KR20110120563A - Stable supported liquid membrane for the pervaporative recovery of organics - Google Patents

Stable supported liquid membrane for the pervaporative recovery of organics Download PDF

Info

Publication number
KR20110120563A
KR20110120563A KR1020100040032A KR20100040032A KR20110120563A KR 20110120563 A KR20110120563 A KR 20110120563A KR 1020100040032 A KR1020100040032 A KR 1020100040032A KR 20100040032 A KR20100040032 A KR 20100040032A KR 20110120563 A KR20110120563 A KR 20110120563A
Authority
KR
South Korea
Prior art keywords
butanol
pervaporation
slm
recovery
liquid membrane
Prior art date
Application number
KR1020100040032A
Other languages
Korean (ko)
Inventor
정욱진
비바스 엘리에젤
정두근
카스콘 허큐레스
벨트란 아넬
니솔라 그레이스
한미덕
이은주
Original Assignee
명지대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 명지대학교 산학협력단 filed Critical 명지대학교 산학협력단
Priority to KR1020100040032A priority Critical patent/KR20110120563A/en
Publication of KR20110120563A publication Critical patent/KR20110120563A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/38Liquid-membrane separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/368Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/448Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by pervaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE: A stable supported liquid membrane for collecting the pervaporation of organic materials is provided to improve the performance of the pervaporation and to improve the collecting efficiency of butanol from a multi-components-based liquid mixture. CONSTITUTION: A stable supported liquid membrane for collecting the pervaporation of organic materials includes oleyl alcohol and poly(octyl methyl) siloxane. The oleyl alcohol functions as an extracting agent. The poly(octyl methyl) siloxane functions as stabilization diluents. The organic materials are butanol. The butanol is collected from a bi-components or multi-components-based liquid mixture.

Description

유기물의 투과증발 회수용 안정화 지지 액막{STABLE SUPPORTED LIQUID MEMBRANE FOR THE PERVAPORATIVE RECOVERY OF ORGANICS}Stabilized support liquid membrane for permeation recovery of organic matter {STABLE SUPPORTED LIQUID MEMBRANE FOR THE PERVAPORATIVE RECOVERY OF ORGANICS}

본 발명은 수용액 및 모델 ABE 발효액과 같은 다중성분 액상 혼합물 시스템으로부터 유기물, 특히 부탄올의 투과증발(pervaporative) 회수에 사용되는, 추출제로서 올레일 알코올(oleyl alchohol; OA)을, 안정화 희석제로서 폴리(옥틸메틸)실록산(poly(octylmethyl)siloxane; POMS)을 포함하는 안정화 지지 액막(stable supported liquid membrane; SLM)에 관한 것이다.The present invention uses oleyl alchohol (OA) as an extractant, which is used for pervaporative recovery of organics, especially butanol, from multicomponent liquid mixture systems such as aqueous solutions and model ABE fermentation broths, It relates to a stable supported liquid membrane (SLM) comprising an octylmethyl siloxane (poly (octylmethyl) siloxane (POMS)).

환경에 대한 관심 및 원유 고갈에 따른 경제 문제로 인해, 현재 부탄올과 같은 재생 자원을 대체 수송 연료로 변환시키는 기술을 개발하기 위해 많은 연구가 진행되고 있다. 부탄올은 낮은 레이드 증기압(Reid vapor pressure), 높은 에너지 함량 및 높은 혼합능(blending capacity)을 가지고 있을 뿐만 아니라 에탄올보다 더 큰 소수성을 나타내고 있어 에탄올보다 연료로서 더 뛰어난 가치를 갖는다 (Brekke, K. Butanol: an energy alternative?, Ethanol Today, 2007, 36-39, http://www.ethanol.org/pdf/contentmgmt/March_07_ET_second ary.pdf). 아세톤-부탄올-에탄올(acetone-butanol-ethanol; ABE) 발효를 통해 부탄올 및 다른 고가치의 액체연료를 산업적으로 생산하는 기술이 많은 관심을 얻고 있다. 그러나, ABE 발효의 총 용매 농도는 약 1-2% (w/v)로 상당히 낮아 (Jones, D.T. and Woods, D.R. Acetone-butanol fermentation revisited, Microbiological Reviews, 50, 1986, 484-524; Qureshi, N., Meagher, M.M., Huang, J. and Hutkins, R.W. Acetone butanol ethanol (ABE) recovery by pervaporation using silicalite-silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum, Journal of Membrane Science, 187, 2001, 93-102), 증류시 비경제적 용매 회수율을 나타낸다.Due to environmental concerns and economic problems due to crude oil depletion, many studies are currently underway to develop technologies for converting renewable resources such as butanol into alternative transport fuels. Butanol not only has low reid vapor pressure, high energy content and high blending capacity but also shows greater hydrophobicity than ethanol, making it more valuable as fuel than ethanol (Brekke, K. Butanol : an energy alternative ?, Ethanol Today , 2007, 36-39, http://www.ethanol.org/pdf/contentmgmt/March_07_ET_second ary.pdf). There is much interest in the technology for industrially producing butanol and other high value liquid fuels through acetone-butanol-ethanol (ABE) fermentation. However, the total solvent concentration of ABE fermentation is significantly lower, about 1-2% (w / v) (Jones, DT and Woods, DR Acetone-butanol fermentation revisited, Microbiological Reviews , 50, 1986, 484-524; Qureshi, N., Meagher, MM, Huang, J. and Hutkins, RW Acetone butanol ethanol (ABE) recovery by pervaporation using silicalite-silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum , Journal of Membrane Science , 187, 2001, 93-102), which shows uneconomical solvent recovery in distillation.

현재까지 개발된 용매 회수 기술 중에서, 투과증발은 에너지 효율이 좋고 희석된 용액으로부터 유기물을 매우 용이하게 분리하는 고선별성 막을 사용하므로 가장 비용효율이 좋은 대안이라고 여겨진다 (Shao, P. and Huang, R.Y.M. Polymeric membrane pervaporation, Journal of Membrane Science, 287, 2007, 162-179). Of the solvent recovery techniques developed to date, pervaporation is considered to be the most cost-effective alternative since it uses a highly selective membrane that is very energy efficient and separates organics from diluted solutions very easily (Shao, P. and Huang, RYM Polymeric). membrane pervaporation, Journal of Membrane Science , 287, 2007, 162-179).

희석된 유기 용액의 투과증발에서 폴리(디메틸)실록산 (poly(dimethyl)siloxane; PDMS), 폴리비닐 알코올 (polyvinyl alcohol; PVA) 및 폴리테트라플루오로에틸렌 (polytetrafluoroethylene; PTFE)과 같은 다양한 막(및 이들의 조합)을 사용한 여러 연구가 이미 보고되었다 (Qureshi, N. and Blaschek, H.P. Butanol recovery from model solution/fermentation broth by pervaporation: evaluation of membrane performance, Biomass and Bioenergy, 17, 1999, 175-184). 실리카라이트, 알루미나 및 그외 제올라이트 막과 같은 세라믹 막(및 이들의 조합) 및 올레일 알코올(oleyl alcohol; OA) (Matsumura, M. and Kataoka, H. Separation of dilute aqueous butanol and acetone solutions by pervaporation through liquid membranes, Biotechnology and Bioengineering, 30, 1987, 887-895), 데칸올 (Fahim, M.A., Qader, A. and Hughes, M.A. Extraction equilibria of acetic and propionic acids from dilute aqueous solution by several solvents, Separation Science and Technology, 27, 1992, 1809-1821), 및 트리-n-옥틸아민(tri-n-octylamine; TOA) (Qin, Y., Sheth, J.P. and Sirkar, K.K. Pervaporation membrane that are highly selective for acetic acid over water, Industrial and Engineering Chemistry Research, 42, 2003, 582-595; Thongsukmak, A. and Sirkar, K.K. Pervaporation membranes highly selective for solvents present in fermentation broths, Journal of Membrane Science, 302, 2007, 45-48)과 같은 몇몇 유기 용매-기저 지지 액막 (solvent-based supported liquid membranes; SLMs) 또한 실험되었다. 이러한 막 중에서, SLM이 예외적으로 높은 선별성 및 질량 플럭스에 의해 유기 화합물의 분리 및 농축을 위해 널리 연구되었다 (Kocherginsky, N.M., Yang, Q. and Seelam, L. Recent advances in supported liquid membrane, Separation and Purification Technology, 53, 2007, 171-177). 그러나, SLM의 불충분한 안정성으로 인해 실제 사용하기는 어려운 실정이다. 투과증발 동안 액막(Liquid membrane; LM)이 손실되어 플럭스 및 선별성을 감소시킬 수 있으며 이는 공급 용액의 오염을 야기할 수 있다 (Matsumura, M. and Kataoka, H. Separation of dilute aqueous butanol and acetone solutions by pervaporation through liquid membranes, Biotechnology and Bioengineering, 30, 1987, 887-895; Zha, F.F., Fane, A.G. and Fell, C.J.D. Instability mechanisms of supported liquid membranes in phenol transport process, Journal of Membrane Science, 107, 1995, 59-74; Thongsukmak, A. and Sirkar, K.K. Pervaporation membranes highly selective for solvents present in fermentation broths, Journal of Membrane Science, 302, 2007, 45-58; Kocherginsky et al., 2007). Various membranes (and these, such as poly (dimethyl) siloxane (PDMS), polyvinyl alcohol (PVA) and polytetrafluoroethylene (PTFE)) in the pervaporation of diluted organic solutions Several studies have already been reported (Qureshi, N. and Blaschek, HP Butanol recovery from model solution / fermentation broth by pervaporation: evaluation of membrane performance, Biomass). and Bioenergy , 17, 1999, 175-184). Ceramic membranes (and combinations thereof) and oleyl alcohols (OA) (Matsumura, M. and Kataoka, H. Separation of dilute aqueous butanol and acetone solutions by pervaporation through liquid membranes, Biotechnology and Bioengineering , 30, 1987, 887-895), decanol (Fahim, MA, Qader, A. and Hughes, MA Extraction equilibria of acetic and propionic acids from dilute aqueous solution by several solvents, Separation Science and Technology, 27, 1992, 1809-1821) , and tri - n - octyl amine (tri- n -octylamine; TOA) ( Qin, Y., Sheth, JP and Sirkar, KK Pervaporation membrane that are highly selective for acetic acid over water, Industrial and Engineering Chemistry Research , 42, 2003, 582-595; Thongsukmak, A. and Sirkar, KK Pervaporation membranes highly selective for solvents present in fermentation broths, Journal of Membrane Several organic solvent-based supported liquid membranes (SLMs), such as Science , 302, 2007, 45-48, have also been tested. Among these membranes, SLM has been widely studied for the isolation and concentration of organic compounds by exceptionally high selectivity and mass flux (Kocherginsky, NM, Yang, Q. and Seelam, L. Recent advances in supported liquid membrane, Separation and Purification Technology , 53, 2007, 171-177). However, due to insufficient stability of the SLM it is difficult to actually use. Liquid membrane (LM) loss during pervaporation can reduce flux and selectivity, which can lead to contamination of the feed solution (Matsumura, M. and Kataoka, H. Separation of dilute aqueous butanol and acetone solutions by pervaporation through liquid membranes, Biotechnology and Bioengineering , 30, 1987, 887-895; Zha, FF, Fane, AG and Fell, CJD Instability mechanisms of supported liquid membranes in phenol transport process, Journal of Membrane Science , 107, 1995, 59-74; Thongsukmak, A. and Sirkar, KK Pervaporation membranes highly selective for solvents present in fermentation broths, Journal of Membrane Science , 302, 2007, 45-58; Kocherginsky et al., 2007).

상대적으로 신규한 SLM 물질을 개발하는 것 이외에, 플라즈마 중합을 통한 표면 코팅, LM의 연속 재함침(reimpregnation) 및 막 표면 상의 배리어 층 형성과 같은 많은 안정성 개선 노력이 있어왔다 (Kocherginsky et al., 2007). 그러나, 이러한 접근법들은 매우 복잡하고 비실용적이다. 간단하고 가능성 있는 대안으로서 LM 혼합이 있으며, 이는 공지된 추출제를 안정화 희석제와 혼합하는 것이다. 그러나 현재, SLM 안정성 개선을 목적으로 하는 투과증발 부탄 회수를 위한 SLM 혼합물에 대한 연구가 미흡한 실정이다.
In addition to developing relatively new SLM materials, there have been many safety improvement efforts, such as surface coating through plasma polymerization, continuous reimpregnation of LM, and barrier layer formation on the film surface (Kocherginsky et al., 2007 ). However, these approaches are very complex and impractical. A simple and possible alternative is LM mixing, which is a mixing of known extractants with stabilized diluents. However, at present, studies on the SLM mixture for the recovery of pervaporation butane for the purpose of improving the SLM stability is insufficient.

본 발명은 상기와 같은 점들을 감안하여 예의 연구를 진행한 결과 안출한 것으로, 특히 추출제로서 올레일 알코올(oleyl alchohol; OA)을, 안정화 희석제로서 폴리(옥틸메틸)실록산(poly(octylmethyl)siloxane; POMS)을 포함하는, 유기물, 특히 부탄올의 투과증발(pervaporative) 회수용 안정화 지지 액막(stable supported liquid membrane; SLM)을 제공하는 것을 목적으로 한다.The present invention has been made as a result of intensive research in view of the above points, in particular oleyl alchohol (OA) as an extractant, poly (octylmethyl) siloxane as a stabilizing diluent It is an object to provide a stable supported liquid membrane (SLM) for pervaporative recovery of organics, in particular butanol, including POMS.

본 발명은 또한 희석한 2성분 및 다중성분 액상 혼합물 시스템으로부터 부탄올 및 그외 유기물을 투과증발 회수하는데 효과적인 SLM 혼합물을 제공하는 것을 목적으로 한다.The present invention also aims to provide an SLM mixture that is effective for pervaporation recovery of butanol and other organics from diluted two-component and multicomponent liquid mixture systems.

본 발명의 상기 목적은 최적의 추출제 및 안정화 희석제를 실험을 통해 선택하고 안정화 SLM의 투과증발 성능을 질량 플럭스, 분리 인자, 투과증발 분리 인덱스(pervaporation separation index; PSI) 및 투과 농도를 측정하고 LM의 안정성을 LM 손실로 평가하여 달성되었다.The above object of the present invention is to select the optimum extractant and stabilized diluent through experiment and to measure the pervaporation performance of the stabilized SLM by measuring the mass flux, separation factor, pervaporation separation index (PSI) and permeation concentration and the LM Stability was achieved by evaluating LM loss.

본 발명의 안정화 SLM은 우수한 투과증발 성능을 가지고 있어 부탄올과 같은 유기물의 회수에 뛰어난 효과가다.The stabilized SLM of the present invention has excellent pervaporation performance and is excellent in recovering organic substances such as butanol.

도 1은 수성상의 초기 부탄올 농도에서의 OA 및 TOA의 부탄올 K P 수치를 나타낸 그래프이다.
도 2는 부탄올 K P 에서의 OA 함량의 효과 및 SLM 혼합물의 소수성(접촉각)을 나타낸 그래프이다.
도 3은 상이한 부탄올/물 공급 농도에서 분리 인자에 따른 온도의 효과를 나타낸 그래프이다.
도 4는 상이한 부탄올/물 공급 농도에서 부탄올 플럭스에 따른 온도의 효과를 나타낸 그래프이다.
도 5는 상이한 부탄올/물 공급 농도에서 안정성(% LM 손실) 및 투과증발 분리 인덱스(PSI)에 따른 온도의 효과를 나타낸 그래프이다.
1 is a graph showing butanol K P values of OA and TOA at the initial butanol concentration of the aqueous phase.
2 is a graph showing the effect of OA content in butanol K P and the hydrophobicity (contact angle) of the SLM mixture.
3 is a graph showing the effect of temperature on the separation factor at different butanol / water feed concentrations.
4 is a graph showing the effect of temperature with butanol flux at different butanol / water feed concentrations.
5 is a graph showing the effect of temperature with stability (% LM loss) and pervaporation separation index (PSI) at different butanol / water feed concentrations.

본 발명은 추출제 및 안정화 희석제와 같은 액막(LM)을 혼합하여 제조된 안정화 지지 액막(SLM)에 관한 것으로, 추출제로서 올레일 알코올(oleyl alchohol; OA)을, 안정화 희석제로서 폴리(옥틸메틸)실록산(poly(octylmethyl)siloxane; POMS)을 혼합하여 포함하는 유기물의 투과증발 회수용 안정화 지지 액막에 관한 것이다. The present invention relates to a stabilized support liquid membrane (SLM) prepared by mixing a liquid membrane (LM), such as an extractant and a stabilizer diluent, wherein oleyl alchohol (OA) is used as the extractant and poly (octylmethyl) as the stabilizer diluent. The present invention relates to a stabilized support liquid membrane for pervaporation recovery of an organic material containing a mixture of poly (octylmethyl) siloxane (POMS).

본 발명의 안정화 지지 액막(SLM)을 부티르산, 아세트산, 프로피온산, 팔미트산과 같은 유기산 및 메탄올, 에탄올, 부탄올과 같은 알코올 중에서 선택한 유기물의 투과증발 회수에 사용할 수 있다.The stabilized support liquid film (SLM) of the present invention can be used for pervaporation recovery of organic materials selected from organic acids such as butyric acid, acetic acid, propionic acid and palmitic acid and alcohols such as methanol, ethanol and butanol.

실시예Example 1.  One. 추출제Extractant 및 안정화 희석제의 선택 및  And selection of stabilized diluents and SLMSLM 제조 Produce

사용된 시약은 각각 다른 회사들에서 구입하였다: 올레일 알콜(OA) (60%) 및 tri-n-옥틸아민(TOA, 98%) (Acros-Organics, USA); 폴리(옥틸메틸)실록산(POMS), 실라놀-말단 폴리(디메틸)실록산 (PDPS) 및 폴리(메틸페닐)실록산 (PMPS) (ABCR GmbH & Co., Karlsruhe, Germany); 실리콘 오일 (PDMS 200®)(Aldrich, USA); 1-부탄올 (min. 99.0%) (Showa Chemical Co. Ltd., Japan), HPLC 구배 아세톤 (J. T. Baker, USA), HPLC 구배 무수 에탄올 (Fisher Scientific), 부티르산 (99+%) (Aldrich) 및 메탄올 (Merck KGaA, Darmstadt, Germany). 모든 시약을 추가 정제 없이 사용하였다. 사용된 폴리프로필렌 평판 시트 매트릭스(Celgard® 2400)는 Celgard® (North Carolina, USA)에서 입수하였다. Reagents used were each purchased from different companies: oleyl alcohol (OA) (60%) and tri- n -octylamine (TOA, 98%) (Acros-Organics, USA); Poly (octylmethyl) siloxane (POMS), silanol-terminated poly (dimethyl) siloxane (PDPS) and poly (methylphenyl) siloxane (PMPS) (ABCR GmbH & Co., Karlsruhe, Germany); Silicone oils (PDMS 200 ® ) (Aldrich, USA); 1-butanol (min. 99.0%) (Showa Chemical Co. Ltd., Japan), HPLC gradient acetone (JT Baker, USA), HPLC gradient anhydrous ethanol (Fisher Scientific), butyric acid (99 +%) (Aldrich) and methanol (Merck KGaA, Darmstadt, Germany). All reagents were used without further purification. The polypropylene flat sheet matrix used (Celgard ® 2400) was obtained from Celgard ® (North Carolina, USA).

부탄올 분배를 기초로 하여 OA 및 TOA 중에서 추출제를 선택하였다. OA 및 TOA의 평균 K P 수치는 각각 3.14 및 0.56이다(도 1 참조). 올레일 알코올을 추출제로 선택했는데 이는 올레일 알코올이 더 높은 부탄올 분배계수 (K P )를 나타내기 때문이다. The extractant was selected from OA and TOA based on the butanol partition. Mean K P values for OA and TOA are 3.14 and 0.56, respectively (see FIG. 1). Oleyl alcohol was chosen as the extractant because oleyl alcohol exhibits a higher butanol partition coefficient ( K P ).

LM의 혼합은 볼텍스-혼합한 후 24시간 동안 탈기/침전(degassing/settling)하여 이루어졌다. Mixing of the LM was done by degassing / settling for 24 hours after vortex-mixing.

안정화 희석제를 혼화성 기준에 기초하여 선택했다. 안정화 희석제로 폴리(옥틸메틸)실록산(poly(octylmethyl)siloxane; POMS)을 선택했는데 이는 폴리(옥틸메틸)실록산이 OA와 상동성 혼합을 형성할 수 있기 때문이다. 낮은 농도로 존재할 때, OA 분자는 소수성 꼬리가 소수성 POMS 주위로 바깥으로 배열되는 반전된 미셀 클러스터를 형성하여 혼합성을 강화시킨다.Stabilizing diluents were selected based on miscibility criteria. Poly (octylmethyl) siloxane (POMS) was chosen as the stabilizing diluent because the poly (octylmethyl) siloxane can form homologous mixtures with OA. When present at low concentrations, the OA molecules form inverted micelle clusters with hydrophobic tails arranged outward around the hydrophobic POMS to enhance mixing.

순수한 LM 및 혼합된 LM의 부탄올 분배를 진탕 플라스크 방법 (Partition coefficient, OECD guideline)으로 실시했다. 12시간 동안 LM에 미리 무게를 잰 지지 매트릭스를 담궈 SLM을 제조했다. 그런 다음, 포화된 매트릭스를 닦아서 건조시킨 후 깨끗한 공기에 10분간 노출시켰다. SLM의 소수성을 정접촉각 측정(static contact angle measurement)으로 검사했다. ABE 분석에 가스 크로마토그래피 (GC)를 사용했다. SLM의 안정성을 중량분석에 의해 LM 손실 (% w/w)로 평가했다.
The butanol distribution of pure LM and mixed LM was carried out by shake flask method (Partition coefficient, OECD guideline). SLM was prepared by soaking a pre-weighed support matrix in LM for 12 hours. The saturated matrix was then wiped to dry and exposed to clean air for 10 minutes. The hydrophobicity of the SLM was examined by static contact angle measurement. Gas chromatography (GC) was used for ABE analysis. The stability of the SLM was evaluated by gravimetric analysis as LM loss (% w / w).

실시예Example 2.  2. SLMSLM 혼합물의  Of mixture 부탄올Butanol 분배 및 소수성 Distribution and hydrophobicity

실시예 1에서와 같이 제조된 OA/POMS 혼합물의 부탄올 분배 및 소수성 실험의 결과를 도 2에 나타냈다. OA 함량이 증가하면, 부탄올 K P 가 증가하고 소수성은 감소하는데 이는 OA의 상대적으로 높은 부탄올 K P 및 낮은 소수성에 기인한 것이다.
The results of butanol distribution and hydrophobicity experiments of the OA / POMS mixture prepared as in Example 1 are shown in FIG. 2. As the OA content increases, butanol K P increases and hydrophobicity decreases due to the relatively high butanol K P and low hydrophobicity of OA.

실시예 3. Example 3. SLMSLM 혼합물의 선택 Choice of mixture

35℃ 및 60℃에서 1.5% (w/v) 부탄올 공급 농도를 갖는 부탄올/물 투과증발 성능에 기초하여 최적 SLM 혼합물을 선택했다. 결과는 OA 함량이 증가함에 따라 OA/POMS SLM의 분리 성능이 증가함을 보인다. 최적 부탄올/물 분리는 60℃에서 67.25% (w/w)의 투과 농도(permeate concentration), 40.96 g/m2-h의 부탄올 플럭스 및 134.04의 분리 인자를 갖는 30% (w/w) OA/POMS SLM을 사용하여 이루어졌다. 모든 OA/POMS SLM은 5% LM 손실 이하의 주목할만한 안정성을 나타낸다. 이러한 결과로부터, 30% (w/w) OA/POMS을 추가 투과증발 연구를 위해 선택했다.
The optimal SLM mixture was selected based on butanol / water pervaporation performance with 1.5% (w / v) butanol feed concentration at 35 ° C and 60 ° C. The results show that the separation performance of OA / POMS SLM increases with increasing OA content. Optimal butanol / water separation was performed at 60 ° C. with a permeate concentration of 67.25% (w / w), butanol flux of 40.96 g / m 2 -h and 30% (w / w) OA / with a separation factor of 134.04. This was done using POMS SLM. All OA / POMS SLMs exhibit notable stability below 5% LM loss. From these results, 30% (w / w) OA / POMS was selected for further pervaporation studies.

실시예 4. 30% (w/w) Example 4. 30% (w / w) OAOA /Of POMSPOMS SLMSLM 을 사용한 Using 부탄올Butanol /물 투과증발/ Water permeation evaporation

실시예 1의 SLM의 투과증발 실험을 8시간의 고정된 작동 시간에서 정상 상태 조건에서 실시했다. 30% (w/w) OA/POMS SLM의 부탄올/물 투과증발 성능을 상이한 공급 농도 및 온도에서 조사했다. 적절한 부탄올 플럭스를 갖는 높은 부탄올 분리 인자(도 3)가 SLM에 의해 증명되었다(도 4). 최적 부탄올/물 투과증발은 각각 279.4 및 84.24 g/m2-h의 분리 인자 및 부탄올 플럭스를 갖는 2.5% (w/v) 부탄올 공급 농도 및 60℃에서 관찰되었다. 상승된 온도 및 더 높은 공급 농도(Henry's Law)에서, 용매 및 물의 증발 압력이 증가하여 더 높은 부분 압력 구배를 야기하는데 이는 용매 분리를 촉진시킨다. SLM은 실험한지 8시간 후에 4% LM 이하의 우수한 안정성을 나타낸다(도 5).
Pervaporation experiments of the SLM of Example 1 were conducted at steady state conditions at a fixed operating time of 8 hours. The butanol / water pervaporation performance of 30% (w / w) OA / POMS SLM was investigated at different feed concentrations and temperatures. The high butanol separation factor (FIG. 3) with the proper butanol flux was demonstrated by SLM (FIG. 4). Optimal butanol / water pervaporation was observed at 2.5 ° C. (w / v) butanol feed concentration and 60 ° C. with a separation factor of 279.4 and 84.24 g / m 2 -h and butanol flux, respectively. At elevated temperatures and higher feed concentrations (Henry's Law), the evaporation pressures of the solvent and water increase, resulting in higher partial pressure gradients, which promote solvent separation. SLM shows good stability up to 4% LM after 8 hours of experimentation (FIG. 5).

실시예 5. 모델 Example 5. Model ABEABE 발효액의 투과증발  Pervaporation of Fermentation Broth

30% OA/POMS SLM 을 사용하여 60℃에서 모델 ABE 배양액 (0.8% w/v 아세톤, 1.5% w/v 1-부탄올, 0.5% w/v 에탄올 및 0.05% w/v 부티르산)으로부터 부탄올을 투과증발 회수하는 것을 평가했다. SLM 은 부탄올(73.58) > 아세톤 (9.497) > 에탄올 (6.565) > 부티르산 (Nil)의 순서로 분리계수를 갖는 우수한 부탄올 분리도를 나타냈다. 그러나, 모델 ABE 발효액으로부터의 부탄올 분리에서 SLM의 투과증발 성능은 부탄올/물 용액에서의 성능보다 상당히 낮은데 이는 다른 성분의 존재가 부탄올의 투과증발 분리에 상당히 영향을 미치기 때문인 것으로 보인다. 그럼에도 불구하고, SLM은 1.95%의 평균 LM 손실을 갖는 주목할만한 안정성을 보인다.
Permeate butanol from model ABE culture (0.8% w / v acetone, 1.5% w / v 1-butanol, 0.5% w / v ethanol and 0.05% w / v butyric acid) at 60 ° C. using 30% OA / POMS SLM Evaporation recovery was evaluated. SLM showed good butanol separation with a separation coefficient in the order of butanol (73.58)> acetone (9.497)> ethanol (6.565)> butyric acid (Nil). However, the pervaporation performance of SLM in butanol separation from model ABE fermentation broth is considerably lower than that in butanol / water solution because the presence of other components significantly affects pervaporation separation of butanol. Nevertheless, SLM exhibits notable stability with an average LM loss of 1.95%.

본 발명의 안정화 SLM은 우수한 투과증발 성능으로 인해 부탄올과 같은 유기물의 회수에 매우 효과적인 특징이 있어 바이오 연료 산업상 매우 유용한 발명인 것이다. Stabilized SLM of the present invention is a very useful invention in the biofuel industry because it has a feature that is very effective in the recovery of organic matter, such as butanol due to the excellent pervaporation performance.

Claims (2)

추출제로서 올레일 알코올(oleyl alchohol; OA)을, 안정화 희석제로서 폴리(옥틸메틸)실록산(poly(octylmethyl)siloxane; POMS)을 포함하는 것을 특징으로 하는, 유기물의 투과증발(pervaporative) 회수용 안정화 지지 액막.Stabilization for pervaporative recovery of organics, characterized in that it comprises oleyl alchohol (OA) as the extractant, poly (octylmethyl) siloxane (POMS) as a stabilizing diluent Supporting liquid membrane. 제1항에 있어서, 상기 유기물은 부탄올임을 특징으로 하는 안정화 지지 액막.The stabilized support liquid membrane of claim 1, wherein the organic material is butanol.
KR1020100040032A 2010-04-29 2010-04-29 Stable supported liquid membrane for the pervaporative recovery of organics KR20110120563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100040032A KR20110120563A (en) 2010-04-29 2010-04-29 Stable supported liquid membrane for the pervaporative recovery of organics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100040032A KR20110120563A (en) 2010-04-29 2010-04-29 Stable supported liquid membrane for the pervaporative recovery of organics

Publications (1)

Publication Number Publication Date
KR20110120563A true KR20110120563A (en) 2011-11-04

Family

ID=45391681

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100040032A KR20110120563A (en) 2010-04-29 2010-04-29 Stable supported liquid membrane for the pervaporative recovery of organics

Country Status (1)

Country Link
KR (1) KR20110120563A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107847853A (en) * 2015-07-15 2018-03-27 瓦克化学股份公司 For purifying the continuation method of the process waste gas obtained in manufacture of silicones

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107847853A (en) * 2015-07-15 2018-03-27 瓦克化学股份公司 For purifying the continuation method of the process waste gas obtained in manufacture of silicones

Similar Documents

Publication Publication Date Title
Won et al. Pervaporation with chitosan membranes: separation of dimethyl carbonate/methanol/water mixtures
Rozicka et al. Apparent and intrinsic properties of commercial PDMS based membranes in pervaporative removal of acetone, butanol and ethanol from binary aqueous mixtures
Merlet et al. Separation of fermentation products from ABE mixtures by perstraction using hydrophobic ionic liquids as extractants
Liu et al. Separation of acetone–butanol–ethanol (ABE) from dilute aqueous solutions by pervaporation
Heitmann et al. Recovery of n-butanol using ionic liquid-based pervaporation membranes
Lozano et al. Recent advances in supported ionic liquid membrane technology
CA2679444C (en) Liquid-phase and vapor-phase dehydration of organic/water solutions
Fauzi et al. An overview of ionic liquids as solvents in biodiesel synthesis
Jonquières et al. Filled and unfilled composite GFT PDMS membranes for the recovery of butanols from dilute aqueous solutions: influence of alcohol polarity
Kamiński et al. Biobutanol-production and purification methods
Ha et al. Butanol recovery from aqueous solution into ionic liquids by liquid–liquid extraction
Liu et al. Organics/water separation by pervaporation with a zeolite membrane
Kujawski et al. Pervaporative removal of acetone, butanol and ethanol from binary and multicomponent aqueous mixtures
Wang et al. Preparation of cellulose acetate membrane filled with metal oxide particles for the pervaporation separation of methanol/methyl tert-butyl ether mixtures
Li et al. Supported ionic liquid membranes for the separation of methanol/dimethyl carbonate mixtures by pervaporation
BRPI0718011A2 (en) WATER AND METHANOL REMOVAL OF FLUIDS.
Beltran et al. Poly (octylmethylsiloxane)/oleyl alcohol supported liquid membrane for the pervaporative recovery of 1-butanol from aqueous and ABE model solutions
Cascon et al. 1-Butanol pervaporation performance and intrinsic stability of phosphonium and ammonium ionic liquid-based supported liquid membranes
Ho et al. Removal of glycerol from palm oil-based biodiesel using new ionic liquids analogues
Omidali et al. Separation and purification of isobutanol from dilute aqueous solutions by a hybrid hydrophobic/hydrophilic pervaporation process
Ikegami et al. Selective separation of n‐butanol from aqueous solutions by pervaporation using silicone rubber‐coated silicalite membranes
Qin et al. Pervaporation membranes that are highly selective for acetic acid over water
Xie et al. Biobutanol recovery from model solutions/fermentation broth using tripotassium phosphate
Priya et al. Comparative assessment of separation techniques for downstream processing of 2, 3-Butanediol
Figueiredo et al. Ethyl oleate production by means of pervaporation-assisted esterification using heterogeneous catalysis

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application