광도 분석기 (UV spectrophotometer)를 이용하여 A260/A280를 측정하여 정량한 후, 전체 RNA 5㎍을 주형으로 50uM oligo dT 프라이머 및 역전사효소(invitrogen)를 이용해 50℃에서 50분, 85℃에서 5분 처리 후 얼음에서 식힌 후 여기에 다시 RNase H(invitrogen)를 1㎕ 첨가하고 DNA 중합효소(invitrogen)를 이용하여 37℃에서 20분간 처리하여 cDNA를 합성(10X RT buffer, 25mM MgCl2, 0.1M DTT, RNase OUT, SuperScriptTM RT, invitrogen) 하였고, 합성된 cDNA를 주형으로 ANS 유전자의 보존 부분을 증폭하는 프라이머 세트, 즉 서열번호 6인 정방향 프라이머(ANS-F: 5'-GAAAAGGAGAAGTATGCTAATGACC-3') 및 서열번호 7인 역방향 프라이머(ANS-R: 5'-CCCACTGGCCTTCATAGAAGAGTTG-3')를 이용하여 PCR을 수행하였다. PCR 증폭은 94℃에서 3분간 전변성(pre-denaturation), 94℃에서 45초간 변성(denaturation), 57℃에서 45초간 어닐링(annealing), 72℃에서 30초간 연장(extension)을 1 사이클로 하여 30 사이클 및 72℃에서 5분간 최종 연장반응(final extension)하여 수행되었다. 증폭된 PCR 산물은 pGEM-T Easy 벡터(Promega, 미국)에 클로닝한 후 염기서열을 확인하였다. 분석된 염기서열을 바탕으로 완전장(full length)의 ANS의 염기서열을 얻고자, RACE(Rapid Amplification of cDNA Ends) PCR(SMART™ RACE cDNA Amplification Kit, Clontech)을 실시하였다. 실험방법은 제조사(Clontech)의 방법에 따라 수행하였고, 3' RACE를 수행하기 위해서 서열번호 8인 5'- GGAGAAGATCATCCTTAAGCCCCTA-3' 프라이머와 서열번호 9인 5'-GTCCTCAAGGAGGATGAACAGGATGCC-3' 프라이머를 이용하였고, 5' RACE를 수행하기 위해서 서열번호 10인 5'-CCAGGGGATGCACAAAAACTGG-3'의 프라이머를 이용하여 PCR을 수행하였다. 각각의 증폭된 PCR 산물은 pGEM-T Easy 벡터(Promega, 미국)에 클로닝한 후 염기서열을 분석을 완료하였다. 완전장의 ANS 유전자는 하기 프라이머(서열번호 11 및 서열번호 12)를 이용하여 PCR를 수행하여 얻었고, 상기 완전장의 ANS 유전자의 cDNA 염기서열은 서열번호 1 및 도 7에 나타내었다.To isolate the tobacco ANS gene, total RNA (total RNA) was first isolated from tobacco petals, and reverse transcriptase-polymerase (RT-PCR) analysis was performed using reverse transcriptase. In detail, the entire RNA isolation procedure is described. Approximately 1 g of each sample is frozen with liquid nitrogen, then pulverized with a mortar and transferred to a 1.5 ml tube, followed by 500 µl of RNA extraction buffer (50 mM sodium acetate pH 5.5). , 150 mM LiCl, 5 mM EDTA, 0.5% SDS) and 500 µl phenol were added and mixed. The mixed solution was treated at 65 ° C. for 10 minutes and then mixed using a stirrer (rotary shaker) at room temperature for 15 minutes. After centrifugation at 4 ° C. (10000 rpm, 10 minutes), the supernatant layer was carefully transferred to a new tube, 500 μl of chloroform was added thereto, mixed well, and centrifuged again (14,000 rpm, 20 minutes) to obtain a supernatant. 0.6M volume of 8M lithium chloride (LiCl) was added thereto and then stored at -20 ° C for at least 2 hours. After centrifugation at 4 ° C. and 12,000 rpm for 20 minutes, the RNA precipitate was washed once with 4M LiCl and 80% ethanol, and the final RNA precipitate was dissolved in 50 μl of distilled water. RNA eluate was quantified by measuring the A260 / A280 using a UV spectrophotometer, and then 50 μM oligo dT primer and reverse transcriptase (invitrogen) were used as the template for 5 μg of total RNA 5 μg. After 5 minutes of cooling in ice and 1μl of RNase H (invitrogen) was added thereto again and treated with DNA polymerase (invitrogen) for 20 minutes at 37 ℃ to synthesize cDNA (10X RT buffer, 25mM MgCl2, 0.1 M DTT, RNase OUT, SuperScriptTM RT, invitrogen) and a primer set that amplifies the conserved portion of the ANS gene using the synthesized cDNA as a template, that is, a forward primer of SEQ ID NO: 6 (ANS-F: 5'-GAAAAGGAGAAGTATGCTAATGACC-3 '). And a reverse primer having a SEQ ID NO: 7 (ANS-R: 5'-CCCACTGGCCTTCATAGAAGAGTTG-3 '). PCR amplification was performed using pre-denaturation at 94 ° C for 3 minutes, denaturation at 94 ° C for 45 seconds, annealing at 57 ° C for 45 seconds, and extension at 72 ° C for 30 seconds. Cycle and final extension at 72 ° C. for 5 minutes. The amplified PCR product was cloned into the pGEM-T Easy vector (Promega, USA) and the nucleotide sequence was confirmed. In order to obtain a full length ANS sequence based on the analyzed nucleotide sequence, Rapid Amplification of cDNA Ends (RACE) PCR (SMART ™ RACE cDNA Amplification Kit, Clontech) was performed. Experimental method was carried out according to the manufacturer (Clontech) method, using 5'-GGAGAAGATCATCCTTAAGCCCCTA-3 'primer and SEQ ID NO: 5'-GTCCTCAAGGAGGATGAACAGGATGCC-3' primer to perform 3 'RACE, PCR was performed using the primer of 5'-CCAGGGGATGCACAAAAACTGG-3 'of SEQ ID NO: 10 to perform 5' RACE. Each amplified PCR product was cloned into a pGEM-T Easy vector (Promega, USA) and then sequenced. The full length ANS gene was obtained by PCR using the following primers (SEQ ID NO: 11 and SEQ ID NO: 12), and the cDNA base sequences of the full length ANS gene are shown in SEQ ID NO: 1 and FIG.

full ANS-F: 5'-GAAAGAAAAAAGCAAGAATAATACAGAG-3'(서열번호 11)full ANS-F: 5'-GAAAGAAAAAAGCAAGAATAATACAGAG-3 '(SEQ ID NO: 11)

full ANS-R: 5'-TTCTTCACATAAAACCATCAGAG-3'(서열번호 12)
full ANS-R: 5'-TTCTTCACATAAAACCATCAGAG-3 '(SEQ ID NO: 12)

실시예Example 2. 담배  2. Tobacco ANSANS 유전자의 식물  Gene plant 게놈내Within the genome 유전자수Gene count 확인 Confirm

담배 식물체내의 ANS 유전자의 게놈내의 유전자수를 확인하기 위하여 서던 블롯(Southern blot) 분석을 수행하였다. 게놈(Genomic) DNA는 Kim JS(Composite of a linkage map of Brassica rapa (ssp. pekinenssis) using EST clones and comparative genome study to Arabidopsis thaliana. PhD thesis, KyungheeUniversity, Suwon, Republic of Korea, 2002)의 방법을 이용하여 담배 잎으로부터 20 μg DNA를 제한효소 EcoRⅠ, EcoRⅤ, BglⅡ, HindⅢ, KpnⅠ, XbaⅠ, BamHⅠ(ROCHE)로 각각 처리하여 0.8% 아가로스겔에 전기영동한 다음, 캐필러리 전달(capillary transfer) 방법 (Southern, 1975)으로 나일론 막에 전이시켰다. 막은 0.5 M Na-Pi(pH 7.2), 7% SDS, 1% BSA, 1 mM EDTA, 0.1 ㎎/㎖ 변성된 연어 정자 DNA(denatured salmon sperm DNA, invitrogen)가 첨가된 용액에서 3시간 (65℃)동안 전혼성화(prehybirdization)한 다음, [a-32P]dCTP로 표지된 상기 실시예 1에서 얻어진 ANS cDNA를 첨가하여 12시간 혼성화하였다. 막은 2 X SSC, 0.1% SDS 용액 (65℃)에서 20분, 1 X SSC, 0.1% SDS용액 (65℃)에서 20분 세척한 후 영상분석기기(Bio-imaging analyzer) (BAS-2000; Fuji Photo Film, Japan)로 분석하였다. 그 결과 담배의 ANS 유전자는 게놈내에 2 카피로 존재하는 것을 확인할 수 있었다(도 1). ANS 유전자의 게놈 염기서열은 서열번호 2 및 도 8에 나타내었다.
Southern blot analysis was performed to confirm the number of genes in the genome of ANS genes in tobacco plants. Genomic DNA uses the method of Kim JS (Composite of a linkage map of Brassica rapa (ssp. Pekinenssis) using EST clones and comparative genome study to Arabidopsis thaliana.PhD thesis, Kyunghee University, Suwon, Republic of Korea, 2002) 20 μg DNA from tobacco leaves were treated with restriction enzymes EcoR I, Eco R V, Bgl II, Hind III, Kpn I, Xba I, BamH I (ROCHE), respectively, and electrophoresed on 0.8% agarose gel, followed by capillary transfer. (Southern, 1975) to nylon membrane. Membrane was 3 hours (65 ° C) in a solution to which 0.5 M Na-Pi (pH 7.2), 7% SDS, 1% BSA, 1 mM EDTA, 0.1 mg / ml denatured salmon sperm DNA (invitrogen) was added. Prehybirdization followed by hybridization for 12 hours by addition of the ANS cDNA obtained in Example 1 labeled with [a-32P] dCTP. Membranes were washed for 20 minutes in 2 X SSC, 0.1% SDS solution (65 ° C.) and 20 minutes in 1 X SSC, 0.1% SDS solution (65 ° C.), followed by Bio-imaging analyzer (BAS-2000; Fuji). Photo Film, Japan). As a result, it was confirmed that the ANS gene of tobacco exists in two copies in the genome (FIG. 1). The genome sequence of the ANS gene is shown in SEQ ID NO: 2 and FIG.

실시예Example 3. 담배  3. Tobacco ANSANS 유전자의 발현분석 Gene expression analysis

분리된 ANS 유전자의 발현분석을 수행하고자, 담배의 잎, 줄기, 꽃잎, 암술, 수술, 꽃받침, 자방, 종자에서 트리졸(Trizol, Invitrogen)을 이용하여 상기 실시예 1과 동일한 방법으로 전체 RNA를 추출하였다. 분리된 전체 RNA 20㎍을 1% 포름알데히드 아가로스겔에 전기영동한 다음, 캐필러리 전달 방법으로 나일론 막에 전이시켰다. 혼성화 반응과 막의 세척은 상기 실시예 2의 서던 분석과 동일한 방법으로 수행하였다. 그 결과, 담배의 잎(leaf), 줄기(stem), 뿌리(root), 수술(stamen), 암술(pistil), 종자(seed)에서는 유전자가 발현하지 않았으나, 꽃잎(petal)과 자방(ovary)에서만 단편이 검출되어 담배의 ANS 유전자의 발현은 꽃잎과 자방 특이적으로 이루어짐을 확인하였다(도 2). 따라서 담배의 ANS 유전자가 꽃잎 특이적을 발현됨을 확인하고, ANS 유전자의 프로모터를 분리하고자 하였다.
In order to perform expression analysis of the isolated ANS gene, total RNA was extracted in the same manner as in Example 1 using Trizol (Trizol, Invitrogen) in tobacco leaves, stems, petals, pistils, stamens, calyxes, ovaries, and seeds. Extracted. 20 μg of isolated total RNA was electrophoresed on 1% formaldehyde agarose gel and then transferred to nylon membrane by capillary delivery method. Hybridization reaction and washing of the membrane was carried out in the same manner as the Southern analysis of Example 2. As a result, genes were not expressed in the leaves, stems, roots, stamens, pistils, and seeds of tobacco, but the petals and ovaries did not. Only fragments were detected and it was confirmed that the expression of the ANS gene of tobacco is specifically made of petals and lobules (FIG. 2). Therefore, it was confirmed that the ANS gene of tobacco is petal-specific, and to isolate the promoter of the ANS gene.

실시예Example 4. 담배  4. Tobacco ANSANS 유전자의 프로모터 영역 분리 Isolate promoter regions of genes

ANS 유전자의 프로모터 영역을 분리하고자 담배 게놈 DNA를 분리하고 게놈 워커(Genome walker, Invitrogen)를 이용하여 제조사가 제공한 방법들을 사용하여 ANS유전자의 프로모터 영역을 증폭하였다. 게놈 워커의 방법에 따라 분리된 게놈 DNA를 DraⅠ, EcoRⅤ, PvuⅡ, StuⅠ의 평활성말단(blunt-end) 제한효소(ROCHE)를 이용하여 37℃에서 2시간 처리한 후, 전기영동을 통하여 게놈 DNA의 절단을 확인하였다. 절단된 게놈 DNA에 25uM 게놈 워커 어댑터(서열번호 13: 5'-GTAATACGACTCACTATAGGGCACGCGTGGTCGACGGCCCGGGCTGGT-3', 서열번호 14: 3'-H2N-CCCGACCA-PO4-5')를 첨가하여 16℃에서 8시간 이상 결합(ligation)을 수행하였다. 효소반응을 억제하기 위해서 70℃에서 5분간 처리한 뒤에 이를 주형 DNA로 하여 ANS GW1(서열번호 15: 5'-AGGTGCATAACACCCCATTCTATAGCTGC-3')과 AP1 프라이머 (서열번호 16: 5'-GTAATACGACTCACTATAGGGC-3')를 이용하여 첫번째 PCR을 수행하였고, 이를 희석하여 ANS GW2(서열번호 17: 5'-GTGGCCTCACATACTCTTTAGGGATAGCCTGG-3')와 AP2 프라이머(서열번호 18: 5'-ACTATAGGGCACGCGTGGT-3')를 이용하여 두번째 PCR을 수행하였다. 첫번째 PCR과 두번째 PCR 조건은 94℃에서 3분간 변성시킨 후, 94℃에서 25초, 72℃에서 3분의 단계로 7회 실시하고, 94℃에서 25초, 68℃에서 3분의 단계로 32회 반복하여 실시하고, 68℃에서 5분간 최종 증폭하였다. 증폭된 PCR산물은 1% 아가로스겔에 전기영동한 후, 퀴아젠 겔 추출 키트(Qiagen Gel Extraction Kit, Qiagen)를 사용하여 정제한 후, pGEM-T easy 벡터(Promega)에 삽입하여 양방향의 염기서열을 확인한 결과, ANS 유전자의 프로모터 영역이 서열번호 3 또는 도 9에 나타낸 바와 같음을 확인하였다(서열번호 3, 도 9). To isolate the promoter region of the ANS gene, the genome of tobacco genome was isolated and the promoter region of the ANS gene was amplified using methods provided by the manufacturer using a genome walker (Genome walker, Invitrogen). Genomic DNA isolated according to the method of Genomic Walker was treated for 2 hours at 37 ° C. using blunt-end restriction enzyme (ROCHE) of Dra I, EcoR V, Pvu II, and Stu I, followed by electrophoresis. The cleavage was confirmed. 25 uM genomic walker adapter (SEQ ID NO: 13: 5'-GTAATACGACTCACTATAGGGCACGCGTGGTCGACGGCCCGGGCTGGT-3 ', SEQ ID NO: 14: 3'-H2N-CCCGACCA-PO4-5') was added to the cleaved genomic DNA for at least 8 hours. ) Was performed. After 5 minutes treatment at 70 ° C. to inhibit enzymatic reaction, ANS GW1 (SEQ ID NO: 15: 5'-AGGTGCATAACACCCCATTCTATAGCTGC-3 ') and AP1 primer (SEQ ID NO: 16: 5'-GTAATACGACTCACTATAGGGC-3') were used as template DNA. The first PCR was carried out using A, and diluted to perform a second PCR using ANS GW2 (SEQ ID NO: 17: 5'-GTGGCCTCACATACTCTTTAGGGATAGCCTGG-3 ') and AP2 primer (SEQ ID NO: 18: 5'-ACTATAGGGCACGCGTGGT-3'). It was. The first PCR and the second PCR conditions were denatured at 94 ° C. for 3 minutes, followed by 7 times in 25 seconds at 94 ° C., 3 minutes at 72 ° C., 32 seconds at 25 ° C. at 94 ° C., and 3 minutes at 68 ° C. It carried out repeatedly, and amplified for 5 minutes at 68 ° C. The amplified PCR product was subjected to electrophoresis on 1% agarose gel, purified using Qiagen Gel Extraction Kit (Qiagen), and then inserted into pGEM-T easy vector (Promega). As a result of confirming the sequence, it was confirmed that the promoter region of the ANS gene was as shown in SEQ ID NO: 3 or FIG. 9 (SEQ ID NO: 3, FIG. 9).

또한 상기 프로모터 영역은 하기 프라이머(서열번호 4 및 서열번호 5)를 사용하여서도 분리 내지 증폭할 수 있다.In addition, the promoter region can be isolated or amplified using the following primers (SEQ ID NO: 4 and SEQ ID NO: 5).

PANS-F: 5'-CCGGTCAACTCAAGACAACCTACCTATTTAA-3'(서열번호 4)PANS-F: 5'-CCGGTCAACTCAAGACAACCTACCTATTTAA-3 '(SEQ ID NO: 4)

PANS-R: 5'-CTCTGTATTATTCTTGCTTTTTCTTTCTTTCCC-3' (서열번호 5)
PANS-R: 5'-CTCTGTATTATTCTTGCTTTTTCTTTCTTTCCC-3 '(SEQ ID NO: 5)

실시예Example 5. 형질전환용 플라스미드 제작  5. Transformation plasmid preparation

상기 실시예 4의 ANS 유전자의 프로모터 영역을 분리하는 프라이머(서열번호 4 및 서열번호 5) 각각에 박테리아측 특이 재조합 핵산서열 부위 일부를 더 포함하도록 설계된 pANS-attB1 프라이머(서열번호 23: 5'-AAAAAGCAGGCTCCGGTCAACTCAAGACAACCTACCTATTTAA -3') 및 pANS -attB2 프라이머(서열번호 24: 5'-AGAAAGCTGGGTCTCTGTATTATTCTTGCTTTTTCTTTCTTTCCC-3')를 제작하고, 이를 사용한 PCR을 수행하여 ANS 프로모터 부위를 분리하였다. PCR은 94℃에서 2분간 변성시킨 후, 94℃에서 30초, 60℃에서 30초, 72℃에서 1분 30초의 단계로 30회 반복하여 실시하고, 72℃에서 5분간 최종 증폭하는 과정으로 이루어졌다.PANS-attB1 primer (SEQ ID NO: 23: 5'-) designed to further include a part of the bacterial side specific recombinant nucleic acid sequence region in each of primers (SEQ ID NO: 4 and SEQ ID NO: 5) separating the promoter region of the ANS gene of Example 4 AAAAAGCAGGCTCCGGTCAACTCAAGACAACCTACCTATTTAA -3 ') and pANS -attB2 primer (SEQ ID NO: 24: 5'-AGAAAGCTGGGTCTCTGTATTATTCTTGCTTTTTCTTTCTTTCCC-3') were prepared, and an ANS promoter site was isolated by PCR. PCR was denatured at 94 ° C. for 2 minutes, repeated 30 times at 94 ° C., 30 seconds at 60 ° C., 30 seconds at 72 ° C., 1 minute 30 seconds, and finally amplified at 72 ° C. for 5 minutes. lost.

증폭된 PCR 산물 즉, ANS 프로모터의 PCR 산물들은 박테리아가 박테리오파지에 감염될 때 박테리아측 특이 재조합 핵산서열 부위 전체를 포함하는 어댑터 프라이머 B1(서열번호 25: 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3')과 어댑터 프라이머 B 2(서열번호 26: 5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-3')를 사용하여 각각 2차 PCR하였다. 2차 PCR은 94℃에서 2분간 변성시킨 후, 94℃에서 30초, 60℃에서 30초, 72℃에서 1분 30초의 단계로 30회 반복하여 실시하고, 72℃에서 5분간 최종 증폭하는 과정으로 이루어졌다.The amplified PCR products, ie, the PCR products of the ANS promoter, are composed of adapter primer B1 (SEQ ID NO: 25: 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCT-3 ') and adapter primer B which contain the entire bacterial-specific recombinant nucleic acid sequence site when the bacteria are infected with bacteriophages. Secondary PCR was performed using 2 (SEQ ID NO: 26: 5'-GGGGACCACTTTGTACAAGAAAGCTGGGT-3 '). The secondary PCR was denatured at 94 ° C. for 2 minutes, then repeated 30 times at 94 ° C. for 30 seconds, at 60 ° C. for 30 seconds, at 72 ° C. for 1 minute and 30 seconds, and the final amplification at 72 ° C. for 5 minutes. Was done.

상기 2차로 PCR된 산물들은 박테리아가 박테리오파지에 감염될 때 박테리오파지 측 특이 재조합 핵산서열 부위를 포함하는 pDONR221 벡터(invitrogen)와 BP 재조합반응 즉, BP 반응 버퍼, 상기 PCR 산물 200ng, pDONR221 벡터 150ng 및 게이트웨이 BP 클로나제(clonase)효소 혼합액 등을 잘 섞은 뒤 25℃에서 하룻밤 동안 반응시키는 과정을 거쳐 PNtANS 프로모터가 삽입된 중간 클로닝 벡터인 pDONR- PNtANS를 제작하였다. The secondary PCR products are a BP recombination reaction with a pDONR221 vector (invitrogen) containing a bacteriophage-side specific recombinant nucleic acid sequence site when bacteria are infected with bacteriophage, that is, a BP reaction buffer, 200ng of the PCR product, 150ng of pDONR221 vector, and a gateway BP. Clonal (clonase) enzyme mixture was mixed well, and then reacted overnight at 25 ° C to prepare pDONR-PNtANS, an intermediate cloning vector into which the PNtANS promoter was inserted.

상기 클로닝 벡터는 최종 발현벡터를 제작하기 위해 Egfp(녹색형광단백질, green fluorescent protein) 유전자와 Gus(청색발색, ß-glucuronidase) 유전자가 연결된 형태의 리포터 시스템이 내재되어 있는 pBGWFS7 벡터(Plant System Biology)와 다시 LR 재조합 반응 즉, LR 반응 버퍼, pDONR- PNtANS 벡터 300ng 및 게이트웨이 LR 클로나제(clonase)효소 혼합액 등을 잘 섞은 뒤 25℃에서 하룻밤 동안 반응시키는 과정을 거쳐 도 3의 개열지도로 표현되는 최종적인 pBGWFS7-PNtANS 발현벡터를 완성하였다. 상기 pBGWFS7는 기본 운반체(binary vector)로 사용되며, 미생물 선발을 위한 스펙티노마이신(spectinomycin) 저항성 유전자를 가지며, 식물체 선발인자로 제초제 저항성 Bar 유전자를 포함하고 있다. 이를 쌍자엽 식물의 형질전환에 주로 사용되는 P35S의 활성과 비교하기 위하여 국내연구진에 의해서 제작된 pBGWFS7-P35S를 이용하였다(참조: 출원번호 10-2009-0031765). The cloning vector is a pBGWFS7 vector (Plant System Biology) in which a reporter system in which the Egfp (green fluorescent protein) gene and the Gus (blue-coloring, ß-glucuronidase) gene are linked to produce a final expression vector is embedded. And LR recombination reaction, that is, LR reaction buffer, pDONR-PNtANS vector 300ng and gateway LR clonease (enzyme mixture) mixed well, and then reacted overnight at 25 ° C. PBGWFS7-PNtANS expression vector was completed. The pBGWFS7 is used as a binary vector, has a spectinomycin resistance gene for microbial selection, and includes a herbicide resistant Bar gene as a plant selection factor. In order to compare this with the activity of P35S mainly used in the transformation of dicotyledonous plants, pBGWFS7-P35S produced by the domestic researchers was used (see Application No. 10-2009-0031765).

제작된 형질전환용 발현벡터들은 액체질소를 이용한 직접적인 아그로박테리아 형질전환 방법 (참조: Holster 등의 freeze-thaw method, 1978)에 따라 아그로박테리아 튜메파시엔스 균주 LBA4404(Clontech)에 형질전환시킨 후, 담배형질전환에 사용하였다.
The transformed expression vectors were transformed into Agrobacterium tumefaciens strain LBA4404 (Clontech) according to the direct Agrobacterium transformation method using liquid nitrogen (refer to the freeze-thaw method of Holster et al., 1978). Used for transformation.

실시예Example 6. 식물 재료 및 담배 형질전환 6. Plant Materials and Tobacco Transformation

상기 실시예 5에서 제작된 발현벡터 pBGWFS7-PNtANS가 형질전환된 아그로박테리움액을 담배(Nicotiana tabaccum cv Xanthi) 잎 절편과 공동 배양하여 담배를 형질전환하였다. 공동배양에 사용된 배지는 1 ㎎/l NAA, 1 ㎎/l BA, 20 g/l 수크로스(sucrose), 8 g/l 한천(agar)이 첨가된 MS배지(기산바이오텍)를 이용하였다. 형질전환된 재분화 식물체를 얻기 위하여 1 ㎎/l NAA, 1 ㎎/l BA, 300 ㎎/l 카르베니실린(carbenicillin), 3 ㎎/l 포스피노드리신(phosphinothricin, PPT), 20 ㎎/l 수크로스, 8 ㎎/l 한천이 첨가된 MS배지(기산바이오텍)에서 배양한 다음, 3주마다 계대배양 하였다. 재분화된 신초는 300 ㎎/l 카르베니실린, 3 ㎎/l PPT, 20 g/l 수크로스, 8 g/l 한천이 첨가된 MS배지로 옮겨 발근을 유도하였다. 배양은 26℃, 16시간 광주기/8시간 암주기의 조건에서 배양하였고, 발근된 개체는 순화 후 화분으로 이식하여 온실에서 평균기온 26℃이상의 조건에서 생육시켜서 종자가 성숙할 때 채종하였다. 채종된 종자는 다시 파종하여 0.3% 바스타(바이엘크롭사이언스)를 살포함으로써 T1 세대의 형질전환체를 선발하였다. T1 형질전환 식물체는 온실에서 약 4달간 생육시켜 T2 종자를 채종하였다.
Agrobacterium solution transformed with the expression vector pBGWFS7-PNtANS prepared in Example 5 was co-cultured with tobacco leaves (Nicotiana tabaccum cv Xanthi) to transform tobacco. The medium used for the coculture was MS medium (Kisan Biotech) to which 1 mg / l NAA, 1 mg / l BA, 20 g / l sucrose, and 8 g / l agar were added. 1 mg / l NAA, 1 mg / l BA, 300 mg / l carbenicillin, 3 mg / l phosphinothricin (PPT), 20 mg / l number to obtain transformed regenerated plants Cross, 8 mg / l agar was incubated in MS medium (Kisan Biotech) added, and then subcultured every three weeks. Regenerated shoots were transferred to MS medium supplemented with 300 mg / l carbenicillin, 3 mg / l PPT, 20 g / l sucrose, and 8 g / l agar to induce rooting. Cultivation was carried out under conditions of 26 ℃, 16 hours photoperiod / 8 hours dark cycle, rooted individuals were transplanted into pollen after growth and grown in a greenhouse at the average temperature of 26 ℃ or more when the seeds matured. The seeded seeds were sown again and selected for transformants of the T1 generation by sparging 0.3% Basta (Biel CropScience). T1 transgenic plants were grown in a greenhouse for about 4 months to seed T2 seeds.

실시예Example 7.  7. GUSGUS 청색발색Blue color 반응 분석 Reaction analysis

PNtANS 형질전환 T2 종자를 파종하여 0.3% 바스타(바이엘크롭사이언스)를 살포하여 선발된 형질전환 담배 식물체의 꽃, 잎, 유식물체에서의 리포터유전자인 GUS의 발현여부를 관찰하였다. 대조구인 비형질전환 담배 식물체는 바스타를 처리하지 않고 발아시켰다. 파종후 약 30일째 유식물체의 담배와 파종 후 90일째 형질전환 담배 식물체의 꽃과 잎 조직을 GUS-어세이 버퍼 [용액 Ⅰ: X-gluc (시클로헥실 암모늄염) 20mM, 용액 Ⅱ: NaH2PO4 H2O 100mM, NaEDTA 10mM, Triton-X-100 0.1%, pH7.5]에 침지하고 37℃에서 24시간 처리 후, 70% 에탄올을 처리하여 클로로필 (chlorophyll)을 제거하였다. 식물체는 광학 현미경을 이용하거나 육안으로 관찰하였다(도 4). 유식물체(도 4의 A)와 잎(도 4의 B)의 경우 35S-P 형질전환체에서는 전신에 GUS 청색발색이 관찰된 반면, 비형질전환체 담배(도 4의 Control)와 PNtANS 담배(도 4의 ANS-P)에서는 GUS 청색발색이 전혀 보이지 않았다. 꽃잎(도 4의 C)의 경우 비형질전환체 담배의 경우에는 꽃잎과 꽃받침 모두에서 GUS 청색발색이 전혀 보이지 않았고, 35S-P 형질전환체의 경우 GUS 청색발색이 꽃 전체에서 모두 관찰되었다. PNtANS 담배 식물체의 경우 꽃잎에서만 GUS 청색발색이 관찰되어 꽃잎 특이 발현 프로모터임을 관찰하였다. PNtANS transformed T2 seeds were sown and sprayed with 0.3% Basta (Biel CropScience) to observe the expression of GUS, a reporter gene in the flowers, leaves and seedlings of selected transgenic tobacco plants. A control transgenic tobacco plant was germinated without treatment with batha. The flower and leaf tissues of the seedling tobacco on the 30th day after planting and the transformed tobacco plants on the 90th day after sowing were treated with GUS-assay buffer [solution I: X-gluc (cyclohexyl ammonium salt) 20 mM, solution II: NaH2PO4 H2O 100 mM, NaEDTA 10mM, Triton-X-100 0.1%, pH7.5] and after treatment at 37 ℃ for 24 hours, and treated with 70% ethanol to remove chlorophyll (chlorophyll). Plants were observed using an optical microscope or visually (FIG. 4). Seedlings (A in FIG. 4) and leaves (B in FIG. 4) showed GUS blue coloration throughout the 35S-P transformant, while nontransformant tobacco (Control in FIG. 4) and PNtANS tobacco ( In ANS-P) of FIG. 4, GUS blue color was not observed at all. In the case of the petals (C of FIG. 4), GUS blue coloration was not observed at all in the petal and calyx of the non-transformant tobacco, and GUS blue coloration was observed in all the flowers in the 35S-P transformant. In the case of PNtANS tobacco plants, GUS blue coloration was observed only in the petals, indicating that the petal-specific expression promoter.

실시예Example 8.  8. GUSGUS 청색발색Blue color 정량 분석 Quantitative Analysis

PNtANS의 GUS 청색발색 발현량을 조사하기 위해 PNtANS로 형질전환된 담배 T2세대 5계통과 대조구인 35S-P 형질전환된 담배와 비형질전환 담배의 꽃잎에서 단백질을 각각 분리하였다. 전체 단백질을 분리하기 위해 액체질소를 이용하여 동결시킨 후 막자사발로 분쇄한 약 50mg의 조직별 시료를 1.5㎖ 튜브에 옮긴 다음 각 튜브에 100 ㎕의 단백질 추출 완충액 (50mM 소듐 포스페이트, pH 7.0, 10mM 디티오트레이톨(Dithiothreitol, DTT), 1mM 디소듐 EDTA, 0.1% SDS, 0.1% 트리톤 X-100)을 넣고 혼합하였다. 혼합액은 4℃, 15,000rpm에서 5분 동안 원심분리하고 상등액을 새 튜브에 옮긴 후 이 중 50㎕를 취하여 37℃로 맞춰진 50㎕의 분석용액(1.2mM MUGluc, 1x 반응 버퍼 내 10.0mM b-머캅토에탄올, FluorAce b-글루쿠로니다제 리포터 어세이 키트, Bio-Rad)과 혼합하고 이를 37℃ 물수조에서 30분간 반응시켰다. 위에 1x 정지 버퍼를 각 샘플에 100㎕씩 잘 섞어주고 형광광도계(여기 필터 355nm, 방출 필터 460nm)를 이용하여 GUS 활성을 정량하였다. 그 결과 PNtANS로 형질전환된 담배의 꽃잎에서의 GUS 단백질 발현량이, 쌍자엽 식물에서 전신발현을 유도하는 대표적인 프로모터로서 발현이 가장 잘 되는 것 중 하나인 35S-P로 형질전환된 담배와 비교하여 동등한 정도로 나타났으며, 이를 통해 본 발명의 프로모터의 발현 효율이 매우 높음을 확인하였다(도 5).
To investigate the GUS blue color expression level of PNtANS, proteins were isolated from the petals of 35S-P transformed tobacco and non-transformed tobacco, which are tobacco T2 generation transformed with PNtANS and control. In order to separate the whole protein, liquid nitrogen was frozen and then ground with a mortar and pestle, about 50 mg of tissue-specific sample was transferred to a 1.5 ml tube, and 100 µl of protein extraction buffer (50 mM sodium phosphate, pH 7.0, 10 mM) was added to each tube. Dithiothreitol (DTT), 1 mM disodium EDTA, 0.1% SDS, 0.1% Triton X-100) were added and mixed. The mixture was centrifuged at 4 ° C. and 15,000 rpm for 5 minutes, the supernatant was transferred to a new tube, and 50 μl of this was taken. 50 μl of assay solution (1.2 mM MUGluc, 10.0 mM b-mer in 1 × reaction buffer) was adjusted to 37 ° C. Captoethanol, FluorAce b-glucuronidase reporter assay kit, Bio-Rad) was mixed and reacted for 30 minutes in a 37 ° C. water bath. 100 μl of the 1 × stop buffer was mixed well with each sample, and GUS activity was quantified by using a fluorescence photometer (excitation filter 355 nm and emission filter 460 nm). As a result, the expression level of GUS protein in the petals of tobacco transformed with PNtANS is comparable to that of tobacco transformed with 35S-P, which is one of the best expressed as representative promoters for systemic expression in dicotyledonous plants. It was confirmed, through this it was confirmed that the expression efficiency of the promoter of the present invention is very high (Fig. 5).

실시예Example 9. 형질전환 식물체의  9. Transgenic Plants RTRT -- PCRPCR 반응 reaction

형질전환 T2 종자를 파종하여 0.3% 바스타(바이엘크롭사이언스)를 살포하여 선발된 형질전환 담배 식물체의 잎, 줄기, 꽃잎, 수술, 암술, 꽃받침 등 여러 조직으로부터 실시예 1과 동일한 방법으로 추출한 전체 RNA 약 1㎍ 주형으로 50uM oligo dT 프라이머를 이용해 50℃에서 50분, 85℃에서 5분 처리 후 얼음에서 식힌 후 여기에 다시 RNase H 를 1㎕를 첨가하고 37℃에서 20분간 처리하여 cDNA를 합성(10X RT buffer, 25mM MgCl2, 0.1M DTT, RNase OUT, SuperScriptTM RT)하였고, 합성된 cDNA를 주형으로 청색발색 유전자 GUS 특이 프라이머 세트, 즉 서열번호 19인 정방향 프라이머(GUS-F: 5'-ACCTGCGTCAATGTAATGTTCTGC-3')와 서열번호 20인 역방향 프라이머(GUS-R: 5'-CTCCCTGCTGCGGTTTTTCA-3') 세트와 사용된 RNA의 상대적인 양이 균일함을 증명하기 위해 담배 액틴(actin) 프라이머 세트, 즉 서열번호 21인 정방향 프라이머(NtACT-F: 5'-CCCTCCCACATGCTATTCT-3')와 서열번호 22인 역방향 프라이머(NtACT-R: 5'-AGAGCCTCCAATCCAGACA-3')를 이용하여 95℃에서 15분간 변성 후, 95 ℃에서 30초간 반응 후 60 ℃에서 30초간 어닐링 반응, 72 ℃에서 30초간의 중합반응의 일련의 반응을 30회 반복하여 PCR을 수행하였다.Total RNA extracted in the same manner as in Example 1 from various tissues such as leaves, stems, petals, surgery, pistils, and calyx of selected transgenic tobacco plants by seeding transformed T2 seed and spreading 0.3% Basta (Biel CropScience) 50 μM oligo dT primer with 50 μM oligo dT primer for 5 minutes at 50 ° C., 5 min at 85 ° C., and then cooled on ice. 10X RT buffer, 25mM MgCl2, 0.1M DTT, RNase OUT, SuperScriptTM RT), and the synthesized cDNA was used as a template for the blue chromosome gene GUS specific primer set, ie, the forward primer of SEQ ID NO: 19 (GUS-F: 5'-ACCTGCGTCAATGTAATGTTCTGC- 3 ') and a set of reverse primers (GUS-R: 5'-CTCCCTGCTGCGGTTTTTCA-3') with SEQ ID NO. 20 and a set of tobacco actin primers, SEQ ID NO. 21, to demonstrate that the relative amounts of RNA used are uniform. Inn forward plastic Denatured at 95 ° C. for 15 minutes using NtACT-F: 5′-CCCTCCCACATGCTATTCT-3 ′ and a reverse primer of SEQ ID NO: 22 (NtACT-R: 5′-AGAGCCTCCAATCCAGACA-3 ′), followed by denaturation at 95 ° C. for 30 seconds. After the reaction, PCR was performed by repeating annealing reaction at 60 ° C. for 30 seconds and a series of polymerization reactions at 72 ° C. for 30 seconds.

역전사 PCR 반응의 결과, PNtANS 형질전환 담배의 잎, 줄기, 꽃받침, 수술, 암술 등의 조직에서는 청색발색 단백질 유전자 GUS의 전사체가 검출되지 않았고, 꽃잎에서만 청색발색 단백질 유전자 GUS의 전사체가 검출되었으며, 이처럼 동일한 양의 RNA를 이용하여 실험을 수행하였음에도, 조직별 ANS 프로모터의 발현여부에 따라 결과가 다르게 나타나는 것을 확인할 수 있었다. 이때 사용된 RNA의 상대적인 양이 균일함은 담배 액틴 유전자를 이용하여 증명하였다(도 6). As a result of the reverse transcription PCR reaction, the transcript of the blue chromogenic protein gene GUS was not detected in the tissues such as leaves, stems, calyx, surgery, and pistil of PNtANS transgenic tobacco, and the transcript of the blue chromogenic protein gene GUS was detected only in the petals. Although the experiment was performed using the same amount of RNA, it was confirmed that the results are different depending on the expression of the tissue-specific ANS promoter. The uniform amount of RNA used at this time was proved using the tobacco actin gene (Fig. 6).

<110> REPUBLIC OF KOREA (MANAGENENT:RURAL DEVELOPMENT ADMINISTRATION) <120> Petal-specific promoter <130> DPP-2010-1775-KR <160> 26 <170> KopatentIn 1.71 <210> 1 <211> 1281 <212> DNA <213> Artificial Sequence <220> <223> cDNA of ANS gene of Nicotiana tabacum <400> 1 atggtggtga tcagtgcagt agttccaact ccttcaagag ttgaaagctt ggctaaaagt 60 ggaatccagg ctatccctaa agagtatgtg aggccacaag aagagttaaa tggaatagga 120 aacatatttg aggaagagaa gaaagatgaa ggacctcaag taccgacgat tgatctaaca 180 gaaatcgact cagaggacaa ggaaattcga gagaaatgcc accaagagtt gaagaaagca 240 gctatagaat ggggtgttat gcaccttgtt aaccatggca tatcagatga gctaattgat 300 cgtgtcaagg tttctggaga taccttcttt gatcaacctg ttgaagaaaa ggagaagtat 360 gctaatgacc aaccctctgg caatgtccaa ggctatggca gcaagctagc aaatagtgct 420 tgtggtcagc ttgagtggga ggattatttc ttccattgtg ttttccctga ggacaagtgc 480 aacttatcca tctggccgaa aacccctaca gactacattc cagcaacaag tgaatatgcc 540 aagcagatca ggaacctagc aacaaagatt ttggcagtgc tttctattgg gctgagacta 600 gaagaaggaa gactagagaa ggaagtcgga ggcatggagg acctgctgct tcaaatgaag 660 attaactact atcccaaatg cccccaacca gaactagcac ttggtgtcga agctcatact 720 gatgtcagtg cactgacttt tatcctccac aatatggtgc ctggcttgca actcttctac 780 gaaggacagt gggtaacggc aaagtgtgtg cctaattcca taatcatgca tattggggac 840 acccttgaaa ttctaagcaa tggaaagtac aagagcattc ttcacagagg ggttgtgaat 900 aaagagaaaa taagaatctc atgggctatt ttctgtgagc cgccgaagga gaagatcatc 960 cttaagcccc tacctgagac tataactgag gctgagccac ctcgattccc acctcgcacc 1020 tttgcacagc atatggccca taagctcttc aagaaggatg atcaggatgc tgctgctgaa 1080 cacaaagtct ccaagaagga tgacccggat tctgctgctg aacacaaacc cttcaagaag 1140 gatgatcagg atgctgttgc tcagcaaaaa gtcctcaagg aggatgaaca gaatgccgct 1200 gctgagcaca aagtcttcaa gaaggataat caggatgctg ctgctgaaga atctaaatag 1260 cttctcttgt tgtcactctg a 1281 <210> 2 <211> 1545 <212> DNA <213> Artificial Sequence <220> <223> genome DNA of ANS gene of Nicotiana tabacum <400> 2 atggtggtga tcagtgcagt agttccaact ccttcaagag ttgaaagctt ggctaaaagt 60 ggaatccagg ctatccctaa agagtatgtg aggccacaag aagagttaaa tggaatagga 120 aacatatttg aggaagagaa gaaagatgaa ggacctcaag taccgacgat tgatctgaaa 180 gaaatcgact cagaggacaa ggaaattcgc gagaaatgcc acaaagagtt gaagaaagca 240 gctatggagt ggggtgttat gtaccttgtt aaccatggca tatcagatca gctaattgat 300 cgtgtcaagg ttgctggaaa gaccttcttt gatcaacctg ttgaagaaaa ggagaagtat 360 gctaatgacc aaccctctgg caatgtccaa ggctatggca gcaagttagc aaatagtgct 420 tgtggtcagc ttgaatggga ggattatttc ttccattgcg ttttccccga ggacaagtgc 480 gacttatcca tctggcctaa aatccctact gactacatgt aagcttctta taatttcata 540 attgcagatt tttcaatctt tttttccctg taacggtggt gtctgggtca gcctgtgcac 600 accgcgacta atccaccgat aacctactac ctcccaccag cttaggtgct ggataacttt 660 gttcaccaag ggttggcaga taggaagaga tcacctaatg ttttttgttt atgctaaaat 720 ttcaaccctg gtctctagga cttttactgc ttcactgacc actaaacatt tccaacttgc 780 agtccagcaa caagtgaata tgccaaacag attaggaacc tagcaacaaa gattttggca 840 gtgctttcta ttgggctggg actagaagaa ggaagactag agaaggaagt cggaggcaag 900 gaggacctac tgcttcaaat gaagattaac tactacccca aatgtcccca accagaacta 960 gcacttggcg ttgaagctca tactgatgtg agtgcactga cttttatcct ccacaatatg 1020 gtgcctgggt tacaactttt ctatgaagga cagtgggtaa cggcaaagtg tgtgcctaat 1080 tccataatca tgcatattgg ggacaccctt gaaatcctaa gcaatggaaa gtacaaaagc 1140 attcttcaca gaggggttgt gaataaagag aaagtaagaa tctcatgggc tattttctgt 1200 gagccgccaa aggagaagat catccttaag cccctatctg agactatcac tgaggctgaa 1260 ccacctcgat tcccacctcg cacctttgca cagcatatgg cccataagct cttcaagaag 1320 gatgatcagg atgctgctgc tgaacacaaa gtctccaaga aggatgaccc ggattctgct 1380 gctggacaca aacccttcaa gaaggatgat caggatgctg ttgttcagca aaaagtcctc 1440 aaggaggatg aacaggatgc cgctgctgag cacaaagtct tcaagaagga taatcaggat 1500 gctgctgctg aagaatctaa atagcttctc ttgttgtcac tctga 1545 <210> 3 <211> 955 <212> DNA <213> Artificial Sequence <220> <223> genome DNA of ANS gene promoter of Nicotiana tabacum <400> 3 ccggtcaact caagacaacc tacctattta atttttccac ccataatata aacctcaact -896 aaatagagca caaaagtgca ataaagtggg agaaagattt aaaggcaaga gagaatttaa -836 tattcatcca gagatagtgg taagtttgca aataatggcc ttctttatta ctccataagt -776 ttttgtggtg agtttgcaaa ccaggcatca taatatattg tgaaaaatca aagacagttt -716 agttcactca catcagtatg actttcgacg ccaagtgcta gttcaagttt aggccatttt -656 taaaagtgcg tacacaaact ttacccctac cctggataga gagattgttt tcgatagatc -596 atcggctcaa aaagaagaaa agaaataata gaaccgtaac aacaacatag gttattgttc -536 ctgttctaat taatgaattg tcaattaagt gagctgtata gccagagatc aagggtagtt -476 tcgataaaaa cacatacgat taaggctatt aattttttta aggagtgcgc aagaacttta -416 aaaacatatt atgtggacct gcgatagaaa gaattaaact aaagcaagta tatatgtcaa -356 tgaaaaacgg tatagggaat aaacatggag ctgcagttcc cagccaccag tcgtttgtgt -296 ctaaagataa cctcatagaa ttgtgtccca accaccattc tagtcctggc atcgagattt -236 gagaggtaaa actaaactaa aaaccttaac caaaactagg ttagctatga gtcacgtgca -176 tgcttggttg ttgaattcta caaaacatgc atgatatatc tacaagaaat cttaagtttt -116 actttccagt caactcaaga gaacctaccc ttttttgcca tccatatata aacctcaact -56 agagcatcaa actataataa aagggaaaga aagaaaaagc aagaataata cagag -1 <210> 4 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PANS-F <400> 4 ccggtcaact caagacaacc tacctattta a 31 <210> 5 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> PANS-R <400> 5 ctctgtatta ttcttgcttt ttctttcttt ccc 33 <210> 6 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> ANS-F <400> 6 gaaaaggaga agtatgctaa tgacc 25 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> ANS-R <400> 7 cccactggcc ttcatagaag agttg 25 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer for 3' RACE PCR in example 1 <400> 8 ggagaagatc atccttaagc cccta 25 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer for 3' RACE PCR in example 1 <400> 9 gtcctcaagg aggatgaaca ggatgcc 27 <210> 10 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer for 5' RACE PCR in example 1 <400> 10 ccaggggatg cacaaaaact gg 22 <210> 11 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> full ANS-F <400> 11 gaaagaaaaa agcaagaata atacagag 28 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> full ANS-R <400> 12 ttcttcacat aaaaccatca gag 23 <210> 13 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> 25uM genome walker adaptor <400> 13 gtaatacgac tcactatagg gcacgcgtgg tcgacggccc gggctggt 48 <210> 14 <211> 8 <212> DNA <213> Artificial Sequence <220> <223> 25uM genome walker adaptor which has amine group on the lower strand, and phosphate group on the upper strand <400> 14 accagccc 8 <210> 15 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> ANS GW1 <400> 15 aggtgcataa caccccattc tatagctgc 29 <210> 16 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> AP1 primer <400> 16 gtaatacgac tcactatagg gc 22 <210> 17 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> ANS GW2 <400> 17 gtggcctcac atactcttta gggatagcct gg 32 <210> 18 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> AP2 primer <400> 18 actatagggc acgcgtggt 19 <210> 19 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> GUS-F <400> 19 acctgcgtca atgtaatgtt ctgc 24 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GUS-R <400> 20 ctccctgctg cggtttttca 20 <210> 21 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> NtACT-F <400> 21 ccctcccaca tgctattct 19 <210> 22 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> NtACT-R <400> 22 agagcctcca atccagaca 19 <210> 23 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> pANS-attB1 primer <400> 23 aaaaagcagg ctccggtcaa ctcaagacaa cctacctatt taa 43 <210> 24 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> pANS -attB2 primer <400> 24 agaaagctgg gtctctgtat tattcttgct ttttctttct ttccc 45 <210> 25 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> adaptor primer B1 <400> 25 ggggacaagt ttgtacaaaa aagcaggct 29 <210> 26 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> adaptor primer B2 <400> 26 ggggaccact ttgtacaaga aagctgggt 29 <110> REPUBLIC OF KOREA (MANAGENENT: RURAL DEVELOPMENT ADMINISTRATION) <120> Petal-specific promoter <130> DPP-2010-1775-KR <160> 26 <170> KopatentIn 1.71 <210> 1 <211> 1281 <212> DNA <213> Artificial Sequence <220> <223> cDNA of ANS gene of Nicotiana tabacum <400> 1 atggtggtga tcagtgcagt agttccaact ccttcaagag ttgaaagctt ggctaaaagt 60 ggaatccagg ctatccctaa agagtatgtg aggccacaag aagagttaaa tggaatagga 120 aacatatttg aggaagagaa gaaagatgaa ggacctcaag taccgacgat tgatctaaca 180 gaaatcgact cagaggacaa ggaaattcga gagaaatgcc accaagagtt gaagaaagca 240 gctatagaat ggggtgttat gcaccttgtt aaccatggca tatcagatga gctaattgat 300 cgtgtcaagg tttctggaga taccttcttt gatcaacctg ttgaagaaaa ggagaagtat 360 gctaatgacc aaccctctgg caatgtccaa ggctatggca gcaagctagc aaatagtgct 420 tgtggtcagc ttgagtggga ggattatttc ttccattgtg ttttccctga ggacaagtgc 480 aacttatcca tctggccgaa aacccctaca gactacattc cagcaacaag tgaatatgcc 540 aagcagatca ggaacctagc aacaaagatt ttggcagtgc tttctattgg gctgagacta 600 gaagaaggaa gactagagaa ggaagtcgga ggcatggagg acctgctgct tcaaatgaag 660 attaactact atcccaaatg cccccaacca gaactagcac ttggtgtcga agctcatact 720 gatgtcagtg cactgacttt tatcctccac aatatggtgc ctggcttgca actcttctac 780 gaaggacagt gggtaacggc aaagtgtgtg cctaattcca taatcatgca tattggggac 840 acccttgaaa ttctaagcaa tggaaagtac aagagcattc ttcacagagg ggttgtgaat 900 aaagagaaaa taagaatctc atgggctatt ttctgtgagc cgccgaagga gaagatcatc 960 cttaagcccc tacctgagac tataactgag gctgagccac ctcgattccc acctcgcacc 1020 tttgcacagc atatggccca taagctcttc aagaaggatg atcaggatgc tgctgctgaa 1080 cacaaagtct ccaagaagga tgacccggat tctgctgctg aacacaaacc cttcaagaag 1140 gatgatcagg atgctgttgc tcagcaaaaa gtcctcaagg aggatgaaca gaatgccgct 1200 gctgagcaca aagtcttcaa gaaggataat caggatgctg ctgctgaaga atctaaatag 1260 cttctcttgt tgtcactctg a 1281 <210> 2 <211> 1545 <212> DNA <213> Artificial Sequence <220> <223> genome DNA of ANS gene of Nicotiana tabacum <400> 2 atggtggtga tcagtgcagt agttccaact ccttcaagag ttgaaagctt ggctaaaagt 60 ggaatccagg ctatccctaa agagtatgtg aggccacaag aagagttaaa tggaatagga 120 aacatatttg aggaagagaa gaaagatgaa ggacctcaag taccgacgat tgatctgaaa 180 gaaatcgact cagaggacaa ggaaattcgc gagaaatgcc acaaagagtt gaagaaagca 240 gctatggagt ggggtgttat gtaccttgtt aaccatggca tatcagatca gctaattgat 300 cgtgtcaagg ttgctggaaa gaccttcttt gatcaacctg ttgaagaaaa ggagaagtat 360 gctaatgacc aaccctctgg caatgtccaa ggctatggca gcaagttagc aaatagtgct 420 tgtggtcagc ttgaatggga ggattatttc ttccattgcg ttttccccga ggacaagtgc 480 gacttatcca tctggcctaa aatccctact gactacatgt aagcttctta taatttcata 540 attgcagatt tttcaatctt tttttccctg taacggtggt gtctgggtca gcctgtgcac 600 accgcgacta atccaccgat aacctactac ctcccaccag cttaggtgct ggataacttt 660 gttcaccaag ggttggcaga taggaagaga tcacctaatg ttttttgttt atgctaaaat 720 ttcaaccctg gtctctagga cttttactgc ttcactgacc actaaacatt tccaacttgc 780 agtccagcaa caagtgaata tgccaaacag attaggaacc tagcaacaaa gattttggca 840 gtgctttcta ttgggctggg actagaagaa ggaagactag agaaggaagt cggaggcaag 900 gaggacctac tgcttcaaat gaagattaac tactacccca aatgtcccca accagaacta 960 gcacttggcg ttgaagctca tactgatgtg agtgcactga cttttatcct ccacaatatg 1020 gtgcctgggt tacaactttt ctatgaagga cagtgggtaa cggcaaagtg tgtgcctaat 1080 tccataatca tgcatattgg ggacaccctt gaaatcctaa gcaatggaaa gtacaaaagc 1140 attcttcaca gaggggttgt gaataaagag aaagtaagaa tctcatgggc tattttctgt 1200 gagccgccaa aggagaagat catccttaag cccctatctg agactatcac tgaggctgaa 1260 ccacctcgat tcccacctcg cacctttgca cagcatatgg cccataagct cttcaagaag 1320 gatgatcagg atgctgctgc tgaacacaaa gtctccaaga aggatgaccc ggattctgct 1380 gctggacaca aacccttcaa gaaggatgat caggatgctg ttgttcagca aaaagtcctc 1440 aaggaggatg aacaggatgc cgctgctgag cacaaagtct tcaagaagga taatcaggat 1500 gctgctgctg aagaatctaa atagcttctc ttgttgtcac tctga 1545 <210> 3 <211> 955 <212> DNA <213> Artificial Sequence <220> <223> genome DNA of ANS gene promoter of Nicotiana tabacum <400> 3 ccggtcaact caagacaacc tacctattta atttttccac ccataatata aacctcaact -896 aaatagagca caaaagtgca ataaagtggg agaaagattt aaaggcaaga gagaatttaa -836 tattcatcca gagatagtgg taagtttgca aataatggcc ttctttatta ctccataagt -776 ttttgtggtg agtttgcaaa ccaggcatca taatatattg tgaaaaatca aagacagttt -716 agttcactca catcagtatg actttcgacg ccaagtgcta gttcaagttt aggccatttt -656 taaaagtgcg tacacaaact ttacccctac cctggataga gagattgttt tcgatagatc -596 atcggctcaa aaagaagaaa agaaataata gaaccgtaac aacaacatag gttattgttc -536 ctgttctaat taatgaattg tcaattaagt gagctgtata gccagagatc aagggtagtt -476 tcgataaaaa cacatacgat taaggctatt aattttttta aggagtgcgc aagaacttta -416 aaaacatatt atgtggacct gcgatagaaa gaattaaact aaagcaagta tatatgtcaa -356 tgaaaaacgg tatagggaat aaacatggag ctgcagttcc cagccaccag tcgtttgtgt -296 ctaaagataa cctcatagaa ttgtgtccca accaccattc tagtcctggc atcgagattt -236 gagaggtaaa actaaactaa aaaccttaac caaaactagg ttagctatga gtcacgtgca -176 tgcttggttg ttgaattcta caaaacatgc atgatatatc tacaagaaat cttaagtttt -116 actttccagt caactcaaga gaacctaccc ttttttgcca tccatatata aacctcaact -56 agagcatcaa actataataa aagggaaaga aagaaaaagc aagaataata cagag -1 <210> 4 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> PANS-F <400> 4 ccggtcaact caagacaacc tacctattta a 31 <210> 5 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> PANS-R <400> 5 ctctgtatta ttcttgcttt ttctttcttt ccc 33 <210> 6 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> ANS-F <400> 6 gaaaaggaga agtatgctaa tgacc 25 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> ANS-R <400> 7 cccactggcc ttcatagaag agttg 25 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer for 3 'RACE PCR in example 1 <400> 8 ggagaagatc atccttaagc cccta 25 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer for 3 'RACE PCR in example 1 <400> 9 gtcctcaagg aggatgaaca ggatgcc 27 <210> 10 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer for 5 'RACE PCR in example 1 <400> 10 ccaggggatg cacaaaaact gg 22 <210> 11 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> full ANS-F <400> 11 gaaagaaaaa agcaagaata atacagag 28 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> full ANS-R <400> 12 ttcttcacat aaaaccatca gag 23 <210> 13 <211> 48 <212> DNA <213> Artificial Sequence <220> <223> 25uM genome walker adapter <400> 13 gtaatacgac tcactatagg gcacgcgtgg tcgacggccc gggctggt 48 <210> 14 <211> 8 <212> DNA <213> Artificial Sequence <220> <223> 25 uM genome walker adapter which has amine group on the lower          strand, and phosphate group on the upper strand <400> 14 accagccc 8 <210> 15 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> ANS GW1 <400> 15 aggtgcataa caccccattc tatagctgc 29 <210> 16 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> AP1 primer <400> 16 gtaatacgac tcactatagg gc 22 <210> 17 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> ANS GW2 <400> 17 gtggcctcac atactcttta gggatagcct gg 32 <210> 18 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> AP2 primer <400> 18 actatagggc acgcgtggt 19 <210> 19 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> GUS-F <400> 19 acctgcgtca atgtaatgtt ctgc 24 <210> 20 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> GUS-R <400> 20 ctccctgctg cggtttttca 20 <210> 21 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> NtACT-F <400> 21 ccctcccaca tgctattct 19 <210> 22 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> NtACT-R <400> 22 agagcctcca atccagaca 19 <210> 23 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> pANS-attB1 primer <400> 23 aaaaagcagg ctccggtcaa ctcaagacaa cctacctatt taa 43 <210> 24 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> pANS -attB2 primer <400> 24 agaaagctgg gtctctgtat tattcttgct ttttctttct ttccc 45 <210> 25 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> adapter primer B1 <400> 25 ggggacaagt ttgtacaaaa aagcaggct 29 <210> 26 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> adapter primer B2 <400> 26 ggggaccact ttgtacaaga aagctgggt 29

Claims (10)

서열번호 1 또는 서열번호 2의 염기서열로 이루어진 담배(Nicotiana tabacum) ANS(anthocyanidin synthase) 유전자의 프로모터로서 꽃잎에 특이적으로 유전자의 발현을 유도하는 것을 특징으로 하는, 꽃잎 특이 프로모터.A petal-specific promoter, characterized by inducing expression of a gene specifically to petals as a promoter of the tobacco (Nicotiana tabacum) anthocyanidin synthase (ANS) gene consisting of the nucleotide sequences of SEQ ID NO: 1 or SEQ ID NO: 2. 제1항에 있어서, 상기 프로모터는 서열번호 3의 염기서열로 이루어진 것인, 꽃잎 특이 프로모터.According to claim 1, wherein the promoter is a petal specific promoter, consisting of the nucleotide sequence of SEQ ID NO: 3. 서열번호 4의 염기서열로 이루어진 프라이머 및 서열번호 5의 염기서열로 이루어진 프라이머를 포함하는, 제1항 또는 제2항의 프로모터 증폭용 프라이머 세트.A primer set for promoter amplification according to claim 1 or 2, comprising a primer consisting of a nucleotide sequence of SEQ ID NO: 4 and a primer consisting of a nucleotide sequence of SEQ ID NO: 5. 제1항 또는 제2항의 프로모터를 포함하는 발현벡터.An expression vector comprising the promoter of claim 1 or 2. 제4항에 있어서, 상기 발현벡터는 하기의 개열지도로 표현되는 pBGWFS7-PNtANS인 발현벡터.
Figure pat00001
The expression vector according to claim 4, wherein the expression vector is pBGWFS7-PNtANS represented by the cleavage map below.
Figure pat00001
제4항의 발현벡터로 형질전환된 형질전환체.A transformant transformed with the expression vector of claim 4. 제6항에 있어서, 상기 형질전환체는 벼, 밀, 보리, 옥수수, 대두, 감자, 밀, 팥, 귀리, 수수, 애기장대, 배추, 무, 고추, 딸기, 토마토, 수박, 오이, 양배추, 참외, 호박, 파, 양파, 당근, 인삼, 담배, 목화, 참깨, 사탕수수, 사탕무우, 들깨, 땅콩, 유채, 사과나무, 배나무, 대추나무, 복숭아, 양다래, 포도, 감귤, 감, 자두, 살구, 바나나, 장미, 글라디올러스, 거베라, 카네이션, 국화, 백합, 튤립, 라이그라스, 레드클로버, 오차드그라스, 알파알파, 톨페스큐 및 페레니얼라이그라스로 이루어진 군에서 선택된 것인,
형질전환체.
The method of claim 6, wherein the transformant is rice, wheat, barley, corn, soybean, potato, wheat, red beans, oats, sorghum, Arabidopsis, cabbage, radish, pepper, strawberry, tomato, watermelon, cucumber, cabbage, Melon, pumpkin, green onion, onion, carrot, ginseng, tobacco, cotton, sesame, sugar cane, beet, perilla, peanut, rapeseed, apple tree, pear tree, jujube tree, peach, tenderloin, grape, citrus, persimmon, plum , Apricot, banana, rose, gladiolus, gerbera, carnation, chrysanthemum, lily, tulip, lygras, redclover, orchardgrass, alphaalpha, tolskew and perennialgrass,
Transformants.
(a) 제1항 또는 제2항의 프로모터, 및 상기 프로모터에 작동 가능하게 연결된 외래 유전자를 포함하는 발현벡터를 제조하는 단계; 및
(b) 상기 제조된 발현벡터를 식물에 도입하여 형질전환시키는 단계를 포함하는,
외래 유전자를 꽃잎 특이적으로 발현시키는 방법.
(a) preparing an expression vector comprising the promoter of claim 1 or 2, and a foreign gene operably linked to said promoter; And
(b) introducing the prepared expression vector into the plant and transforming the plant;
A method of expressing petal-specific foreign genes.
제8항에 있어서,
상기 외래 유전자는 DFR(dihydroflavonol reductase), F3’5’H(flavonoid 3’5’ hydroxylase), ANS(anthocyanidin synthase), PSY(Phytoene synthase), CrtI(phytoene desaturase), MADS box관련 TF유전자 및 꽃의 향기관련유전자로 이루어진 군에서 선택된 1종 이상의 것인, 방법.
The method of claim 8,
The foreign genes include DFR (dihydroflavonol reductase), F3'5'H (flavonoid 3'5 'hydroxylase), ANS (anthocyanidin synthase), PSY (Phytoene synthase), CrtI (phytoene desaturase), MADS box-related TF genes and flowers At least one selected from the group consisting of fragrance related genes.
꽃잎에 특이적으로 발현되며 서열번호 1 또는 서열번호 2의 염기서열로 이루어진 담배(Nicotiana tabacum) ANS(anthocyanidin synthase) 유전자.Tobacco (Nicotiana tabacum) ANS (anthocyanidin synthase) gene, which is expressed specifically in petals and consists of the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2.
KR1020100047543A 2010-05-20 2010-05-20 Petal-specific promoter KR101236314B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100047543A KR101236314B1 (en) 2010-05-20 2010-05-20 Petal-specific promoter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100047543A KR101236314B1 (en) 2010-05-20 2010-05-20 Petal-specific promoter

Publications (2)

Publication Number Publication Date
KR20110127982A true KR20110127982A (en) 2011-11-28
KR101236314B1 KR101236314B1 (en) 2013-02-26

Family

ID=45396403

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100047543A KR101236314B1 (en) 2010-05-20 2010-05-20 Petal-specific promoter

Country Status (1)

Country Link
KR (1) KR101236314B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102081982B1 (en) * 2018-11-16 2020-02-26 대한민국 Marker for Selecting Chrysanthemum morifolium having white flower
CN113278662A (en) * 2021-05-27 2021-08-20 山西运奕道生物科技有限公司 Method for extracting black corn anthocyanin by using inonotus obliquus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646333A (en) * 1994-09-02 1997-07-08 Drexel University Plant promoter useful for directing the expression of foreign proteins to the plant epidermis
DE19644478A1 (en) 1996-10-25 1998-04-30 Basf Ag Leaf-specific expression of genes in transgenic plants
KR101120603B1 (en) * 2009-04-13 2012-06-27 대한민국 Constitutive Promoter PAtBch1 and expression vector comprising the same
KR101161276B1 (en) * 2009-05-26 2012-07-20 대한민국 Vascular tissue-specific promoter and expression vector comprising the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102081982B1 (en) * 2018-11-16 2020-02-26 대한민국 Marker for Selecting Chrysanthemum morifolium having white flower
CN113278662A (en) * 2021-05-27 2021-08-20 山西运奕道生物科技有限公司 Method for extracting black corn anthocyanin by using inonotus obliquus
CN113278662B (en) * 2021-05-27 2022-07-01 山西运奕道生物科技有限公司 Method for extracting black corn anthocyanin by using inonotus obliquus

Also Published As

Publication number Publication date
KR101236314B1 (en) 2013-02-26

Similar Documents

Publication Publication Date Title
KR100685520B1 (en) A seed specific promoter primers for amplification thereof an expression vector comprising the same and a transformant cell
KR100790809B1 (en) A root specific expression promoter
KR101236314B1 (en) Petal-specific promoter
KR101293638B1 (en) BrLRP1 promoter specific for plant tissue
KR20120055911A (en) The promoter from Brassica napus and method for using thereof
KR100803390B1 (en) Root specific promoter
KR101303752B1 (en) BrLRP1 promoter specific for plant tissue
KR100859988B1 (en) Above-Ground Specific Promoter and Above-Ground Specific Expression Method of Target Protein Using the Same
KR102000465B1 (en) Method of improving resistance of Bakanae disease
KR101918590B1 (en) Novel Gene Related to Plant Drought Stress Tolerance and Use Thereof
KR101161276B1 (en) Vascular tissue-specific promoter and expression vector comprising the same
KR101285763B1 (en) Genes Related to ABA Mediated Abiotic Stress Resistances and Transformed Plants with the Same
KR100990369B1 (en) Loss-of-function atubph1 and atubph2 mutant plants increasing resistance against plant stress and transgenic plants transformed by AtUBPH1 and AtUBPH2 promoting plant growth
KR101592357B1 (en) Novel Gene Implicated in Plant Cold Stress Tolerance and Use Thereof
KR102062881B1 (en) A novel gene related to plant drought and cold stress tolerance and use thereof
CN112048490B (en) Cotton silk/threonine protein phosphatase GhTPOPP 6 and coding gene and application thereof
KR101120603B1 (en) Constitutive Promoter PAtBch1 and expression vector comprising the same
KR101190272B1 (en) OSZIP1 Gene and Protein derived from Oryza sativa
KR101303804B1 (en) BrREF promoter specific for cotyledon and hypocotyl
KR101303806B1 (en) BrCYS7 promoter specific for receptacle
WO2003064649A1 (en) Promoter expressing foreign gene in root and shoot apex
KR101648559B1 (en) Novel Gene Related to Removement of an Abnormal Protein and Use Thereof
US20150033408A1 (en) Polypeptide involved in morphogenesis and/or environmental stress resistance of plant
KR101438738B1 (en) Gene Implicated in Abiotic Stress Tolerance and Growth Accelerating and Use Thereof
KR101446253B1 (en) Gene Implicated in Abiotic Stress Tolerance and Growth Accelerating and Use Thereof

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant