KR20110078416A - Electrically conductive conjugated fiber of cross-shape, and preparation method thereof - Google Patents

Electrically conductive conjugated fiber of cross-shape, and preparation method thereof Download PDF

Info

Publication number
KR20110078416A
KR20110078416A KR1020090135222A KR20090135222A KR20110078416A KR 20110078416 A KR20110078416 A KR 20110078416A KR 1020090135222 A KR1020090135222 A KR 1020090135222A KR 20090135222 A KR20090135222 A KR 20090135222A KR 20110078416 A KR20110078416 A KR 20110078416A
Authority
KR
South Korea
Prior art keywords
cross
composite fiber
weight
carbon nanotubes
conductive composite
Prior art date
Application number
KR1020090135222A
Other languages
Korean (ko)
Inventor
서은하
이태균
권명현
양철민
윤수강
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020090135222A priority Critical patent/KR20110078416A/en
Publication of KR20110078416A publication Critical patent/KR20110078416A/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/08Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyacrylonitrile as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/13Physical properties anti-allergenic or anti-bacterial
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Abstract

PURPOSE: A cross-shaped electrically conductive conjugate fiber and a manufacturing method thereof are provided to maintain antibiosis by enlarging a contact area of thermoplastic resin and filler, and to improve electric conductivity of conjugate yarn. CONSTITUTION: The cross-shaped electrically conductive conjugate fiber includes nano silver of 1.0 - 2.5% weight and flowing layer multi-walled carbon nanotube of 1.0 - 1.5% weight compared to the whole weight of the conjugate fiber. cross-shaped electrically conductive conjugate fiber includes one kind or at least two kinds of thermoplastic resin selected in a group consisting of polyester, polyethylene, polypropylene, acrylonitrile butadiene styrene, polystyrene, polycarbonate, polyamide.

Description

십자형 전도성 복합섬유 및 그 제조방법 {Electrically conductive conjugated fiber of cross-shape, and preparation method thereof} Cross-conductive composite fiber and its manufacturing method {Electrically conductive conjugated fiber of cross-shape, and preparation method}

본 발명은 십자형 구조인 전도성 복합섬유 및 그 제조방법에 관한 것으로서, 보다 상세하게는 복합섬유 전체 중량 대비 나노 은 1.0 내지 2.5 중량% 및 유동층 다중벽 탄소나노튜브 1.0 내지 1.5 중량%를 포함하는 십자형 심부를 갖는 것을 특징으로 하는 십자형 전도성 복합섬유 및 그 제조방법에 관한 것이다.The present invention relates to a conductive composite fiber having a cruciform structure and a method of manufacturing the same, and more particularly, to a cross-shaped core part including 1.0 to 2.5 wt% of nano silver and 1.0 to 1.5 wt% of a fluidized-bed multi-walled carbon nanotube based on the total weight of the composite fiber. It relates to a cross-shaped conductive composite fiber and a method of manufacturing the same.

고분자 수지는 대전발생, 열 변형, 마모, 부식, 균열, 파손 등의 문제들이 빈번히 발생하는데, 이를 해결하기 위해 첨가물을 혼합하여 복합체를 만들어 이용 되어져 왔다. Polymer resins frequently cause problems such as charging, heat deformation, abrasion, corrosion, cracking, and breakage, and have been used to make a composite by mixing additives to solve this problem.

특히, 폴리아미드섬유나 폴리에틸렌 테레프탈레이트 섬유와 같은 합성섬유는 일반적으로 정전기가 발생하여 대전하기 쉬운 단점을 가지고 있다. 이러한 결점을 극복하기 위하여 합성섬유에 도전성을 가지게 하는 기술이 연구되어 왔다.In particular, synthetic fibers such as polyamide fibers and polyethylene terephthalate fibers generally have the disadvantage of generating static electricity and being easy to charge. In order to overcome these drawbacks, techniques for making the synthetic fibers conductive have been studied.

도전성 복합섬유는 카펫트나 무진의 등의 섬유제품 중에 혼용하여 대전방지 성능을 부여하는 소재로 광범위하게 사용되고 있다. 한편, 정전기에 의한 컴퓨터의 오작동방지를 위하여 실내에 깔려 있는 카펫트는 일반의 카펫트에 비하여 높은 수준의 도전성능을 요구한다. 이러한 도전성이 높은 섬유가 요구되는 용도에는 도전층이 섬유표면에 노출되어 있는 섬유(일본특공소 57-25647), 섬유표면상에 도전성 물질을 코팅시켜서 제조한 후가공 도전성 섬유 또는 금속섬유가 사용되고 있다.Conductive composite fibers are widely used as materials that provide antistatic performance by mixing them in textile products such as carpet or dust-free. On the other hand, in order to prevent malfunction of the computer due to static electricity, the carpet installed in the room requires a higher level of conductivity than the general carpet. For applications in which such highly conductive fibers are required, fibers having a conductive layer exposed to the fiber surface (JP-A 57-25647) and post-processed conductive fibers or metal fibers produced by coating a conductive material on the fiber surface are used.

종래에는 고분자 수지의 전기적 물성을 개선할 목적으로 카본블랙(Carbon Black), 카본섬유(Carbon Fiber), 스틸섬유(Steel Fiber), 은 박편(Silver Flake)등의 충진제 첨가를 통한 연구가 많이 진행되었으나, 개선에 있어 고가의 충진제가 너무 많이 요구되는 문제점이 있다. Conventionally, many studies have been conducted through the addition of fillers such as carbon black, carbon fiber, steel fiber, and silver flake to improve the electrical properties of polymer resins. To improve, there is a problem that too much expensive filler is required.

상기의 섬유들 중에서 도전층이 노출되어 있는 복합섬유는 제사시와 후가공시에 주행되는 복합섬유로부터 카본이 탈락되고, 공정통과성이 나쁘다. 또한 후가공 도전성섬유도 코팅한 도전성 물질이 탈락하기 쉬운 문제가 있으며, 금속섬유는 사용중에 섬유가 피브릴화 하는 문제점이 있어 실용화하기 힘든 문제점이 있다. Among the fibers, the composite fiber having the conductive layer exposed is carbon desorbed from the composite fiber running during weaving and post-processing, and the processability is poor. In addition, there is a problem that the conductive material coated with the post-processing conductive fiber is easy to fall off, and the metal fiber has a problem that the fiber is fibrillated during use, which makes it difficult to be practical.

또한 기존의 방식으로, 중심부에 카본블랙과 탄소섬유와 같은 전도성 물질을 위치하게 하는 방법, 즉 코어-쉘 구조로 제조하는 방식이 있는데, 이는 탄소섬유 등의 충진제가 다량 필요하여 공정의 비경제적이라는 문제점이 있다. In addition, the conventional method, there is a method of placing a conductive material such as carbon black and carbon fiber in the center, that is, a method of manufacturing a core-shell structure, which requires a large amount of fillers, such as carbon fiber, which is an uneconomical process There is a problem.

한편, 현대 사회에서 전기전도성의 섬유의 경우 그 성능을 향상시켜 옷 내부에 적용하기 위한 많은 노력을 기울이고 있으며, 섬유나 의복 자체가 외부 자극을 감지하고 스스로 반응하는 소재의 기능성이나 직물자체가 갖지 못하는 기계적 기능 성을 결합한 새로운 개념의 의류가 각광받고 있다. On the other hand, in the modern society, many efforts have been made to improve the performance of the electrically conductive fibers and to apply them to the interior of the clothes. A new concept of clothing that combines mechanical functionality is in the limelight.

본 발명에서는 이러한 기능적 측면에서 항균작용을 비롯한 여러 가지 특징으로 많은 관심을 받았지만 자체적인 충진제로서는 충분한 전기전도도를 제공하지 못한 은 나노입자를 기계적 강도와 내열성이 우수한 탄소나노튜브에 소량 첨가하여, 고가라는 단점을 감소시키고 열가소성수지와 충진제의 접촉 면적을 증가시켜 항균성을 유지하며 복합사의 전기전도도를 향상시키고자 한다.In the present invention, the functional aspect of the present invention has received much attention for its various features including antibacterial activity, but its own filler does not provide sufficient electrical conductivity by adding a small amount of silver nanoparticles to carbon nanotubes having excellent mechanical strength and heat resistance, To reduce the disadvantages and increase the contact area between the thermoplastic resin and the filler to maintain the antimicrobial properties and to improve the electrical conductivity of the composite yarn.

본 발명자들은 다중벽 탄소나노튜브와 은 나노입자를 사용하여 섬유에 전기전도성과 항균성을 부여함에 있어서 유동층 다중벽 탄소나노튜브를 사용하고, 용융방사시 십자형 노즐을 사용하여 공정이 경제적인 십자형 전도성 복합섬유를 제조함으로써 본 발명을 완성하였다. The present inventors use fluidized bed multi-walled carbon nanotubes to impart electrical conductivity and antimicrobial properties to the fibers using multi-walled carbon nanotubes and silver nanoparticles, and use a cross-shaped nozzle during melt spinning. The present invention was completed by making the fibers.

상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 복합섬유 전체 중량 대비 나노 은 1.0 내지 2.5 중량% 및 유동층 다중벽 탄소나노튜브 1.0 내지 1.5 중량%를 포함하는 십자형 심부를 갖는 것을 특징으로 하는 십자형 전도성 복합섬유 및 그 제조방법을 제공하는 것을 목적으로 한다. In order to solve the problems of the prior art as described above, the present invention is characterized in that the cross-shaped core having a cross-shaped core including 1.0 to 2.5% by weight and 1.0 to 1.5% by weight of the fluidized bed multi-walled carbon nanotubes relative to the total weight of the composite fiber An object of the present invention is to provide a conductive composite fiber and a method of manufacturing the same.

상기 목적을 달성하기 위하여, 본 발명은 십자형 구조인 전도성 복합섬유로서, 복합섬유 전체 중량 대비 나노 은 1.0 내지 2.5 중량% 및 유동층 다중벽 탄소나노튜브 1.0 내지 1.5 중량%를 포함하는 십자형 심부를 갖는 것을 특징으로 하는 십자형 전도성 복합섬유를 제공한다.In order to achieve the above object, the present invention is a conductive composite fiber having a cross-shaped structure, having a cross-shaped core including 1.0 to 2.5% by weight of nano silver and 1.0 to 1.5% by weight of fluidized bed multi-walled carbon nanotubes relative to the total weight of the composite fiber Provided is a cross-shaped conductive composite fiber characterized by.

본 발명은 또한, 상기 십자형 전도성 복합섬유는 폴리에스테르, 폴리에틸렌, 폴리프로필렌, 아크릴로니트릴부타디엔스티렌, 폴리스티렌, 폴리카보네이트, 폴리아미드로 이루어진 군에서 선택된 1종 또는 2종 이상의 열가소성수지를 포함하는 것을 특징으로 하는 십자형 전도성 복합섬유를 제공한다. The present invention also characterized in that the cross-shaped conductive composite fiber comprises one or two or more thermoplastic resins selected from the group consisting of polyester, polyethylene, polypropylene, acrylonitrile butadiene styrene, polystyrene, polycarbonate, polyamide Provided is a cross-shaped conductive composite fiber.

본 발명은 또한, 십자형 구조인 전도성 복합섬유의 제조방법에 있어서, 나노 은을 접합시킨 유동층 다중벽 탄소나노튜브를, 방사온도 280 내지 350℃에서 십자형 노즐을 사용하여 열가소성수지와 함께 용융복합방사하여, 복합섬유 전체 중량 대비 나노 은 1.0 내지 2.5 중량% 및 유동층 다중벽 탄소나노튜브 1.0 내지 1.5 중 량%를 포함하는 십자형 심부를 갖는 것을 특징으로 하는 십자형 전도성 복합섬유의 제조방법을 제공한다.The present invention also provides a method for producing a conductive composite fiber having a cross-shaped structure, by melt-compositing a fluidized bed multi-walled carbon nanotube bonded with nano silver together with a thermoplastic resin at a spinning temperature of 280 to 350 ° C. using a cross nozzle. To provide a method for producing a cross-shaped conductive composite fiber, characterized in that having a cross-shaped core including 1.0 to 2.5% by weight and 1.0 to 1.5% by weight of the fluidized bed multi-walled carbon nanotubes relative to the total weight of the composite fiber.

본 발명은 종래 기술의 결점을 개선한 것으로서 나노 은을 접합시킨 탄소나노튜브를 십사형 노즐을 사용하여 열가소성수지와 함께 용융방사하여 기존의 코어-쉘 구조의 복합사보다 적은 양의 충진제를 사용하고도 전기전도성을 극대화하는 십자형 전도성 복합섬유 및 그 제조방법을 제공하는 효과가 있다.The present invention is to improve the shortcomings of the prior art by using a nano-bonded carbon nanotube melt spinning with a thermoplastic resin using a yarn to use a smaller amount of filler than a conventional core-shell composite yarn In addition, there is an effect of providing a cross-shaped conductive composite fiber and a method of manufacturing the same to maximize the electrical conductivity.

특히, 상기 전도성 복합사의 충진제인 탄소나노튜브는 유동층 다중벽 탄소나노튜브를 사용하여 통상의 다중벽 탄소나노튜브 혹은 단일벽 탄소나노튜브의 경우에 비해 공정의 경제성을 도모하는 효과가 있다. 또한 유동층 다중벽 탄소나노튜브와 함께 은 나노입자를 충진제로 함께 사용함으로써 전기전도성을 극대화하는 동시에 항균성까지 제공하는 효과가 있다.In particular, the carbon nanotubes, which are fillers of the conductive composite yarn, have the effect of improving the process economy compared to the case of the conventional multi-walled carbon nanotubes or single-walled carbon nanotubes using fluidized bed multi-walled carbon nanotubes. In addition, by using silver nanoparticles together with the fluidized bed multi-walled carbon nanotubes as a filler, it has the effect of maximizing electrical conductivity and providing antimicrobial properties.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

상기 목적을 달성하기 위하여, 본 발명의 십자형 전도성 복합섬유는 복합섬유 전체 중량 대비 나노 은 1.0 내지 2.5 중량% 및 유동층 다중벽 탄소나노튜브 1.0 내지 1.5 중량%를 포함하는 십자형 심부를 갖는 것을 특징으로 한다.In order to achieve the above object, the cross-shaped conductive composite fiber of the present invention is characterized by having a cross-shaped core including 1.0 to 2.5% by weight and 1.0 to 1.5% by weight of fluidized bed multi-walled carbon nanotubes relative to the total weight of the composite fiber. .

탄소나노튜브는 특별히 제한되지 않으나, 본 발명에서 사용된 탄소나노튜브는 유동층 장비에서 생산된 다중벽 탄소나노튜브로 기존의 탄소나노튜브와는 다른 특징을 가지고 있다. 이는 (주)효성에서 자체로 제조되어진 촉매를 이용하여 제조된 것으로서 밀도가 외국(Bayer사)의 탄소나노튜브에 대비 1/3 내지 1/5정도에 불과한 가벼운 것으로 전도성 고분자를 제조하기 위하여 제조된 것이다. 이를 사용하는 경우 단일벽은 물론이고 통상의 다중벽 탄소나노튜브에 비하여 제조 비용이 매우 낮아 경제성 및 상업화 측면에서 우수한 효과가 있다. Carbon nanotubes are not particularly limited, but the carbon nanotubes used in the present invention are multi-walled carbon nanotubes produced in fluidized bed equipment, and have different characteristics from those of conventional carbon nanotubes. This is manufactured by using a catalyst manufactured by Hyosung Co., Ltd., which is about 1/3 to 1/5 lighter than that of foreign carbon nanotubes. will be. In the case of using this, the manufacturing cost is very low compared to the general multi-walled carbon nanotubes as well as the single wall, thereby having an excellent effect on economics and commercialization.

상기의 다중벽 탄소나노튜브의 공정을 살펴보면 먼저 촉매를 제조하여야 한다. 촉매를 만드는 공정은 용매제조, 침전, 증류수 제거, 건조, 분쇄의 순으로 이루어지는데, 이때에 촉매안에는 금속의 성분도 포함하게 되어있다. 그것은 일반적으로 촉매제조시에 사용되는 시약이 4종류가 있는데 이것들을 서로 블렌드하는 과정중에 발생하게 된다. 이러한 금속의 성분은 필요한 성분과 불필요한 성분으로 나누어지게 되고 이러한 불필요한 상분은 촉매제조 공정인 건조부분에서 건조방법을 달리하면서 없앨수 있다. 이 특허에서 사용되는 건조방법은 스프레이 건조법을 사용하는데 이 방법은 건조되면서 높은 온도를 주므로 인하여 금속을 일부 제거하게 된다. 따라서 촉매의 밀도가 줄게 되고 그것으로 인하여 다중벽 탄소나노튜브 역시 밀도가 줄게되는 것이다.Looking at the process of the multi-walled carbon nanotubes first to prepare a catalyst. The process of making the catalyst consists of solvent preparation, precipitation, distilled water removal, drying, and grinding, in which the catalyst also contains metal components. Generally, there are four types of reagents used in the production of catalysts, which occur during the process of blending them. These metal components are divided into necessary components and unnecessary components, and these unnecessary phases can be eliminated by changing the drying method in the drying part of the catalyst manufacturing process. The drying method used in this patent uses spray drying, which removes some of the metal due to its high temperature as it dries. Therefore, the density of the catalyst is reduced, thereby reducing the density of the multi-walled carbon nanotubes.

본 발명은 기존의 탄소나노튜브 복합사 단면을 변형한 것으로서, 일정한 크 기와 형태의 은 나노입자를 탄소나노튜브에 접합시켜 이를 십자형 노즐을 사용하여 용융방사함으로써 십자형 전도성 복합섬유를 제조하는 방법에 관한 것이다. 기존의 복합사와는 다르게 2가지의 전도성 충진제를 적용, 복합사 단면을 십자형으로 변형, 기존 코어-쉘 구조의 복합사 대비 적은 양의 충진제를 사용하여 전기전도성을 구현할 수 있도록 하였다. The present invention is a modification of the cross section of the conventional carbon nanotube composite yarn, and relates to a method for producing a cross-conductive composite fiber by bonding silver nanoparticles of a certain size and shape to the carbon nanotube and melt spinning it using a cross nozzle. will be. Unlike conventional composite yarns, two types of conductive fillers are applied, the cross section of the composite yarns is cross-shaped, and the electrical conductivity is realized by using a smaller amount of filler than the composite yarns of the existing core-shell structure.

상세하게는 은 나노입자와 유동층 다중벽 탄소나노튜브를 충진제로 동시에 적용하고, 이 충진제를 섬유 내부에 십자형 구조를 가지게 제사하여 전도성을 가지는 열가소성수지 복합사를 구현하는 방법에 관한 것이다. 두 물질을 동시에 충진제로 사용하게 되면, 기존에 전기전도성을 구현하기 위해 첨가되는 충진제 양 대비 적은 양의 충진제를 첨가하여도 충분한 전기전도도를 얻을 수 있다. 또한 기존의 코어-쉘 구조 대신 십자형의 단면을 가지면 기존 코어-쉘 구조보다 적은 충진제의 사용으로 공정의 경제성, 쉬운 제사성을 구현할 수 있다.More specifically, the present invention relates to a method of implementing a thermoplastic resin composite yarn having conductivity by simultaneously applying silver nanoparticles and fluidized bed multi-walled carbon nanotubes as a filler, and having the cross-shaped structure inside the fiber. When both materials are used as fillers, sufficient electrical conductivity can be obtained even by adding a smaller amount of filler compared to the amount of fillers added in order to realize electrical conductivity. In addition, if the cross-section instead of the existing core-shell structure has less filler than the existing core-shell structure, it is possible to realize the economical efficiency of the process, easy sacrificial.

도 1은 본 발명에 의한 복합사 단면을 나타낸다. 본 발명은 은 입자(11)를 탄소나노튜브(12)에 접합시켜 열가소성수지(13)와 혼합하여 방사함으로써, 고가의 은 나노입자 함량을 소량으로 하여도 복합사의 전기전도도는 향상시킨 효과를 얻을 수 있도록 하였다. 또한, 복합사의 내부를 십자형 구조로 하여 종래의 코어-쉘 구조에 비하여 적은 충진제를 사용할 수 있게 하였다. 1 shows a cross section of a composite yarn according to the present invention. According to the present invention, the silver particles 11 are bonded to the carbon nanotubes 12, mixed with the thermoplastic resin 13, and spun together to obtain an effect of improving the electrical conductivity of the composite yarn even when the content of expensive silver nanoparticles is small. To make it possible. In addition, the cross-shaped structure of the composite yarn allows the use of less fillers compared to the conventional core-shell structure.

본 발명의 십자형 전도성 복합섬유는 복합섬유 전체 중량 대비 나노 은 1.0 내지 2.5 중량% 및 유동층 다중벽 탄소나노튜브 1.0 내지 1.5 중량%를 포함하는 십자형 심부를 갖는다. The cross-shaped conductive composite fiber of the present invention has a cross-shaped core including 1.0 to 2.5 wt% of nano silver and 1.0 to 1.5 wt% of a fluidized-bed multi-walled carbon nanotube based on the total weight of the composite fiber.

상기 십자형 전도성 복합섬유는 열가소성수지를 포함한다. The cross-shaped conductive composite fiber includes a thermoplastic resin.

본 발명에 사용될 수 있는 열가소성 수지는 제한을 두지 않으나, 폴리에스테르, 폴리에틸렌, 폴리프로필렌, 아크릴로니트릴부타디엔스티렌, 폴리스티렌, 폴리카보네이트 및 폴리아미드로 이루어진 군에서 선택된 1종 또는 2종 이상을 포함한다. 더욱 바람직하게는 폴리에스테르, 폴리에틸렌, 폴리프로필렌 및 폴리아미드로 이루어진 군에서 선택된 1종 또는 2종 이상을 사용하는 것이고, 가장 바람직하게는 폴리아미드계를 사용하는 것이다.Thermoplastic resins that can be used in the present invention include, but are not limited to, one or two or more selected from the group consisting of polyester, polyethylene, polypropylene, acrylonitrile butadiene styrene, polystyrene, polycarbonate, and polyamide. More preferably, one or two or more selected from the group consisting of polyesters, polyethylenes, polypropylenes and polyamides are used, and most preferably polyamides are used.

은 나노입자는 미생물의 신진대사를 파괴하여 항균성을 제공하기 위한 것으로, 은 나노입자는 졸겔법이라고 하는 방법으로 제조된다. 즉, 하이드로진이 포함된 계면활성제와 질산은 용액을 혼합하여 안정화시킨 후, 은 성분만을 추출하는 방법으로 제조된다. 상기 제조된 은 나노입자의 크기는 일반적으로 20 내지 100 nm이며, 보다 바람직하게는 40 내지 80 nm로 분말화된 미세 은 성분을 사용한다. 이때, 20 nm 미만의 나노 은 입자를 사용할 경우, 나노 은 입자의 반데르발스힘의 원리에 의해서 응집현상이 많이 일어나는 문제가 있고, 100 nm 초과 입자를 사용할 경우, 입자크기가 너무 커서 원하는 기능을 기대할 수 없다.Silver nanoparticles are to provide antimicrobial properties by destroying the metabolism of microorganisms, and silver nanoparticles are prepared by a method called sol-gel method. That is, the surfactant and the silver nitrate solution containing the hydroazine is stabilized by mixing, it is prepared by the method of extracting only the silver component. The size of the silver nanoparticles prepared is generally 20 to 100 nm, more preferably using a fine silver component powdered to 40 to 80 nm. At this time, when using nano silver particles of less than 20 nm, there is a problem that agglomeration occurs a lot by the principle of van der Waals force of the nano silver particles, and when using more than 100 nm particles, the particle size is too large to achieve the desired function Can't expect

또한, 나노 은의 첨가량은 복합섬유 전체 중량 대비 나노 은 1.0 내지 2.5 중량%이 바람직하다. 이때, 1.0 중량% 미만인 경우에는 최종 복합섬유에서 효과가 불충분하며, 2.5 중량% 초과일 경우에는 사절 및 후공정에서 어려울 뿐 아니라 경제적으로도 이익을 도모하기 힘들게 된다.In addition, the amount of nano silver added is preferably 1.0 to 2.5% by weight of nano silver based on the total weight of the composite fiber. In this case, less than 1.0% by weight is insufficient in the final composite fiber, when the content of more than 2.5% by weight is difficult in the trimming and post-process, as well as difficult to achieve economic benefits.

유동층 다중벽 탄소나노튜브는 복합섬유 전체 중량 대비 1.0 내지 1.5 중량%인 것이 바람직한데, 1.0 중량% 미만인 경우 제조되는 복합사의 표면저항 값이 낮아 전기적 성질이 열악하고, 1.5 중량%를 초과하는 경우 기존의 전도성 충진제에 비해 경제성이 문제가 된다. The fluidized bed multi-walled carbon nanotubes are preferably 1.0 to 1.5% by weight based on the total weight of the composite fiber. If the amount is less than 1.0% by weight, the surface resistance value of the composite yarn manufactured is low, and the electrical properties thereof are poor. Compared to the conductive filler of economical efficiency is a problem.

십자형 전도성 복합사를 제조하는 방법에 있어서, 본 발명은 은 입자를 접합시킨 탄소나노튜브를 십자형 노즐을 사용하여 열가소성수지와 함께 방사시키는 방법을 사용한다. In the method of manufacturing a cross-shaped conductive composite yarn, the present invention uses a method of spinning carbon nanotubes bonded with silver particles together with a thermoplastic resin using a cross nozzle.

이 때 방사온도는 280 내지 350℃인 것이 바람직하다. 방사온도가 280℃ 미만인 경우 열가소성 수지가 충분히 용융되지 않아 전기전도성이 충분히 나타나지 않고, 방사온도 350℃를 초과하는 경우 수지가 열화되는 문제점이 있다.At this time, the spinning temperature is preferably 280 to 350 ℃. If the spinning temperature is less than 280 ° C., the thermoplastic resin is not sufficiently melted, and thus electrical conductivity is not sufficiently exhibited. If the spinning temperature is higher than 350 ° C., the resin is deteriorated.

이하, 실시예 및 비교예를 통하여 본 발명을 보다 상세히 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

[실시예 및 비교예][Examples and Comparative Examples]

나노 은을 접합시킨 유동층 다중벽 탄소나노튜브를, 방사온도 300℃에서 십자형 노즐을 사용하여 폴리아미드와 함께 용융복합방사를 실시하였다. 비교예 2는 십자형이 아닌 코어-쉘 노즐을 사용하여 방사하였고, 비교예 3은 단일벽 탄소나노튜브를 사용하여 실시하였다.The fluidized bed multi-walled carbon nanotubes to which nano silver were bonded were melt-bonded together with polyamide using a cross nozzle at a spinning temperature of 300 ° C. Comparative Example 2 was spun using a non-cross core-shell nozzle, Comparative Example 3 was carried out using a single-wall carbon nanotubes.

[표 1]TABLE 1

Figure 112009082004197-PAT00001
Figure 112009082004197-PAT00001

(◎ : 매우 좋음, ○ : 좋음. △ : 좋지 않음.)(◎: Very good, ○: Good. △: Not good.)

도 1은 본 발명에 의하여 제조된 십자형 전도성 복합섬유의 확대 횡단면도이다.1 is an enlarged cross sectional view of a cross-shaped conductive composite fiber produced according to the present invention.

Claims (3)

십자형 구조인 전도성 복합섬유로서,Conductive composite fiber having a cross structure, 복합섬유 전체 중량 대비 나노 은 1.0 내지 2.5 중량% 및 유동층 다중벽 탄소나노튜브 1.0 내지 1.5 중량%를 포함하는 십자형 심부를 갖는 것을 특징으로 하는 십자형 전도성 복합섬유.Cross-shaped conductive composite fiber, characterized in that it has a cross-shaped core comprising 1.0 to 2.5% by weight and 1.0 to 1.5% by weight of fluidized bed multi-walled carbon nanotubes relative to the total weight of the composite fiber. 제 1항에 있어서,The method of claim 1, 상기 십자형 전도성 복합섬유는 폴리에스테르, 폴리에틸렌, 폴리프로필렌, 아크릴로니트릴부타디엔스티렌, 폴리스티렌, 폴리카보네이트, 폴리아미드로 이루어진 군에서 선택된 1종 또는 2종 이상의 열가소성수지를 포함하는 것을 특징으로 하는 십자형 전도성 복합섬유.The cruciform conductive composite fiber includes a cruciform conductive composite comprising at least one thermoplastic resin selected from the group consisting of polyester, polyethylene, polypropylene, acrylonitrile butadiene styrene, polystyrene, polycarbonate, and polyamide fiber. 십자형 구조인 전도성 복합섬유의 제조방법에 있어서,In the method for producing a conductive composite fiber having a cross structure, 나노 은을 접합시킨 유동층 다중벽 탄소나노튜브를, 방사온도 280 내지 350℃에서 십자형 노즐을 사용하여 열가소성수지와 함께 용융복합방사하여, 복합섬유 전체 중량 대비 나노 은 1.0 내지 2.5 중량% 및 유동층 다중벽 탄소나노튜브 1.0 내지 1.5 중량%를 포함하는 십자형 심부를 갖는 것을 특징으로 하는 십자형 전도성 복합섬유의 제조방법.Fluidized-bed multi-walled carbon nanotubes bonded with nano silver were melt-composited together with thermoplastic resin using a cross nozzle at a spinning temperature of 280 to 350 ° C., so that 1.0 to 2.5 wt% of nano silver and a fluidized-bed multi-wall based on the total weight of the composite fiber. Method for producing a cross-shaped conductive composite fiber, characterized in that it has a cross-shaped core portion containing 1.0 to 1.5% by weight carbon nanotubes.
KR1020090135222A 2009-12-31 2009-12-31 Electrically conductive conjugated fiber of cross-shape, and preparation method thereof KR20110078416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090135222A KR20110078416A (en) 2009-12-31 2009-12-31 Electrically conductive conjugated fiber of cross-shape, and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090135222A KR20110078416A (en) 2009-12-31 2009-12-31 Electrically conductive conjugated fiber of cross-shape, and preparation method thereof

Publications (1)

Publication Number Publication Date
KR20110078416A true KR20110078416A (en) 2011-07-07

Family

ID=44917882

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090135222A KR20110078416A (en) 2009-12-31 2009-12-31 Electrically conductive conjugated fiber of cross-shape, and preparation method thereof

Country Status (1)

Country Link
KR (1) KR20110078416A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101439730B1 (en) * 2013-01-18 2014-09-12 주식회사 효성 Method for preparing electrically conductive polyester composite fiber and electrically conductive polyester composite fiber prepared thereby
CN104060337A (en) * 2013-03-19 2014-09-24 浙江美丝邦化纤有限公司 Functional chinlon 6 colored fiber and manufacturing method thereof
WO2014166420A1 (en) * 2013-04-12 2014-10-16 中国石油化工股份有限公司 Polymer/filler/metal composite fiber and preparation method thereof
KR101495966B1 (en) * 2012-12-05 2015-02-25 주식회사 효성 Method for preparing electrically conductive polyamide- polyolefin composite fiber and electrically conductive composite fiber prepared thereby

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101495966B1 (en) * 2012-12-05 2015-02-25 주식회사 효성 Method for preparing electrically conductive polyamide- polyolefin composite fiber and electrically conductive composite fiber prepared thereby
KR101439730B1 (en) * 2013-01-18 2014-09-12 주식회사 효성 Method for preparing electrically conductive polyester composite fiber and electrically conductive polyester composite fiber prepared thereby
CN104060337A (en) * 2013-03-19 2014-09-24 浙江美丝邦化纤有限公司 Functional chinlon 6 colored fiber and manufacturing method thereof
WO2014166420A1 (en) * 2013-04-12 2014-10-16 中国石油化工股份有限公司 Polymer/filler/metal composite fiber and preparation method thereof
US10787754B2 (en) 2013-04-12 2020-09-29 China Petroleum & Chemical Corporation Polymer/filler/metal composite fiber and preparation method thereof

Similar Documents

Publication Publication Date Title
Al Sheheri et al. The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites
KR101135672B1 (en) Conductive thermosets by extrusion
CN103079805B (en) Flame-resistant composite materials and articles containing carbon nanotube-infused fiber materials
Mahltig et al. Inorganic and composite fibers: production, properties, and applications
CN106884315A (en) Conductive fiber of composite construction and preparation method thereof
CN101081902A (en) Conductive polyolefins with good mechanical properties
CN101565893A (en) Methods for forming nanoreinforced fibers and components comprising same
Choo et al. Fabrication and applications of carbon nanotube fibers
CN102120891A (en) Thermoplastic resin composition with EMI shielding properties and EMI shielding product prepared thereby
KR101917257B1 (en) Polymer/filler/metal composite fiber and preparation method thereof
CN102388018A (en) Fiber sizing comprising nanoparticles
CN106948168A (en) Composite construction conductive fiber of carbon nano-tube coating and preparation method thereof
KR20110078416A (en) Electrically conductive conjugated fiber of cross-shape, and preparation method thereof
CN110770387B (en) Sheet and manufacturing method thereof
WO2013004718A1 (en) Paper machine clothing having monofilaments with nano-graphene platelets
US8992879B2 (en) Method of producing carbon fiber
Dobrzański et al. Conceptual study on a new generation of the high-innovative advanced porous and composite nanostructural functional materials with nanofibers
CN100478398C (en) Method for preparing polymer/carbon nano composite material
Beshkar et al. A reliable hydrophobic/superoleophilic fabric filter for oil–water separation: hierarchical bismuth/purified terephthalic acid nanocomposite
KR20110078136A (en) Electrically conductive composite yarn with fluidizing bed multi-walled carbon nanotube-thermoplastic resin containging the silver nanoparticles, and preparation method thereof
CN107573655A (en) A kind of method that polyester material performance is improved using modified graphene oxide
CN101189373A (en) Improved ozonolysis of carbon nanotubes
Ma et al. Modified treatment for carbonized cellulose nanofiber application in composites
JP5051571B2 (en) Conductive fiber and its use
CN106894225A (en) Graphene coated composite construction conductive fiber and preparation method thereof

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid