KR20110121810A - System for compensating measurement data of particle and method therefor - Google Patents

System for compensating measurement data of particle and method therefor Download PDF

Info

Publication number
KR20110121810A
KR20110121810A KR1020100041273A KR20100041273A KR20110121810A KR 20110121810 A KR20110121810 A KR 20110121810A KR 1020100041273 A KR1020100041273 A KR 1020100041273A KR 20100041273 A KR20100041273 A KR 20100041273A KR 20110121810 A KR20110121810 A KR 20110121810A
Authority
KR
South Korea
Prior art keywords
measurement data
unit
error
lsm
correction coefficient
Prior art date
Application number
KR1020100041273A
Other languages
Korean (ko)
Other versions
KR101202783B1 (en
Inventor
김인원
김조천
이재효
강호성
김서진
손윤석
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020100041273A priority Critical patent/KR101202783B1/en
Publication of KR20110121810A publication Critical patent/KR20110121810A/en
Application granted granted Critical
Publication of KR101202783B1 publication Critical patent/KR101202783B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N2015/1024
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/102Different kinds of radiation or particles beta or electrons

Abstract

PURPOSE: A system and a method for correcting the measurement data of minute particles are provided to calculate a correction coefficient between data simultaneously measured from a beta ray measurement unit and an LSM measurement unit. CONSTITUTION: A system(S) for correcting the measurement data of minute particles comprises a beta ray measurement unit(100), an LSM measurement unit(200), an error removal unit(300), an error calculation unit(400), and a correction coefficient calculation unit(500). The beta ray measurement unit measures the concentration of minute particles using a beta ray absorption method. The LSM measurement unit measures the concentration of the minute particles using a light scattering method. The error removal unit receives the data measured from the beta ray measurement unit and the LSM measurement unit and removes the error value of the measurement data. The error calculation unit receives the measurement data in which the error value is removed and calculates an error between the measurement data. The correction coefficient calculation unit calculates the correction coefficient of the measurement data.

Description

미세입자 측정 데이터 보정 시스템 및 그 방법{SYSTEM FOR COMPENSATING MEASUREMENT DATA OF PARTICLE AND METHOD THEREFOR}Fine particle measurement data correction system and method thereof

본 발명은 미세입자 측정 데이터 보정 시스템 및 그 방법에 관한 것으로서, 베타선 측정부 및 LSM 측정부로부터 동시에 측정된 데이터 간의 보정계수를 산출하고, 이를 LSM 측정부에 대입하여 LSM 측정부의 측정 데이터를 보정함으로써 LSM의 신뢰성을 높이도록 하는 미세입자 측정 데이터 보정 시스템 및 그 방법에 관한 것이다. The present invention relates to a fine particle measurement data correction system and a method thereof, by calculating a correction coefficient between data simultaneously measured from a beta ray measurement unit and an LSM measurement unit, and substituting this into the LSM measurement unit to correct the measurement data of the LSM measurement unit. The present invention relates to a microparticle measurement data correction system and a method for increasing the reliability of an LSM.

환경에 대한 관심이 높아지면서 환경의 모니터링의 중요성이 날로 증대되고 있다. 특히, 눈에 보이지 않는 미세입자의 측정에는 기존의 β-ray 측정기기와 LSM 측정기기 등이 있다. 이러한 β-ray 측정기기는 수천만원에 달하며, LSM 측정기기는 수백만원 수준이다. With increasing environmental concern, the importance of environmental monitoring is increasing day by day. In particular, the measurement of invisible microparticles includes conventional β-ray measuring instruments and LSM measuring instruments. These β-ray measuring instruments cost tens of millions of won, and LSM measuring instruments cost millions of won.

즉, LSM 측정기기의 가격은 β-ray 측정기기의 10분의 1 수준이기 때문에, LSM 측정기기의 신뢰성만 확보된다면 LSM 측정기기의 효용성은 더욱 증가될 것이다. That is, since the price of the LSM measuring device is one tenth of that of the β-ray measuring device, the utility of the LSM measuring device will be further increased if the reliability of the LSM measuring device is secured.

본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 베타선 측정부 및 LSM 측정부로부터 동시에 측정된 데이터의 오차를 계산하고, 오차가 최소인 분석방법을 이용하여 두 측정 데이터의 보정계수를 산출하며, 산출된 보정계수를 LSM 측정부에 대입하여 LSM 측정부의 측정 데이터를 보정함으로써 LSM 측정부의 신뢰성을 높이도록 함에 그 목적이 있다. The present invention has been made in view of the above problems, calculates the error of the data measured simultaneously from the beta-ray measuring unit and the LSM measuring unit, and calculates the correction coefficient of the two measured data using the analysis method with the minimum error The purpose of the present invention is to increase the reliability of the LSM measuring unit by correcting the measurement data of the LSM measuring unit by substituting the calculated correction coefficient into the LSM measuring unit.

이러한 기술적 과제를 달성하기 위한 본 발명은, 베타선 흡수 방식을 이용하여 미세입자의 농도를 측정하는 베타선 측정부; 광산란법을 이용하여 미세입자의 농도를 측정하는 LSM 측정부; 상기 베타선 측정부 및 LSM 측정부를 통해 각각 측정된 데이터를 수신하고, 수신한 두 측정 데이터의 이상치를 제거하는 이상치 제거부; 상기 이상치 제거부를 통해 이상치가 제거된 두 측정 데이터를 수신하고, 오차를 최소화하는 복수의 분석방법을 적용하여 두 측정 데이터의 오차를 계산하는 오차 계산부; 및 상기 오차 계산부에서 적용하는 복수의 분석 방법 중, 두 측정 데이터의 오차 값이 최소인 분석방법을 이용하여 두 측정 데이터의 보정계수를 산출하는 보정계수 산출부; 를 포함하는 것을 특징으로 한다. The present invention for achieving the technical problem, the beta-ray measuring unit for measuring the concentration of the fine particles using the beta-ray absorption method; LSM measuring unit for measuring the concentration of the fine particles using a light scattering method; An outlier removal unit configured to receive the measured data through the beta ray measurement unit and the LSM measurement unit, and to remove the outliers of the received two measurement data; An error calculator configured to receive two measurement data from which the outliers are removed through the outlier removal unit and calculate an error between the two measurement data by applying a plurality of analysis methods for minimizing errors; And a correction coefficient calculator for calculating correction coefficients of the two measurement data by using an analysis method of which the error value of the two measurement data is the minimum among a plurality of analysis methods applied by the error calculation unit. Characterized in that it comprises a.

또한 상기 오차 계산부는, 상기 이상치 제거부를 통해 이상치가 제거된 두 측정 데이터를 수신하고, 수신한 두 측정 데이터에 최소자승(Least Square)법, 비선형최소자승(Nonlinear Least Square)법 및 직교최소자승(Othogonal Least Square)법을 각각 적용하여 오차가 최소화되도록 변수를 각각 보정하는 오차 보정모듈; 및 상기 최소자승(Least Square)법, 비선형최소자승(Nonlinear Least Square)법 및 직교최소자승(Othogonal Least Square)법을 적용한 각각의 경우에 따라 변수가 보정된 두 측정 데이터의 오차 값을 계산하는 오차 계산모듈; 을 포함하는 것을 특징으로 한다.The error calculation unit may receive two measurement data from which the outliers are removed through the outlier removal unit, and the least square method, the nonlinear least square method, and the orthogonal least squares method are applied to the received measurement data. An error correction module for correcting the variables so that the error is minimized by respectively applying an Othogonal Least Square method; And an error for calculating the error values of the two measured data whose parameters are corrected according to the least square method, the nonlinear least square method, and the orthogonal least square method. Calculation module; Characterized in that it comprises a.

또한 상기 오차 계산모듈은, 상기 최소자승(Least Square)법, 비선형최소자승(Nonlinear Least Square)법 및 직교최소자승(Othogonal Least Square)법을 적용한 각각에 대한 두 측정 데이터의 RMSE(Root Mean Square Error : 평균 제곱근 오차) 값을 계산하는 것을 특징으로 한다. The error calculation module may include root mean square error (RMS) of two measurement data for each of the least square method, the nonlinear least square method, and the orthogonal least square method. The mean square root error) is calculated.

또한 상기 보정계수 산출부는, 두 측정 데이터간의 보정계수는 다음의 [수식 1] 을 통해 산출하는 것을 특징으로 하는 미세입자 측정 데이터 보정 시스템. In addition, the correction coefficient calculating unit, fine particle measurement data correction system, characterized in that for calculating the correction coefficient between the two measurement data through the following [Equation 1].

[수식 1][Equation 1]

a=x*ba = x * b

여기서, x는 보정계수, a는 베타선 측정부를 통해 측정된 데이터, b는 LSM 측정부를 통해 측정된 데이터.Here, x is a correction coefficient, a is the data measured through the beta-ray measuring unit, b is the data measured through the LSM measuring unit.

그리고 상기 보정계수 산출부를 통해 산출된 보정계수를 LSM 측정부에 대입하여 LSM 측정부(200)의 측정 데이터를 보정하는 보정계수 대입부; 를 더 포함하는 것을 특징으로 한다. And a correction coefficient substitution unit for correcting the measurement data of the LSM measurement unit 200 by substituting the correction coefficient calculated through the correction coefficient calculation unit into the LSM measurement unit. It characterized in that it further comprises.

한편, 본 발명은 미세입자 측정 데이터 보정 방법에 관한 것으로서, (a) 베타선 측정부가 베타선 흡수 방식(β-ray absorption Method)을 이용하여 미세입자의 농도를 측정하고, LSM 측정부가 광산란법(Light Scattering Method : LSM)을 이용하여 미세입자의 농도를 측정하는 단계; (b) 이상치 제거부가 상기 베타선 측정부 및 LSM 측정부를 통해 각각 측정된 데이터를 수신하고, 수신한 두 측정 데이터의 이상치를 제거하는 단계; (c) 오차 계산부가 상기 이상치 제거부를 통해 이상치가 제거된 두 측정 데이터를 수신하고, 수신한 두 측정 데이터에 최소자승(Least Square)법, 비선형최소자승(Nonlinear Least Square)법 및 직교최소자승(Othogonal Least Square)법을 각각 적용하여 두 측정 데이터의 오차가 최소화되도록 변수를 각각 보정하는 단계; (d) 상기 오차 계산부가 최소자승(Least Square)법, 비선형최소자승(Nonlinear Least Square)법 및 직교최소자승(Othogonal Least Square)법을 적용한 각각의 경우에 따라 변수가 보정된 두 측정 데이터의 RMSE(Root Mean Square Error : 평균 제곱근 오차)을 계산하는 단계; 및 (e) 보정계수 산출부가 상기 최소자승(Least Square)법, 비선형최소자승(Nonlinear Least Square)법 및 직교최소자승(Othogonal Least Square)법 중, 두 측정 데이터의 오차 값이 최소인 방법을 이용하여 두 측정 데이터의 보정계수를 산출하는 단계; 를 포함하는 것을 특징으로 한다. Meanwhile, the present invention relates to a method for calibrating microparticle measurement data, wherein (a) the beta ray measurement unit measures the concentration of microparticles using a beta ray absorption method, and the LSM measurement unit is a light scattering method (Light Scattering). Method: measuring the concentration of microparticles using LSM); (b) an outlier removing unit receiving data measured through the beta ray measuring unit and the LSM measuring unit, respectively, and removing outliers of the received two measurement data; (c) the error calculation unit receives two measurement data from which the outliers are removed through the outlier removal unit, and the received least squares method, a nonlinear least square method, and an orthogonal least squares Correcting the variables so that the error of the two measured data is minimized by respectively applying an Othogonal Least Square method; (d) The RMSE of the two measured data whose parameters are corrected according to each case where the error calculation unit applies the least square method, the nonlinear least square method, and the orthogonal least square method. Calculating a root mean square error; And (e) a correction coefficient calculation unit using a method in which the error value of the two measured data is the least among the least square method, the nonlinear least square method, and the orthogonal least square method. Calculating a correction coefficient of the two measurement data; Characterized in that it comprises a.

