KR20110107481A - 피로도 센서기반 임베디드 정비관리시스템 - Google Patents

피로도 센서기반 임베디드 정비관리시스템 Download PDF

Info

Publication number
KR20110107481A
KR20110107481A KR1020100026606A KR20100026606A KR20110107481A KR 20110107481 A KR20110107481 A KR 20110107481A KR 1020100026606 A KR1020100026606 A KR 1020100026606A KR 20100026606 A KR20100026606 A KR 20100026606A KR 20110107481 A KR20110107481 A KR 20110107481A
Authority
KR
South Korea
Prior art keywords
fatigue
information
unit
analysis
failure
Prior art date
Application number
KR1020100026606A
Other languages
English (en)
Inventor
김한규
장주수
차석근
Original Assignee
김한규
차석근
장주수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김한규, 차석근, 장주수 filed Critical 김한규
Priority to KR1020100026606A priority Critical patent/KR20110107481A/ko
Publication of KR20110107481A publication Critical patent/KR20110107481A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C3/00Registering or indicating the condition or the working of machines or other apparatus, other than vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0073Fatigue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0212Theories, calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0222Temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/022Environment of the test
    • G01N2203/0236Other environments
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C2200/00Transmission systems for measured values, control or similar signals

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

본 발명은 피로도 센서기반 임베디드 정비관리시스템에 관한 것으로, 특히 분석대상장비에서 발생하는 진동, 온도, 습도의 정보를 자동으로 센싱하고 피로도 분석모듈로 전송하는 피로도측정모듈과 상기 피로도 측정모듈에서 전송된 데이터를 이용하여 실시간으로 진동, 온도, 습도에 따른 고장발생확율 또는 고장발생시점을 산출하는 피로도분석모듈, 그리고 상기 피로도분석모듈의 산출된 분석결과를 바탕으로 대상장비의 고장시점 또는 부품의 교체 시점을 디스플레이하며, 상기 피로도측정모듈 및 피로도분석모듈을 제어하는 통합관리모듈을 포함하여 구성되는 것을 특징으로 한다.
본 발명에 따르면, 온도, 습도, 진동등 센서데이터를 자동으로 수집하여 무선으로 피로도분석모듈에 실시간으로 전송하고, 전송된 데이터를 기반으로 피로도 분석을 위한 싸이클을 형성시키고, 피로도 해성 알고리즘을 적용하여 실시간으로 신뢰성을 계산하여 대상 장비의 고장시점의 예측과 부품소요량을 정확하게 산출할 수 있는 효과가 있다.

Description

피로도 센서기반 임베디드 정비관리시스템{Integrated Maintenance Management System}
본 발명은 대상장치의 피로도를 실시간으로 분석하여 산출하는 시스템에 관한 것이다.
국내의 대규모의 장치산업, 설비산업, 방위산업, 철도산업 등은 초기 투자비와는 별도로 대규모의 유지보수 비용이 발생하고 있으며, 이 비용들은 평균적으로 초기 투자비의 5 ~ 8.5배에 달하는 것으로 분석되고 있다. 이러한 국내 주력산업은 원재료와 각종 서비스를 생산하는 것이 특징이며 여기서 발생하는 유지보수비용 구조는 제조업은 물론이고 서비스 분야의 생산원가에도 막대한 영향을 준다. 현재까지 이러한 대규모장치 산업의 정비 및 유지보수체계는 데이터의 수집과 분석이 이원화되어 있어 분석결과의 피드백(feedback)에 많은 시간 차이를 가진다.
또한 정비 및 유지보수 관련 자료는 사건의 발생과 자료의 수집이라는 시차를 갖게 되고 따라서 부정확한 데이터를 수집 기록하게 되는 경우가 많이 있다. 즉 정보수집체계에 있어서의 수작업 또는 불연속적이고 비균질적인 자료를 산출하는 경우가 대부분이며, 이 경우 자료의 가공과 분석이 무의미하게 되며, 장치의 운용유지에 잠재적인 비용이 과다하게 발생되는 문제가 계속적으로 반복되고 있다. 이는 기초 원자재 가격의 상승 및 서비스 가격의 상승원인으로 이어지며, 장치의 운용유지의 비효율성을 초래하게 되는 악순환으로 이어지게 된다.
특히, 국방 분야의 무기체계 및 거대 장치 산업(철도, 발전설비, 생산설비 등)의 경우에는 시스템의 수명주기(Life Cycle)동안 초기 투자비용 대비 운용유지에 막대한 비용이 소요되며, 여기에는 주로 잠재적인 비용이 일정부분 차지하고 있는데 대부분 고장 및 정비에 관련된 내용이 주를 이룬다. 미국 자동차엔지니어협회
(SAE)의 ARP-4294, AIR-1939에 의하면, 시스템의 수명주기 동안의 총 비용 중 시스템의 운용기간에 85% 이상이 발생하며, 이 중에 대부분은 고장 및 정비에 관련된 내용으로 알려지고 있다. 즉 장비의 고장 정비에 대한 자료를 정확하고 빨리 파악하고, 이를 정확하게 예측하는 것이 장비 운용에 매우 중요한 포인트가 되고 있는 것이다. 그러나 이러한 중요성에도 불구하고, 현재 고장에 관련된 자료의 수집체계는 국방은 물론이고 민간부분도 고장 및 정비 관련 자료의 수집은 대부분 수작업으로 진행하고 있어 수집된 자료의 정확성 및 신빙성의 결여되고 있으며, 자료수집의 대상과 범위가 일반적이다. 즉 시스템의 운용조건 및 환경에 따른 자료의 수집이 불가능하며, 분석과 분석결과의 환류(feedback)에 많은 시차가 있거나 환류가 제대로 이루어지지 않는 경우가 많다.
본 발명은 상술한 과제를 해결하기 위하여 안출된 것으로, 본 발명의 목적은 온도, 습도, 진동 등 센서데이터를 자동으로 수집하여 무선으로 피로도분석모듈에 실시간으로 전송하고, 전송된 데이터를 기반으로 피로도 분석을 위한 싸이클을 형성시키고, 피로도 해성 알고리즘을 적용하여 실시간으로 신뢰성을 계산하여 대상 장비의 고장 시점의 예측과 부품소요량을 정확하게 산출할 수 있는 피로도 센서기반 임베디드 정비관리시스템을 제공하는 데 있다.
상술한 과제를 해결하기 위한 본 발명은 분석대상장비에서 발생하는 진동, 온도, 습도의 정보를 자동으로 센싱하고 피로도 분석모듈로 전송하는 피로도측정모듈;과 상기 피로도 측정모듈에서 전송된 데이터를 이용하여 실시간으로 진동, 온도, 습도에 따른 고장발생확율 또는 고장발생시점을 산출하는 피로도분석모듈; 상기 피로도분석모듈의 산출된 분석결과를 바탕으로 대상장비의 고장시점 또는 부품의 교체 시점을 디스플레이하며, 상기 피로도측정모듈 및 피로도분석모듈을 제어하는 통합관리모듈;을 포함하는 피로도 센서기반 임베디드 정비관리시스템을 제공할 수 있다.
특히, 상술한 상기 피로도측정모듈은, 상기 분석대상장비의 진동정보를 수집하는 진동정보센싱부, 상기 분석대상장비의 온도정보를 수집하는 온도정보센싱부,상기 분석대상장비의 습도정보를 수집하는 습도정보센싱부로 구성되는 피로도측정부;와 상기 피로도측정부에서 측정된 데이터를 상기 피로도분석모듈로 전송하는 전송부;를 포함하여 이루어질 수 있다.
또한, 상기 피로도분석모듈은, 상기 전송부에서 전송되는 측정 데이터를 수신하는 수신부; 상기 수신된 데이터를 진동, 온도, 습도에 따른 데이터로 저장 분류하는 장비피로도 저장분류부; 상기 장비피로도 저장분류부에서 분류된 데이터를 바탕으로 장비의 피로도를 분석하여 고장시점 또는 고장확율을 산출하는 피로도분석부;상기 피로도분석부에서 산출된 정보를 통합관리모듈로 전송하는 분석정보전송부;를 포함하여 이루어질 수 있다.
