KR20110096013A - Treating method for swage-wastewater of high concentration using ultra-fine bubble as well as dissolved oxygen tank - Google Patents

Treating method for swage-wastewater of high concentration using ultra-fine bubble as well as dissolved oxygen tank Download PDF

Info

Publication number
KR20110096013A
KR20110096013A KR20110076788A KR20110076788A KR20110096013A KR 20110096013 A KR20110096013 A KR 20110096013A KR 20110076788 A KR20110076788 A KR 20110076788A KR 20110076788 A KR20110076788 A KR 20110076788A KR 20110096013 A KR20110096013 A KR 20110096013A
Authority
KR
South Korea
Prior art keywords
tank
dissolved oxygen
ultra
liquid
pressure
Prior art date
Application number
KR20110076788A
Other languages
Korean (ko)
Other versions
KR101080818B1 (en
Inventor
우광재
김연길
김완중
전재훈
조영견
강석환
김명관
Original Assignee
대웅이엔에스 (주)
우광재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대웅이엔에스 (주), 우광재 filed Critical 대웅이엔에스 (주)
Priority to KR1020110076788A priority Critical patent/KR101080818B1/en
Publication of KR20110096013A publication Critical patent/KR20110096013A/en
Application granted granted Critical
Publication of KR101080818B1 publication Critical patent/KR101080818B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1278Provisions for mixing or aeration of the mixed liquor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/005Valves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

PURPOSE: A high concentration wastewater treatment method using ultra-micro bubbles and a dissolved oxygen tub is provided to secure the dissolved oxygen concentration greater than 1.0mg/L. CONSTITUTION: A high concentration wastewater treatment method using ultra-micro bubbles and a dissolved oxygen tub comprises the following steps: forming plural dissolved oxygen tubs(110) inside an aeration tank(100); and dispersing the ultra-micro bubbles(34) generated from an ultra-micro bubble generator into water inside the dissolved oxygen tubs using plural dispersing devices. The dispersing devices include a collision inclined plate, a jet stream formation neck, and an outlet.

Description

초미세기포 및 용존산소조를 이용한 고농도 하폐수 처리방법{Treating method for swage-wastewater of high concentration using ultra-fine bubble as well as dissolved oxygen tank}Treating method for swage-wastewater of high concentration using ultra-fine bubble as well as dissolved oxygen tank}

본 발명은 축산폐수처리장, 침출수처리장, 음식물자원화여액처리장, 위생분뇨처리장, 폐수종말처리장, 하수처리장 등 현탁부유물(MLSS; mixed liquor suspended solids) 10,000 mg/L 이상의 고농도 하폐수 처리공정에 있어서, 초미세기포와 용존산소조를 이용하여 용존산소농도를 극대화시킴으로써, 미생물들에 의한 유기물분해 및 질소제거효율을 향상시키는 고농도 하폐수의 처리방법에 관한 것으로, 더욱 상세하게는, 호기조의 하부측에 제공된 송풍기 및 산기관으로부터 발생된 조대기포를 호기조의 수중에 폭기시킴으로써, 호기성미생물에게 산소를 전달하면서, 활성슬러지가 호기조의 하부에 침적되는 것을 방지시키며; 상기 호기조의 내측에는, 상측은 밀폐되고 하측은 개방되어 있는, 다수개의 용존산소조가 구성되어, 가압용존방식 내지 상압방식 초미세기포 발생장치로부터 발생된 초미세기포를, 충돌경사판, 제트기류형성목 및 분출구가 포함되어 형성된 다수개의 분산장치를 이용하여 용존산소조의 수중에 분산시킴으로써, 용존산소조의 용존산소농도를 증대시키며; 상기 호기조 후속에는 탈질순환조가 연계구성되어, 상기 호기조 및 용존산소조에서 질산화된 질화액은, 분리벽 하측에 제공된 질화액 이송유로를 거쳐 상기 탈질순환조로 자연이송되고; 상기 탈질순환조로 이송된 질화액은, 탈질순환조 내부의 무산소성 조건하에서 탈질반응, 및 중력침전이 진행됨으로써, 질소성분 및 수질오염물질들이 제거되는, 호기조; 용존산소조; 탈질순환조; 및 가압용존방식 내지 상압방식 초미세기포 발생장치를 포함하여 구성되는 것을 특징으로 하는, 현탁부유물(MLSS) 10,000 mg/L 이상의 고농도 하폐수 처리방법에 관한 것이다.The present invention is an ultra-fine strength in a high concentration sewage treatment process of more than 10,000 mg / L mixed liquor suspended solids (MLSS), such as livestock wastewater treatment plant, leachate treatment plant, food resource filtrate treatment plant, sanitary manure treatment plant, wastewater end treatment plant, sewage treatment plant, etc. The present invention relates to a method for treating high concentration sewage water by maximizing dissolved oxygen concentration by using a bubble and dissolved oxygen tank to improve organic decomposition and nitrogen removal efficiency by microorganisms, and more specifically, a blower and an acid provided at the lower side of the aerobic tank. By aeration of the coarse bubbles generated from the engine in the aerobic tank, oxygen is delivered to the aerobic microorganisms while preventing activated sludge from being deposited in the lower part of the aerobic tank; Inside the aerobic tank, a plurality of dissolved oxygen tanks, which are closed on the upper side and open on the lower side, constitute the ultra-low intensity bubbles generated from the pressure-dissolved method or the atmospheric pressure type ultra-miniaturized bubble generator, and the impact slant plate and the jet stream forming tree. And dispersing the dissolved oxygen bath in water using a plurality of dispersing devices including a jet port, thereby increasing the dissolved oxygen concentration of the dissolved oxygen bath; A denitrification circulation tank is connected after the aerobic tank, and the nitrified liquid nitrified in the aerobic tank and the dissolved oxygen tank is naturally transported to the denitrification circulation tank via a nitride liquid transfer channel provided under the separation wall; The nitriding liquid transferred to the denitrification circulation tank is a denitrification reaction and gravity precipitation under anoxic conditions inside the denitrification circulation tank, whereby nitrogen components and water pollutants are removed; Dissolved oxygen bath; Denitrification circulation tank; And it is characterized in that it comprises a pressure-dissolved to atmospheric pressure ultra-fine foam generator, suspended solids (MLSS) 10,000 mg / L or more high concentration sewage treatment method.

지속되는 산업화와 도시화로 환경오염은 날로 심각해지고 있으며, 배출되는 생활하수, 공장 및 축산농가로부터의 폐수, 침출수, 오수(이하 '하폐수'라 한다)의 형상 또한 매우 다양해지고 있으며, 이의 처리를 위한 시설 역시 고도화되고 처리비용도 증가되고 있는 실정이다. 그럼에도 불구하고, 완전히 처리되지 않은 하폐수 중의 수질오염물질이 하천이나 호소(湖沼)를 비롯한 기타 상수원에 유입됨에 따라 효율적인 수질관리에 많은 문제점을 발생시키고 있다.Due to the continuous industrialization and urbanization, environmental pollution is getting serious day by day, and the shape of discharged sewage, wastewater from plant and livestock farms, leachate, and sewage (hereinafter referred to as 'wastewater') is also very diverse. Facilities are also being upgraded and treatment costs are increasing. Nevertheless, water pollutants in untreated sewage water are introduced into streams, lakes, and other water sources, causing many problems in efficient water quality management.

현재 하폐수의 처리기술로는 침전, 가압용존공기부상(DAF), 여과, 약품응집, 산화처리 등의 물리화학적인 방법과, 활성슬러지가 저류된 생물반응조 내에서 미생물의 대사과정을 극대화하여 각종 수질오염물질을 제거하는 생물학적 처리방법이 있다. 물리화학적인 처리방법은 기존 처리시설 설비에 큰 변화를 주지 않고 부가적으로 설치하여 사용할 수 있으며, 안정적이고 높은 효율의 처리효과를 얻을 수 있다는 장점이 있으나, 경제적 측면과 기술적인 측면에서 대규모 처리설비를 설치운영 하기에는 무리가 있으며, 경우에 따라 잉여슬러지와 같은 다량의 처리 부산물이 발생한다는 단점이 있다. 반면, 생물학적 처리방법은 비용대비 처리효율측면에서 물리화학적 방법보다 유리하며, 대규모의 하폐수를 처리하는 주처리공정으로써 국내외 대부분의 하폐수 처리시설에 이용되고 있다.Current treatment technologies for sewage water include physicochemical methods such as sedimentation, pressurized dissolved air flotation (DAF), filtration, chemical coagulation, and oxidation treatment. There is a biological treatment that removes contaminants. The physicochemical treatment method can be installed and used additionally without major changes in the existing treatment facilities, and has the advantage of obtaining stable and high efficiency treatment, but in terms of economic and technical aspects, large-scale treatment facilities It is difficult to install and operate, and in some cases, a large amount of by-products such as surplus sludge occurs. On the other hand, biological treatment method is more advantageous than physicochemical method in terms of treatment efficiency compared to cost, and is used in most domestic and foreign wastewater treatment facilities as a main treatment process for treating large-scale wastewater.

상기 생물학적 처리방법에 있어서, 유입하폐수와 함께 유입되는 유기물을 비롯한 각종 수질오염물질들은, 기본적으로, 호기성미생물이 영양성분으로 하여 호흡과 성장을 통해 분해되거나 또는 흡착/제거되는데, 호기조 내에서의 용존산소(DO; dissolved oxygen)는 유입하폐수내의 기질과 함께 호기성미생물의 가장 기본적인 성장 조건이며, 일반적으로 DO 1.5∼3.0 mg/L 정도의 용존산소농도가 호기성미생물에게 요구된다. 이에, 산기관(air diffuser)을 통한 공기주입은 보편화된 호기성미생물에게 산소를 전달하면서 활성화미생물들을 교반시키는 방법이라 할 수 있다. 하지만 호기조내의 활성미생물을 포함한 현탁부유물(MLSS)의 농도가 처음부터 높거나 또는 높게 유지해야만 하는 경우, 또는 수온이 상승하는 하절기에는, 공기주입에 대한 에너지를 대량 소요한다 하더라도, DO 1.5∼3.0 mg/L 정도의 용존산소농도를 유지시키기는 쉽지 않다. 특히, 현탁부유물(MLSS)의 농도가 10,000 mg/L 이상으로 높은 MLSS의 하폐수는 점성(viscosity) 또한 높아서 산소가 물속에 잘 녹아들어가지 않을 뿐만 아니라, 목표 용존산소농도에 도달하였다 하더라도 활성미생물들이 많아서 용존산소가 짧은 순간에 소비되기 때문에, 용존산소농도 1.0 mg/L 이상을 유지시키는 것만으로도 호기성미생물에게는 유기물분해 및 질산화기작에 있어서 우수한 호기조라 할 수 있다.In the biological treatment method, various kinds of water pollutants, including organic substances introduced with influent wastewater, are basically decomposed or adsorbed / removed through aspiration and growth by aerobic microorganisms as nutrients, dissolved in an aerobic tank. Dissolved oxygen (DO) is the most basic growth condition for aerobic microorganisms along with substrates in influent sewage, and generally dissolved oxygen concentrations of DO 1.5 to 3.0 mg / L are required for aerobic microorganisms. Therefore, air injection through an air diffuser may be referred to as a method of stirring the activated microorganisms while delivering oxygen to the generalized aerobic microorganisms. However, if the concentration of suspended solids (MLSS) including active microorganisms in the aerobic tank must be kept high or high from the beginning, or during the summer when the water temperature rises, DO 1.5 to 3.0 mg, even if a large amount of energy for air injection is required. It is not easy to maintain a dissolved oxygen concentration of about / L. In particular, MLSS sewage water with a high suspended solids (MLSS) concentration of 10,000 mg / L or more has high viscosity and does not dissolve oxygen well in water, and even if the target dissolved oxygen concentration is reached, In many cases, dissolved oxygen is consumed in a short time, and thus, only maintaining the dissolved oxygen concentration of 1.0 mg / L or more can be regarded as an excellent aerobic tank for aerobic microorganisms in organic decomposition and nitrification mechanisms.

호기조 내에서 DO 1.5∼3.0 mg/L 까지 산소를 용존시키기 위하여 산소전달효율(SOTE; standard oxygen transfer efficiency)이 높은 미세기포(fine bubble) 산기관을 사용하면 적은 동력으로 목표 용존산소농도를 맞출 수는 있으나, 산기관으로부터 생성되는 기포들은 포텐셜(potential)이 약한 미세기포이므로 활성슬러지의 교반효과는 미비하며, 반대로 조대기포(coarse bubble)를 발생시키는 산기관을 사용하게 되면 활성슬러지의 교반효과는 월등하나 산소전달효율이 저조하여 소요동력이 높게 요구된다. 따라서 산소전달효율 뿐만 아니라 활성슬러지의 교반효과까지 우수한 고농도 하폐수에 있어서의 효과적인 공기주입방법이 강구되어야 한다.Using a fine bubble diffuser with high standard oxygen transfer efficiency (SOTE) to dissolve oxygen from DO 1.5 to 3.0 mg / L in an aerobic tank can achieve the target dissolved oxygen concentration with less power. However, since the bubbles generated from the acid pipes are fine bubbles with low potential, the stirring effect of the activated sludge is insignificant. On the contrary, the use of an acid pipe generating coarse bubbles produces a stirring effect of the activated sludge. Although it is superior, the oxygen transfer efficiency is low and the required power is high. Therefore, an effective air injection method for high concentration sewage wastewater, which not only has an oxygen transfer efficiency but also an agitation effect of activated sludge, should be devised.

일례로, 대한민국 등록특허 10-0913728은, 호기조내의 용존산소농도를 충분하고도 안정되게 유지하기 위해서, 산소원으로 공기주입이 아닌 순산소를 선택하여 순산소를 하폐수 수중에 주입하고 있는데, 상기와 같이 공기대신 순산소를 하폐수 수중에 주입하게 되면 높은 산소함량만큼 산소전달효율은 우수할 수 있으나, 순산소를 실린더형태로 공급하기는 현실적으로 불가능하므로, 고가이면서 내부구조가 복잡한 순산소발생장치의 요구는 불가피하다. 따라서 대규모 처리시설에는 적합하지 못하다 하겠다.For example, in Korean Patent Registration 10-0913728, in order to maintain the dissolved oxygen concentration in the aerobic tank sufficiently and stably, pure oxygen is selected as the oxygen source and not oxygen injection, and pure oxygen is injected into the wastewater. Likewise, when oxygen is injected into the sewage water instead of air, the oxygen transfer efficiency can be as high as oxygen, but since it is impossible to supply pure oxygen in the form of cylinder, it is necessary to obtain a pure oxygen generator that is expensive and has a complicated internal structure. Is inevitable. Therefore, it is not suitable for large processing facilities.

반면, 대한민국 등록특허 10-1036225는, 고농도의 유기성 폐수를 처리하는 생물학적 폐수처리장치에 사용되고, 반응기 내 용존산소량을 증가시켜 처리효율을 향상시킬 수 있는 2상 노즐을 포함한 제트루프(jet loop) 생물학적 폐수처리장치에 관한 것으로, 생물학적 폐수처리장치용 2상 노즐은 유입폐수를 짧은 시간에 제트루프 반응기 내부에 분사하여 완전혼합을 시키고, 분사시 발생하는 음압력을 이용하여 공기를 자연흡입시킨 후, 미세기포를 만들어 재순환시킴으로써 폐수내 용존산소량을 증가시켜 미생물의 활성도를 높여줌으로써 용적부하를 향상시킬 수 있으며, 또한 기존 폐수처리장을 간단하게 리모델링하여 처리용량을 향상시킬 수 있는 발명이다. 하지만 산소전달효율이 우수한 초미세기포를 발생시키기에는 이론적으로 미흡한 실정이다.On the other hand, Korean Patent No. 10-1036225 is used in a biological wastewater treatment apparatus for treating a high concentration of organic wastewater, and a jet loop biological including a two-phase nozzle that can increase the dissolved oxygen in the reactor to improve the treatment efficiency. Regarding the wastewater treatment device, the two-phase nozzle for biological wastewater treatment device sprays the incoming wastewater into the jet loop reactor in a short time to complete mixing, and naturally inhales the air using the negative pressure generated during the injection, It is an invention that can improve the volumetric load by increasing the amount of dissolved oxygen in the wastewater by increasing the amount of dissolved oxygen in the wastewater by making microbubbles and recycling, and also by simply remodeling the existing wastewater treatment plant. However, it is theoretically insufficient to generate an ultra-micron bubble having excellent oxygen transfer efficiency.

대한민국 등록특허 10-0784933은, 고농도 유기성폐수의 유기물 및 질소처리장치에 관한 것으로, 특히 무산소조와 질산화조가 2세트 직렬로 구비되는 2차 처리장치를 거침으로써, 다른 생물학적 질소제거공법(BNR)에 비하여 질소(N) 및 인(P) 제거효율을 높일 수 있고, 긴 체류시간을 거침으로써 유기성 탄소산화 능력을 높일 수 있는 발명이다.Republic of Korea Patent No. 10-0784933 relates to a high concentration organic wastewater organic matter and nitrogen treatment device, in particular through a second treatment device equipped with two sets of anoxic tank and nitrification tank in series, compared to other biological nitrogen removal process (BNR) It is an invention that can increase the nitrogen (N) and phosphorus (P) removal efficiency, and increase the organic carbon oxidation ability through a long residence time.

또한, 고농도 질소(N)성분을 함유하는 축산폐수의 질소제거에 있어서는, 대한민국 등록특허 10-0424068은, 축산폐수 원수내의 부유물질과 각각의 생물학적 공정에서 배출되는 잉여슬러지를 저장/농축하는 농축침전조; 농축침전조의 처리수의 pH를 상승시켜 암모니아 성분을 가스 형태로 배출시키는 탈기조; 혐기성 상태에서 고농도 유기물을 저농도화시키는, 탈기조의 후단에 설치된 혐기성 바이오리액터; 암모니아성질소를 질산성질소로 변화시켜 악취를 제거하는 생물탈취조; 생물탈취조의 질산화 폐수내의 질소성분을 제거하는 탈질조; 호기성미생물을 이용하여 유기물질을 제거하는 활성오니조와 접촉산화조; 및 접촉여재가 부설된 여과기와 배출수내 부유물질을 제거하여 최종 처리수를 방류하는 여과조를 포함하여 구성하는 것을 특징으로 하는 고농도 축산폐수 처리장치에 관한 것으로, 상기 발명은 탈기조; 생물탈취조; 탈질조; 및 활성오니조로부터 축산폐수내의 질소성분과 유기물을 제거한다는 발명이다.In addition, in the nitrogen removal of livestock wastewater containing a high concentration of nitrogen (N) component, Korean Patent No. 10-0424068, a concentrated sedimentation tank for storing / concentrating suspended solids in the livestock wastewater and surplus sludge discharged from each biological process ; Degassing tank for increasing the pH of the treated water of the concentrated sedimentation tank to discharge the ammonia component in the form of gas; An anaerobic bioreactor installed at the rear of the degassing tank for lowering the high concentration of organic matter in the anaerobic state; Biodeodorization tank for removing odor by changing ammonia nitrogen to nitrate nitrogen; A denitrification tank for removing nitrogen components in the nitrification wastewater of the biological deodorization tank; Activated sludge and contact oxidation tanks for removing organic substances using aerobic microorganisms; And a filter tank in which contact medium is installed and a filter tank for removing the suspended substances in the discharged water to discharge the final treated water. The present invention relates to a livestock wastewater treatment apparatus for a high concentration; Biodeodorization tank; Denitrification tank; And nitrogen component and organic matter in the livestock wastewater from the activated sludge tank.

또한, 대한민국 등록특허 10-1003162는 축산폐수에 초임계 상태로 오존을 혼합하여 축산폐수에 포함된 항생제 등 맹독성물질을 산화시킨 후에 미생물의 활성을 증가시킬 수 있는 축산폐수 처리장치에 관한 발명인데, 축산폐수를 처리함에 있어서, 작업자에게 유해하고 고가인 오존을 사용해야 된다는 단점이 있다.In addition, the Republic of Korea Patent Registration 10-1003162 relates to a livestock wastewater treatment apparatus that can increase the activity of microorganisms after oxidizing a highly toxic substance such as antibiotics contained in the livestock wastewater by mixing ozone in a supercritical state, In treating livestock waste water, there is a disadvantage that it is necessary to use ozone which is harmful and expensive to workers.

따라서 경제적인 측면 및 기술적인 측면에서 대규모 처리설비를 설치운영하기에도 무리가 없어야 하고, 운전위험성(risk)이 낮고, 초기시설비 및 소요동력비가 저렴하고, 발생되는 기포의 크기를 초미세기포(ultra-fine bubble)까지 용이하게 조절하여 현탁부유물(MLSS) 10,000 mg/L 이상의 고농도 하폐수에 있어서도 용존산소농도를 1.0 mg/L 이상으로 유지시킴으로써, 미생물에 의한 유기물의 분해 및 질산화효율을 극대화시킬 수 있을 뿐만 아니라, 상기 질산화된 질화액을 간편하게 탈질시켜 총질소(T-N) 성분을 효과적으로 제거할 수 있는, 전문지식을 갖추지 아니한 일반인들도 운전하기에 용이한 신규한 고농도 하폐수의 처리방법이 모색되어야 한다.Therefore, in terms of economic and technical aspects, it should be easy to install and operate large-scale treatment facilities, have low risk of operation, low initial facility cost and power cost, and ultra-sized air bubbles. -Effective suspended solids (MLSS) above 1.0 mg / L in suspended sewage water of more than 10,000 mg / L can be maximized by easily adjusting to fine bubbles, thereby maximizing the decomposition and denitrification efficiency of organic matter by microorganisms. In addition, a new method for treating high concentration sewage wastewater, which can be easily operated by non-specialists, who can easily denitrify the nitrified nitriding solution to effectively remove total nitrogen (TN) components should be sought.

대한민국 등록특허 10-0913728 (2009.08.18)Republic of Korea Patent Registration 10-0913728 (2009.08.18) 대한민국 등록특허 10-1036225 (2011.05.16)Republic of Korea Patent Registration 10-1036225 (2011.05.16) 대한민국 등록특허 10-0784933 (2007.12.05)Republic of Korea Patent Registration 10-0784933 (2007.12.05) 대한민국 등록특허 10-0424068 (2004.03.10)Republic of Korea Patent Registration 10-0424068 (2004.03.10) 대한민국 등록특허 10-1003162 (2010.12.15)Republic of Korea Patent Registration 10-1003162 (2010.12.15)

상기한 종래기술의 문제점을 해결하기 위하여, 본 발명은 현탁부유물(MLSS) 10,000 mg/L 이상의 고농도 하폐수의 처리공정에 있어서, 초미세기포(ultra-fine bubble)와 용존산소조(dissolved oxygen tank)를 이용하여 용존산소농도를 극대화시킴으로써, 미생물들에 의한 유기물분해 및 질산화효율을 향상시키는 고농도 하폐수 처리방법을 제공하는데 그 목적이 있다.In order to solve the above problems of the prior art, the present invention, in the treatment process of high concentration sewage of suspended suspension (MLSS) 10,000 mg / L or more, ultra-fine bubble and dissolved oxygen tank (dissolved oxygen tank) By maximizing the dissolved oxygen concentration using, to provide a high concentration sewage treatment method for improving organic decomposition and nitrification efficiency by microorganisms.

또한, 본 발명은 질산화된 질화액을 간편하게 탈질시켜 총질소(T-N) 성분을 효과적으로 제거할 수 있는 탈질순환조를 제공할 뿐만 아니라, 운전중에도 발생되는 기포의 크기를 나노미터(nm)∼마이크론미터(μm)의 초미세기포(ultra-fine bubble)로 용이하게 조절하여 현탁부유물(MLSS) 10,000 mg/L 이상의 고농도 하폐수에 있어서도 용존산소농도를 1.0 mg/L 이상으로 유지시킴으로써, 미생물에 의한 유기물의 분해 및 질산화효율을 극대화시킬 수 있는, 가압용존방식 및 상압운전용 초미세기포 발생장치를 제공하는데 그 목적이 있다.In addition, the present invention not only provides a denitrification circulation tank capable of effectively denitrifying the nitrified nitriding liquid to effectively remove the total nitrogen (TN) component, but also the size of the bubbles generated during operation from nanometer (nm) to micron meter. Easily controlled with an ultra-fine bubble of (μm) to maintain dissolved oxygen concentrations of 1.0 mg / L or more, even in high concentrations of wastewater with suspended solids (MLSS) of 10,000 mg / L or more. An object of the present invention is to provide an ultra-fine foam generator for pressure dissolving and normal pressure operation, which can maximize decomposition and nitrification efficiency.

상기 과제를 해결하기 위하여, 본 발명은, 호기조(100)의 하부측에는 송풍기(95) 및 산기관(96)이 제공되어, 조대기포(97)를 폭기시킴으로써, 호기성미생물에게 산소를 전달하면서, 활성슬러지가 호기조(100)의 하부에 침적되는 것을 방지하며; 상기 호기조(100)의 내측에는, 상측은 밀폐되고 하측은 개방되어 있는, 다수개의 용존산소조(110)가 구성되어, 가압용존방식 내지 상압방식 초미세기포 발생장치로부터 발생된 초미세기포(34)를, 충돌경사판(49), 제트기류형성목(56) 및 분출구(57)가 포함되어 형성된 다수개의 분산장치(70)를 이용하여 용존산소조(110)의 수중에 분산시킴으로써, 용존산소조(110)의 용존산소농도를 증대시키며; 상기 호기조(100) 후속에는 탈질순환조(120)가 연계구성되어, 상기 호기조(100) 및 용존산소조(110)에서 질산화된 질화액은, 분리벽(13) 하측에 제공된 질화액 이송유로(98)를 거쳐 상기 탈질순환조(120)로 자연이송되고; 상기 탈질순환조(120)로 이송된 질화액은, 탈질순환조(120) 내부의 무산소성 조건하에서 탈질반응, 및 중력침전이 진행됨으로써, 질소성분 및 수질오염물질들이 제거되는, 호기조(100); 용존산소조(110); 탈질순환조(120); 및 가압용존방식(10) 내지 상압방식(50) 초미세기포 발생장치를 포함하여 구성되는 것을 특징으로 하는, 현탁부유물(MLSS) 10,000 mg/L 이상의 고농도 하폐수의 처리방법을 제공한다.In order to solve the above problems, the present invention, the lower side of the aerobic tank 100 is provided with a blower 95 and the diffuser 96, by aeration of the coarse bubbles 97, while delivering oxygen to the aerobic microorganism, Prevent sludge from being deposited on the bottom of the aeration tank 100; Inside the exhalation tank 100, a plurality of dissolved oxygen tank 110 is configured, the upper side is sealed and the lower side is open, ultra-fine foam (34) generated from the pressure-dissolved to atmospheric pressure ultra-fine foam generators 34 ) Is dispersed in the water of the dissolved oxygen tank 110 by using a plurality of dispersing devices 70 formed by including a collision slope plate 49, a jet stream forming tree 56, and a jet port 57, Increase the dissolved oxygen concentration of (110); The denitrification circulation tank 120 is configured to be connected to the exhalation tank 100 so that the nitrified liquid nitrified in the aerobic tank 100 and the dissolved oxygen tank 110 is provided with a nitride liquid transfer path provided under the separation wall 13 ( 98 is naturally transported to the denitrification circulation tank 120 through; The nitriding liquid transferred to the denitrification circulation tank 120 is subjected to denitrification and gravity precipitation under anoxic conditions inside the denitrification circulation tank 120, whereby nitrogen components and water pollutants are removed, the aerobic tank 100. ; Dissolved oxygen bath 110; Denitrification circulation tank 120; And a pressure-dissolving method (10) to an atmospheric pressure method (50) ultra-miniature bubble generator, characterized in that the suspension suspended solids (MLSS) provides a method for treating high concentration sewage water of 10,000 mg / L or more.

본 발명에 따른 고농도 하폐수의 처리방법은 다음과 같은 효과를 획득할 수 있다.The treatment method of high concentration sewage wastewater according to the present invention can obtain the following effects.

(a) 본 발명에 따른 초미세기포(34)와 용존산소조(110)는, 현탁부유물(MLSS) 10,000 mg/L 이상의 고농도 하폐수에 있어서도 용존산소농도를 1.0 mg/L 이상으로 유지시키게 할 수 있다(a) The ultra-micro count cloth 34 and the dissolved oxygen tank 110 according to the present invention can maintain the dissolved oxygen concentration at 1.0 mg / L or more even in high concentration sewage water of 10,000 mg / L or more suspended suspension (MLSS). have

(b) 본 발명에 따른 초미세기포(34)와 용존산소조(110)를 이용하여 용존산소농도를 극대화시킴으로써, 미생물들에 의한 유기물분해 및 질산화효율을 향상시킬 수 있다(b) By maximizing the dissolved oxygen concentration by using the ultra-fine foam gun 34 and the dissolved oxygen tank 110 according to the present invention, it is possible to improve the organic decomposition and nitrification efficiency by the microorganisms.

(c) 하향 도류벽 형식으로 형성된 본 발명에 따른 용존산소조(110)는 초미세기포(34)의 체류시간을 길게 함으로써, 산소전달효율을 극대화시킬 수 있다(c) The dissolved oxygen tank 110 according to the present invention formed in the form of a downward conducting wall can maximize the oxygen transfer efficiency by lengthening the residence time of the ultra-fine fabric gun 34.

(d) 본 발명에 따른 탈질순환조(120)는 통성혐기성 탈질미생물에게 자연적으로 탈질반응조건을 제공함으로써, 전체 총질소(T-N) 제거효율을 향상시킬 수 있다.(d) The denitrification circulation tank 120 according to the present invention may improve the total total nitrogen (T-N) removal efficiency by naturally providing denitrification reaction conditions to the anaerobic anaerobic denitrification microorganisms.

(e) 본 발명에 따른 탈질순환조(120)는 가압용존방식(10) 내지 상압방식(50) 초미세기포 발생장치에게 맑은 상등수를 순환수로 제공함으로써, 초미세기포 발생장치(10,50) 및 분산장치(40)에 있어서의 결함발생을 방지시킬 수 있다(e) Denitrification circulating tank 120 according to the present invention by providing a clear supernatant water to the pressurized dissolved method (10) to atmospheric pressure method (50) ultra-micron bubble generator, circulating water, ultra-miniature bubble generator (10, 50) And defects in the dispersion apparatus 40 can be prevented.

(f) 본 발명에 따른 가압용존방식(10) 및 상압방식(50) 초미세기포 발생장치는, 대상 하폐수의 특성에 부합되도록, 운전중에도 발생되는 기포의 크기를 나노미터(nm)∼마이크론미터(μm)의 초미세기포(ultra-fine bubble)로 용이하게 조절할 수 있다(f) The pressure-dissolving method (10) and the atmospheric pressure method (50) ultra-micro-foam generation device according to the present invention, the size of the bubbles generated even during operation, in order to meet the characteristics of the target wastewater, nanometer (nm) to micrometer Easily adjustable with ultra-fine bubbles of (μm)

(g) 본 발명에 따른 상압방식 초미세기포 발생장치(50)는 상압에서 운전되는 간소화된 장치이므로, 전문지식을 갖추지 아니한 일반인들도 쉽게 운전할 수 있을 뿐만 아니라, 소요동력비 및 유지관리비를 절감시킬 수 있다(g) Since the atmospheric pressure ultra-miniature gun generator 50 according to the present invention is a simplified device that is operated at atmospheric pressure, not only ordinary people who do not have specialized knowledge can easily operate, but also reduce power consumption and maintenance costs. Can

(h) 본 발명에 따른 가압용존방식(10) 내지 상압방식(50) 초미세기포 발생장치의 후속에, 하나 이상의 진공강자흡식 펌프(33)를 연계하여 구성함으로써, 10m 이상의 긴 배관에서도 배관내에서의 초미세기포의 합체현상을 방지시킬 수 있다(h) After the pressure-dissolving method (10) to the atmospheric pressure method (50) ultra-miniature bubble generator according to the present invention, by constructing in conjunction with one or more vacuum ferromagnetic pump (33), even in a long pipe of 10m or more in the pipe It can prevent the coalescence of ultra-miniature guns in

상기효과 이외에도, 본 발명에 따른 초미세기포(34) 및 용존산소조(110)는, 고농도 하폐수의 수처리공정 뿐만 아니라 미생물반응기, 다상유동층, 기포탑, 추출공정, 기계부품 세정기, 양식장, 수족관, 대중목욕탕 등 광범위하게 활용될 수 있다.In addition to the above effects, the ultra-micro-intensity bubble 34 and the dissolved oxygen tank 110 according to the present invention, as well as microbial reactor, polyphase fluidized bed, bubble column, extraction process, mechanical parts cleaner, farm, aquarium, It can be widely used for public baths.

도1은 본 발명에 따른 가압용존방식 초미세기포 발생장치 및 용존산소조를 이용한 고농도 하폐수 처리방법의 정면구성도,
도2는 도1의 A-A 평면도,
도3a, 도3b, 및 도3c는 본 발명에 따른 분산장치의 정단면도, 평면도, 및 A-A 평단면도,
도4는 본 발명에 따른 상압방식 초미세기포 발생장치 및 용존산소조를 이용한 고농도 하폐수 처리방법의 정면구성도,
도5는 본 발명에 따른 수중침지형 펌프의 정면도,
도6은 도4의 상압방식 초미세기포 발생장치의 간략적인 일실시예,
도7은 도6의 초미세기포 발생도면이다.
<도면의 주요부분에 대한 부호의 설명>
10 : 가압용존방식 초미세기포 발생장치 11 : 구조물
12 : 구획벽 13 : 분리벽
14 : 가압펌프 15 : 공기압축기(compressor)
16 : 가압믹싱탱크 17 : 액체흡입부
18 : 액체배관 19 : 공기필터(air filter)
21 : 압력조절기(regulator) 22 : 기체유량계(flowmeter)
23 : 전동밸브 24 : 기체배관
25 : 기체분배기(distributer) 26 : 압력감지기(pressure sensor)
29 : 기체/액체 활력혼합체의 배관 31 : 비상차단수단
32 : 분배관 33 : 진공강자흡식 펌프
34 : 초미세기포 40 : 분산장치(diffuser)
41 : 분산상판 42 : 조임/풀림 홈
43 : 상판굴곡면 44 : 볼트식 체결고정수단
45 : 분산하판 46 : 하판굴곡면
47 : 지지봉 48 : 주배관 연결수단
49 : 충돌경사판 50 : 상압방식 초미세기포 발생장치
51 : 공기펌프(air pump) 55 : 너트식 체결고정수단
56 : 제트기류형성목 57 : 분출구
60 : 수중침지형 펌프 61 : 구동부
62 : 커터식 임펠러(impeller) 63 : 흡입부
64 : RPM 인버터(inverter) 65 : 흡입공기
95 : 송풍기(blower) 96 : 산기관
97 : 조대기포(coarse bubble) 98 : 질화액 이송유로
99 : 잉여슬러지 인발수단 100 : 호기조
110 : 용존산소조 120 : 탈질순환조
1 is a front configuration diagram of a high concentration sewage wastewater treatment method using a pressure-dissolving method ultra-small cell generating device and a dissolved oxygen tank according to the present invention,
2 is a plan view of AA of FIG.
Figures 3a, 3b and 3c is a front sectional view, a plan view, and a AA planar sectional view of a dispersion apparatus according to the present invention,
Figure 4 is a front configuration diagram of a high concentration sewage wastewater treatment method using an atmospheric pressure ultra-micron bubble generator and a dissolved oxygen tank according to the present invention,
5 is a front view of the submerged pump according to the present invention,
Figure 6 is a brief embodiment of the atmospheric pressure ultra-miniature cloth generator of Figure 4,
FIG. 7 is a diagram illustrating the generation of ultra-miniature cloth of FIG. 6.
<Description of the code | symbol about the principal part of drawing>
10: pressure dissolving ultra-micropore generator 11: structure
12 partition wall 13 partition wall
14 pressure pump 15 air compressor (compressor)
16 pressurized mixing tank 17 liquid intake
18: liquid piping 19: air filter
21: regulator 22: gas flowmeter
23: electric valve 24: gas piping
25: gas distributor 26: pressure sensor
29: Piping of gas / liquid vitality mixture 31: Emergency shutoff means
32: distribution pipe 33: vacuum ferromagnetic pump
34: ultra-mini century gun 40: diffuser
41: dispersion top plate 42: tightening / loosening groove
43: upper plate curved surface 44: bolt fastening fixing means
45: dispersed lower plate 46: lower plate curved surface
47: support rod 48: main pipe connecting means
49: collision slant plate 50: atmospheric pressure ultra-miniature gun generator
51: air pump 55: nut type fastening fixing means
56: jet stream forming tree 57: jet
60: submerged pump 61: drive part
62: cutter type impeller 63: suction part
64: RPM inverter 65: intake air
95 blower 96 diffuser
97: coarse bubble 98: nitriding liquid transfer path
99: surplus sludge drawing means 100: aerobic tank
110: dissolved oxygen tank 120: denitrification circulation tank

이하, 첨부된 도면을 참조하여, 현탁부유물(MLSS) 10,000 mg/L 이상의 고농도 하폐수의 처리공정에 있어서, 초미세기포(ultra-fine bubble)와 용존산소조(dissolved oxygen tank)를 이용하여 용존산소농도를 극대화시킴으로써, 미생물들에 의한 유기물분해 및 질산화효율을 향상시키는 고농도 하폐수 처리방법을 상세히 설명하면 하기와 같다.Hereinafter, with reference to the accompanying drawings, in the treatment process of high concentration sewage of suspended solids (MLSS) 10,000 mg / L or more, dissolved oxygen using an ultra-fine bubble and dissolved oxygen tank (dissolved oxygen tank) By maximizing the concentration, it will be described in detail the high concentration sewage treatment method to improve the organic decomposition and nitrification efficiency by the microorganisms as follows.

도1은 본 발명에 따른 가압용존방식 초미세기포 발생장치(10) 및 용존산소조(110)를 이용한 고농도 하폐수 처리방법의 정면구성도; 그리고 도2는 도1의 A-A 평면도로서, 본 발명은 크게, 호기성미생물에 의한 유기물분해기작 및 질산화반응이 진행되는 호기조(100); 호기조(100) 내부에 다수개 형성되어 초미세기포(34)에 의해 용존산소농도를 높이는 용존산소조(110); 상기 호기조(100)로부터 질산화된 질화액을 자연이송받아 탈질반응을 수행하면서 부유물질(SS; suspended solids)의 중력침전과정이 일어나는 탈질순환조(120); 및 상기 탈질순환조(120)의 맑은 상등수를 순환수로 강제흡입하여 초미세기포(34)를 발생시키는 가압용존방식 초미세기포 발생장치(10)로 구성된다.1 is a front configuration diagram of a high concentration sewage wastewater treatment method using a pressure-dissolving method ultra-fine foam generator 10 and a dissolved oxygen tank 110 according to the present invention; 2 is a plan view A-A of FIG. 1, the present invention is largely, an aerobic tank 100 in which organic decomposition and nitrification reactions by aerobic microorganisms are performed; A plurality of dissolved oxygen tanks 110 formed inside the aerobic tank 100 to increase the dissolved oxygen concentration by the ultra-fine cloth 34; A denitrification circulating tank 120 in which a gravity settling process of suspended solids (SS) occurs while denitrification is carried out by natural transfer of the nitrified nitride solution from the aerobic tank (100); And a pressure-dissolving method ultra-fine foam generating device 10 for generating the ultra-fine foam 34 by forcibly sucking the clear supernatant of the denitrification circulation tank 120 into the circulating water.

도1의 현탁부유물(MLSS) 10,000 mg/L 이상의 고농도 하폐수를 처리함에 있어서, 우선, 고농도의 하폐수 원수는 질산화(nitrification) 미생물 포함 호기성미생물들이 대량 존재하는 호기조(100)로 유입되는데, 이때 유입되는 원수는 축산폐수의 경우, 생물학적산소요구량 BOD는 5,000∼20,000 mg/L, 총질소(T-N) 중 암모니아성질소(NH3-N)는 1,000∼4,000 mg/L, 현탁부유물(MLSS) 농도는 10,000∼40,000 mg/L 정도로, 점성 또한 매우 높아서 폐수의 수중으로 높은 에너지를 소비하면서 공기를 대량 불어넣는다 하더라도 공기중의 산소가 폐수 속으로 잘 녹아들어가지 않는, 처리하기 매우 난해한 폐수이다. 상기 이유 때문에 호기조 내에서의 최적용존산소(DO; dissolved oxygen) 1.5∼3.0 mg/L 을 맞추기는 용이치만은 않다. 다행이도 상기 축산폐수는 유기성폐수에 가깝기에, 암모니아성질소(NH3-N)를 질산화시키면서 적절한 방법으로 용존산소농도를 1.0 mg/L 이상으로만 유지시켜 주면, 호기성미생물들에 의해 생분해성 유기물은 잘 분해되는 편이다. 이에, 고농도의 하폐수에 있어서, 용존산소농도를 1.0 mg/L 이상으로 유지시키기 위해서는, 종래 산소전달효율 20%(청수기준) 이하의 산기관(air diffuser) 방식이 아닌, 특별한 방법이 강구되어야 한다.In the treatment of high concentration sewage of suspended solids (MLSS) 10,000 mg / L or more of Figure 1, first, the high concentration of sewage is introduced into an aerobic tank 100 in which aerobic microorganisms including nitrification microorganisms are present. Raw water is 5000-20,000 mg / L of BOD for biological oxygen demand, 1,000-4,000 mg / L of ammonia nitrogen (NH 3 -N) in total nitrogen (TN), 10,000 suspended solids (MLSS) concentration As high as -40,000 mg / L, the viscosity is so high that it is a very difficult wastewater to treat, even if large amounts of air are blown into the wastewater while consuming high energy. For this reason, it is not easy to meet the optimum dissolved oxygen (DO) of 1.5 to 3.0 mg / L in the aerobic tank. Fortunately, the livestock wastewater is close to organic wastewater, so if the dissolved oxygen concentration is maintained at 1.0 mg / L or more in an appropriate manner while nitrifying ammonia nitrogen (NH 3 -N), it is biodegradable by aerobic microorganisms. Organics tend to decompose well. Therefore, in the high concentration of wastewater, in order to maintain the dissolved oxygen concentration at 1.0 mg / L or more, a special method must be taken, rather than the air diffuser method of 20% (fresh water standard) or less. .

도1의 본 발명에 있어서는, 우선 호기조(100, aerobic tank)로 유입된 현탁부유물(MLSS) 10,000 mg/L 이상의 고농도 하폐수는, 호기조(100)의 하부측에 제공된 송풍기(95, blower); 및 산기관(96)으로부터 발생된 조대기포(97, coarse bubble)에 의해 폭기되면서 일정부분 산소를 전달받는다. 이때 상기 산기관(96)으로부터 발생된 조대기포(97)는 유입하폐수 중의 활성슬러지(activated sludge)가 호기조(100)의 하부에 침적되는 것을 방지시키는 역할을 수행한다.In the present invention of Figure 1, first, the suspended solids (MLSS) flowing into the aerobic tank (100), the high concentration sewage waste water of 10,000 mg / L or more, the blower (95, blower) provided on the lower side of the aerobic tank (100); And it is aerated by the coarse bubble (97, coarse bubble) generated from the diffuser 96 receives a portion of oxygen. At this time, the coarse bubble 97 generated from the diffuser 96 serves to prevent activated sludge in the influent wastewater from being deposited on the lower portion of the aeration tank 100.

또한, 상기 호기조(100)의 내측에는, 상측은 밀폐되고 하측은 개방되어 있는, 다수개의 용존산소조(110)가 구성되어, 가압용존방식 초미세기포 발생장치(10)로부터 발생된 초미세기포(34)를, 충돌경사판(49), 제트기류형성목(56), 및 분출구(57)가 포함되어 형성된 다수개의 분산장치(70)를 이용하여 용존산소조(110)의 수중에 분산시킴으로써, 용존산소조(110)의 용존산소농도를 증대시키며; 상기 호기조(100) 후속에는 탈질순환조(120)가 연계구성되어, 상기 호기조(100) 및 용존산소조(110)에서 질산화된 질화액은, 분리벽(13) 하측에 제공된 질화액 이송유로(98)를 거쳐 상기 탈질순환조(120)로 자연이송되고; 상기 탈질순환조(120)로 이송된 질화액은, 탈질순환조(120) 내부의 무산소성(anoxic) 조건하에서 탈질반응(denitrification), 및 중력침전(sedimentation)이 진행됨으로써, 질소성분 및 수질오염물질들이 제거되며; 상기 탈질순환조(120)의 맑은 상등수는, 가압펌프(14), 공기압축기(15), 및 가압믹싱탱크(16)로 구성된 가압용존방식 초미세기포 발생장치(10)로 흡입되고 가압됨으로써, 기체/액체 활력혼합체로 전환되며; 상기 전환된 기체/액체 활력혼합체는, 기체/액체 활력혼합체의 배관(29)을 거쳐 분산장치(70)에 도달한 후에, 상기 분산장치(70)에서 다시한번 초미세기포(34)로 쪼개지면서, 용존산소조(110)의 수중에 분산됨으로써, 용존산소조(110) 내부의 용존산소농도를 증대시키며; 및 용존산소농도가 증대된 용존산소조(110) 내부의 기체/액체 활력혼합체는, 용존산소조(110) 하측에 제공된 개구부를 통하여 흘러나오면서, 호기조(100)의 액체와 혼합됨으로써, 호기조(100) 전체의 용존산소농도를, 종래 산기관(air diffuser) 방식에서보다 월등하게 향상시킨다.In addition, inside the exhalation tank 100, a plurality of dissolved oxygen tank 110 is configured, the upper side is closed and the lower side is open, the ultra-fine foam generated from the pressure-dissolving method ultra-fine foam generator 10 By dispersing the 34 in the water of the dissolved oxygen tank 110 using a plurality of dispersing apparatuses 70 including the impingement inclination plate 49, the jet stream forming tree 56, and the jet port 57, Increasing the dissolved oxygen concentration of the dissolved oxygen bath 110; The denitrification circulation tank 120 is configured to be connected to the exhalation tank 100 so that the nitrified liquid nitrified in the aerobic tank 100 and the dissolved oxygen tank 110 is provided with a nitride liquid transfer path provided under the separation wall 13 ( 98 is naturally transported to the denitrification circulation tank 120 through; Nitride liquid transferred to the denitrification circulation tank 120 is subjected to denitrification and gravity sedimentation under anoxic conditions inside the denitrification circulation tank 120, whereby nitrogen component and water pollution are carried out. Substances are removed; The clear supernatant of the denitrification circulation tank 120 is sucked and pressurized by the pressure dissolving type ultra-fine foam generator 10 composed of a pressure pump 14, an air compressor 15, and a pressure mixing tank 16. Converted to a gas / liquid vital mixture; After the converted gas / liquid vitality mixture reaches the dispersing apparatus 70 through the pipe 29 of the gas / liquid vitality mixture, the gas / liquid vitality mixture is once again split by the ultra-fine foam 34 in the dispersing apparatus 70. By dispersing in the water of the dissolved oxygen tank 110, to increase the dissolved oxygen concentration inside the dissolved oxygen tank 110; And the gas / liquid vitality mixture inside the dissolved oxygen tank 110 having the increased dissolved oxygen concentration flowing through the opening provided in the lower portion of the dissolved oxygen tank 110 and mixing with the liquid of the aerobic tank 100. ) The total dissolved oxygen concentration is significantly improved than in the conventional air diffuser method.

상기 호기조(100) 내측에 구성되는 다수개의 용존산소조(110)는, 하측에는 개구부가 형성되고; 및 도류벽(baffle wall) 형식의 하향흐름으로 형성되어 있으므로, 용존산소조(110) 내측에 분산되는 초미세기포(34)의 체류시간은 길어지게 되어, 초미세기포-하폐수 중으로의 산소전달효율은 자연적으로 극대화된다. 상기 초미세기포 및 용존산소조(110)로부터 극대화된 산소전달효율은 호기성미생물들의 유기물분해속도를, 그리고 질산화미생물들의 질산화효율을 향상시킨다.The plurality of dissolved oxygen tanks 110 configured inside the aerobic tank 100 have openings formed at the lower side thereof; And because it is formed in a downward flow in the form of a baffle wall, the residence time of the ultra-fine cloth (34) dispersed inside the dissolved oxygen tank 110 is long, the oxygen transfer efficiency into the ultra-micro-bubble-wastewater Is maximized naturally. Oxygen transfer efficiency maximized from the ultra-micron bubble and dissolved oxygen tank 110 improves the organic decomposition rate of aerobic microorganisms, and the nitrification efficiency of nitrifying microorganisms.

상기 질산화된 질화액은 분리벽(13)의 하부에 구비된 질화액 이송유로(98)을 거쳐 무산소성의 탈질순환조(120)로 이송된후 탈질반응이 진행되면서 질산성질소(NO3-N)는 질소가스로 전환되면서 질소성분의 수질오염물질은 최종 제거되며; 상기 탈질순환조(120)의 하부에 중력침전된 잉여슬러지(excess sludge)는 잉여슬러지 인발수단(99)에 의해 계외로 인발되어 처리되며; 상기 탈질순환조(120)의 맑은 상등수는 가압용존방식 초미세기포발생장치(10)로 흡입되어, 기체/액체 활력혼합체로 전환되면서, 용존산소조(110)-호기조(100)-탈질순환조(120)-가압용존방식 초미세기포발생장치(10)를 순환하게 되는 순환수 역할을 수행한다.The nitrified nitrified liquid is transferred to an anoxic denitrification circulation tank 120 through a nitriding liquid conveying flow path 98 provided at the lower part of the separating wall 13, and then a denitrification reaction proceeds to the nitric acid nitrogen (NO 3 -N). ) Is converted to nitrogen gas and the nitrogenous water pollutants are finally removed; The excess sludge sedimented by gravity in the lower part of the denitrification circulation tank 120 is drawn out of the system by the excess sludge drawing means 99 and processed; The clear supernatant of the denitrification circulation tank 120 is sucked into the pressure-dissolving ultra-fine foam generator 10 and is converted into a gas / liquid vitality mixture, while the dissolved oxygen tank 110-the aerobic tank 100-the denitrification circulation tank. (120)-serves as a circulating water to circulate the pressure-dissolving method ultra-miniature bubble generator (10).

도1의 상부측에 구성되는 종래 가압용존방식 초미세기포 발생장치(10)는 크게, 기체의 가압시설, 액체의 가압시설, 기체/액체 활력혼합체의 가압시설, 기체/액체 활력혼합체의 분산수단, 고압배관 등으로 구성된다. 더욱 상세하게는, 액체흡입부(17)를 통하여 흡입한 액체(보통은 맑은 처리수를 흡입하며 순환수라고 한다)를 3∼7 kgf/cm2의 압력으로 유지되고 있는 가압믹싱탱크(16)로 가압하여 밀어 넣어주는, 액체배관(18)이 연계된 가압펌프(14); 상기 가압믹싱탱크(16)내의 기체분배기(25)로 공기를 가압하여 밀어 넣어주는, 공기필터(19), 압력조절기(21), 기체유량계(22), 전동밸브(23), 및 기체배관(24)이 연계된 공기압축기(15); 상기 주입된 액체와 기체를 3∼7 kgf/cm2의 운전압력에서 혼합시키면서 고압의 조건에서 주입된 기체의 액체에 대한 용해도(solubility)를 가해진 압력만큼 상승시키는, 압력감지기(26)가 구비된 가압믹싱탱크(16); 및 상기 가압믹싱탱크(16)에 있어서 과포화상태로 용해된 기체를 일순간에 상압(normal pressure) 상태로 풀어줌으로써 압력변화에 따른 초미세기포(34)의 생성을 유도하면서 대상수조인 용존산소조(110) 수중에 초미세기포(34)를 분산시키는, 기체/액체 활력혼합체의 배관(29), 및 분배관(32)과 연계된 분산장치(40, diffuser)로 구성되는데, 상기 가압믹싱탱크(16)의 후속으로 일정 압력으로 유지시켜주는 기체/액체 활력혼합체용 압력조절기(27), 및 전동밸브(28), 그리고 비상시 고압상태를 차단해 줄 수 있는 비상차단수단(31)이 구비되어 구성되는 것이 바람직하다.The conventional pressure-dissolving method ultra-fine foam generating device 10 configured on the upper side of FIG. And high pressure piping. More specifically, the pressurized mixing tank 16 holding the liquid sucked through the liquid suction unit 17 (usually called the circulating water with suction of clear treated water) is maintained at a pressure of 3 to 7 kg f / cm 2 . Pressurized pump 14 is connected to the liquid pipe 18, which is pressed into the pressure; The air filter 19, the pressure regulator 21, the gas flow meter 22, the electric valve 23, and the gas pipe (2) which pressurizes and pushes air into the gas distributor 25 in the pressure mixing tank 16 24 is connected to the air compressor (15); A pressure sensor 26 is provided, which mixes the injected liquid and gas at an operating pressure of 3 to 7 kg f / cm 2 and raises the solubility of the injected gas under the high pressure by the applied pressure. Pressurized mixing tank 16; And dissolving the gas dissolved in the supersaturated state in the pressurized mixing tank 16 to a normal pressure state at a moment to induce the generation of the ultra-fine foam 34 according to the pressure change, while dissolving the oxygen tank ( 110 is composed of a piping 29 of a gas / liquid vitality mixture, and a diffuser 40 associated with a distribution tube 32 to disperse the ultra-miniature gun 34 in water, the pressure mixing tank ( 16) is provided with a pressure regulator 27 for the gas / liquid vitality mixture to maintain a constant pressure, and an electric valve 28, and an emergency shut-off means 31 that can block the high pressure state in case of emergency It is preferable to be.

도3a, 도3b, 및 도3c는 본 발명에 따른 분산장치(40)의 정단면도, 평면도, 및 A-A 평단면도로서, 상기 분산장치(40)는, 도1 및 도4에 있어서의 기체/액체 활력혼합체를 다시한번 초미세기포로 분쇄시켜 주면서 대상수조인 용존산소조(110)의 수중으로 초미세기포(34)를 분산시키는 역할을 한다. 도3의 본 발명에 따른 분산장치(40)는, 상부측에는 조임/풀림 홈(42)이 형성되고, 하부측에는 상판굴곡면(43) 및 체결고정수단(44)이 연계형성된 분산상판(41); 하부측에 하판굴곡면(46), 지지봉(47), 및 주배관 연결수단(48)이 연계형성된 분산하판(45); 및 상기 지지봉(47) 내측에 형성되고, 너트식 체결고정수단(55)이 연계형성된 다수개의 충돌경사판(49)으로 구성된다.3A, 3B, and 3C are a front sectional view, a plan view, and an AA planar sectional view of the dispersion apparatus 40 according to the present invention, wherein the dispersion apparatus 40 is a gas / liquid in FIGS. 1 and 4. While pulverizing the vitality mixture once again to the ultra-microporous cloth serves to disperse the ultra-microporous fabric 34 into the water of the dissolved oxygen tank 110, the target tank. Dispersion apparatus 40 according to the present invention of Figure 3, the upper side is tightening / loosening grooves 42 are formed, the lower side of the upper plate bending surface 43 and the fastening fixing means 44, the dispersion top plate 41 is formed in linkage ; Dispersion lower plate 45 in which the lower plate curved surface 46, the support bar 47, and the main pipe connecting means 48 is formed in linkage with the lower side; And a plurality of collision inclined plates 49 formed inside the support bar 47 and having a nut-type fastening fixing means 55 linked thereto.

상기 도1의 가압용존방식 초미세기포발생장치(10)로부터 생성되어 배출압에 의해 이송되어지는 기체/액체 활력혼합체는, 상기 분산장치(40)의 내측에 형성된 다수개의 충돌경사판(49)과 격렬하게 부딪히면서 난류강도가 극도로 증대되면서 다시 초미세기포로 쪼개진 후, 상기 상판굴곡면(43) 및 하판굴곡면(46)으로부터 형성된 제트기류형성목(56)에서 기체/액체 활력혼합체의 유속은 제트기류속도로 빨라지게 되고, 빠른 유속의 기체/액체 활력혼합체는 분산상판(41) 및 분산하판(45)의 간극(do)으로부터 형성된 분출구(57)로 분출되면서 대상수조인 용존산소조(110)의 액체와 부딪히면서 다시한번 더 초미세기포(34)로 쪼개지면서 용존산소조(110)의 수중으로 분산되어진다. 여기서 상기 제트기류형성목(56)의 공간부피 및 상기 분출구(57)의 간극(do)을 조절함으로써, 상기 과정으로부터 생성되는 초미세기포(34)의 크기 및 형태를 조절할 수 있는데, 볼트식 상기 체결고정수단(44)과 너트식 체결고정수단(55)은, 제트기류형성목(56)의 공간부피 및 상기 분출구(57)의 간극(do)을 용이하게 조절할 수 있도록 하는 특징이 있다. 본 발명에 있어서, 분출구(57)의 실제실시예에 있어서는, 2∼10 mm의 간극(do)이 초미세기포를 발생시키는데 바람직하였는데, 상기 분출구의 간극(do)은 종래 가압용존공기부상(DAF)에서 사용되는 분산노즐의 노즐크기보다 훨씬 커서 분산노즐에 있어서의 이물질에 의한 노즐막힘현상을 극복할 수 있다.The gas / liquid vitality mixture, which is generated from the pressure-dissolving ultra-low intensity bubble generating device 10 of FIG. 1 and is transported by the discharge pressure, includes a plurality of collision tilt plates 49 formed inside the dispersion device 40. The turbulence intensity is extremely increased and the turbulence intensity is severely increased and then split into ultra-fine strength guns, and the flow rate of the gas / liquid vitality mixture in the jet stream forming tree 56 formed from the upper plate curved surface 43 and the lower plate curved surface 46 is jetted. The gas / liquid vitality mixture of the high velocity and high velocity flows into the jet port 57 formed from the gap d o of the dispersion top plate 41 and the dispersion bottom plate 45, and is a target oxygen tank 110. While colliding with the liquid of), it is once again split into the ultra-fine cloth 34 and is dispersed in the water of the dissolved oxygen tank 110. Here, by adjusting the space volume of the jet stream forming tree 56 and the gap (d o ) of the jet port (57), it is possible to adjust the size and shape of the ultra-miniature foam (34) generated from the process, bolt type The fastening fixing means 44 and the nut-type fastening fixing means 55 are characterized in that the space volume of the jet stream forming tree 56 and the gap d o of the jet port 57 can be easily adjusted. . In the present invention, in a practical embodiment of the jet port 57, a gap of 2 to 10 mm (d o ) is preferable to generate an ultra-miniature bubble, the gap (d o ) of the jet port is a conventional pressure dissolved air flotation It is much larger than the nozzle size of the dispersion nozzle used in (DAF), so that nozzle clogging due to foreign matter in the dispersion nozzle can be overcome.

하지만, 상기 가압용존방식에 따른 초미세기포 발생장치(10)는 3∼7 kgf/cm2의 높은 압력의 운전조건에서 초미세기포를 발생시킬 수 있기에, 고압시설의 사용은 불가피하여 고압시설에 따른 운전위험성; 높은 초기시설비 및 소요동력비의 부담; 고압운전에 따른 고압부품의 잦은 교체에 따른 번거로움 및 유지관리비; 및 고압시설에 대한 전문지식의 요구 등 문제점을 안고 있다.However, the ultra-micro-foaming device 10 according to the pressure-dissolving method can generate the ultra-mini-foaming under high pressure operating conditions of 3 to 7 kg f / cm 2 , the use of a high-pressure facility is inevitable to use a high-pressure facility Driving hazard according to; Burden of high initial and power costs; Hassle and maintenance costs due to frequent replacement of high voltage parts due to high pressure operation; And the need for expertise in high pressure facilities.

이에, 본 발명에 따른 도4는, 상기 가압용존방식 초미세기포 발생장치(10)에 따른 상기 문제점들을 해결하고자 안출된, 상압에서 운전되는 상압방식 초미세기포 발생장치(50)의 정면구성도이다. 도4의 본 발명에 따른 상압운전용 초미세기포 발생장치(50)는, 가압용존방식에 있어서의 고압용 가압펌프(14)를 대체하여 1 kgf/cm2 내외의 상압용 수중침지형 펌프(60); 가압용존방식에 있어서의 고압용 공기압축기(15)를 대체하여 저압용 공기펌프(51, air pump); 가압용존부상방식에 있어서의 미세노즐로 형성된 분산노즐을 대체하여 기체/액체 활력혼합체의 분산장치(70, diffuser); 및 가압용존방식에 있어서의 고압배관을 대체한 상압용 배관을 포함하여 구성된, 간소화된 상압방식 초미세기포 발생장치(50)이다.Therefore, FIG. 4 according to the present invention is a front configuration diagram of the atmospheric pressure type ultra-miniaturized foam generating apparatus 50 operated at atmospheric pressure, which is designed to solve the problems according to the pressure-dissolving ultra-low intensity foam generating apparatus 10. to be. The ultra-fine force generator 50 for atmospheric pressure operation according to the present invention of FIG. 4 replaces the high-pressure pressurizing pump 14 in the pressure-dissolving method, and the submerged pump for atmospheric pressure of about 1 kg f / cm 2 ( 60); A low pressure air pump (51, air pump) in place of the high pressure air compressor (15) in the pressure dissolved method; A dispersing device (70, diffuser) of the gas / liquid vitality mixture in place of the dispersing nozzle formed of the fine nozzle in the pressure dissolved flotation method; And a normal pressure pipe replacing the high pressure pipe in the pressure dissolved method.

더욱 상세하게는, 수중침지형 펌프(60)의 흡입부(63)에 일정공기를 주입시켜 주는, 기체유량계(22), 전동밸브(23), 및 기체배관(24)이 연계된 공기펌프(51); 구동부(61), 커터식 임펠러(62), 및 흡입부(63)로 형성되어, 상기 공기펌프(51)로부터의 공기 및 수중의 액체를 흡입하여 기체/액체 활력혼합체를 생성시키는, RPM 인버터(64), 압력감지기(26), 및 기체/액체 활력혼합체의 배관(29)이 연계된 수중침지형 펌프(60); 상기 수중침지형 펌프(60)로부터의 기체/액체 활력혼합체를, 분출구(57)의 간극(do)을 조절함으로써, 나노미터(nm)∼밀리미터(mm) 크기의 초미세기포 형태로 수중에 분산시켜주는, 충돌경사판(49), 제트기류형성목(56), 및 분출구(57)가 포함되어 형성된 분산장치(40); 및 상기 수중침지형 펌프(60)의 후속에, 하나 이상의 진공강자흡식 펌프(33)가 추가적으로 제공되어, 10m 이상의 배관에서도 배관내에서의 초미세기포의 합체현상을 방지하는 것을 특징으로 하여, 본 발명에 따른 초미세기포 발생장치(50)가 구성된다.More specifically, the air flow pump 51 is connected to the gas flow meter 22, the electric valve 23, and the gas piping 24, which injects a constant air into the suction portion 63 of the submerged pump 60 ); RPM inverter, which is formed of a drive unit 61, a cutter-type impeller 62, and a suction unit 63 to suck the air from the air pump 51 and the liquid in the water to generate a gas / liquid vitality mixture. 64), the submersible pump 60 to which the pressure sensor 26 and the piping 29 of the gas / liquid vitality mixture are linked; The gas / liquid vitality mixture from the submerged pump 60 is dispersed in water in the form of ultra-miniature bubbles of nanometer (nm) to millimeter (mm) size by adjusting the gap (d o ) of the jet port (57). Dispersing device 40 is formed to include, impingement inclined plate 49, jet stream forming tree 56, and the jet port (57); And one or more vacuum ferromagnetic pumps 33 are additionally provided after the submerged pump 60 to prevent coalescing of ultra-miniature bubbles in the pipe even in a pipe of 10 m or more. According to the ultra-miniature gun generator 50 is configured.

도5는 본 발명에 따른 상기 수중침지형 펌프(60)의 정면도이다.5 is a front view of the submerged pump 60 according to the present invention.

하기, 본 발명에 따른 상압방식 초미세기포 발생장치(50)의 작동기능 및 방법을 도4 및 도5를 참조하여 상세히 설명한다.Hereinafter, the operation function and method of the atmospheric pressure ultra-miniature foam generating device 50 according to the present invention will be described in detail with reference to FIGS. 4 and 5.

우선, 수중침지형 펌프(60)의 액체를 흡입함에 있어서, 흡입부(63)에 걸리는 음압(minus pressure)을 이용하여 외부로부터 공기를 자연적으로 흡입하게 되고, 흡입된 일정공기유량을 커터식 임펠러(62, impeller)의 고속회전력을 이용하여 흡입된 액체와 격렬하게 부딪히게 하여 미세한 기포형태로 쪼개줌으로써 기체/액체 활력혼합체를 형성시키고, 상기 과정으로부터 생성된 기체/액체 활력혼합체를 기체/액체 활력혼합체의 배관(29)을 거쳐 분산장치(40, diffuser)까지 강제 이송시켜주는 수중침지형 펌프(60)가 탈질순환조(120) 수중의 상부측에 구성된다. 상기 수중침지형 펌프(60)의 임펠러(impeller)로는 수중에 존재할 수 있는 협잡물을 잘게 분쇄시켜 줄 수 있는 커터식이 바람직하며, 상기 수중침지형 펌프(60)의 일측에는, 커터식 임펠러(62)의 회전력을 조절함으로써, 기체의 흡입량, 액체의 흡입량, 기체/액체 활력혼합체의 이송량 및 미세기포의 크기를 조절할 수 있도록 하는 RPM 인버터(64, inverter)가 제공되는 것이 바람직하며, 수중침지형 펌프(60)의 흡입부(63)에 형성되는 음압(minus pressure)에 의해 자연적으로 흡입되는 공기의 유량을 일정하게 유지시키기 위해서는 저압용 공기펌프(51); 기체유량계(22); 및 압력감지기(26)와 연계되어 작동되는 전동밸브(23)가 기체배관(24)상에 제공되는 것이 바람직하다. 또한, 상기 수중침지형 펌프(60)의 후속에 이물질의 막힘현상 등 결함이 발생되면, 압력감지기(26)의 상승된 압력신호는 기체배관(24)에 제공된 전동밸브(23)에 전달되어 유입되는 공기의 유량을 조절할 수 있도록 한다.First, in sucking the liquid of the submerged pump 60, the air is naturally sucked from the outside by using the minus pressure applied to the suction unit 63, and the suctioned constant air flow rate is sucked into the cutter impeller ( 62, impeller) and violently collide with the sucked liquid to break it into fine bubbles to form a gas / liquid vitality mixture, and the gas / liquid vitality mixture produced from the above process is a gas / liquid vitality mixture The submerged pump 60 forcibly transferring the pipe 29 through the pipe 29 to the diffuser 40 is configured at the upper side of the denitrification circulation tank 120 in the water. The impeller (impeller) of the submerged pump 60 is preferably a cutter type that can finely grind the contaminants that may be present in the water, the rotational force of the cutter-type impeller 62 on one side of the submerged pump 60 By adjusting the, it is preferable to provide an RPM inverter (64, inverter) to adjust the intake amount of the gas, the intake amount of the liquid, the transfer amount of the gas / liquid vitality mixture and the size of the microbubble, the submerged pump 60 A low pressure air pump 51 to maintain a constant flow rate of air naturally sucked by the negative pressure formed in the suction unit 63; Gas flow meter 22; And an electric valve 23 operated in conjunction with the pressure sensor 26 is preferably provided on the gas pipe 24. In addition, if a defect such as clogging of foreign matter occurs after the submerged pump 60, the elevated pressure signal of the pressure sensor 26 is transmitted to the electric valve 23 provided in the gas pipe 24 is introduced Allows you to adjust the air flow rate.

일반적인 액체용 펌프에 있어서, 공기의 유입은 액체용 펌프의 내부에 공동현상(cavitation)을 발생시켜 액체의 흡입력을 상실시키게 되는데, 도5의 본 발명에 따른 수중침지형 펌프(60)는, 물속에 잠겨 양압(+ pressure) 분위기에 위치하고 있을 뿐만 아니라 흡입양정을 두지 않기 때문에 어느 정도의 공기가 유입되더라도 지상형 펌프에서보다 공동현상(cavitation)을 크게 받지 않게 된다. 본 발명의 수중침지형 펌프(60)의 실제실시예에 있어서는, 액체흡입량(부피단위) 대비 공기유입량(STP; 표준온도/표준압력조건으로 환산된 부피단위)이 4.0 vol% 까지는 액체의 흡입량은 다소 감소되지만 공동현상을 크게 받지 않는 것으로 확인되었다. 또한, 상기 수중침지형 펌프(60)에 유입되는 공기유량을 조절함으로써 최종 발생되는 초미세기포(34)의 크기를 조절할 수 있었는데, 즉 액체흡입량(부피단위) 대비 공기유입량이 0.01∼0.5 vol%에서는 나노미터(nm) 크기의 초미세기포(ultra-fine bubble)를, 0.5∼1.5 vol%에서는 마이크론미터(μm) 크기의 미세기포(fine bubble)를, 그리고 공기유입량(부피단위)이 액체흡입량 대비 1.5∼4.0 vol%에서는 밀리미터(mm) 크기의 조대기포(coarse bubble)를 발생시켰다. 상기 발생되는 기포의 크기는 수중침지형 펌프(60)의 운전중에도 유입되는 공기의 유량을 조절함으로써 간편하게 조절할 수 있다.In a general liquid pump, the inflow of air causes cavitation in the liquid pump to lose the suction power of the liquid. The submerged pump 60 according to the present invention of FIG. It is located in a positive pressure atmosphere and does not have a suction lift, so that no amount of air is introduced, so that the cavitation is not much higher than that of the ground pump. In the practical embodiment of the submerged pump 60 of the present invention, the liquid intake amount (volume unit) to the air intake amount (STP; volume unit in terms of standard temperature / standard pressure condition) is up to 4.0 vol%, and the intake amount of the liquid is somewhat It was found to be reduced but not significantly affected by cavitation. In addition, by adjusting the air flow rate flowing into the submerged pump (60) it was possible to adjust the size of the ultra-miniature cloth (34) generated finally, that is, in the amount of air inlet to 0.01 to 0.5 vol% Nano-scale ultra-fine bubbles, 0.5-1.5 vol%, micro-meter-sized fine bubbles, and air inflow (volume) compared to liquid intake At 1.5 to 4.0 vol%, coarse bubbles of millimeter size were generated. The size of the generated bubbles can be easily adjusted by adjusting the flow rate of the air flowing in during the operation of the submerged pump (60).

상기 과정으로부터 생성된 기체/액체 활력혼합체는, 기체/액체 활력혼합체의 배관(29) 및 분배관(32)을 거쳐 대상수조인 용존산소조(110) 수중에 위치해 있는 분산장치(40, diffuser)까지 수중침지형 펌프(60)의 배출압에 의해 이송되어진 후, 상기 분산장치(40)의 충돌경사판(49) 및 제트기류형성목(56)으로 생성된 난류강도와 제트기류에 의해 다시한번 초미세기포(34)로 쪼개지면서 용존산소조(110)의 수중으로 분산되어진다. 본 발명에 따른 상기 분산장치(40)는 도3에서 상술한 바와 같다.The gas / liquid vitality mixture produced from the above process is a diffuser (40, diffuser) located in the water of the dissolved oxygen tank (110), which is the target tank, through the piping (29) and the distribution tube (32) of the gas / liquid vitality mixture. After being conveyed by the discharge pressure of the submerged pump 60 to the ultra-high strength once again by the turbulence intensity and jet stream generated by the impact swash plate 49 and the jet stream forming tree 56 of the dispersion device 40 It is split into the cloth 34 and dispersed in the water of the dissolved oxygen bath 110. The dispersion device 40 according to the present invention is as described above in FIG.

그리고 도4에 있어서, 10m 이상의 긴 배관에서는 배관내에서의 초미세기포의 합체현상을 방지하기 위해서, 상기 수중침지형 펌프(60)의 후속에, 하나 이상의 진공강자흡식 펌프(33, vacuum self-priming pump)를 연계하여 구성하는 것이 바람직하다.In FIG. 4, in the long pipe of 10 m or more, one or more vacuum self-priming pumps 33, following the submerged pump 60, in order to prevent the coalescence of the ultra-miniature bubbles in the pipe. It is desirable to configure the pump in conjunction.

상기와 같이, 본 발명에 따른 상압방식 초미세기포 발생장치(50)로부터 발생되는 초미세기포(34)의 크기 및 분산형태는, a)수중침지형 펌프(60)의 유입부(63)에 유입되는 공기의 유량조절; b)수중침지형 펌프(60)의 커터식 임펠러(62)의 회전력 조절; 및 c)분산장치(40) 분출구(57)의 간극(do)을 조절함으로써, 운전자가 원하는 기포의 크기로 용이하게 조절할 수 있다.As described above, the size and distribution form of the ultra-fine force gun 34 generated from the atmospheric pressure ultra-miniature gun generator 50 according to the present invention, a) flows into the inlet portion 63 of the submerged pump 60 Control of the air flow rate; b) rotational force adjustment of the cutter-type impeller 62 of the submerged pump 60; And c) by adjusting the gap (d o ) of the dispersing device 40, the blowing port 57, the driver can be easily adjusted to the size of the desired bubble.

도6는, 본 발명에 따른 상압방식 초미세기포 발생장치(50)의 간략적인 일실시예이며, 도7은, 도6의 일실시예에 따른 초미세기포(34)의 발생도면으로서, 수중침지형 펌프(60)의 유입부(63)에 유입되는 공기유량 및 분산장치(40) 분출구(57)의 간극(do)을 조절함으로써, 밀리미터(도7a), 마이크론(도7b), 및 나노(도7c) 크기의 초미세기포(34)를 자유자제로 발생시킬 수 있었는데, 본 발명에 따른 초미세기포(34)는 종래 산기관 방식에서보다 짧은 가동시간내에 포화용존산소농도에 도달하게 할 수 있었다. 도6 및 도7의 일실시예에 사용된 수중침지형 펌프(60)는 0.2마력(HP)의 임펠러(impeller)식 펌프이며, 500L의 실제 생태계조에서 실시되었다.FIG. 6 is a simplified embodiment of the atmospheric pressure ultra-small force gun generating device 50 according to the present invention, and FIG. 7 is a generating view of the ultra-fine force cloth 34 according to the embodiment of FIG. By adjusting the air flow rate flowing into the inlet portion 63 of the immersion pump 60 and the gap (d o ) of the dispensing device 40, the outlet port 57, the millimeter (Fig. 7a), micron (Fig. 7b), and nano (Fig. 7c) It was possible to freely generate the ultra-miniature foam 34 of the size, the ultra-miniature foam 34 according to the present invention to reach the saturated dissolved oxygen concentration in a shorter operating time than in the conventional diffuser method Could. The submerged pump 60 used in the embodiment of FIGS. 6 and 7 is an 0.2 hp (HP) impeller pump and was carried out in an actual ecosystem of 500L.

상술한 바와 같이, 본 발명에 따른 가압용존방식(10) 내지 상압방식(50) 초미세기포 발생장치로부터 발생되는 초미세기포(34); 상기 초미세기포(34)가 분산되어 용존산소농도가 극도로 증대되는 용존산소조(110); 및 탈질순환조(120)를 이용하게 되면, 현탁부유물(MLSS) 10,000 mg/L 이상의 고농도 하폐수에 있어서, 공기주입에 따른 소요에너지를 절감시키면서 용존산소농도를 극대화시킴으로써, 미생물들에 의한 유기물분해 및 총질소(T-N) 제거효율을 월등히 향상시키는 신규한 고농도 하폐수 처리방법을 제공할 수 있다.As described above, the ultra-fine strength cloth (34) generated from the pressure-dissolving method (10) to the atmospheric pressure method (50) ultra-mini-foam generator according to the present invention; The dissolved oxygen tank 110 in which the ultra-fine strength foam 34 is dispersed and the dissolved oxygen concentration is extremely increased; And denitrification circulation tank 120, suspended solids (MLSS) 10,000 mg / L or more in high concentration sewage, by maximizing the dissolved oxygen concentration while reducing the energy required by air injection, organic matter decomposition by microorganisms and It is possible to provide a new method for treating high concentration sewage wastewater which greatly improves the total nitrogen (TN) removal efficiency.

Claims (4)

현탁부유물(MLSS) 10,000 mg/L 이상의 고농도 하폐수를 처리함에 있어서,
호기조(100)의 하부측에는 송풍기(95); 및 산기관(96)이 제공되어, 조대기포(97)를 폭기시킴으로써, 호기성미생물에게 산소를 전달하면서, 활성슬러지가 호기조(100)의 하부에 침적되는 것을 방지시키며;
상기 호기조(100)의 내측에는, 상측은 밀폐되고 하측은 개방되어 있는, 다수개의 용존산소조(110)가 구성되어, 가압용존방식 초미세기포 발생장치(10)로부터 발생된 초미세기포(34)를, 충돌경사판(49); 제트기류형성목(56); 및 분출구(57)가 포함되어 형성된 다수개의 분산장치(70)를 이용하여 용존산소조(110)의 수중에 분산시킴으로써, 용존산소조(110)의 용존산소농도를 증대시키며;
상기 호기조(100) 후속에는 탈질순환조(120)가 연계구성되어, 상기 호기조(100) 및 용존산소조(110)에서 질산화된 질화액은, 분리벽(13) 하측에 제공된 질화액 이송유로(98)를 거쳐 상기 탈질순환조(120)로 자연이송되고;
상기 탈질순환조(120)로 이송된 질화액은, 탈질순환조(120) 내부의 무산소성 조건하에서 탈질반응; 및 중력침전이 진행됨으로써, 질소성분 및 수질오염물질들이 제거되며;
상기 탈질순환조(120)의 상등수는, 가압펌프(14); 공기압축기(15); 및 가압믹싱탱크(16)로 구성된 가압용존방식 초미세기포 발생장치(10)로 흡입되고 가압됨으로써, 기체/액체 활력혼합체로 전환되며;
상기 전환된 기체/액체 활력혼합체는, 기체/액체 활력혼합체의 배관(29)을 거쳐 분산장치(70)에 도달한 후에, 상기 분산장치(70)에서 다시한번 초미세기포(34)로 쪼개지면서, 용존산소조(110)의 수중에 분산됨으로써, 용존산소조(110) 내부의 용존산소농도를 증대시키며; 및
용존산소농도가 증대된 용존산소조(110) 내부의 기체/액체 활력혼합체는, 용존산소조(110) 하측에 제공된 개구부를 통하여 흘러나오면서, 호기조(100)의 액체와 혼합됨으로써, 호기조(100) 전체의 용존산소농도를 증대시키는,
호기조(100); 용존산소조(110); 탈질순환조(120); 및 가압용존방식 초미세기포 발생장치(10)를 포함하여 구성되어, 호기조(100)의 용존산소농도를 1.0 mg/L 이상으로 유지시키면서 수질오염물질들을 제거하는 것을 특징으로 하는,
현탁부유물(MLSS) 10,000 mg/L 이상의 고농도 하폐수 처리방법.
Suspension Flotation (MLSS) In treating high concentrations of sewage water above 10,000 mg / L,
A blower 95 at a lower side of the aerobic tank 100; And an diffuser 96 is provided to aeration the coarse bubbles 97 to prevent the deposition of activated sludge under the aerobic tank 100 while delivering oxygen to the aerobic microorganisms;
Inside the exhalation tank 100, a plurality of dissolved oxygen tank 110 is configured, the upper side is closed and the lower side is open, ultra-low intensity gun 34 generated from the pressure-dissolving type ultra-small cell generator 10 ), The collision slope plate 49; Jet stream forming trees 56; And by dispersing in the water of the dissolved oxygen tank 110 using a plurality of dispersing device 70 formed by including a jet port 57, to increase the dissolved oxygen concentration of the dissolved oxygen tank 110;
The denitrification circulation tank 120 is configured to be connected to the exhalation tank 100 so that the nitrified liquid nitrified in the aerobic tank 100 and the dissolved oxygen tank 110 is provided with a nitride liquid transfer path provided under the separation wall 13 ( 98 is naturally transported to the denitrification circulation tank 120 through;
The nitriding liquid transferred to the denitrification circulation tank 120 may include a denitrification reaction under anoxic conditions in the denitrification circulation tank 120; And by gravity precipitation, nitrogen components and water pollutants are removed;
The supernatant of the denitrification circulation tank 120 is a pressure pump 14; An air compressor 15; And suctioned and pressurized by the pressure-dissolving method ultra-small cell generator 10 composed of the pressure mixing tank 16, thereby converting it into a gas / liquid vitality mixture;
After the converted gas / liquid vitality mixture reaches the dispersing apparatus 70 through the pipe 29 of the gas / liquid vitality mixture, the gas / liquid vitality mixture is once again split by the ultra-fine foam 34 in the dispersing apparatus 70. By dispersing in the water of the dissolved oxygen tank 110, to increase the dissolved oxygen concentration inside the dissolved oxygen tank 110; And
The gas / liquid vitality mixture in the dissolved oxygen tank 110 having the increased dissolved oxygen concentration flows out through the opening provided under the dissolved oxygen tank 110 and is mixed with the liquid in the aerobic tank 100, thereby providing the aerobic tank 100. To increase the total dissolved oxygen concentration,
Aerobic tank 100; Dissolved oxygen bath 110; Denitrification circulation tank 120; And a pressure-dissolving method ultra-fine foam generator 10, characterized in that to remove water pollutants while maintaining the dissolved oxygen concentration of the aerobic tank 100 to 1.0 mg / L or more,
Suspended Float (MLSS) High-density sewage treatment above 10,000 mg / L.
청구항 1에 있어서,
상기 가압용존방식 초미세기포 발생장치(10)의 후속에, 결함발생으로부터 기인한 압력감지기(26)의 변화된 압력신호는, 기체배관(24)상에 제공된 전동밸브(23)에 전달되어, 유입되는 공기의 유량을 자동으로 조절할 수 있도록 하는 것을 포함하여 구성되는 것을 특징으로 하는,
현탁부유물(MLSS) 10,000 mg/L 이상의 고농도 하폐수 처리방법.
The method according to claim 1,
Subsequent to the pressure-dissolving method ultra-fine force generation device 10, the changed pressure signal of the pressure sensor 26 resulting from the defect generation is transmitted to the electric valve 23 provided on the gas pipe 24, the inflow Characterized in that it is configured to automatically adjust the flow rate of the air to be
Suspended Float (MLSS) High-density sewage treatment above 10,000 mg / L.
현탁부유물(MLSS) 10,000 mg/L 이상의 고농도 하폐수를 처리함에 있어서,
호기조(100)의 하부측에는 송풍기(95); 및 산기관(96)이 제공되어, 조대기포(97)를 폭기시킴으로써, 호기성미생물에게 산소를 전달하면서, 활성슬러지가 호기조(100)의 하부에 침적되는 것을 방지시키며;
상기 호기조(100)의 내측에는, 상측은 밀폐되고 하측은 개방되어 있는, 다수개의 용존산소조(110)가 구성되어, 상압방식 초미세기포 발생장치(50)로부터 발생된 초미세기포(34)를, 충돌경사판(49); 제트기류형성목(56); 및 분출구(57)가 포함되어 형성된 다수개의 분산장치(70)를 이용하여 용존산소조(110)의 수중에 분산시킴으로써, 용존산소조(110)의 용존산소농도를 증대시키며;
상기 호기조(100) 후속에는 탈질순환조(120)가 연계구성되어, 상기 호기조(100) 및 용존산소조(110)에서 질산화된 질화액은, 분리벽(13) 하측에 제공된 질화액 이송유로(98)를 거쳐 상기 탈질순환조(120)로 자연이송되고;
상기 탈질순환조(120)로 이송된 질화액은, 탈질순환조(120) 내부의 무산소성 조건하에서 탈질반응; 및 중력침전이 진행됨으로써, 질소성분 및 수질오염물질들이 제거되며;
상기 탈질순환조(120)의 상등수는, 수중침지형 펌프(60); 및 공기펌프(51)로 구성된 상압방식 초미세기포 발생장치(50)로 흡입되면서, 수중침지형 펌프(60)의 흡입부(63)에 유입된 공기와, 커터식 임펠러(62)의 회전력에 의해 혼합됨으로써, 기체/액체 활력혼합체로 전환되며;
상기 전환된 기체/액체 활력혼합체는, 기체/액체 활력혼합체의 배관(29)을 거쳐 분산장치(70)에 도달한 후에, 상기 분산장치(70)에서 다시한번 초미세기포(34)로 쪼개지면서, 용존산소조(110)의 수중에 분산됨으로써, 용존산소조(110) 내부의 용존산소농도를 증대시키며; 및
용존산소농도가 증대된 용존산소조(110) 내부의 기체/액체 활력혼합체는, 용존산소조(110) 하측에 제공된 개구부를 통하여 흘러나오면서, 호기조(100)의 액체와 혼합됨으로써, 호기조(100) 전체의 용존산소농도를 증대시키는,
호기조(100); 용존산소조(110); 탈질순환조(120); 및 상압방식 초미세기포 발생장치(50)를 포함하여 구성되어, 호기조(100)의 용존산소농도를 1.0 mg/L 이상으로 유지시키면서 수질오염물질들을 제거하는 것을 특징으로 하는,
현탁부유물(MLSS) 10,000 mg/L 이상의 고농도 하폐수 처리방법.
Suspension Flotation (MLSS) In treating high concentrations of sewage water above 10,000 mg / L,
A blower 95 at a lower side of the aerobic tank 100; And an diffuser 96 is provided to aeration the coarse bubbles 97 to prevent the deposition of activated sludge under the aerobic tank 100 while delivering oxygen to the aerobic microorganisms;
Inside the exhalation tank 100, a plurality of dissolved oxygen tank 110 is configured, the upper side is closed and the lower side is opened, the ultra-micro-foam (34) generated from the atmospheric pressure ultra-fine foam generator 50 A crash slope plate 49; Jet stream forming trees 56; And by dispersing in the water of the dissolved oxygen tank 110 using a plurality of dispersing device 70 formed by including a jet port 57, to increase the dissolved oxygen concentration of the dissolved oxygen tank 110;
The denitrification circulation tank 120 is configured to be connected to the exhalation tank 100 so that the nitrified liquid nitrified in the aerobic tank 100 and the dissolved oxygen tank 110 is provided with a nitride liquid transfer path provided under the separation wall 13 ( 98 is naturally transported to the denitrification circulation tank 120 through;
The nitriding liquid transferred to the denitrification circulation tank 120 may include a denitrification reaction under anoxic conditions in the denitrification circulation tank 120; And by gravity precipitation, nitrogen components and water pollutants are removed;
The supernatant of the denitrification circulation tank 120 is a submerged pump 60; And the air introduced into the suction part 63 of the submerged pump 60 and the rotational force of the cutter-type impeller 62 while being sucked into the atmospheric pressure type ultra-fine foam generator 50 composed of the air pump 51. By mixing, it is converted into a gas / liquid vital mixture;
After the converted gas / liquid vitality mixture reaches the dispersing apparatus 70 through the pipe 29 of the gas / liquid vitality mixture, the gas / liquid vitality mixture is once again split by the ultra-fine foam 34 in the dispersing apparatus 70. By dispersing in the water of the dissolved oxygen tank 110, to increase the dissolved oxygen concentration inside the dissolved oxygen tank 110; And
The gas / liquid vitality mixture in the dissolved oxygen tank 110 having the increased dissolved oxygen concentration flows out through the opening provided under the dissolved oxygen tank 110 and is mixed with the liquid in the aerobic tank 100, thereby providing the aerobic tank 100. To increase the total dissolved oxygen concentration,
Aerobic tank 100; Dissolved oxygen bath 110; Denitrification circulation tank 120; And an atmospheric pressure ultra-fine foam generator (50), characterized in that to remove the water pollutants while maintaining the dissolved oxygen concentration of the aerobic tank 100 to 1.0 mg / L or more,
Suspended Float (MLSS) High-density sewage treatment above 10,000 mg / L.
청구항 3에 있어서,
10m 이상의 배관에서도, 배관내에서의 초미세기포의 합체현상을 방지하기 위해서, 상기 상압방식 초미세기포 발생장치(50)의 후속에, 하나 이상의 진공강자흡식 펌프(33)를 연계하여 구성되는 것을 특징으로 하는,
현탁부유물(MLSS) 10,000 mg/L 이상의 고농도 하폐수 처리방법.
The method according to claim 3,
Even in a pipe of 10 m or more, in order to prevent the coalescence of the ultra-fine force bubbles in the pipe, one or more vacuum ferromagnetic suction pumps 33 may be formed after the atmospheric pressure type ultra-fine force generator 50. Characterized by
Suspended Float (MLSS) High-density sewage treatment above 10,000 mg / L.
KR1020110076788A 2011-08-02 2011-08-02 Treating method for swage-wastewater of high concentration using ultra-fine bubble as well as dissolved oxygen tank KR101080818B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110076788A KR101080818B1 (en) 2011-08-02 2011-08-02 Treating method for swage-wastewater of high concentration using ultra-fine bubble as well as dissolved oxygen tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110076788A KR101080818B1 (en) 2011-08-02 2011-08-02 Treating method for swage-wastewater of high concentration using ultra-fine bubble as well as dissolved oxygen tank

Publications (2)

Publication Number Publication Date
KR20110096013A true KR20110096013A (en) 2011-08-26
KR101080818B1 KR101080818B1 (en) 2011-11-08

Family

ID=44931427

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110076788A KR101080818B1 (en) 2011-08-02 2011-08-02 Treating method for swage-wastewater of high concentration using ultra-fine bubble as well as dissolved oxygen tank

Country Status (1)

Country Link
KR (1) KR101080818B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101485363B1 (en) * 2012-11-22 2015-01-21 금호산업주식회사 Apparatus and method for sequencing batch type dissolved air floating controlled air bubble size
CN108017160A (en) * 2017-10-30 2018-05-11 浙江大学宁波理工学院 Pressurized stream biological treatment stain disease device
CN109179907A (en) * 2018-10-27 2019-01-11 河北雄安德荫源环境科技有限公司 A kind of summer domestic sewage ecologically treating system
KR20210062516A (en) * 2019-11-21 2021-05-31 (주)천마기술단 Wastewater treatment system using microbubble aeration process
KR102321094B1 (en) * 2021-03-17 2021-11-04 주식회사 지온 Pure oxygen aeration system reusing discharge water of sewage treatment facility
KR102368675B1 (en) * 2021-03-19 2022-03-02 주식회사 지온 Electrolysis system using solar energy or surplus power
KR102475121B1 (en) * 2021-12-22 2022-12-09 (주)우진 Air supply system for bioreactor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003145190A (en) 2001-07-26 2003-05-20 Ryosaku Fujisato Aerator
JP5080139B2 (en) 2007-06-08 2012-11-21 リンナイ株式会社 Water supply system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101485363B1 (en) * 2012-11-22 2015-01-21 금호산업주식회사 Apparatus and method for sequencing batch type dissolved air floating controlled air bubble size
CN108017160A (en) * 2017-10-30 2018-05-11 浙江大学宁波理工学院 Pressurized stream biological treatment stain disease device
CN108017160B (en) * 2017-10-30 2020-05-05 浙江大学宁波理工学院 Pressurized fluidized biological sewage and wastewater treatment device
CN109179907A (en) * 2018-10-27 2019-01-11 河北雄安德荫源环境科技有限公司 A kind of summer domestic sewage ecologically treating system
CN109179907B (en) * 2018-10-27 2023-09-26 河北雄安德荫源环境科技有限公司 Domestic sewage ecological treatment system for summer
KR20210062516A (en) * 2019-11-21 2021-05-31 (주)천마기술단 Wastewater treatment system using microbubble aeration process
KR102321094B1 (en) * 2021-03-17 2021-11-04 주식회사 지온 Pure oxygen aeration system reusing discharge water of sewage treatment facility
KR102368675B1 (en) * 2021-03-19 2022-03-02 주식회사 지온 Electrolysis system using solar energy or surplus power
KR102475121B1 (en) * 2021-12-22 2022-12-09 (주)우진 Air supply system for bioreactor

Also Published As

Publication number Publication date
KR101080818B1 (en) 2011-11-08

Similar Documents

Publication Publication Date Title
KR101080818B1 (en) Treating method for swage-wastewater of high concentration using ultra-fine bubble as well as dissolved oxygen tank
CA2109436C (en) Wastewater treatment system
US7255332B2 (en) System and method for dissolving gases in liquids
KR200418245Y1 (en) Pure Oxygen Aeration Devices for Wastewater Treatment
EP1976804B1 (en) Ozonation of wastewater for reduction of sludge or foam and bulking control
US11339068B2 (en) Eductor-based membrane bioreactor
KR101095576B1 (en) A apparatus and treatment method for wastewater including excrementitious matter of domestic animals, and a production method of liquid fertilizer using the apparatus
KR101128679B1 (en) Ultra-fine bubble generator and the method thereof for advanced water treatment
US20080078719A1 (en) System and method for treating wastewater
US7163632B1 (en) System and method for oxygenation for wastewater treatment
KR100271932B1 (en) Waste water treatment equipment &amp; method with the function of deodoring, antifoaming, intermittent aeration and intra circulation
US20170152168A1 (en) Low-pressure aeration treatment of biological wastewater
WO2015008346A1 (en) Water treatment device
KR101127077B1 (en) Micro Bubble Diffuser for Improvement of Dissolved Oxygen
AU2006217459B2 (en) Aerating wastewater for re-use
JP4014581B2 (en) Biological filtration device
KR100882818B1 (en) An aeration apparatus
JP3478241B2 (en) Biological treatment equipment
KR200276093Y1 (en) Highly concentrated waste water disposal system
JP2004275996A (en) Sludge volume reduction method
KR20120138025A (en) Floatation apparatus
KR102299760B1 (en) High concentrated organic wastewater treatment system
JP5760182B2 (en) Organic waste water treatment apparatus and organic waste water treatment method
KR100221850B1 (en) Method and equipment for removal of nutrients from wastewater
KR20000000973A (en) System for treating high concentration wastewater

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141103

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161020

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181031

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191031

Year of fee payment: 9