그리고 상기 (e) 단계 이후에, (f) 보정계수 대입부가 상기 보정계수 산출부(500)를 통해 산출된 보정계수를 LSM 측정부(200)에 대입하여 LSM 측정부의 측정 데이터를 보정하는 단계; 를 더 포함하는 것을 특징으로 한다. And (e) after step (e), correcting the measurement data of the LSM measurement unit by substituting the correction coefficient calculated by the correction coefficient substitution unit 500 into the LSM measurement unit 200; It characterized in that it further comprises.

상기와 같은 본 발명에 따르면, 각종 입자를 측정하는 측정기기의 보정에 사용 가능하며, PM 등의 미세먼지로부터 각종 환경오염물질 등을 측정하는 기기에 대하여 데이터의 신뢰성을 확보할 수 있는 효과가 있다. According to the present invention as described above, it can be used for the calibration of the measuring device for measuring a variety of particles, there is an effect that can ensure the reliability of data for the device for measuring various environmental pollutants, etc. from fine dust such as PM. .

도 1 은 본 발명에 따른 미세입자 측정 데이터 보정 시스템을 개념적으로 도시한 전체 구성도.
도 2 는 본 발명에 따른 오차 계산부에 관한 세부 구성도.
도 3 은 본 발명에 따른 미세입자 측정 데이터 보정 방법에 관한 전체 흐름도.
1 is an overall configuration diagram conceptually showing a fine particle measurement data correction system according to the present invention.
2 is a detailed block diagram of an error calculator according to the present invention;
3 is an overall flowchart of a method for correcting microparticle measurement data according to the present invention;

본 발명의 구체적 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다. 이에 앞서 본 발명에 관련된 공지 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 구체적인 설명을 생략하였음에 유의해야 할 것이다.Specific features and advantages of the present invention will become more apparent from the following detailed description based on the accompanying drawings. In the meantime, when it is determined that the detailed description of the known functions and configurations related to the present invention may unnecessarily obscure the subject matter of the present invention, it should be noted that the detailed description is omitted.

이하, 첨부된 도면을 참조하여 본 발명을 상세하게 설명한다. Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.

본 발명에 따른 미세입자 측정 데이터 보정 시스템에 관하여 도 1 내지 도 2 를 참조하여 설명하면 다음과 같다. The microparticle measurement data correction system according to the present invention will be described with reference to FIGS. 1 to 2 as follows.

도 1 은 본 발명에 따른 미세입자 측정 데이터 보정 시스템(S)을 개념적으로 도시한 전체 구성도로서, 도시된 바와 같이 베타선 측정부(100), LSM 측정부(200), 이상치 제거부(300), 오차 계산부(400), 보정계수 산출부(500) 및 보정계수 대입부(600)를 포함하여 이루어진다. 1 is an overall configuration diagram conceptually showing a fine particle measurement data correction system (S) according to the present invention, as shown in the beta ray measurement unit 100, LSM measurement unit 200, outlier removal unit 300 , An error calculation unit 400, a correction coefficient calculation unit 500, and a correction coefficient substitution unit 600 are included.

베타선 측정부(100)는 베타선 흡수 방식(β-ray absorption Method)을 이용하여 미세입자의 농도를 측정하는 기능을 수행한다. The beta ray measuring unit 100 performs a function of measuring the concentration of the fine particles by using a beta ray absorption method (β-ray absorption method).

여기서, 베타선 흡수 방식(β-ray absorption Method)은, 대기 중에 부유하고 있는 10μm 이하의 입자상 물질을 일정시간 여과지 위에 포집하여 베타선을 투과시켜 입자상 물질의 중량농도를 연속적으로 측정하는 방법이다. 즉, 베타선을 방출하는 광원으로부터 조사된 베타선이 여과지 위에 포집된 분진을 통과할 때 흡수 소멸되는 베타선의 차로써 측정된다.
Here, the beta ray absorption method (β-ray absorption method) is a method of continuously collecting the particulate matter of 10μm or less suspended in the air on the filter paper for a predetermined time to transmit the beta ray to continuously measure the weight concentration of the particulate matter. That is, the beta rays irradiated from the light source emitting the beta rays are measured as the difference between the beta rays absorbed and extinguished when passing through the dust collected on the filter paper.

또한, LSM 측정부(200)는 광산란법(Light Scattering Method : LSM)을 이용하여 미세입자의 농도를 측정하는 기능을 수행한다. In addition, the LSM measuring unit 200 performs a function of measuring the concentration of the fine particles using a light scattering method (Light Scattering Method: LSM).

대기 중에 부유하고 있는 입자상 물질에 빛을 조사하면 입자상 물질에 의해 빛이 산란하게 되며, 물리적 성질이 동일한 입자상 물질의 빛을 조사하면 산란광의 양은 질량 농도에 비례하게 된다. 즉, 광산란법(Light Scattering Method : LSM)은, 이러한 원리를 이용하여 산란광의 양을 측정하고 그 값으로부터 입자상 물질의 양을 구하는 방법이다.
When light is irradiated to the particulate matter suspended in the air, light is scattered by the particulate matter, and when the light of the particulate matter having the same physical properties is irradiated, the amount of scattered light is proportional to the mass concentration. That is, the Light Scattering Method (LSM) is a method of measuring the amount of scattered light using this principle and obtaining the amount of particulate matter from the value.

또한, 이상치 제거부(300)는 상기 베타선 측정부(100) 및 LSM 측정부(200)를 통해 각각 측정된 데이터를 수신하고, 수신한 두 측정 데이터의 이상치(Outlier)를 제거하는 기능을 수행한다. 여기서, 이상치(Outlier)란 데이터의 신뢰구간을 벗어나는 특이값을 의미한다.
In addition, the outlier removing unit 300 receives the measured data through the beta ray measuring unit 100 and the LSM measuring unit 200, and removes the outliers of the received two measurement data. . Here, the outlier means an outlier that is outside the confidence interval of the data.

또한, 오차 계산부(400)는 상기 이상치 제거부(300)를 통해 이상치가 제거된 두 측정 데이터를 수신하고, 오차를 최소화하는 복수의 분석방법을 적용하여 두 측정 데이터의 오차를 계산하는 기능을 수행하는 바, 도 2 에 도시된 바와 같이 오차 보정모듈(410) 및 오차 계산모듈(420)를 포함한다.In addition, the error calculation unit 400 receives the two measurement data from which the outliers are removed through the outlier removal unit 300 and calculates the errors of the two measurement data by applying a plurality of analysis methods to minimize the error. As shown in FIG. 2, an error correction module 410 and an error calculation module 420 are included.

구체적으로, 오차 보정모듈(410)은 상기 이상치 제거부(300)를 통해 이상치가 제거된 두 측정 데이터를 수신하고, 수신한 두 측정 데이터에 최소자승(Least Square)법, 비선형최소자승(Nonlinear Least Square)법 및 직교최소자승(Othogonal Least Square)법을 각각 적용하여 오차가 최소화되도록 변수를 각각 보정한다. In detail, the error correction module 410 receives two measurement data from which the outliers are removed through the outlier removal unit 300, and a least square method and a nonlinear least square to the received two measurement data. By applying the Square method and the Orthogonal Least Square method, the variables are respectively corrected to minimize the error.

오차 계산모듈(420)은 최소자승(Least Square)법, 비선형최소자승(Nonlinear Least Square)법 및 직교최소자승(Othogonal Least Square)법을 적용한 각각의 경우에 따라 변수가 보정된 두 측정 데이터의 오차 값을 계산한다. The error calculation module 420 uses the least square method, the nonlinear least square method, and the orthogonal least square method. Calculate the value.

즉, 오차 계산모듈(420)은 상기 최소자승(Least Square)법, 비선형최소자승(Nonlinear Least Square)법 및 직교최소자승(Othogonal Least Square)법을 적용한 각각에 대한 두 측정 데이터의 RMSE(Root Mean Square Error : 평균 제곱근 오차) 값을 계산한다.
That is, the error calculation module 420 is a root mean of the two measurement data for each of the least square method, nonlinear least square method and orthogonal least square method Square Error: Calculates the mean square root error.

또한, 보정계수 산출부(500)는 상기 오차 계산부(400)에서 적용하는 복수의 분석 방법 중, 두 측정 데이터의 오차 값이 최소인 분석방법을 이용하여 두 측정 데이터의 보정계수를 산출하는 기능을 수행한다.In addition, the correction coefficient calculation unit 500 calculates a correction coefficient of the two measurement data by using an analysis method of which the error value of the two measurement data is the minimum among the plurality of analysis methods applied by the error calculation unit 400. Do this.

즉, 동일한 환경에서 베타선 측정부(100)와 LSM 측정부(200)를 통해 측정하였으므로, 두 측정 데이터간 보정계수는 다음의 [수식 1] 을 통해 구할 수 있다. That is, since the beta-ray measuring unit 100 and the LSM measuring unit 200 were measured in the same environment, the correction coefficient between the two measurement data can be obtained through Equation 1 below.

[수식 1][Equation 1]

a=x*ba = x * b

여기서, x는 보정계수이며, a는 베타선 측정부(100)를 통해 측정된 데이터이며, b는 LSM 측정부(200)를 통해 측정된 데이터이다.
Here, x is a correction coefficient, a is data measured through the beta-ray measuring unit 100, b is data measured through the LSM measuring unit 200.

그리고, 보정계수 대입부(600)는 상기 보정계수 산출부(500)를 통해 산출된 보정계수를 LSM 측정부(200)에 대입하여, LSM 측정부(200)의 측정 데이터를 보정하는 기능을 수행한다.
The correction coefficient substitution unit 600 substitutes the correction coefficient calculated through the correction coefficient calculation unit 500 into the LSM measurement unit 200 to perform a function of correcting the measurement data of the LSM measurement unit 200. do.

정리하면, 베타선 측정부(100)와 LSM 측정부(200)로부터 각각 측정된 데이터를 바탕으로 두 데이터간의 보정계수를 산출하여 LSM 측정부(200)에 대입하여 LSM 측정 데이터를 보정함으로써, 종국적으로는 LSM 측정부(200)의 신뢰성을 높일 수 있다.
In summary, the correction coefficient between the two data is calculated based on the data measured by the beta-ray measuring unit 100 and the LSM measuring unit 200, and the LSM measuring unit 200 is corrected to correct the LSM measurement data. May increase the reliability of the LSM measuring unit 200.

상술한 시스템을 이용한 본 발명에 따른 미세입자 측정 데이터 보정 방법에 관하여 도 3 을 참조하여 설명하면 다음과 같다. Referring to Figure 3 with respect to the fine particle measurement data correction method according to the present invention using the system described above is as follows.

도 3 은 본 발명에 따른 미세입자 측정 데이터 보정 방법에 관한 전체 흐름도로서, 베타선 측정부(100)는 베타선 흡수 방식(β-ray absorption Method)을 이용하여 미세입자의 농도를 측정하고, LSM 측정부(200)는 광산란법(Light Scattering Method : LSM)을 이용하여 미세입자의 농도를 측정한다(S10).3 is a flowchart illustrating a method for correcting microparticle measurement data according to the present invention, wherein the beta ray measuring unit 100 measures the concentration of microparticles using a beta ray absorption method (β-ray absorption method), and an LSM measuring unit. 200 measures the concentration of the fine particles using a light scattering method (Light Scattering Method: LSM) (S10).

이후, 이상치 제거부(300)는 상기 베타선 측정부(100) 및 LSM 측정부(200)를 통해 각각 측정된 데이터를 수신하고, 수신한 두 측정 데이터의 이상치(Outlier)를 제거한다(S20). Thereafter, the outlier removing unit 300 receives the measured data through the beta ray measuring unit 100 and the LSM measuring unit 200, and removes the outliers of the received two measurement data (S20).

뒤이어, 오차 계산부(400)의 오차 보정모듈(410)은 상기 이상치 제거부(300)를 통해 이상치가 제거된 두 측정 데이터를 수신하고, 수신한 두 측정 데이터에 최소자승(Least Square)법, 비선형최소자승(Nonlinear Least Square)법 및 직교최소자승(Othogonal Least Square)법을 각각 적용하여 두 측정 데이터의 오차가 최소화되도록 변수를 각각 보정한다(S30).Subsequently, the error correction module 410 of the error calculation unit 400 receives two measurement data from which the outliers are removed through the outlier removal unit 300, and the least square method is applied to the received measurement data. Nonlinear least squares and orthogonal least squares are applied respectively to correct the variables so that the error of the two measured data is minimized (S30).

또한, 오차 계산부(400)의 오차 계산모듈(420)은 최소자승(Least Square)법, 비선형최소자승(Nonlinear Least Square)법 및 직교최소자승(Othogonal Least Square)법을 적용한 각각의 경우에 따라 변수가 보정된 두 측정 데이터의 오차 값을 계산한다(S40). In addition, the error calculation module 420 of the error calculation unit 400 according to each case of applying the least square method, nonlinear least square method and orthogonal least square method The error value of the two measurement data whose variables are corrected is calculated (S40).

즉, 상기 최소자승(Least Square)법, 비선형최소자승(Nonlinear Least Square)법 및 직교최소자승(Othogonal Least Square)법을 적용한 각각에 대한 두 측정 데이터의 RMSE(Root Mean Square Error : 평균 제곱근 오차) 값을 계산한다. That is, the root mean square error (RMS) of the two measured data for each of the least square method, the nonlinear least square method, and the orthogonal least square method. Calculate the value.

뒤이어, 보정계수 산출부(500)는 상기 최소자승(Least Square)법, 비선형최소자승(Nonlinear Least Square)법 및 직교최소자승(Othogonal Least Square)법 중, 두 측정 데이터의 오차 값이 최소인 방법을 이용하여 두 측정 데이터의 보정계수를 산출한다(S50).Subsequently, the correction coefficient calculation unit 500 is a method in which the error value of the two measured data is the minimum among the least square method, the nonlinear least square method, and the orthogonal least square method. Using the above to calculate the correction coefficient of the two measurement data (S50).

그리고, 보정계수 대입부(600)는 상기 보정계수 산출부(500)를 통해 산출된 보정계수를 LSM 측정부(200)에 대입함으로써 LSM 측정부(200)의 측정 데이터를 보정한다(S60).
The correction coefficient substitution unit 600 corrects the measurement data of the LSM measurement unit 200 by substituting the correction coefficient calculated through the correction coefficient calculation unit 500 into the LSM measurement unit 200 (S60).

이상으로 본 발명의 기술적 사상을 예시하기 위한 바람직한 실시예와 관련하여 설명하고 도시하였지만, 본 발명은 이와 같이 도시되고 설명된 그대로의 구성 및 작용에만 국한되는 것이 아니며, 기술적 사상의 범주를 일탈함이 없이 본 발명에 대해 다수의 변경 및 수정이 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서, 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주되어야 할 것이다. As described above and described with reference to a preferred embodiment for illustrating the technical idea of the present invention, the present invention is not limited to the configuration and operation as shown and described as described above, it is a deviation from the scope of the technical idea It will be understood by those skilled in the art that many modifications and variations can be made to the invention without departing from the scope of the invention. Accordingly, all such suitable changes and modifications and equivalents should be considered to be within the scope of the present invention.

100: 베타선 측정부 200: LSM 측정부
300: 이상치 제거부 400: 오차 계산부
410: 오차 보정모듈 420: 오차 계산모듈
500: 보정계수 산출부 600: 보정계수 대입부
100: beta-ray measuring unit 200: LSM measuring unit
300: outlier removal unit 400: error calculation unit
410: error correction module 420: error calculation module
500: correction coefficient calculation unit 600: correction coefficient substitution unit

Claims (7)

미세입자 측정 데이터 보정 시스템에 있어서,
베타선 흡수 방식을 이용하여 미세입자의 농도를 측정하는 베타선 측정부(100);
광산란법을 이용하여 미세입자의 농도를 측정하는 LSM 측정부(200);
상기 베타선 측정부(100) 및 LSM 측정부(200)를 통해 각각 측정된 데이터를 수신하고, 수신한 두 측정 데이터의 이상치(Outlier)를 제거하는 이상치 제거부(300);
상기 이상치 제거부(300)를 통해 이상치가 제거된 두 측정 데이터를 수신하고, 오차를 최소화하는 복수의 분석방법을 적용하여 두 측정 데이터의 오차를 계산하는 오차 계산부(400); 및
상기 오차 계산부(400)에서 적용하는 복수의 분석 방법 중, 두 측정 데이터의 오차 값이 최소인 분석방법을 이용하여 두 측정 데이터의 보정계수를 산출하는 보정계수 산출부(500); 를 포함하는 것을 특징으로 하는 미세입자 측정 데이터 보정 시스템.
In the fine particle measurement data correction system,
Beta-ray measuring unit 100 for measuring the concentration of the fine particles using a beta-ray absorption method;
LSM measuring unit 200 for measuring the concentration of the fine particles using a light scattering method;
An outlier removal unit 300 for receiving the measured data through the beta ray measuring unit 100 and the LSM measuring unit 200 and removing outliers of the received two measurement data;
An error calculator 400 which receives two measurement data from which an outlier is removed through the outlier removal unit 300 and calculates an error between the two measurement data by applying a plurality of analysis methods for minimizing an error; And
A correction coefficient calculation unit 500 for calculating a correction coefficient of the two measurement data by using an analysis method of which the error value of the two measurement data is the minimum among a plurality of analysis methods applied by the error calculation unit 400; Microparticle measurement data correction system comprising a.
제 1 항에 있어서,
상기 오차 계산부(400)는,
상기 이상치 제거부(300)를 통해 이상치가 제거된 두 측정 데이터를 수신하고, 수신한 두 측정 데이터에 최소자승(Least Square)법, 비선형최소자승(Nonlinear Least Square)법 및 직교최소자승(Othogonal Least Square)법을 각각 적용하여 오차가 최소화되도록 변수를 각각 보정하는 오차 보정모듈(410); 및
상기 최소자승(Least Square)법, 비선형최소자승(Nonlinear Least Square)법 및 직교최소자승(Othogonal Least Square)법을 적용한 각각의 경우에 따라 변수가 보정된 두 측정 데이터의 오차 값을 계산하는 오차 계산모듈(420); 을 포함하는 것을 특징으로 하는 미세입자 측정 데이터 보정 시스템.
The method of claim 1,
The error calculation unit 400,
Receive two measurement data from which the outliers are removed through the outlier removal unit 300, and use the least square method, nonlinear least square method, and orthogonal least square to the received two measurement data. An error correction module 410 for correcting the variables so that the error is minimized by applying the Square method; And
Error calculation for calculating error values of two measured data whose variables are corrected according to each of the least square method, the nonlinear least square method, and the orthogonal least square method. Module 420; Microparticle measurement data correction system comprising a.
제 2 항에 있어서,
상기 오차 계산모듈(420)은,
상기 최소자승(Least Square)법, 비선형최소자승(Nonlinear Least Square)법 및 직교최소자승(Othogonal Least Square)법을 적용한 각각에 대한 두 측정 데이터의 RMSE(Root Mean Square Error : 평균 제곱근 오차) 값을 계산하는 것을 특징으로 하는 미세입자 측정 데이터 보정 시스템.
The method of claim 2,
The error calculation module 420,
Root Mean Square Error (RMS) values of two measurement data for each of the least square method, the nonlinear least square method, and the orthogonal least square method Microparticle measurement data correction system, characterized in that the calculation.
제 1 항에 있어서,
상기 보정계수 산출부(500)는,
두 측정 데이터간의 보정계수는 다음의 [수식 1] 을 통해 산출하는 것을 특징으로 하는 미세입자 측정 데이터 보정 시스템.
[수식 1]
a=x*b
여기서, x는 보정계수, a는 베타선 측정부(100)를 통해 측정된 데이터, b는 LSM 측정부(200)를 통해 측정된 데이터.
The method of claim 1,
The correction coefficient calculation unit 500,
Correction coefficient between the two measurement data is a fine particle measurement data correction system, characterized in that calculated through the following [Equation 1].
[Equation 1]
a = x * b
Here, x is a correction coefficient, a is the data measured by the beta-ray measuring unit 100, b is the data measured by the LSM measuring unit 200.
제 1 항에 있어서,
상기 보정계수 산출부(500)를 통해 산출된 보정계수를 LSM 측정부(200)에 대입하여 LSM 측정부(200)의 측정 데이터를 보정하는 보정계수 대입부(600); 를 더 포함하는 것을 특징으로 하는 미세입자 측정 데이터 보정 시스템.
The method of claim 1,
A correction coefficient substitution unit 600 for correcting the measurement data of the LSM measurement unit 200 by substituting the correction coefficient calculated by the correction coefficient calculation unit 500 into the LSM measurement unit 200; Microparticle measurement data correction system further comprises.
미세입자 측정 데이터 보정 방법에 있어서,
(a) 베타선 측정부(100)가 베타선 흡수 방식(β-ray absorption Method)을 이용하여 미세입자의 농도를 측정하고, LSM 측정부(200)가 광산란법(Light Scattering Method : LSM)을 이용하여 미세입자의 농도를 측정하는 단계;
(b) 이상치 제거부(300)가 상기 베타선 측정부(100) 및 LSM 측정부(200)를 통해 각각 측정된 데이터를 수신하고, 수신한 두 측정 데이터의 이상치(Outlier)를 제거하는 단계;
(c) 오차 계산부(400)가 상기 이상치 제거부(300)를 통해 이상치가 제거된 두 측정 데이터를 수신하고, 수신한 두 측정 데이터에 최소자승(Least Square)법, 비선형최소자승(Nonlinear Least Square)법 및 직교최소자승(Othogonal Least Square)법을 각각 적용하여 두 측정 데이터의 오차가 최소화되도록 변수를 각각 보정하는 단계;
(d) 상기 오차 계산부(400)가 최소자승(Least Square)법, 비선형최소자승(Nonlinear Least Square)법 및 직교최소자승(Othogonal Least Square)법을 적용한 각각의 경우에 따라 변수가 보정된 두 측정 데이터의 RMSE(Root Mean Square Error : 평균 제곱근 오차)을 계산하는 단계; 및
(e) 보정계수 산출부(500)가 상기 최소자승(Least Square)법, 비선형최소자승(Nonlinear Least Square)법 및 직교최소자승(Othogonal Least Square)법 중, 두 측정 데이터의 오차 값이 최소인 방법을 이용하여 두 측정 데이터의 보정계수를 산출하는 단계; 를 포함하는 것을 특징으로 하는 미세입자 측정 데이터 보정 방법.
In the fine particle measurement data correction method,
(a) The beta ray measurement unit 100 measures the concentration of the fine particles using the beta ray absorption method (β-ray absorption method), and the LSM measurement unit 200 using the light scattering method (LSM) Measuring the concentration of microparticles;
(b) the outlier removing unit 300 receiving the measured data through the beta ray measuring unit 100 and the LSM measuring unit 200 and removing outliers of the received two measurement data;
(c) The error calculation unit 400 receives the two measurement data from which the outliers are removed through the outlier removal unit 300, and the least square method and nonlinear least squares are applied to the received measurement data. Correcting the variables so that the error of the two measured data is minimized by applying the Square method and the Orthogonal Least Square method, respectively;
(d) The error calculation unit 400 has two variables whose parameters are corrected according to each of the least square method, the nonlinear least square method, and the orthogonal least square method. Calculating a root mean square error (RMS) of measured data; And
(e) The correction coefficient calculation unit 500 has a minimum error value of the two measured data among the least square method, nonlinear least square method, and orthogonal least square method. Calculating a correction coefficient of the two measurement data using the method; Microparticle measurement data correction method comprising a.
제 6 항에 있어서,
상기 (e) 단계 이후에,
(f) 보정계수 대입부(600)가 상기 보정계수 산출부(500)를 통해 산출된 보정계수를 LSM 측정부(200)에 대입하여 LSM 측정부(200)의 측정 데이터를 보정하는 단계; 를 더 포함하는 것을 특징으로 하는 미세입자 측정 데이터 보정 방법.
The method according to claim 6,
After step (e),
(f) correcting the measurement data of the LSM measuring unit 200 by inserting the correction coefficient 600 into the LSM measuring unit 200 by applying the correction coefficient calculated by the correction coefficient calculating unit 500 to the LSM measuring unit 200; Microparticle measurement data correction method further comprising a.
KR1020100041273A 2010-05-03 2010-05-03 System for compensating measurement data of particle KR101202783B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100041273A KR101202783B1 (en) 2010-05-03 2010-05-03 System for compensating measurement data of particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100041273A KR101202783B1 (en) 2010-05-03 2010-05-03 System for compensating measurement data of particle

Publications (2)

Publication Number Publication Date
KR20110121810A true KR20110121810A (en) 2011-11-09
KR101202783B1 KR101202783B1 (en) 2012-11-19

Family

ID=45392537

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100041273A KR101202783B1 (en) 2010-05-03 2010-05-03 System for compensating measurement data of particle

Country Status (1)

Country Link
KR (1) KR101202783B1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101509599B1 (en) * 2013-10-29 2015-04-08 동의대학교 산학협력단 Apparatus and Method for Noise Reduction of Particle Measurement System
CN105334147A (en) * 2015-12-04 2016-02-17 深圳睿境环保科技有限公司 Online particle monitoring system and method based on beta ray method and light scattering method
KR20170122043A (en) * 2016-04-26 2017-11-03 인천대학교 산학협력단 Real-time indoor air quality outlier smoothing method and apparatus
KR20180031387A (en) * 2016-09-20 2018-03-28 가톨릭대학교 산학협력단 Apparatus for measuring concentrations of separated fibrous particles in real time
CN108645767A (en) * 2018-05-02 2018-10-12 华中科技大学 A method of coupling light scattering and beta-ray measurement coal-fired flue-gas particulate matter quality concentration
CN109238934A (en) * 2018-10-15 2019-01-18 中煤科工集团重庆研究院有限公司 Consider the β ray attenuation method particle concentration monitoring method and system of filter membrane deformation
KR20200003664A (en) * 2018-07-02 2020-01-10 주식회사 케이티 Apparatus and method for generating correction logic of air quality data
KR20200071796A (en) * 2018-11-29 2020-06-22 주식회사 아림사이언스 Apparatus for measuring air quality and system therefor
KR102158932B1 (en) * 2019-03-21 2020-09-22 건국대학교 산학협력단 Concentration Compension System of a Particulate Matter Analyzer and Method Thereof
KR102259368B1 (en) * 2019-11-28 2021-06-01 조선대학교산학협력단 Fine dust optical property determination method and fine dust analysis device
WO2021242027A1 (en) * 2020-05-27 2021-12-02 주식회사 아림사이언스 Apparatus and system for measuring air quality
KR20240012016A (en) 2022-07-20 2024-01-29 한국전력공사 System and Method for compensating moisture content of dust discharged from stack

