KR20110107034A - Al-peg composite nanopowders and method for manufacturing thereof - Google Patents

Al-peg composite nanopowders and method for manufacturing thereof Download PDF

Info

Publication number
KR20110107034A
KR20110107034A KR1020100026176A KR20100026176A KR20110107034A KR 20110107034 A KR20110107034 A KR 20110107034A KR 1020100026176 A KR1020100026176 A KR 1020100026176A KR 20100026176 A KR20100026176 A KR 20100026176A KR 20110107034 A KR20110107034 A KR 20110107034A
Authority
KR
South Korea
Prior art keywords
aluminum
powder
composite
polyethylene glycol
peg
Prior art date
Application number
KR1020100026176A
Other languages
Korean (ko)
Inventor
이혜문
윤중열
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020100026176A priority Critical patent/KR20110107034A/en
Publication of KR20110107034A publication Critical patent/KR20110107034A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0812Aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Abstract

상기와 같은 목적을 달성하기 위한 본 발명에 의한 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말은, 알루미늄 나노분말과, 상기 알루미늄 나노분말 외측에 코팅된 내산화성 폴리에틸렌글리콜(PEG)을 포함하여 구성된다. 또한, 본 발명에 의한 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 제조방법은, 알루미늄 전구체인 AlCl3와, LiAlH4 및 에틸렌글리콜 용매를 준비하는 재료준비단계와, 상기 AlCl3와 LiAlH4를 에틸렌글리콜 용매에 투입하여 용해하는 재료투입단계와, 상기 에틸렌글리콜 용매를 가열 및 교반하여 알루미늄 나노분말 외면에 폴리에틸렌글리콜이 코팅된 복합나노분말을 제조하는 복합분말 제조단계와, 상기 복합분말 제조단계에서 형성된 부산물인 LiCl을 제거하는 세척단계로 이루어지는 것을 특징으로 한다. 간단한 공정으로 내산화성을 가지는 복합나노분말의 제조가 가능한 이점이 있다.Aluminum-polyethylene glycol (PEG) composite nano powder according to the present invention for achieving the above object is composed of an aluminum nano powder, and oxidation-resistant polyethylene glycol (PEG) coated on the outside of the aluminum nano powder. In addition, according to the present invention, a method for preparing an aluminum-polyethylene glycol (PEG) composite nanopowder includes a material preparation step of preparing AlCl 3 as an aluminum precursor, LiAlH 4 and an ethylene glycol solvent, and AlCl 3 and LiAlH 4 as ethylene glycol A material input step of dissolving by adding to a solvent, a composite powder manufacturing step of preparing a composite nano-powder coated with polyethylene glycol on the outer surface of aluminum nanopowder by heating and stirring the ethylene glycol solvent, and by-products formed in the composite powder manufacturing step Characterized in that the washing step to remove the phosphorus LiCl. There is an advantage that the production of composite nano powder having oxidation resistance by a simple process.

Description

알루미늄-폴리에틸렌글리콜 복합나노분말 및 이의 제조방법{Al-PEG composite nanopowders and method for manufacturing thereof}Al-PEG composite nanopowders and method for manufacturing thereof

본 발명은 태양전지 및 OLED 등의 친환경 제품의 핵심 부품인 전극소재 그리고 탄소발생량이 없는 고체연료로도 사용가능한 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말 및 이의 제조방법에 관한 것으로, 보다 상세하게는 알루미늄 전구체인 AlCl3 및 Lithium Aluminum Hydroxide (LAH:LiAlH4)를 에틸렌글리콜 용매 내에서 반응시켜 알루미늄 나노분말을 제조하고 이때 발생된 반응열로 에틸렌글리콜 중합반응을 유도하여 알루미늄 나노분말 표면에 폴리에틸렌글리콜 (PEG)이 형성되도록 한 알루미늄-PEG 복합나노분말 및 그 제조방법에 관한 것이다.The present invention relates to an aluminum-polyethylene glycol (PEG) composite nano powder and a method for manufacturing the same that can be used as a solid material without carbon generation and electrode material, which is a key component of environmentally friendly products such as solar cells and OLEDs. Aluminum precursors AlCl 3 and Lithium Aluminum Hydroxide (LAH: LiAlH 4 ) were reacted in an ethylene glycol solvent to prepare aluminum nanopowders, and the heat of reaction produced induced ethylene glycol polymerization to produce polyethylene glycol (PEG) on the surface of aluminum nanopowders. The present invention relates to an aluminum-PEG composite nanopowder and a method of manufacturing the same.

최근 친환경 제품에 관한 관심의 증가로 인해 태양전지, OLED 등의 첨단 그린 산업 제품의 보급이 급속도로 확산되고 있으며, 이에 따라 위와 같은 제품의 효율을 높일 수 있으면서 양산성이 우수한 제품 개발에 대한 연구가 다양하게 진행되고 있다. Recently, due to the increasing interest in eco-friendly products, the spread of high-tech green industry products such as solar cells and OLEDs is rapidly spreading. Accordingly, research on the development of products with high productivity while improving the efficiency of such products is being conducted. There is a lot going on.

또한 탄소 발생량 저감을 위한 전 세계적인 노력은 매우 다양한 방법으로 진행되고 있으며 금속분말을 나노미터 크기로 제어한 금속 고체연료는 탄소 발생량이 거의 없어 연구가 활발히 진행 중에 있다.In addition, global efforts to reduce carbon generation have been conducted in a variety of ways, and metal solid fuels that control metal powder to nanometer size have little carbon generation, and research is being actively conducted.

이 중에서 특히 알루미늄은 가격이 매우 싸고, 전기적 특성이 좋아 태양전지 및 OLED 등 그린에너지 제품의 전극소재로 활용성이 매우 크다. 특히 낮은 일함수(work function)를 지닌다는 장점으로 인해 OLED 및 유기 태양전지의 Cathode 소재로 활용되고 있는 물질이다.Among them, aluminum is very low in price and has good electrical characteristics, so it is very useful as an electrode material for green energy products such as solar cells and OLEDs. In particular, due to its low work function, it is used as a Cathode material for OLEDs and organic solar cells.

또한 알루미늄은 매우 높은 산화특성을 지녀 산화 발열반응 시 발생하는 열에너지를 매우 효과적으로 활용할 수 있다는 장점을 지닌 물질이라 할 수 있다.In addition, aluminum has a very high oxidation characteristics, it can be said that the material has the advantage that can effectively utilize the heat energy generated during the oxidative exothermic reaction.

그러나 알루미늄은 이러한 장점을 지니고 있는 반면에 매우 쉽게 산화되어 알루미늄 분말 표면에는 항상 수-수십 ㎚ 두께의 산화막이 형성되어 있어 전극 소재로 활용될 경우 전기적 특성이 떨어지는 문제점을 지니고 있다. However, while aluminum has such an advantage, it is very easily oxidized, and an oxide film having a thickness of several tens of nm is always formed on the surface of the aluminum powder, and thus has a problem in that electrical properties are poor when used as an electrode material.

또한 약 50-100 ㎚ 크기의 알루미늄 분말 표면에 약 4㎚ 두께의 산화막이 형성되어 있을 경우 그 산화막의 질량은 알루미늄 분말 전체 무게의 30-40%를 차지하게 되며 이러한 산화막으로 인해 약 30-40%의 열에너지 손실이 발생하게 된다.In addition, when an oxide film having a thickness of about 4 nm is formed on the surface of an aluminum powder having a size of about 50-100 nm, the mass of the oxide film is 30-40% of the total weight of the aluminum powder. Thermal energy loss occurs.

그러므로 이러한 문제점을 해결하기 위해서는 알루미늄 표면에 생성되는 산화막을 효과적으로 제어할 수 있는 기술이 반드시 필요하다고 할 수 있다.Therefore, in order to solve this problem, it can be said that a technique for effectively controlling the oxide film formed on the aluminum surface is necessary.

상기 문제점을 해결하기 위해 전 세계적으로 다양한 기술이 개발되고 있다.In order to solve the above problems, various technologies have been developed worldwide.

Powder Technology 164 (2006) 111-115Powder Technology 164 (2006) 111-115

“Aluminum nanopowders produced by electrical explosion of wires and passivated by non-innert coatings: characterization and reactivity with air and water”에는 전기폭발법으로 알루미늄 나노분말에 Oleic acid, Steric acid 막을 형성시키는 방법이 개시되어 있다.“Aluminum nanopowders produced by electrical explosion of wires and passivated by non-innert coatings: characterization and reactivity with air and water” discloses the formation of Oleic acid and Steric acid films on aluminum nanopowders by electroexplosion.

그러나 이러한 기술에는 공기 중 산소가 표면 유기막을 쉽게 침투하여 장기적 산화 안정성이 떨어진다는 단점이 있다.However, this technique has a disadvantage in that oxygen in the air easily penetrates the surface organic film, resulting in poor long-term oxidation stability.

Chemistry of materials 17(11) (2005) 2987-2996Chemistry of materials 17 (11) (2005) 2987-2996

"Surface passivation of Bare Aluminum Nanoparticles using perfluoroalkyl carboxylic acids" 에는 화학적 습식 공정을 통해 제조된 알루미늄 나노분말 표면에 불소계 카르복실 산(perfluoroalkyl carboxylic acid) 막을 형성시키는 기술이 개시되어 있다."Surface passivation of Bare Aluminum Nanoparticles using perfluoroalkyl carboxylic acids" discloses a technique for forming a perfluoroalkyl carboxylic acid film on the surface of an aluminum nanopowder prepared by a chemical wet process.

그러나, 이러한 기술은 산화안정성이 크다는 장점은 있으나 유기소재 막 형성을 위한 공정이 비교적 복잡하다는 단점이 존재한다.However, this technique has the advantage of high oxidation stability, but there is a disadvantage that the process for forming the organic material film is relatively complicated.

본 발명의 목적은 상기와 같은 종래 기술의 문제점을 해결하고 보다 간단한 방법으로 내산화 특성이 우수한 유기물질에 둘러싸인 알루미늄 나노분말을 제조하기 위한 것으로, 알루미늄 나노분말 합성을 위한 화학적 습식 공정에서 환원력을 지니고 있는 에틸렌글리콜 (Ehtylene glycol)을 용매로 사용하여 알루미늄 전구체인 AlCl3가 용매에 녹아 존재하게 되는 Al3 +이온의 환원을 용이하게 하고 그로 인해 매우 짧은 시간에 손쉽게 알루미늄 나노분말 합성이 이루어지도록 할 뿐만 아니라 분말 합성 시 발생하는 반응열을 중합반응에 활용하여 알루미늄 나노분말 외면에 폴리에틸렌글리콜이 코팅되도록 함으로써 간소한 공정으로 제조 가능한 알루미늄-PEG 복합나노분말 및 이의 제조방법을 제공하는 것에 있다.An object of the present invention is to solve the problems of the prior art as described above and to produce an aluminum nanopowder surrounded by an organic material excellent in oxidation resistance by a simple method, having a reducing power in a chemical wet process for the synthesis of aluminum nanopowder glycol (Ehtylene glycol) for use as a solvent to facilitate the aluminum precursor of AlCl 3 is the reduction of the Al 3 + ions be present dissolved in the solvent and thereby easily in a very short time only so that the aluminum nanopowder synthesis done Rather, the present invention provides an aluminum-PEG composite nanopowder and a method for preparing the same, which can be manufactured in a simple process by applying polyethylene glycol to the aluminum nanopowder outer surface by utilizing the heat of reaction generated during the synthesis of the powder in a polymerization reaction.

상기와 같은 목적을 달성하기 위한 본 발명에 의한 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말은, 알루미늄 나노분말과, 상기 알루미늄 나노분말 외측에 코팅된 내산화성 폴리에틸렌글리콜(PEG)을 포함하여 구성됨을 특징으로 한다.Aluminum-polyethylene glycol (PEG) composite nano powder according to the present invention for achieving the above object, characterized in that comprises an aluminum nano-powder, and oxidation-resistant polyethylene glycol (PEG) coated on the outside of the aluminum nano-powder. It is done.

상기 폴리에틸렌글리콜은 알루미늄 나노입자 형성 시 발생되는 반응열에 의해 용매로 사용된 에틸렌글리콜이 중합반응함으로써 형성됨을 특징으로 한다.The polyethylene glycol is characterized in that the ethylene glycol used as a solvent is formed by a polymerization reaction by the reaction heat generated when the aluminum nanoparticles are formed.

본 발명에 의한 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 제조방법은, 알루미늄 전구체인 AlCl3와, LiAlH4 및 에틸렌글리콜 용매를 준비하는 재료준비단계와, 상기 AlCl3와 LiAlH4를 에틸렌글리콜 용매에 투입하여 용해하는 재료투입단계와, 상기 에틸렌글리콜 용매를 가열 및 교반하여 알루미늄 나노분말 외면에 폴리에틸렌글리콜이 코팅된 복합나노분말을 제조하는 복합분말 제조단계와, 상기 복합분말 제조단계에서 형성된 부산물인 LiCl을 제거하는 세척단계로 이루어지는 것을 특징으로 한다.In the method for preparing an aluminum-polyethylene glycol (PEG) composite nanopowder according to the present invention, a material preparation step of preparing AlCl 3 as an aluminum precursor, LiAlH 4 and an ethylene glycol solvent, and the AlCl 3 and LiAlH 4 in an ethylene glycol solvent Injecting and dissolving the material, the composite powder manufacturing step of producing a composite nano-powder coated with polyethylene glycol on the outer surface of the aluminum nanopowder by heating and stirring the ethylene glycol solvent, LiCl which is a by-product formed in the composite powder manufacturing step Characterized in that the washing step to remove the.

상기 재료투입단계에서 상기 AlCl3와 LiAlH4는 1:3의 몰비로 에틸렌글리콜에 투입되는 것을 특징으로 한다.In the material input step, the AlCl 3 and LiAlH 4 is characterized in that it is added to ethylene glycol in a molar ratio of 1: 3.

상기 복합분말 제조단계는, 상기 재료투입단계 중에 에틸렌글리콜에 녹아 있는 Al3 + 이온이 환원하는 환원과정과, 폴리올 공정에 의해 알루미늄 나노분말이 형성되는 나노분말 형성과정과, 상기 에틸렌글리콜의 중합반응에 의해 알루미늄 나노분말 외면에 폴리에틸렌글리콜을 형성하는 복합분말 형성과정으로 이루어지는 것을 특징으로 한다.The composite powder production step, the reduction process of Al 3 + ions dissolved in ethylene glycol during the material injection step, the nano-powder formation process of forming aluminum nano-powder by the polyol process, and the polymerization reaction of the ethylene glycol It characterized by consisting of a composite powder forming process of forming polyethylene glycol on the outer surface of the aluminum nanopowder.

상기 복합분말 제조단계에서, 상기 AlCl3와 LiAlH4가 용해된 에틸렌글리콜 용매는 120 내지 140℃로 가열되는 것을 특징으로 한다.In the composite powder preparation step, the ethylene glycol solvent in which AlCl 3 and LiAlH 4 is dissolved is heated to 120 to 140 ℃.

물 또는 알콜을 이용하여 LiCl을 선택적으로 제거하는 과정임을 특징으로 한다.It is characterized in that the process of selectively removing LiCl using water or alcohol.

상기 세척단계는 원심력을 이용하여 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말과 LiCl을 분리하는 과정임을 특징으로 한다.The washing step is characterized in that the process of separating the aluminum-polyethylene glycol (PEG) composite nano powder and LiCl using a centrifugal force.

상기 세척단계는 12000 내지 20000 RPM의 속도로 회전하여 분리하는 과정임을 특징으로 한다.The washing step is characterized in that the process of separating by rotating at a speed of 12000 to 20000 RPM.

이상 설명한 바와 같이 본 발명에서는, 알루미늄 나노분말 합성에 필요한 용매를 환원력이 존재하는 에틸렌글리콜을 활용하여 매우 짧은 시간에 알루미늄 나노분말 합성 반응을 유도하고 반응 시 발생하는 열에너지를 폴리에틸렌글리콜 중합반응에 활용하였다.As described above, in the present invention, the solvent necessary for synthesizing the aluminum nanopowder was used to induce the aluminum nanopowder synthesis reaction in a very short time by using ethylene glycol having reducing power, and the thermal energy generated during the reaction was utilized in the polyethylene glycol polymerization reaction. .

따라서, 단일 공정으로 알루미늄 나노분말 외측에 폴리에틸렌글리콜을 코팅하여 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 제조가 가능하므로, 생산성이 향상되는 이점이 있다.Therefore, by coating polyethylene glycol outside the aluminum nanopowder in a single process, it is possible to manufacture aluminum-polyethylene glycol (PEG) composite nanopowder, thereby improving the productivity.

또한, 알루미늄 나노분말 표면을 감싼 PEG로 인해 알루미늄 복합나노분말의 내산화 특성이 향상되므로, 전극소재 또는 금속 고체연료로의 활용될 때 높은 전기적 특성 및 연소특성을 나타낼 수 있는 이점이 있다. In addition, since the oxidation resistance of the aluminum composite nanopowder is improved due to the PEG wrapping the aluminum nanopowder surface, there is an advantage that can exhibit high electrical characteristics and combustion characteristics when used as an electrode material or a solid metal fuel.

그리고, 알루미늄 분말 제조 후 특정 유기물질을 알루미늄 분말 표면에 씌워주는 별개의 단계를 실시하여 제조하던 종래의 기술과 비교할 때 공정 시간이 현저히 감소할 뿐만 아니라, 재료 준비를 위한 번거로움을 야기하지 않게 되므로 대량 생산이 유리한 이점이 있다.In addition, the process time is significantly reduced as compared with the conventional technique, which is performed by performing a separate step of coating a specific organic material on the surface of the aluminum powder after the aluminum powder is manufactured, and it does not cause trouble for material preparation. Production has an advantage.

그리고, 용매로 사용된 에틸렌글리콜이 알루미늄 분말 표면을 감싸는 폴리에틸렌글리콜 중합 전구체로 활용되므로 단일 공정만으로 복합나노분말의 제조가 가능하며, 추가비용이 없다는 이점이 있다.In addition, since the ethylene glycol used as the solvent is utilized as a polyethylene glycol polymerization precursor surrounding the surface of the aluminum powder, it is possible to manufacture the composite nanopowder in a single process, and there is no additional cost.

뿐만 아니라, 알루미늄-폴리에틸렌글리콜 복합나노분말은 태양전지, OLED 등의 그린에너지 산업의 전극소재로 활용될 수 있으며, 금속 고체연료의 연소효율을 극대화 하기 위해 산화막 형성이 제어된 알루미늄 고체연료로도 활용 가능한 이점이 있다.In addition, the aluminum-polyethylene glycol composite nano powder can be used as an electrode material for green energy industries such as solar cells and OLEDs, and can also be used as aluminum solid fuel with controlled oxide film formation to maximize combustion efficiency of metal solid fuel. There is a possible advantage.

도 1 은 본 발명의 바람직한 실시예에 따라 제조된 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 전자현미경 사진.
도 2 는 본 발명에 의한 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 제조방법을 나타낸 공정 순서도.
도 3 은 본 발명에 의한 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 제조방법에서 일 단계인 복합분말 제조단계를 세부적으로 나타낸 공정 순서도.
도 4 는 본 발명의 바람직한 실시예에 따라 제조된 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 고배율 전자현미경 사진.
도 5 는 본 발명의 바람직한 실시예에 따라 제조된 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 X선 회절분석 사진.
도 6 은 본 발명의 바람직한 실시예에 따라 제조된 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 FTIR 분석결과를 나타낸 그래프.
도 7 은 본 발명의 바람직한 실시예에 따라 제조된 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 GPC 분석 결과를 나타낸 그래프.
1 is an electron micrograph of an aluminum-polyethylene glycol (PEG) composite nano powder prepared according to a preferred embodiment of the present invention.
2 is a process flow chart showing a method for producing an aluminum-polyethylene glycol (PEG) composite nano powder according to the present invention.
Figure 3 is a process flow chart showing in detail a composite powder manufacturing step of one step in the manufacturing method of aluminum-polyethylene glycol (PEG) composite nano powder according to the present invention.
Figure 4 is a high magnification electron micrograph of aluminum-polyethylene glycol (PEG) composite nano powder prepared according to a preferred embodiment of the present invention.
5 is an X-ray diffraction analysis photograph of aluminum-polyethylene glycol (PEG) composite nano powder prepared according to a preferred embodiment of the present invention.
Figure 6 is a graph showing the results of the FTIR analysis of aluminum-polyethylene glycol (PEG) composite nano powder prepared according to a preferred embodiment of the present invention.
7 is a graph showing the results of GPC analysis of aluminum-polyethylene glycol (PEG) composite nano powder prepared according to a preferred embodiment of the present invention.

이하에서는 첨부된 도 1을 참조하여 본 발명에 의한 알루미늄-폴리에틸렌글리콜 복합나노분말(이하 '복합나노분말'이라 칭함)의 구성을 살펴본다.Hereinafter, with reference to the accompanying Figure 1 looks at the configuration of the aluminum-polyethylene glycol composite nano powder (hereinafter referred to as "composite nano powder").

도 1은 본 발명의 바람직한 실시예에 따라 제조된 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 전자현미경 사진이다.1 is an electron micrograph of an aluminum-polyethylene glycol (PEG) composite nanopowder prepared according to a preferred embodiment of the present invention.

도면과 같이, 상기 복합나노분말(100)은 알루미늄 나노분말(120)과, 상기 알루미늄 나노분말(120) 외측에 코팅된 폴리에틸렌글리콜(PEG,140)을 포함하여 구성된다.As shown in the drawing, the composite nanopowder 100 includes aluminum nanopowder 120 and polyethylene glycol (PEG) 140 coated on the outside of the aluminum nanopowder 120.

상기 알루미늄 나노분말(120)은 전구체인 AlCl3 와 LiAlH4를 에틸렌글리콜에 투입한 후 가열시에 환원반응 및 폴리올공정이 순차적으로 진행되어 AlCl3 와 LiAlH4로부터 형성된 것이며, 상기 폴리에틸렌글리콜은 에틸렌글리콜이 중합반응에 의해 형성된 것으로, 상기 알루미늄 나노분말(120)의 외측에 둘러싸이도록 형성된다.The aluminum nano-powder 120 is a reducing reaction and the polyol process at the time of post-heating In the precursor of AlCl 3 with LiAlH 4 in ethylene glycol is conducted in sequence will formed from AlCl 3 with LiAlH 4, wherein the polyethylene glycol is ethylene glycol It is formed by this polymerization reaction and is formed to be surrounded by the outer side of the aluminum nanopowder 120.

따라서, 도 1과 같이 상기 복합나노분말(100)은 폴리에틸렌글리콜 내부에 다수의 알루미늄 나노분말(120)이 수용된 형태를 갖는다.Therefore, as shown in FIG. 1, the composite nanopowder 100 has a shape in which a plurality of aluminum nanopowders 120 are accommodated in polyethylene glycol.

이하 상기 복합나노분말의 제조방법을 첨부된 도 2 및 도 3을 참조하여 설명한다.Hereinafter, a method of manufacturing the composite nanopowder will be described with reference to FIGS. 2 and 3.

도 2는 본 발명에 의한 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 제조방법을 나타낸 공정 순서도이고, 도 3은 본 발명에 의한 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 제조방법에서 일 단계인 복합분말 제조단계(S300)를 세부적으로 나타낸 공정 순서도이다.2 is a process flow chart showing a method for producing an aluminum-polyethylene glycol (PEG) composite nano powder according to the present invention, Figure 3 is a step in the method for producing an aluminum- polyethylene glycol (PEG) composite nano powder according to the present invention. Process flow chart showing in detail the composite powder manufacturing step (S300).

먼저 도 2와 같이, 상기 복합나노분말을 제조하는 과정은, 알루미늄 전구체인 AlCl3와, LiAlH4 및 에틸렌글리콜 용매를 준비하는 재료준비단계(S100)와, 상기 AlCl3와 LiAlH4를 에틸렌글리콜 용매에 투입하여 용해하는 재료투입단계(S200)와, 상기 에틸렌글리콜 용매를 가열 및 교반하여 알루미늄 나노분말(120) 외면에 폴리에틸렌글리콜(140)이 코팅된 복합나노분말(100)을 제조하는 복합분말 제조단계(S300)와, 상기 복합분말 제조단계에서 형성된 부산물인 LiCl을 제거하는 세척단계(S400)로 이루어진다.First, as shown in FIG. 2, the process of preparing the composite nanopowder includes preparing an AlCl 3 , an Al precursor, LiAlH 4, and an ethylene glycol solvent (S100), and AlCl 3 and LiAlH 4 in an ethylene glycol solvent. Material injection step (S200) to dissolve in, and the composite powder to prepare a composite nano-powder 100 coated with polyethylene glycol 140 on the outer surface of the aluminum nano-powder 120 by heating and stirring the ethylene glycol solvent. Step (S300), and the washing step (S400) for removing the by-product LiCl formed in the composite powder manufacturing step.

상기 재료준비단계(S100)에서 AlCl3 및 LiAlH4는 전구물질이며, LiAlH4는 환원제 역할을 동시에 수행한다.AlCl 3 in the material preparation step (S100) And LiAlH 4 are precursors, and LiAlH 4 simultaneously serves as a reducing agent.

그리고, 상기 에틸렌글리콜은 복합나노분말(100)을 빠른 시간 내에 제조할 수 있도록 하는 것으로, 자체적으로 환원력을 지니고 있을 뿐 아니라, 알루미늄 나노분말(120) 외면에 형성되는 폴리에틸렌글리콜(140)의 중합 전구체 역할을 동시에 수행하게 된다.In addition, the ethylene glycol is to be able to manufacture the composite nanopowder 100 in a short time, not only has a reducing power itself, but also a polymerization precursor of polyethylene glycol 140 formed on the outer surface of the aluminum nanopowder 120 It will play a role at the same time.

상기 재료준비단계(S100) 이후에는 재료투입단계(S200)가 실시된다. 상기 재료투입단계(S200)는 AlCl3와 LiAlH4의 몰비를 1:3으로 제어하여 에틸렌글리콜에 투입한 후 용해하는 과정으로, AlCl3와 LiAlH4 중 알루미늄은 Al3 + 이온 상태가 되어 환원이 용이하게 된다.After the material preparation step (S100), a material input step (S200) is performed. The material input step (S200) is a mole ratio of AlCl 3 with LiAlH 4, 1: a step of melting and then put in ethylene glycol to control 3, the AlCl 3 and LiAlH of 4 aluminum is an Al 3 + ions reduced It becomes easy.

상기 재료투입단계(S200) 이후에는 복합분말 제조단계(S300)가 실시된다. 상기 복합분말 제조단계(S300)는, AlCl3와 LiAlH4 이 용해된 에틸렌글리콜 용매를 가열하여 알루미늄 나노분말(120)을 제조함과 동시에 상기 알루미늄 나노분말 외측에 폴리에틸렌글리콜(140)이 형성되도록 하는 과정이다.After the material input step (S200), the composite powder manufacturing step (S300) is carried out. The composite powder manufacturing step (S300), by heating the ethylene glycol solvent in which AlCl 3 and LiAlH 4 is dissolved to prepare the aluminum nanopowder 120 and at the same time the polyethylene glycol 140 is formed on the outside of the aluminum nanopowder. It is a process.

즉, 상기 복합나노분말 제조단계는 아래 반응식에 의해 아주 짧은 시간 동안 실시된다.That is, the composite nano powder manufacturing step is carried out for a very short time by the following reaction scheme.

AlCl3 + 3LiAlH4 → 4AlH3 + 3LiCl → 4Al + 3LiCl + 6H2 ---(반응식)AlCl 3 + 3LiAlH 4 → 4AlH 3 + 3LiCl → 4Al + 3LiCl + 6H 2 --- (Scheme)

상기 복합나노분말 제조단계(S300)를 도 3을 참조하여 보다 세부적으로 살펴보면, 상기 복합분말 제조단계(S300)는, 상기 재료투입단계(S200) 중에 에틸렌글리콜에 녹아 있는 Al3 + 이온이 환원하는 환원과정(S320)과, 폴리올 공정에 의해 알루미늄 나노분말(120)이 형성되는 나노분말 형성과정(S340)과, 상기 에틸렌글리콜의 중합반응에 의해 알루미늄 나노분말(120) 외면에 폴리에틸렌글리콜(140)을 형성하는 복합분말 형성과정(S360)으로 이루어진다.Looking at the composite nano powder manufacturing step (S300) in more detail with reference to Figure 3, the composite powder manufacturing step (S300), Al 3 + ions dissolved in ethylene glycol during the material input step (S200) is reduced Reduction process (S320), the nano-powder forming process (S340) is formed by the polyol process aluminum nanoparticles (120) and the polyethylene glycol (140) on the outer surface of the aluminum nanopowder (120) by the polymerization reaction of the ethylene glycol It consists of a composite powder forming process (S360) to form a.

상기 환원과정(S320)에서 Al3 + 이온이 포함된 에틸렌글리콜 용매는 120 내지 140℃로 가열되며, 이때 상기 Al3 + 이온 수소와 결합하게 되며, 2 내지 5초간 급격한 발열반응이 발생한다. 이와 동시에 부산물인 LiCl이 생성된다. The reducing process of the glycol solvent include Al 3 + ions in (S320) is heated to 120 to 140 ℃, this time is brought into engagement with the Al 3 + ion of hydrogen, 2 to 5 seconds rapid exothermic reaction occurs. At the same time, by-product LiCl is produced.

이후 수소와 결합한 알루미늄은 폴리올 공정에 의해 알루미늄 나노분말(120)을 형성하게 되며(나노분말 형성과정(S340)), 상기 환원과정에서 발생한 열과 에틸렌글리콜의 중합 전구체 역할에 의해 상기 알루미늄 나노분말(120)의 외면에는 폴리에틸렌글리콜(140)이 부착된다(복합분말 형성과정(S360).Since the aluminum combined with hydrogen forms the aluminum nanopowder 120 by a polyol process (nano powder formation process (S340)), the aluminum nanopowder 120 by the polymerization precursor of heat and ethylene glycol generated in the reduction process On the outer surface of the polyethylene glycol 140 is attached (composite powder forming process (S360).

본 발명의 실시예에서 에틸렌글리콜이 아닌 다른 용매를 사용하는 경우 낮은 온도에서 1시간 이상의 반응 시간이 소요되지만, 에틸렌글리콜을 사용하는 경우 알루미늄 나노분말 합성을 위한 반응 시간은 5초 이내로 매우 짧다.When using a solvent other than ethylene glycol in the embodiment of the present invention takes a reaction time of at least 1 hour at a low temperature, when using ethylene glycol, the reaction time for the synthesis of aluminum nanopowder is very short within 5 seconds.

즉, 상기 반응식은 5초 이내에 진행이 완료되며 이때 높은 열에너지가 발생하게 되고, 이때 발생하는 열에너지는 용매로 사용된 에틸렌글리콜이 중합반응에 의해 폴리에틸렌글리콜을 형성할 수 있도록 한다.That is, the reaction scheme is completed within 5 seconds and high heat energy is generated, and the heat energy generated at this time enables ethylene glycol used as a solvent to form polyethylene glycol by a polymerization reaction.

따라서, 본 발명의 실시예에서는 에틸렌글리콜이 적용됨이 바람직하다.Therefore, in the embodiment of the present invention, ethylene glycol is preferably applied.

한편, 상기 폴리에틸렌글리콜에 둘러싸인 알루미늄 나노분말은 부산물인 LiCl과 함께 존재하게 된다.On the other hand, the aluminum nano-powder surrounded by the polyethylene glycol is present with the byproduct LiCl.

따라서, 상기 LiCl은 알루미늄-폴리에틸렌글리콜 복합 나노분말에서 분리하여 제거하는 세척단계(S400)가 실시된다.Therefore, the LiCl is washed in step S400 to remove the aluminum-polyethylene glycol composite nanopowders.

상기 세척단계(S400)는, 물 또는 알콜에 LiCl 및 알루미늄-폴리에틸렌글리콜 복합나노분말(100)을 투입한 후 용해함으로써 가능하다.The washing step (S400) is possible by dissolving LiCl and aluminum-polyethylene glycol composite nanopowder 100 in water or alcohol.

즉, 상기 복합나노분말(100)은 외면에 폴리에틸렌글리콜(140)이 코팅되어 있으므로, 물 또는 알콜과 반응하지 않게 되지만, LiCl 은 폴리에틸렌글리콜이 코팅되어 있지 않으므로, 물 또는 알콜과 반응하여 산화하거나 수산화물이 만들어지게 된다.That is, since the composite nanopowder 100 is coated with polyethylene glycol 140 on its outer surface, it does not react with water or alcohol, but LiCl is not coated with polyethylene glycol, so it reacts with water or alcohol to oxidize or hydroxide. This will be made.

따라서, 물 또는 알콜을 이용하여 상기 복합나노분말(100) 중 LiCl만 용해시킨 후 12000 내지 20000rpm의 회전속도로 원심분리하게 되면 Al-PEG 나노분말을 원심력에 의해 원심분리용기 하부로 침전되어 LiCl이 녹아있는 상부용액을 분리 폐기함으로써 순수한 Al-PEG 복합나노분말의 수거가 가능하다. 이러한 방법의 적절함은 도 5의 알콜 세척 후 분말의 XRD 분석결과에서 LiCl에 해당하는 결정구조가 나타나지 않는 것으로도 확인할 수 있다.Therefore, after dissolving only LiCl in the composite nanopowder 100 using water or alcohol and centrifuging at a rotational speed of 12000 to 20000rpm, Al-PEG nanopowder is precipitated to the bottom of the centrifuge by centrifugal force and LiCl is It is possible to collect pure Al-PEG composite nano powder by separating and dissolving the dissolved upper solution. The suitability of this method can be confirmed that the crystal structure corresponding to LiCl does not appear in the XRD analysis of the powder after the alcohol washing of FIG.

상기와 같은 과정에 따라 제조된 복합나노분말은 첨부된 도 4와 같이, 구형 및 다각형 형상의 알루미늄 나노분말(120)이 폴리에틸렌글리콜(140)로 추정되는 물질의 내부에 수용된 형상을 가지며, 알루미늄나노분말의 크기는 70㎚의 크기를 갖는다.Composite nano powder prepared according to the above process as shown in Figure 4, the spherical and polygonal aluminum nanopowder 120 has a shape accommodated inside the material that is assumed to be polyethylene glycol 140, aluminum nano The size of the powder has a size of 70 nm.

그리고, 첨부된 도 5에는 본 발명의 바람직한 실시예에 따라 제조된 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말(100)의 X선 회절분석 사진이 첨부되어 있다.5 is attached with an X-ray diffraction analysis photograph of the aluminum-polyethylene glycol (PEG) composite nanopowder 100 prepared according to the preferred embodiment of the present invention.

도면과 같이, 상기 복합나노분말(100) 내부에 수용된 물질은 알루미늄인 것을 확인할 수 있다.As shown in the figure, it can be seen that the material contained in the composite nanopowder 100 is aluminum.

그리고, 상기 알루미늄 나노분말 외측의 물질은 첨부된 도 6 및 도 7을 통해 폴리에틸렌글리콜임을 확인하였다.In addition, it was confirmed that the material outside the aluminum nanopowder is polyethylene glycol through FIGS. 6 and 7.

즉, 도 6은 본 발명의 바람직한 실시예에 따라 제조된 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 FTIR 분석결과를 나타낸 그래프로서, 입자 간에 존재하는 물질에 대한 FTIR 분석결과 폴리에틸렌글리콜의 특징인 2400-3000 ㎝-1 사이에서 O-H 밴드에 해당하는 피크가 나나타는 것을 확인할 수 있었다.That is, Figure 6 is a graph showing the results of the FTIR analysis of the aluminum-polyethylene glycol (PEG) composite nano powder prepared according to a preferred embodiment of the present invention, FTIR analysis results for the material present between the particles 2400 characteristics of polyethylene glycol It was confirmed that the peak corresponding to the OH band appears between -3000 cm -1 .

O-H 밴드에 해당하는 피크는 PEG 중합 전 용매인 에틸렌글리콜에서도 나타날 수 있는 것으로 FTIR 결과만으로 PEG가 Al 분말 표면을 감싸고 있다고 말할 수는 없어 본 발명에서는 GPC(겔투과크로마토그래피)분석을 통해 도 7과 같은 결과를 얻었다.The peak corresponding to the OH band may also appear in ethylene glycol, which is a solvent before PEG polymerization, and it cannot be said that PEG surrounds the surface of Al powder only by the FTIR results. The same result was obtained.

도 7 은 본 발명의 바람직한 실시예에 따라 제조된 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 GPC 분석 결과를 나타낸 그래프로서, Al 분말 표면을 둘러싼 물질의 분자량을 산정한 결과 분자량의 범위는 작게는 100g/mol에서 크게는 2000g/mol까지 나타나는 것을 확인할 수 있었으며, 수평균 분자량은 253g/mol로 나타나 평균 6개의 (CH2-O-CH2) 체인 수를 지니는 PEG가 형성되어 있는 것을 확인할 수 있다.7 is a graph showing the results of GPC analysis of the aluminum-polyethylene glycol (PEG) composite nano powder prepared according to a preferred embodiment of the present invention, the molecular weight of the material surrounding the Al powder surface as a result of the molecular weight range is small It can be seen that the maximum from 2000g / mol to 100g / mol, the number average molecular weight was 253g / mol, it can be seen that the PEG having an average number of six (CH 2 -O-CH 2 ) chains are formed. .

이러한 본 발명의 범위는 상기에서 예시한 실시예에 한정되지 않고, 상기와 같은 기술범위 안에서 당업계의 통상의 기술자에게 있어서는 본 발명을 기초로 하는 다른 많은 변형이 가능할 것이다.The scope of the present invention is not limited to the above-described embodiments, and many other modifications based on the present invention will be possible to those skilled in the art within the scope of the present invention.

100. 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말
120. 알루미늄 나노분말
140. 폴리에틸렌글리콜
S100. 재료준비단계 S200. 재료투입단계
S300. 복합분말 제조단계 S320. 환원과정
S340. 나노분말 형성과정 S360. 복합분말 형성과정
S400. 세척단계
100. Aluminum-Polyethylene Glycol (PEG) Composite Nanopowder
120. Aluminum Nano Powder
140. Polyethylene glycol
S100. Material preparation step S200. Material input step
S300. Composite powder production step S320. Reduction Process
S340. Nano powder formation process S360. Compound powder formation process
S400. Washing steps

Claims (9)

알루미늄 나노분말과,
상기 알루미늄 나노분말 외측에 코팅된 내산화성 폴리에틸렌글리콜(PEG)을 포함하여 구성됨을 특징으로 하는 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말.
With aluminum nano powder,
Aluminum nano-polyethylene glycol (PEG) composite nano powder, characterized in that it comprises an oxidation-resistant polyethylene glycol (PEG) coated on the outside of the aluminum nano powder.
제 1 항에 있어서, 상기 폴리에틸렌글리콜은 알루미늄 나노입자 형성 시 발생되는 반응열에 의해 용매로 사용된 에틸렌글리콜이 중합반응함으로써 형성됨을 특징으로 하는 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말.The aluminum-polyethylene glycol (PEG) composite nanopowder according to claim 1, wherein the polyethylene glycol is formed by polymerization of ethylene glycol, which is used as a solvent, by reaction heat generated when aluminum nanoparticles are formed. 알루미늄 전구체인 AlCl3와, LiAlH4 및 에틸렌글리콜 용매를 준비하는 재료준비단계와,
상기 AlCl3와 LiAlH4를 에틸렌글리콜 용매에 투입하여 용해하는 재료투입단계와,
상기 에틸렌글리콜 용매를 가열 및 교반하여 알루미늄 나노분말 외면에 폴리에틸렌글리콜이 코팅된 복합나노분말을 제조하는 복합분말 제조단계와,
상기 복합분말 제조단계에서 형성된 부산물인 LiCl을 제거하는 세척단계로 이루어지는 것을 특징으로 하는 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 제조방법.
A material preparation step of preparing AlCl 3 which is an aluminum precursor, LiAlH 4 and an ethylene glycol solvent,
A material input step of dissolving AlCl 3 and LiAlH 4 in an ethylene glycol solvent;
A composite powder manufacturing step of preparing a composite nanopowder coated with polyethylene glycol on the outer surface of the aluminum nanopowder by heating and stirring the ethylene glycol solvent;
Method for producing an aluminum-polyethylene glycol (PEG) composite nano powder, characterized in that consisting of a washing step for removing the by-product LiCl formed in the composite powder manufacturing step.
제 3 항에 있어서, 상기 재료투입단계에서 상기 AlCl3와 LiAlH4는 1:3의 몰비로 에틸렌글리콜에 투입되는 것을 특징으로 하는 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 제조방법.[4] The method of claim 3, wherein the AlCl 3 and LiAlH 4 are added to ethylene glycol in a molar ratio of 1: 3 in the material input step. 제 4 항에 있어서, 상기 복합분말 제조단계는,
상기 재료투입단계 중에 에틸렌글리콜에 녹아 있는 Al3 + 이온이 환원하는 환원과정과,
폴리올 공정에 의해 알루미늄 나노분말이 형성되는 나노분말 형성과정과,
상기 에틸렌글리콜의 중합반응에 의해 알루미늄 나노분말 외면에 폴리에틸렌글리콜을 형성하는 복합분말 형성과정으로 이루어지는 것을 특징으로 하는 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 제조방법.
According to claim 4, The composite powder manufacturing step,
Reduction process of the Al 3 + ions dissolved in the ethylene glycol in the material feed reduction step and,
Nano-powder formation process in which the aluminum nano-powder is formed by a polyol process,
Method for producing an aluminum-polyethylene glycol (PEG) composite nano-powder, characterized in that the composite powder forming process of forming polyethylene glycol on the outer surface of the aluminum nano-powder by the polymerization reaction of the ethylene glycol.
제 4 항에 있어서, 상기 복합분말 제조단계에서, 상기 AlCl3와 LiAlH4가 용해된 에틸렌글리콜 용매는 120 내지 140℃로 가열되는 것을 특징으로 하는 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 제조방법.The method of claim 4, wherein in the composite powder preparation step, the ethylene glycol solvent in which AlCl 3 and LiAlH 4 are dissolved is heated to 120 to 140 ° C. . 제 3 항에 있어서, 상기 세척단계는, 물 또는 알콜을 이용하여 LiCl을 선택적으로 제거하는 과정임을 특징으로 하는 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 제조방법.The method of claim 3, wherein the washing step is a process of selectively removing LiCl using water or alcohol. 제 3 항에 있어서, 상기 세척단계는 원심력을 이용하여 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말과 LiCl을 분리하는 과정임을 특징으로 하는 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 제조방법.The method of claim 3, wherein the washing step is a process of separating the aluminum-polyethylene glycol (PEG) composite nano powder and LiCl using a centrifugal force. 제 8 항에 있어서, 상기 세척단계는 12000 내지 20000 RPM의 속도로 회전하여 분리하는 과정임을 특징으로 하는 알루미늄-폴리에틸렌글리콜(PEG) 복합나노분말의 제조방법.9. The method of claim 8, wherein the washing step is a process of separating by rotating at a speed of 12000 to 20000 RPM.
KR1020100026176A 2010-03-24 2010-03-24 Al-peg composite nanopowders and method for manufacturing thereof KR20110107034A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100026176A KR20110107034A (en) 2010-03-24 2010-03-24 Al-peg composite nanopowders and method for manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100026176A KR20110107034A (en) 2010-03-24 2010-03-24 Al-peg composite nanopowders and method for manufacturing thereof

Publications (1)

Publication Number Publication Date
KR20110107034A true KR20110107034A (en) 2011-09-30

Family

ID=44956577

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100026176A KR20110107034A (en) 2010-03-24 2010-03-24 Al-peg composite nanopowders and method for manufacturing thereof

Country Status (1)

Country Link
KR (1) KR20110107034A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234112B2 (en) 2013-06-05 2016-01-12 Korea Institute Of Machinery & Materials Metal precursor powder, method of manufacturing conductive metal layer or pattern, and device including the same
US9249330B2 (en) 2012-09-06 2016-02-02 Cheil Industries Inc. Resin composition and article using the same
US9637630B2 (en) 2013-02-21 2017-05-02 Samsung Sdi Co., Ltd. Resin composition and moulded article using same
US9790369B2 (en) 2012-12-31 2017-10-17 Lotte Advanced Materials Co., Ltd. Composite material and method for preparing composite material
US9944053B2 (en) 2012-10-24 2018-04-17 Lotte Advanced Materials Co., Ltd. Laminate sheet, method of manufacturing the laminate sheet, and article using the laminate sheet
US10118370B2 (en) 2012-09-07 2018-11-06 Lotte Advanced Materials Co., Ltd. Article and manufacturing method of article

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9249330B2 (en) 2012-09-06 2016-02-02 Cheil Industries Inc. Resin composition and article using the same
US10118370B2 (en) 2012-09-07 2018-11-06 Lotte Advanced Materials Co., Ltd. Article and manufacturing method of article
US9944053B2 (en) 2012-10-24 2018-04-17 Lotte Advanced Materials Co., Ltd. Laminate sheet, method of manufacturing the laminate sheet, and article using the laminate sheet
US9790369B2 (en) 2012-12-31 2017-10-17 Lotte Advanced Materials Co., Ltd. Composite material and method for preparing composite material
US9637630B2 (en) 2013-02-21 2017-05-02 Samsung Sdi Co., Ltd. Resin composition and moulded article using same
US9234112B2 (en) 2013-06-05 2016-01-12 Korea Institute Of Machinery & Materials Metal precursor powder, method of manufacturing conductive metal layer or pattern, and device including the same

Similar Documents

Publication Publication Date Title
CN1278438C (en) Active positive electrode material for rechargeable Li battery and its prepn
Tang et al. Titanium nitride coating to enhance the performance of silicon nanoparticles as a lithium-ion battery anode
KR20110107034A (en) Al-peg composite nanopowders and method for manufacturing thereof
US20170279109A1 (en) Lithium metal oxide composites, and methods for preparing and using thereof
CN105226249A (en) A kind of 3 SiC 2/graphite alkene core-shell material and Synthesis and applications thereof with gap
Rastgoo-Deylami et al. Enhanced performance of layered Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material in Li-ion batteries using nanoscale surface coating with fluorine-doped anatase TiO2
CN111793824B (en) Surface-modified high-nickel cathode material and preparation method and application thereof
JP5692703B2 (en) Positive electrode material for lithium sulfur battery, lithium sulfur battery, and method for producing positive electrode material for lithium sulfur battery
US9246173B2 (en) Process for synthesis of hybrid siloxy derived resins and crosslinked networks therefrom
JP2011103195A (en) Electrode material, production method of same, and lithium ion secondary battery
CN109478641A (en) Negative electrode active material and cathode comprising it
JP2019145402A (en) Lithium ion secondary battery
CN108370034A (en) The manufacturing method of lithium ion secondary battery cathode active material
Lin et al. A lithium-ion battery recycling technology based on a controllable product morphology and excellent performance
JP2024513536A (en) Ternary cathode material coated with nitride/graphitized carbon nanosheets and method for producing the same
Gao et al. Scalable synthesis of high-performance anode material SiOx/C for lithium-ion batteries by employing the Rochow reaction process
Zhang et al. A 10‐μm Ultrathin Lithium Metal Composite Anodes with Superior Electrochemical Kinetics and Cycling Stability
KR102007562B1 (en) Nanoporous silicon, method of manufacturing the same, and lithium ion battery having the same
Lee et al. Spinel LiNi 0.5 Mn 1.5 O 4 with ultra-thin Al 2 O 3 coating for Li-ion batteries: investigation of improved cycling performance at elevated temperature
JP2019021451A (en) Fluorine layer coating, carbon layer coating, and negative electrode active material
JP2015207469A (en) Method for manufacturing metal-containing nanoparticles
Camacho et al. Strategies to increase the stability and energy density of NVPF–A comprehensive review
Hu et al. Homogeneous triple-phase interfaces enabling one-pot route to metal compound/carbon composites
JP2019052061A (en) Al AND O-CONTAINING SILICON MATERIAL
Zhou et al. Low temperature oxidation synthesis of carbon encapsulated Cr2O3 nanocrystals and its lithium storage performance

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application