아울러, 상술한 상기 피로도분석부는, 수집되는 진동자료를 바탕으로 일정한 주기정보로 사이클화 하는 진동자료 사이클연산부와, 상기 사이클연산부에서 산출된 정보를 바탕으로 신뢰성정보를 산출하는 제1신뢰성정보산출부, 상기 제1신뢰성정보산출부의 정보를 바탕으로 진동요인에 기인한 고장확율을 산출하는 고장확율산출부; 수집되는 온도자료를 바탕으로 일정한 주기정보로 사이클화하는 온도자료 사이클연산부와, 상기 사이클 연산부에서 산출된 정보를 바탕으로 신뢰성정보를 산출하는 제2신뢰성정보산출부, 그리고 상기 제2신뢰성정보산출부의 정보를 바탕으로 온도요인에 기인한 고장확율을 산출하는 고장확율산출부; 수집되는 온도자료와 습도자료를 바탕으로 고장비율을 산출하는 습도요인고장비율(AF)연산부와, 습도요인고장비율(AF)를 이용하여 습도요인에 따른 고장시점을 산출하는 제2고장확율산출부;를 포함하여 이루질 수 있다.
특히, 본 발명에 따른 피로도 센서기반 임베디드 정비관리시스템은, 상기 피로도분석모듈에서 전송되는 분석결과를 기준으로, 장비의 교체시점과 고장발생시점을 통합산출하는 분석결과 산출부; 상기 분석결과 산출부에서 산출된 결과를 디스플레이하는 디스플레이부; 상기 측정모듈과 피로도분석모듈의 기능을 제어하는 제어부;로 구성되는 통합관리모듈을 적어도 1 이상 구비하도록 구성하는 것도 가능하다.
본 발명에 따르면, 온도, 습도, 진동등 센서데이터를 자동으로 수집하여 무선으로 피로도분석모듈에 실시간으로 전송하고, 전송된 데이터를 기반으로 피로도 분석을 위한 싸이클을 형성시키고, 피로도 해성 알고리즘을 적용하여 실시간으로 신뢰성을 계산하여 대상 장비의 고장시점의 예측과 부품소요량을 정확하게 산출할 수 있는 효과가 있다.
특히, 온도와 습도 진동 등의 센서데이터를 수집하는 모듈가 이를 분석하는 모듈을 각각 하나의 보드에 패키징하여 자동으로 센서데이터를 수집하고 분석할 수 있도록 하여 데이터의 수집과 분석의 효율성을 극대화할 수 있는 효과도 있다.
도 1은 본 발명에 따른 전체 시스템 구성도를 도시한 구성도이다.
도 2는 본 발명에 따른 피로도측정부의 구성을 도시한 것이다.
도 3은 본 발명에 따른 피로도분석부의 구성을 도시한 것이다.
도 4 내지 도 6은 본 발명에 따른 시스템의 실 구현적용례를 도시한 이미지이다.
도 7은 본 발명에 따른 고장 및 정비시점에 대한 예측의 적용과정을 도시한 순서도이다.
도 8은 본 발명에 따른 다른 적용예를 도시한 도면이다.
이하에서는 첨부한 도면을 참조하여 본 발명에 따른 구성 및 작용을 구체적으로 설명한다. 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성요소는 동일한 참조부여를 부여하고, 이에 대한 중복설명은 생략하기로 한다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 발명은 철도 또는 일반 장치산업에서 진동, 온도, 습도 요인이 장치의 수명을 결정하는 결정적 요인이 되는바, 이 요인을 실시간으로 측정 및 분석할 수 있는 모듈과 이 정보를 분석할 수 있는 분석모듈을 임베디드 장비에 탑제하여 상용화 할 수 있는 시스템을 구현하는 것을 요지로 한다.
도 1 내지 3을 참조하면, 본 발명에 따른 피로도 센서기반 임베디드 정비관리시스템(이하, '본 시스템'이라 한다.)은 분석대상장비에서 발생하는 진동, 온도, 습도의 정보를 자동으로 센싱하고 피로도 분석모듈로 전송하는 피로도측정모듈(100)과 상기 피로도 측정모듈(100)에서 전송된 데이터를 이용하여 실시간으로 진동, 온도, 습도에 따른 고장발생확율 또는 고장발생시점을 산출하는 피로도분석모듈(200), 그리고 상기 피로도분석모듈의 산출된 분석결과를 바탕으로 대상장비의 고장시점 또는 부품의 교체 시점을 디스플레이하며, 상기 피로도측정모듈 및 피로도분석모듈을 제어하는 통합관리모듈(300)을 포함하여 구성될 수 있다.
특히, 상술한 본 시스템에서의 분석대상장비(110)는 국방분야의 무기체제, 철도, 발전설비, 생산설비 등의 거대 장치산업을 구성하는 장비를 포괄하는 개념이며, 특히 구체적으로는 상술한 장비를 구동하는 장비시스템을 의미하며, 본 발명에 따른 본 시스템은 운용중인 장비시스템에 대한 정비 및 유지보수 관련 정보수집 및 분석을 동시에 수행할 수 있는 소규모 임베디드 시스템을 포함하며, 데이터 수집과 분석을 일원화하고, 시스템의 수명 또는 신뢰성에 직접적인 원인 요소인 온도, 진동, 습도 및 피로 등의 데이터를 센서를 통해 실시간으로 수집하여 동시에 분석을 수행하며 시스템의 사용자에게 예측 가능한 정비 및 유지보수 자료를 제공하는 시스템을 의미한다.
상기 피로도측정부(120)는 상술한 분석대상장비(110)에 설치되는 온도, 습도, 진동 센서등의 측정유닛을 포함하여 구성되며, 구체적으로는 상기 분석대상장비의 진동정보를 수집하는 진동정보센싱부(121) 상기 분석대상장비의 온도정보를 수집하는 온도정보센싱부(122), 그리고 상기 분석대상장비의 습도정보를 수집하는 습도정보센싱부(123)로 구성될 수 있다.
또한, 상기 피로도측정부(120)에서 측정된 로데이터(온도, 습도, 진동)는 전송부(130)를 통해 후술할 피로도분석모듈(200)으로 전송된다. 전송이란 개념은 유선 또는 무선 통신이 가능한 모듈을 의미하며, 특히 본 발명에서는 무선통신에 의해 전송되는 실시예를 들어 설명하기로 한다.
본 발명에 따른 피로도분석모듈(200)은 상기 전송부(130)에서 전송되는 측정 데이터를 수신하는 정보수신부(210)와 상기 수신된 데이터를 진동, 온도, 습도에 따른 데이터로 저장 분류하는 장비피로도 저장분류부(220), 그리고 상기 장비피로도 저장분류부에서 분류된 데이터를 바탕으로 장비의 피로도를 분석하여 고장시점 또는 고장확율을 산출하는 피로도분석부(230) 및 상기 피로도분석부에서 산출된 정보를 통합관리모듈로 전송하는 분석정보전송부(240)을 포함하여 구성될 수 있다.
상기 정보수신부(210)는 상술한 전송부(130)에서 전송되는 데이터를 무선수신할 수 있는 통신모듈로 구성될 수 있다.
상기 장비 피로도 저장분류부(220)는 수집된 로데이터를 피로도분석부에서 종류별로 분석할 수 있도록 데이터화하여 저장하여 분류한다.
상기 장비피로도 저장분류부(220)에서 분류된 자료는 상기 피로도분석부(230)에서 유형별로 분석하여 고장발생시점 또는 고장발생확율을 분석하게 된다. 상기 피로도 분석부는 각각의 고장발생요인인 진동, 습도, 온도 등의 정보별로 고장발생확율을 산출하는 소프트웨어로 구성할 수 있다.
도 3은 이러한 피로도분석부(230)을 구성하는 구성을 블럭화하여 구성한 것으로 이를 참조하여 설명하면, 수집된 진동자료는 일정한 주기정보로 사이클화 하는 진동자료 사이클연산부(231)와, 상기 사이클연산부에서 산출된 정보를 바탕으로 신뢰성정보를 산출하는 제1신뢰성정보산출부(232), 상기 제1신뢰성정보산출부의 정보를 바탕으로 진동요인에 기인한 고장확율을 산출하는 고장확율산출부(233)을 통해서 가공 및 연산되여 최정적으로 장비의 고장확율 또는 고장시점을 예측할 수 있도록 한다.
아울러 수집된 온도자료는, 일정한 주기정보로 사이클화하는 온도자료 사이클연산부(234)와, 상기 사이클 연산부에서 산출된 정보를 바탕으로 신뢰성정보를 산출하는 제2신뢰성정보산출부(235), 그리고 상기 제2신뢰성정보산출부의 정보를 바탕으로 온도요인에 기인한 고장확율을 산출하는 고장확율산출부(236)를 통해서 가공 및 연산되여 최정적으로 장비의 고장확율 또는 고장시점을 예측할 수 있도록 한다.
또한, 수집된 진동자료는, 수집되는 온도자료와 습도자료를 바탕으로 고장비율을 산출하는 습도요인고장비율(AF)연산부(237)와, 습도요인고장비율(AF)를 이용하여 습도요인에 따른 고장시점을 산출하는 제2고장확율산출부(238)을 통해 가공 및 연산되여 최정적으로 장비의 고장확율 또는 고장시점을 예측할 수 있도록 한다.
이하에서는 상기 진동자료의 가공을 통해 고장시점을 산출하는 과정을 설명하기로 한다.
(1) 진동자료를 통한 고장확율의 산출
1) 진동자료를 기반으로 한 사이클링연산과정
본 시스템의 진동자료사이클링연산부(231)는 상기 진동정보센싱부(121)로 부터 입력되는 진동자료를 통해 일정한 사이클링을 정의하여 산출하고, 상기 사이클링을 고장발생시까지 카운트하여 저장한다.
특히, 일반적으로는 진동정보센싱부(121)는 진동센서를 이용하여 진동을 측정하게 되며, 이러한 진동은 기본적으로 3축진동을 수행하게 되는바, 수집되는 값은, v = Sqrt[x^2 + y^2 + z^2] 값을 가져온다. 예를 들어, vib = {2.3,3.1,4,5,3,2,5,2.2.......} 등이다
다음으로 사이클(Cycle)을 연산한다. Cycle은 수집된 온도자료를 비교하여 온도의 변화가 있는 곳, 예를 들면 진동의 폭이 감소에서 증가로 바뀌는 곳의 횟수를 헤아린다. 즉, 상술한 예를 든 데이터에서는 3.1과 4사이에 감소에서 증가로 바뀌었으며, 5와 3상이에, 그리고 5와 2.2 사이에 한번씩 감소에서 증가로 바뀌었으므로, 위 데이터(vib)에서의 사이클은 전부 3cycle에 해당한다.
이후, 상술한 cycle의 수를 고장발생시까지 카운트하여 저장한다. 이를 테면, 다음과 같은 자료가 생성될 수 있다.
{표 1}
Figure pat00001
단 cycle을 계산할 때, 센서를 이용하여 측정한 처음 시점부터 현재까지의 cycle중에 큰 값(Max_cycle) 정보를 계속 저장한다.
2) 제1신뢰성정보의 산출과정
상술한 진동자료사이클 연산부(231)에서 연산된 정보를 기반으로, 제1신뢰성정보산출부(232)는 다음번 고장을 예측하기 위하여 신뢰성분석을 실시하여 베타값(beta)을 연산한다. 일반적으로 고장이 10 회이상 누적되어야 한다. 여기에서는 고장이 8개이므로, 8번째 고장에서 다음번 고장시점을 예측하는 것으로 가정하여 설명하기로 한다.
상기 {표 1}에서, 누적시점(Cum-time)={ 32, 50,94,144,200,236,306,360}이며, 총 고장회수(N)=8이므로, 마지막 누적값(360)을 xn=360으로 하고, 각 배열에 자연로그(Log)를 취하여보면 다음과 같은 배열(CT)을 만들 수 있다.
CT = {Log(32/xn) , log(50/xn), log(94/xn), log(144/xn), log(200/xn), log(236/xn), log(306/xn), log(360/xn)}
이후, 다시 CT 배열을 모두 합한 값을 'S'라고 하면,
S={CT[1]+Ct[2]+......CT[8]}
와 같이 정의할 수 있다.
이 경우 베타(beta)값은 총 고장횟수를 위 S값으로 나눈 값(Beta = N/S)이다.
3) 제1고장확율의 산출과정
상기 제1고장확율산출부(233)에서는 상술한 베타(beta)값을 기반으로 고장확율을 산출할 수 있다. 이 경우 다음과 같은 고장확율을 계산하기 위한 함수를 정의한다.(아래의 함수에서 x는 사이클(cycle)값을 의미한다.)
F(x) = (x/Max_cycle)^beta ; 0< x < Max_cycle
F(x) = 1 ; x > max_cycle
상기 제1고장확율산출부(233)가 상술한 함수를 이용하여 고장확율을 예측하는 과정은 예를 들어, 8번째 시점에서 Max_cycle = 200, beta = 3.5 로 계산되었다면, 8번째 시점 이후 cycle을 계속 카운트 하여 F(x)에 대입하여 확률을 산출한다. 만약 x = 30이면, (30/200)^3.5 = 0.0013 확률 X = 150이면 (150/200)^3.5 = 0.365 등으로 산출하고, 정보를 표시한다.
(2) 온도자료를 통한 고장 확율의 산출
1) 온도자료를 기반으로 한 사이클링연산과정
본 시스템의 온도자료사이클링연산부(234)는 상기 온도정보센싱부(122)로 부터 입력되는 온도자료를 통해 일정한 사이클링을 정의하여 산출하고, 상기 사이클링을 고장발생시까지 카운트하여 저장한다.
이를 테면 다음과 같은 과정을 통해 본 발명에 따른 온도자료사이클링연산부(234)의 작용을 설명하기로 한다.
상기 온도자료사이클링연산부(234)는 온도자료를 상기 온도정보센싱부(122)로 부터 일정한 시간간격으로 전송받아온다. 즉, 본 실시예에서는 30초 간격으로 센서로부터 온도자료를 수집한다. 예를 들면, Temp = {20, 30,35, 30.5, 40.3, 50.2, ...} 등의 배열이 된다. 여기서 배열의 데이터 타입은 floating 이다. 이후에 상술한 온도자료를 바탕으로 특정 사이클을 연산한다. 상기 사이클(Cycle)은 수집된 온도자료를 비교하여 온도의 변화가 있는 곳, 이를테면, temp[3], temp[4]처럼 증가상태에서 감소로 바뀌는 곳, 또는 temp[4], temp[5] 처럼 감소에서 증가로 바뀌는 곳의 횟수를 헤아린다. 이상과 같이 온도자료의 수집과 사이클의 연상을 지속적으로 수행하면서, 외부로부터 고장이라는 신호를 받을 때의 cycle 수를 NC( number of cycles)에 저장한다.
예를 들어 처음 고장이 cycle=30번 만에 그리고 그때의 시간(Time)이 10시간 때였다면, 그 다음 고장이 cycle=50번 만에 그리고 시간이 30시간 지난 후 라면 다음과 같은 자료를 구성할 수 있다.
{표 2}
Figure pat00002
이러한 과정을 계속해서 시스템을 운용하는 시간에 대해 수집하면, 다음과 같은 자료를 구현할 수 있게 된다.
{표 3}
Figure pat00003
상술한 표 3에서의 Time은 고장간 시간간격이다. 따라서 총 누적시간은 10+30+40 + .......+ 44 = 389 이다.
2) 제2신뢰성정보산출 과정
상기 온도자료 사이클연산부(234)의 자료를 바탕으로 신뢰성정보를 산출하는 과정이 수행된다. 상술한 실시예를 기반으로 하는 산출과정을 설명하면 다음과 같다.
우선, NC(Number of cycle) 배열에 자연로그를 취한다.
즉 즉 Log[30], Log[50], ....와 같은 데이터를 기반으로 평균(Mean)과 표준편차(sd)를 연산한다.
Mean = (log[30]+log[50] +......log[110])/10(총 고장횟수)
Sd = Sqrt[ (log[30]^2 + log[50]^2 +.................log[110]^2)/10 - mean^2 ]
이후, 정규분포에서의 고장율에러(Erf)를 정의한다.
이후, 상기 {표 3}에서 누적시간을 연산한다.
Cumtime = {10, 40, 80, 130, 160, 195, 235, 275, 325, 369}
이것의 개수를 N이라 한다. 여기서는 N=10이다.
마지막 누적 값을 xn이라 하고, D1 = {xn/10, xn/40, xn/80, .., 1} 배열을 만든다. 다시 D2 ={ Log(d1[1]), log(d1[2]),.....log(d1[N])} 배열을 만든다.
이것을 합한 값을,
S1 = log[d1[1]] + log[d1[2]] + ....log[d1[N]]라고 정의한다.
이후, Beta = N/s1 ;
Lambda = N/cumtime[N]^beta;
로 하여 Beta, lambda 를 산출한다.
3) 고장확율의 산출과정
이후, 산출된 Beta, lambda값을 기초로 고장확율산출부(236)에서는 다음 번 고장시점(Next failure)을 다음과 같은 방식으로 예측한다.
Next failure = ( cumtime[N]^beta + 1/lambda)^(1/beta) -cumtime[N]
또한, 다음 예측시점에 고장이 발생할 확율은 다음과 같은 방식으로 산출할 수 있다.
우선, 고장간 평균 cycle 수를 다음과 같이 산출한다.
Next cycle = (30+50+70+80+70+80+60+90+120+110)/10 = 76
이 값에 로그를 취한다. Log[Nextcycle]
V1 = (log[nextcycle]-mean)/sd
이 v1 값을 (1+ Erf(v1))/2 에 대입하여 고장확률을 산출한다.
(3) 습도자료를 바탕으로 한 고장시점의 산출
습도요인 고장비율연산부(237)에서는 현재의 고장시점의 온도를 T2, H2를 고장시점의 센서로부터 측정된 습도라고 하면,
L2 = ( H2^n) exp[-(eE/T2) ];
를 계산하고, 바로 전 단계의 고장시점에서 온도를 T1, 습도를 H1이라 하면,
L1 = ( H1^n) exp[-(eE/T1) ];
습도요인고장비율(AF) = L2/L1 을 산출할 수 있게 된다.
이후, 온도로부터 계산된 다음 시점의 고장시간에 AF를 곱하여, 습도로 인한 다음번 고장 시점을 표시한다. 예를들어, 온도로부터 계산된 다음번 시점의 고장이 10000 시간이고, AF = 1.3 인 경우, 습도로부터 계산된 고장시점은 13,000시간이다.
상술한 피로도분석모듈(200)을 구성하는 진동, 온도, 습도에 따른 피로도를 분석하여 고장확율을 산출하게 되며, 이후 도 1에 도시된 통합관리모듈에 전송되고, 이를 통합하여 장비교체시점이나 고장발생시점 등을 디스플레이 할 수 있도록 한다. 상기 통합관리모듈은 상기 피로도분석모듈에서 전송되는 분석결과를 기준으로, 장비의 교체시점과 고장발생시점을 통합산출하는 분석결과 산출부(330)와 상기 분석결과 산출부에서 산출된 결과를 디스플레이하는 디스플레이부(320), 그리고 상기 측정모듈과 피로도분석모듈의 기능을 제어하는 제어부(310)로 구성될 수 있다.
도 4는 본 발명에 따른 시스템의 측정모듈(100)과 피로도분석모듈(200), 통합관리모듈(300)을 내장한 실제 적용이미지를 도시한 것이며, 도 5는 도 4의 측정모듈(100)의 실제 적용례를, 도 6는 피로도 분석모듈을 구비한 장비의 일 적용례를 도시한 것이다. 도 5에 도시된 것처럼 측정모듈(100)에는 진동센서(121)과 온도센서(122), 습도센서(123)을 실장할 수 있다. 도 6은 임베디드 타입으로 기판상에 다양한 부품(이더넷 및 허브(241, 242), 시리얼포트(243), 모니터링포트(245), 리눅스 SMD(246), 리눅스 USB(247), 무선통신부(248), DIDO 터미널 블럭(249))이 장착된 디바이스를 구현한 것으로, 이러한 디바이스에 본 발명에 따른 피로도분석모듈이 내장될 수 있다. 상기 피로도분석모듈은 기본적으로 소프트웨어로 구현할 수 있다.
도 7은 본 발명에 따른 본 시스템을 이용하여 정비 주기 및 경향분석이나 고장예측 등의 적용 프로세스의 일례를 도시한 거시다.
즉, 분석대상시스템에 진동, 온도, 습도 센싱을 통해 고장관련 자료를 수집하고, 자료를 분류하며, 이러한 누적자료는 기본적으로 정비주기 및 경향을 분석하거나 실시간으로 피로도를 분석하는 자료로 이용된다. 즉, 분류된 자료를 온, 습도, 진동에 따른 장비의 피로에 대한 고장발생 시점이나 확율을 분석하여 다음번 고장 및 정비시점을 예측하여 피드백함으로써, 시스템 운영자는 이를 통해 효율적인 대비 및 정비를 수행할 수 있게 되는 것이다.
또한, 이러한 시스템은 도 8에 도시된 것과 같이, 하나의 단일 시스템만으로 형성하는 것이 아니라, 군사장비, 철도, 장치산업의 설비에 대한 유지보수, 제조산업의 유지보수 및 부품의 교체 시기 등을 예측할 수 있는 복합시스템으로 구현하는 것도가능하다.
전술한 바와 같은 본 발명의 상세한 설명에서는 구체적인 실시예에 관해 설명하였다. 그러나 본 발명의 범주에서 벗어나지 않는 한도 내에서는 여러 가지 변형이 가능하다. 본 발명의 기술적 사상은 본 발명의 기술한 실시예에 국한되어 정해져서는 안 되며, 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 한다.
100: 측정모듈
110: 분석대상장비
120: 피로도측정부
121: 진동정보센싱부
122: 온도정보센싱부
123: 습도정보센싱부
200: 피로도분석모듈
210: 피로도정보수신부
220: 장비피로도 저장 분류부
230: 피로도분석부
240: 분석정보전송부
300: 통합관리모듈
310: 제어부
320: 디스플레이부
330: 분석결과산출부

Claims (5)

  1. 분석대상장비에서 발생하는 진동, 온도, 습도의 정보를 자동으로 센싱하고 피로도 분석모듈로 전송하는 피로도측정모듈;
    상기 피로도 측정모듈에서 전송된 데이터를 이용하여 실시간으로 진동, 온도, 습도에 따른 고장발생확율 또는 고장발생시점을 산출하는 피로도분석모듈;
    상기 피로도분석모듈의 산출된 분석결과를 바탕으로 대상장비의 고장시점 또는 부품의 교체 시점을 디스플레이하며, 상기 피로도측정모듈 및 피로도분석모듈을 제어하는 통합관리모듈;
    을 포함하는 피로도 센서기반 임베디드 정비관리시스템.
  2. 청구항 1에 있어서,
    상기 피로도측정모듈은,
    상기 분석대상장비의 진동정보를 수집하는 진동정보센싱부, 상기 분석대상장비의 온도정보를 수집하는 온도정보센싱부,상기 분석대상장비의 습도정보를 수집하는 습도정보센싱부로 구성되는 피로도측정부;
    상기 피로도측정부에서 측정된 데이터를 상기 피로도분석모듈로 전송하는 전송부;
    를 포함하여 이루어지는 것을 특징으로 하는 피로도 센서기반 임베디드 정비관리시스템.
  3. 청구항 2에 있어서,
    상기 피로도분석모듈은,
    상기 전송부에서 전송되는 측정 데이터를 수신하는 수신부;
    상기 수신된 데이터를 진동, 온도, 습도에 따른 데이터로 저장 분류하는 장비피로도 저장분류부;
    상기 장비피로도 저장분류부에서 분류된 데이터를 바탕으로 장비의 피로도를 분석하여 고장시점 또는 고장확율을 산출하는 피로도분석부;
    상기 피로도분석부에서 산출된 정보를 통합관리모듈로 전송하는 분석정보전송부;
    를 포함하여 이루어지는 것을 특징으로 하는 피로도 센서기반 임베디드 정비관리시스템.
  4. 청구항 3에 있어서, 상기 피로도분석부는,
    수집되는 진동자료를 바탕으로 일정한 주기정보로 사이클화 하는 진동자료 사이클연산부와, 상기 사이클연산부에서 산출된 정보를 바탕으로 신뢰성정보를 산출하는 제1신뢰성정보산출부, 상기 제1신뢰성정보산출부의 정보를 바탕으로 진동요인에 기인한 고장확율을 산출하는 고장확율산출부;
    수집되는 온도자료를 바탕으로 일정한 주기정보로 사이클화하는 온도자료 사이클연산부와, 상기 사이클 연산부에서 산출된 정보를 바탕으로 신뢰성정보를 산출하는 제2신뢰성정보산출부, 그리고 상기 제2신뢰성정보산출부의 정보를 바탕으로 온도요인에 기인한 고장확율을 산출하는 고장확율산출부;
    수집되는 온도자료와 습도자료를 바탕으로 고장비율을 산출하는 습도요인고장비율(AF)연산부와, 습도요인고장비율(AF)를 이용하여 습도요인에 따른 고장시점을 산출하는 제2고장확율산출부;
    를 포함하여 이루어지는 것을 특징으로 하는 피로도 센서기반 임베디드 정비관리시스템.
  5. 청구항 1 내지 4 중 어느 한 항에 있어서,
    피로도 센서기반 임베디드 정비관리시스템은,
    상기 피로도분석모듈에서 전송되는 분석결과를 기준으로, 장비의 교체시점과 고장발생시점을 통합산출하는 분석결과 산출부;
    상기 분석결과 산출부에서 산출된 결과를 디스플레이하는 디스플레이부;
    상기 측정모듈과 피로도분석모듈의 기능을 제어하는 제어부;
    로 구성되는 통합관리모듈을 적어도 1이상 구비하는 것을 특징으로 하는 피로도 센서기반 임베디드 정비관리시스템.
KR1020100026606A 2010-03-25 2010-03-25 피로도 센서기반 임베디드 정비관리시스템 KR20110107481A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100026606A KR20110107481A (ko) 2010-03-25 2010-03-25 피로도 센서기반 임베디드 정비관리시스템

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100026606A KR20110107481A (ko) 2010-03-25 2010-03-25 피로도 센서기반 임베디드 정비관리시스템

Publications (1)

Publication Number Publication Date
KR20110107481A true KR20110107481A (ko) 2011-10-04

Family

ID=45025625

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100026606A KR20110107481A (ko) 2010-03-25 2010-03-25 피로도 센서기반 임베디드 정비관리시스템

Country Status (1)

Country Link
KR (1) KR20110107481A (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104089790A (zh) * 2014-07-09 2014-10-08 合肥奥博特自动化设备有限公司 一种振动式码垛机器人故障预测方法
KR20180078854A (ko) * 2016-12-30 2018-07-10 동양대학교 산학협력단 수변전 설비의 사고 예방 시스템 및 예방 방법
CN109358505A (zh) * 2018-10-26 2019-02-19 中铁工程装备集团有限公司 一种tbm智能驾驶方法及系统
KR20210100427A (ko) * 2020-02-06 2021-08-17 한국기계연구원 현장 데이터 기반 설비 수명 예측 시스템 및 이의 예측 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104089790A (zh) * 2014-07-09 2014-10-08 合肥奥博特自动化设备有限公司 一种振动式码垛机器人故障预测方法
KR20180078854A (ko) * 2016-12-30 2018-07-10 동양대학교 산학협력단 수변전 설비의 사고 예방 시스템 및 예방 방법
CN109358505A (zh) * 2018-10-26 2019-02-19 中铁工程装备集团有限公司 一种tbm智能驾驶方法及系统
CN109358505B (zh) * 2018-10-26 2022-03-29 中铁工程装备集团有限公司 一种tbm智能驾驶方法及系统
KR20210100427A (ko) * 2020-02-06 2021-08-17 한국기계연구원 현장 데이터 기반 설비 수명 예측 시스템 및 이의 예측 방법

Similar Documents

Publication Publication Date Title
CN108615088B (zh) 机台零件剩余寿命的预测系统与预测方法
US9465387B2 (en) Anomaly diagnosis system and anomaly diagnosis method
US10496466B2 (en) Preprocessor of abnormality sign diagnosing device and processing method of the same
CN103218678B (zh) 信息处理系统的运用管理方法
US9477222B2 (en) Maintenance information device, condition sensor for use therein and method which can be carried out therewith for arriving at a decision whether or not to perform servicing or maintenance
CN105956734A (zh) 动态设置it设备的性能的指标阈值的方法及系统
US20070078528A1 (en) Predictive fault determination for a non-stationary device
CN101999101B (zh) 系统运行预测的确定方法
KR101948604B1 (ko) 센서 군집화 기반의 설비 건강 모니터링 방법 및 장치
CN109948860A (zh) 一种机械系统剩余寿命预测方法及系统
WO2017038749A1 (ja) 電池の劣化診断装置、劣化診断方法、及び劣化診断システム
CN102508774A (zh) 基于新环境因子函数的软件可靠性增长模型的建模方法
JP2018169161A (ja) 電池の劣化診断装置、劣化診断方法、及び劣化診断システム
EP3163897B1 (en) Building management device, wide-area management system, data acquisition method, and program
KR20110107481A (ko) 피로도 센서기반 임베디드 정비관리시스템
CN102449645A (zh) 产品检查装置、产品检查方法及计算机程序
JP5489672B2 (ja) 軌道走行車両の部品劣化予測システム
CN107121943B (zh) 一种用于获得智能仪表的健康预测信息的方法和装置
CN110298765B (zh) 一种基于客观关联因素的配电网用电功率异常检测方法
KR20140109596A (ko) 미검침 구간의 검침 데이터 예측 및 보정 방법과 그 장치
CN112819373A (zh) 一种配网电压异常数据检测方法及装置
JP7193678B2 (ja) 情報処理装置、情報処理方法、情報処理システム、およびプログラム
RU2599415C1 (ru) Наземная информационно-диагностическая система для осуществления безопасной эксплуатации авиационного газотурбинного двигателя с электронной системой управления по прогнозу его технического состояния
CN107121616B (zh) 一种用于对智能仪表进行故障定位的方法和装置
CN104133437A (zh) 连续型化工装置及其绩效指标实时评价方法和装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application