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101948236B1 (en) * 2018-05-18 2019-02-14 케이웨더(주) System for providing fine dust information according to town area
KR102229385B1 (en) * 2021-01-13 2021-03-18 주식회사 필라스크리에이션 Automatic fine dust measurement device having function of humidity correction through peltier element type dehumidification
KR102229395B1 (en) * 2021-01-13 2021-03-18 주식회사 필라스크리에이션 Automatic fine dust measurement device having function of humidity correction through compressor type dehumidification
KR102613758B1 (en) * 2021-11-29 2023-12-20 주식회사 필라스크리에이션 Method for Compensating Measurement Error Data of Fine Dust Light Scattering Senser

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101509599B1 (en) * 2013-10-29 2015-04-08 동의대학교 산학협력단 Apparatus and Method for Noise Reduction of Particle Measurement System
CN105334147A (en) * 2015-12-04 2016-02-17 深圳睿境环保科技有限公司 Online particle monitoring system and method based on beta ray method and light scattering method
KR20170122043A (en) * 2016-04-26 2017-11-03 인천대학교 산학협력단 Real-time indoor air quality outlier smoothing method and apparatus
KR20180031387A (en) * 2016-09-20 2018-03-28 가톨릭대학교 산학협력단 Apparatus for measuring concentrations of separated fibrous particles in real time
CN108645767A (en) * 2018-05-02 2018-10-12 华中科技大学 A method of coupling light scattering and beta-ray measurement coal-fired flue-gas particulate matter quality concentration
KR20200003664A (en) * 2018-07-02 2020-01-10 주식회사 케이티 Apparatus and method for generating correction logic of air quality data
CN109238934A (en) * 2018-10-15 2019-01-18 中煤科工集团重庆研究院有限公司 Consider the β ray attenuation method particle concentration monitoring method and system of filter membrane deformation
KR20200071796A (en) * 2018-11-29 2020-06-22 주식회사 아림사이언스 Apparatus for measuring air quality and system therefor
KR102158932B1 (en) * 2019-03-21 2020-09-22 건국대학교 산학협력단 Concentration Compension System of a Particulate Matter Analyzer and Method Thereof
KR102259368B1 (en) * 2019-11-28 2021-06-01 조선대학교산학협력단 Fine dust optical property determination method and fine dust analysis device
WO2021242027A1 (en) * 2020-05-27 2021-12-02 주식회사 아림사이언스 Apparatus and system for measuring air quality
KR20240012016A (en) 2022-07-20 2024-01-29 한국전력공사 System and Method for compensating moisture content of dust discharged from stack

Also Published As

Publication number Publication date
KR101202783B1 (en) 2012-11-19

Similar Documents

Publication Publication Date Title
KR101202783B1 (en) System for compensating measurement data of particle
Manikonda et al. Laboratory assessment of low-cost PM monitors
US10145827B2 (en) Distributed sensor system with remote sensor nodes and centralized data processing
US10564086B2 (en) Particle concentration measuring apparatus with humidity correction
US9291608B2 (en) Calibration method for distributed sensor system
KR101751642B1 (en) Method for correction of extinction coefficient obtained from atmospheric Light Detection And Ranging(LIDAR)
DE602007010329D1 (en) APPARATUS AND METHOD FOR AMBIENT MONITORING
KR102023279B1 (en) Method for correcting of particulate matter sensor and apparatus therefor
JP2016511483A (en) Distributed sensor system with remote sensor node and centralized data processing
CN107655800B (en) PM2.5 online monitoring system and checking and calibrating method thereof
Loh et al. Calibration of portable particulate matter–monitoring device using web query and machine learning
KR20200003664A (en) Apparatus and method for generating correction logic of air quality data
CN105092442B (en) A kind of fine particle measuring device and its measurement method
Lee Performance test of microaeth® AE51 at concentrations lower than 2 μg/m3 in indoor laboratory
CN205103129U (en) Novel particulate matter sensor
Liu et al. Individualized calibration of industrial-grade gas sensors in air quality sensing system
CN107631963B (en) Atmospheric particulate matter mass compensation method and terminal
Javed et al. Laboratory calibration of a light scattering soiling sensor
CN104459758A (en) Method for stabilizing spectrum of ray detection spectrometer
CN107884319B (en) System and method for calibrating dust sensor
JP6968048B2 (en) Correction method of particle size distribution measuring device, calibration method of particle size distribution measuring device, particle size distribution measuring device, and gas analysis system
CN210037540U (en) Particulate matter concentration detection device
Zhou et al. Air temperature equation derived from sonic temperature and water vapor mixing ratio for turbulent airflow sampled through closed-path eddy-covariance flux systems
JP2013148376A (en) Measuring device
CN105203439A (en) Air purification control method and device

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160115

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161102

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee