KR20110073841A - Composite of aramid and method for manufacturing the same - Google Patents

Composite of aramid and method for manufacturing the same Download PDF

Info

Publication number
KR20110073841A
KR20110073841A KR1020090130605A KR20090130605A KR20110073841A KR 20110073841 A KR20110073841 A KR 20110073841A KR 1020090130605 A KR1020090130605 A KR 1020090130605A KR 20090130605 A KR20090130605 A KR 20090130605A KR 20110073841 A KR20110073841 A KR 20110073841A
Authority
KR
South Korea
Prior art keywords
aramid
composite material
resin
resin layer
inorganic particles
Prior art date
Application number
KR1020090130605A
Other languages
Korean (ko)
Other versions
KR101312803B1 (en
Inventor
한인식
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to KR1020090130605A priority Critical patent/KR101312803B1/en
Publication of KR20110073841A publication Critical patent/KR20110073841A/en
Application granted granted Critical
Publication of KR101312803B1 publication Critical patent/KR101312803B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/39Aldehyde resins; Ketone resins; Polyacetals
    • D06M15/41Phenol-aldehyde or phenol-ketone resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/327Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof
    • D06M15/333Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof of vinyl acetate; Polyvinylalcohol
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M17/00Producing multi-layer textile fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • B32B2571/02Protective equipment defensive, e.g. armour plates, anti-ballistic clothing
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/34Polyamides
    • D06M2101/36Aromatic polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE: An aramid composite and a method for preparing the same are provided to improve workability and adhesion. CONSTITUTION: An aramid composite contains aramide fabric and resin layer. The resin layer is impregnated into the aramid fabric. The resin layer contains phenolic resin, polyvinyl butyral resin, and inorganic particle. The content of the resin layer is 10-20 weight%. The inorganic particle contains carbon nanotubes. The inorganic particle also contains nanoclay or zeolite.

Description

아라미드 복합재료 및 그 제조방법{Composite of aramid and method for manufacturing the same}Aramid composite material and manufacturing method therefor {Composite of aramid and method for manufacturing the same}

본 발명은 아라미드 복합재료 및 그 제조방법에 관한 것으로서, 보다 구체적으로는 방탄용 또는 건축, 토목용 재료에 이용 가능한 아라미드 복합재료 및 그 제조방법에 관한 것이다.TECHNICAL FIELD The present invention relates to an aramid composite material and a method for manufacturing the same, and more particularly, to an aramid composite material and a method for manufacturing the same that can be used for bulletproof or building and civil engineering materials.

아라미드 섬유는 벤젠고리들이 아미드기를 통해 직선적으로 연결된 구조를 갖는 파라계 아라미드 섬유와 구부러진 구조를 갖는 메타계 아라미드 섬유를 포함한다. 이 중 파라계 아라미드 섬유는 고강도, 고탄성 등의 특성을 가짐에 따라, 스포츠용 용품, 방탄복, 방호복, 복합재료 등으로 사용되고 있다.Aramid fibers include para-aramid fibers having a structure in which benzene rings are linearly connected through an amide group and meta-aramid fibers having a bent structure. Among these, para-aramid fibers have high strength, high elasticity, and the like, and thus are used as sports articles, body armor, protective clothing, and composite materials.

복합재료는 외력으로부터 지지하는 역할을 하는 강화제(reinforcement)와 이러한 강화제를 보호하고 가공성을 향상시키는 역할을 하는 매트릭스(matrix) 수지로 이루어져 있다. 특히, 아라미드 강화제를 포함하는 복합재료는 우수한 기계적 열적 특성으로 인해 항공기, 스포츠, 자동차 등 다양한 분야에 이용 중이다.Composites consist of reinforcements that serve to support external forces and matrix resins that protect these reinforcements and improve processability. In particular, composite materials including aramid reinforcing agents are being used in various fields such as aircraft, sports, and automobiles because of their excellent mechanical and thermal properties.

이러한 아라미드 섬유를 포함하는 복합재료는 매트릭스용 수지로 통상 페놀수지를 많이 사용하고 있다. 그러나, 페놀수지는 딱딱한 특성으로 인해 충격에 약 하고 아라미드와의 구조적인 상이함으로 인해 접착력이 좋지 못하다. 이와 같은 페놀수지로 구성된 복합재료를 방탄헬멧 등에 사용할 경우, 방탄헬멧의 방탄성능이 떨어지는 문제가 있다. Composite materials containing such aramid fibers generally use a lot of phenolic resins for the matrix resin. However, phenolic resins are vulnerable to impact due to their hard properties and poor adhesion due to structural differences with aramid. When a composite material composed of such a phenol resin is used for a bulletproof helmet or the like, there is a problem that the bulletproof performance of the bulletproof helmet is inferior.

한편, 아라미드 섬유는 탄소 섬유 등에 비해 탄성률이 낮고 일반적인 수지와의 접착력이 좋지 못하다. 이와 같은 아라미드를 강화제로 구성하는 복합재료를 토목 또는 건축용 보수 및 보강재료로 이용할 경우, 보수 및 보강재료의 전단강도 및 굽힘강도 등이 낮아 건물의 내구성이 떨어지는 문제가 있다.Aramid fibers, on the other hand, have a low elastic modulus and poor adhesion to general resins compared to carbon fibers. When using the composite material consisting of such aramid as a reinforcement for civil engineering or building repair and reinforcement materials, there is a problem that the durability of the building is low, such as low shear strength and bending strength of the repair and reinforcement materials.

따라서, 본 발명은 위와 같은 관련 기술의 제한 및 단점들에 기인한 문제점들을 방지할 수 있는 아라미드 복합재료 및 그 제조방법에 관한 것이다.Accordingly, the present invention relates to an aramid composite material and a method of manufacturing the same that can prevent the problems caused by the above limitations and disadvantages of the related art.

본 발명의 이점은 아라미드와 수지와의 접착성을 향상시켜 방탄성능이 우수한 아라미드 복합재료 및 그 제조방법을 제공하는 것을 목적으로 한다.An advantage of the present invention is to provide an aramid composite material having excellent antiballistic performance by improving the adhesion between aramid and a resin and a method of manufacturing the same.

본 발명의 다른 이점은 전단강도 및 굽힘강도를 향상시켜 내구성이 우수한 건축 또는 토목용 보수 및 보강재료로 이용할 수 있는 아라미드 복합재료 및 그 제조방법을 제공하는 것을 목적으로 한다.Another advantage of the present invention is to provide an aramid composite material and a manufacturing method thereof that can be used as a repair or reinforcement material for building or civil engineering with excellent durability by improving shear strength and bending strength.

위와 같은 이점들을 달성하기 위하여, 그리고 본 발명의 목적에 따라, 아라미드 원단; 및 상기 아라미드 원단에 함침된 수지층을 포함하되, 상기 수지층은 페놀수지, 폴리비닐부티랄수지, 및 무기입자를 포함하고 있는 복합재료가 제공된다.In order to achieve the above advantages, and in accordance with the object of the present invention, aramid fabric; And a resin layer impregnated in the aramid fabric, wherein the resin layer is provided with a composite material containing phenol resin, polyvinyl butyral resin, and inorganic particles.

본 발명의 다른 측면으로서, 아라미드 원단을 제조하는 단계; 페놀수지, 폴리비닐부티랄수지 및 무기입자를 포함하는 조성물을 준비하는 단계; 및 상기 조성물을 상기 아라미드 원단에 함침시켜 수지층을 제조하는 단계를 포함하는 복합재료의 제조방법이 제공된다.In another aspect of the invention, the step of preparing the aramid fabric; Preparing a composition comprising a phenol resin, a polyvinyl butyral resin, and inorganic particles; And impregnating the composition into the aramid fabric to produce a resin layer.

상기 구성에 의한 본 발명에 따르면 다음과 같은 효과가 있다.According to the present invention by the above configuration has the following effects.

첫째, 본 발명에 따른 아라미드 복합재료는 페놀수지와 폴리비닐부티랄수지 및 무기입자를 포함함으로써 가공성 및 접착력이 향상되어 방탄제품에 이용할 경우 방탄제품의 방탄성능이 크게 향상되는 효과가 있다. First, the aramid composite material according to the present invention includes the phenol resin, polyvinyl butyral resin and inorganic particles to improve the workability and adhesive force has an effect of greatly improving the bulletproof performance of bulletproof products.

둘째, 본 발명에 따른 아라미드 복합재료는 라미네이팅 공정을 통해 제조하기 때문에 수지함량을 크게 줄일 수 있어 재료비가 절약되고 경량화가 향상되는 효과가 있다.Second, since the aramid composite material according to the present invention is manufactured through a laminating process, the resin content can be greatly reduced, thereby reducing material costs and improving weight.

셋째, 본 발명에 따른 아라미드 복합재료는 나노 크기의 탄소나노튜브와 같은 무기입자를 포함하고 있기 때문에 전단강도 및 굽힘강도가 우수하여 건축 또는 토목용 보수, 보강재료로 이용될 경우 건물의 내구성이 크게 향상되는 효과가 있다.Third, since the aramid composite material according to the present invention contains inorganic particles such as nano-sized carbon nanotubes, the shear strength and bending strength are excellent, so that the durability of the building is greatly increased when used as a repair or reinforcement material for construction or civil engineering. There is an effect to be improved.

이하, 본 발명에 대해서 구체적으로 설명하기로 한다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 아라미드 복합재료는 아라미드 원단 및 상기 아라미드 원단에 함침된 수지층을 포함하되, 상기 수지층은 페놀수지, 폴리비닐부티랄수지(polyvinylbutyral), 및 무기입자를 포함하여 이루어진다.The aramid composite material according to the present invention includes an aramid fabric and a resin layer impregnated in the aramid fabric, the resin layer comprises a phenol resin, polyvinyl butyral resin (polyvinylbutyral), and inorganic particles.

상기 아라미드 원단은 복합재료의 기계적 물성 및 형태안정성을 증진시키는 역할을 하는 것으로서, 이러한 아라미드는 양호한 내열성과 높은 인장 강도 및 탄성률을 가짐에 따라 높은 내구성이 요구되는 항공기, 자동차, 건축 등의 분야에 이용할 수 있다.The aramid fabric serves to enhance the mechanical properties and form stability of the composite material, such aramid has good heat resistance and high tensile strength and elastic modulus, so that the high durability is required in the fields of aircraft, automobiles, construction, etc. Can be.

상기 아라미드 원단은 이용하는 분야에 따라 다양한 형태로 이루어질 수 있다. 즉, 아라미드 원단은 일방향 섬유(unidirectional fiber), 직물(woven fabric), 편물(knitted fabric), 브레이드(braid) 등의 형태로 이루어질 수 있다. The aramid fabric may be made in various forms depending on the field of use. That is, the aramid fabric may be formed in the form of unidirectional fibers, woven fabrics, knitted fabrics, braids, and the like.

아라미드 직물은 경사 및 위사가 서로 교차하여 이루어진 것으로서, 밀도 등을 용이하게 조절할 수 있고 대량생산에 적합하다. 다만, 경사 및 위사가 서로 교착하고 있기 때문에 교차점에서 응력이 집중됨에 따라, 방탄성능이 다소 떨어질 수 있다. Aramid fabric is made of a cross between the warp and the weft, and can easily control the density and the like and is suitable for mass production. However, since the slope and the weft interweave with each other, as the stress is concentrated at the intersection point, the ballistic resistance may be somewhat reduced.

일방향 아라미드 원단은 아라미드 필라멘트들이 모두 동일한 방향으로 배열되어 이루어진 집합체를 의미하는데, 교차점이 없기 때문에 응력의 집중을 방지할 수 있고 이에 따라 더욱 우수한 방탄성능을 발현할 수 있다. 그러나, 상기 일방향 아라미드 원단은 상하 방향에 대한 물성은 우수하나 좌우 방향에 대한 물성은 취약한 특성이 있다.One-way aramid fabric means an aggregate consisting of all the aramid filaments are arranged in the same direction, there is no intersection point can prevent the concentration of stress and thus can express more excellent ballistic performance. However, the one-way aramid fabric is excellent in physical properties in the vertical direction, but the physical properties in the left and right direction is weak.

브레이드 아라미드 원단은 봉(rod)과 같은 형태의 복합재료를 제조하는데 유용할 수 있다. 특히, 봉 형태의 복합재료는 건축 또는 토목용 보수 및 보강재료로 유용하게 사용될 수 있다.Braid aramid fabric can be useful for making composites of the same type as rods. In particular, rod-shaped composite material may be usefully used as a repair or reinforcement material for construction or civil engineering.

복합재료는 통상 아라미드 원단과 같은 강화제와 이러한 강화제를 둘러싸고 있는 매트릭스(matrix) 수지층으로 구성되어 있다. 이러한 수지층은 강화제를 외부로부터 보호하고 성형성을 향상시키는 역할을 한다. 본 발명의 수지층은 페놀수지, 폴리비닐부티랄수지, 및 무기입자를 포함하여 이루어져 있다. The composite material is usually composed of a reinforcing agent such as aramid fabric and a matrix resin layer surrounding the reinforcing agent. This resin layer serves to protect the reinforcing agent from the outside and improve moldability. The resin layer of the present invention comprises a phenol resin, a polyvinyl butyral resin, and inorganic particles.

상기 페놀수지는 내열성이 양호하고 전기 절연성이 우수하며 강직한 3차원 구조로 이루어져 있기 때문에 내화학성이 우수하고 각종 다양한 물질들과 친화성이 양호하기 때문에 다양한 분야에 적용할 수 있는 이점이 있다.Since the phenolic resin has a good heat resistance, excellent electrical insulation, and a rigid three-dimensional structure, the phenolic resin has excellent chemical resistance and good affinity with various other materials, so that it can be applied to various fields.

그러나, 페놀수지는 쉽게 부서지기(brittle) 때문에 성형성이 떨어지고, 충격강도가 낮고 아라미드 섬유와의 구조적 상이함으로 인해 친화성이 떨어지고, 이에 따라 방탄헬멧 등에 이용할 경우 방탄성능이 떨어지는 문제가 있다.However, phenolic resins are easily brittle, so formability is poor, impact strength is low, and affinity is low due to structural differences with aramid fibers.

상기 폴리비닐부티랄수지는 유연성(flexibility)이 우수하기 때문에 부서지기 쉬운 페놀수지와 혼합하여 사용할 경우, 쉽게 부서지는 성질을 향상시킬 수 있다. Since the polyvinyl butyral resin is excellent in flexibility (flexibility), when used in combination with a brittle phenolic resin, it can easily be broken properties.

그러나, 페놀수지 및 폴리비닐부티랄수지가 혼합된 수지 조성액으로부터 제조된 복합재료는 아라미드와 수지들 사이의 친화성이 크게 향상되지 않기 때문에 방탄헬멧 등에 이용할 경우 방탄성능이 크게 향상되지 못하고, 전단강도(shear strength) 및 굽힘강도(flexural strength)가 떨어지기 때문에 건축 또는 토목용 보수 및 보강재료로 사용할 경우 업계에서 요구하는 수준의 내구성을 만족시키지 못하는 실정이었다.However, the composite material prepared from the resin composition mixed with phenol resin and polyvinyl butyral resin does not significantly improve the affinity between aramid and resins, so that the bulletproof performance is not greatly improved when used in bulletproof helmets and the like, and the shear strength (shear strength) and flexural strength (falling strength) is falling, when used as a repair or reinforcement material for construction or civil engineering did not meet the level of durability required by the industry.

이에 따라, 본 발명은 페놀수지 및 폴리비닐부티랄수지에 무기입자를 첨가시켜 복합재료의 친화성, 전단강도 및 굽힘강도를 향상시킨다.Accordingly, the present invention improves the affinity, shear strength and bending strength of the composite material by adding inorganic particles to the phenol resin and polyvinyl butyral resin.

이러한, 무기입자는 수지층인 매트릭스와 강화제인 아라미드 사이의 상호작용(interaction)을 향상시키는 첨가제(additive)의 역할을 할 수 있다. 따라서, 이로부터 제조된 복합재료는 수지층과 아라미드 사이의 접착성 및 터프니스(tougheness)가 향상되어 방탄성능 및 전단강도 및 굽힘강도가 증대된다. 또한, 무기입자는 터프닝제(toughening agent)의 역할을 함에 따라, 부서지기 쉬운 성질을 개선하고 탄성률을 떨어뜨리고 분자사슬의 유동성을 증가시키며 신도를 증가시 킴에 따라 복합재료의 방탄성능 및 전단강도 및 굽힘강도가 향상된다.The inorganic particles may serve as additives to improve the interaction between the matrix, which is the resin layer, and the aramid, which is the reinforcing agent. Therefore, the composite material prepared therefrom has improved adhesion and toughness between the resin layer and the aramid, and thus the antiballistic performance, the shear strength and the bending strength are increased. In addition, as inorganic particles act as toughening agents, the ballistic resistance and shear strength of composite materials are improved by improving brittle properties, decreasing elastic modulus, increasing molecular chain fluidity, and increasing elongation. And bending strength is improved.

또한, 무기입자는 아라미드 섬유들 사이의 다리역할(bridge mechanism)을 함으로써 복합재료의 층간 접착성이 향상되고 크랙(crack)이 확산되는 것을 방지함에 따라 복합재료의 터프니스가 향상된다.In addition, the inorganic particles have a bridge mechanism between the aramid fibers to improve the interlayer adhesion of the composite material and to prevent cracks from spreading, thereby improving the toughness of the composite material.

또한, 무기입자는 크기가 작아 아라미드 섬유들 사이에 분포하고 있어 추가적인 충진제(filler)의 역할을 할 수 있고, 이에 따라 응력의 집중을 방지할 수 있기 때문에 복합재료의 접착성, 전단강도, 터프니스 및 형태안정성이 향상된다.In addition, the inorganic particles are small in size and are distributed among the aramid fibers to act as an additional filler, thereby preventing the concentration of stress, thereby improving the adhesion, shear strength, toughness of the composite material And shape stability is improved.

본 발명의 무기입자는 탄소나노튜브를 포함할 수 있다. 상기 탄소나노튜브는 특별히 형태 및 크기가 제한되지 않으나, 바람직하게는 평균 직경이 1 ~ 100㎚인 단일벽 탄소나노튜브 또는 다중벽 탄소나노튜브일 수 있다. 상기 탄소나노튜브의 평균 직경이 1 ㎚ 미만인 경우, 탄소나노튜브들이 원활하게 분산되지 않고 뭉치기 때문에 복합재료의 접착성 및 전단강도 등의 향상을 기대할 수 없고, 상기 탄소나노튜브의 평균 직경이 100 ㎚를 초과할 경우, 수지층의 유연성이 저하되어 성형성이 떨어질 수 있다.The inorganic particles of the present invention may include carbon nanotubes. The carbon nanotubes are not particularly limited in shape and size, but may preferably be single-walled carbon nanotubes or multi-walled carbon nanotubes having an average diameter of 1 to 100 nm. When the average diameter of the carbon nanotubes is less than 1 nm, since the carbon nanotubes are not dispersed and agglomerated smoothly, improvement of adhesiveness and shear strength of the composite material cannot be expected, and the average diameter of the carbon nanotubes is 100 nm. When it exceeds, the flexibility of the resin layer may be lowered and the moldability may be deteriorated.

상기 탄소나노튜브(carbonnanotube)는 전체 복합재료의 중량 대비 0.01 ~ 5중량%의 함량으로 이루어질 수 있다. 상기 탄소나노튜브의 함량이 0.01중량% 미만일 경우 충분한 터프니스제의 역할을 할 수 없기 때문에 복합재료의 성능이 크게 향상되지 않고, 상기 탄소나노튜브의 함량이 5중량%를 초과할 경우, 복합재료의 성능은 크게 향상되지 않는 반면, 생산비용만 증가함으로써 경제성만 떨어질 수 있다.The carbon nanotubes may be formed in an amount of 0.01 to 5 wt% based on the weight of the entire composite material. If the content of the carbon nanotubes is less than 0.01% by weight can not play a role of sufficient toughness agent, the performance of the composite material is not significantly improved, if the content of the carbon nanotubes exceeds 5% by weight, the composite material While its performance does not improve significantly, economics can only be reduced by increasing production costs.

상기 무기입자는 나노클레이(nanoclay)를 포함할 수 있다. 상기 나노클레이는 종류, 형태 및 크기가 제한되지 않으나, 7∼12 Å의 두께 및 10∼5000의 종횡비를 가지는 판상형 층들로 이루어진 천연, 또는 합성의 층상 점토일 수 있다. 상기 층상 점토의 대표적인 예로는 몬트모릴로나이트(montmorillonite), 벤토나이트(bentonite), 헥토라이트(hectorite), 불화헥토라이트(fluorohectorite), 사포나이트(saponite), 베이델라이트(beidelite), 논트로나이트(nontronite), 스티븐사이트(stevensite), 버미큘라이트(vermiculite), 볼콘스코이트(volkonskoite), 마가다이트(magadite), 케냐라이트(kenyalite), 또는 이들의 유도체를 들 수 있다.The inorganic particles may include nanoclays. The nanoclay is not limited in type, shape and size, but may be natural or synthetic layered clay consisting of plate-like layers having a thickness of 7 to 12 mm 3 and an aspect ratio of 10 to 5000. Representative examples of the layered clay are montmorillonite, bentonite, hectorite, hectorite, fluorohectorite, saponite, beidelite, nontronite ( nontronite, stevensite, vermiculite, volkonskoite, magadite, kenyalite, or derivatives thereof.

상기 무기입자는 제올라이트(zeolite)를 포함할 수 있다. 상기 제올라이트는 종류, 형태 및 크기가 제한되지 않으나, 천연 또는 합성 제올라이트일 수 있다.The inorganic particles may include zeolite. The zeolite is not limited in kind, shape and size, but may be natural or synthetic zeolite.

상기 수지층의 함량은 전체 복합재료 대비 10 ~ 20중량%일 수 있다. 만일 상기 수지층의 함량이 10중량% 미만일 경우, 수지가 아라미드 원단에 충분히 함침되지 않기 때문에 아라미드와 수지층 사이에 접착성이 떨어질 수 있고, 상기 수지층의 함량이 20중량%를 초과할 경우, 수지함량이 높아져 복합재료의 성능이 떨어지게 된다.The content of the resin layer may be 10 to 20% by weight relative to the total composite material. If the content of the resin layer is less than 10% by weight, since the resin is not sufficiently impregnated in the aramid fabric may be inferior in adhesion between the aramid and the resin layer, if the content of the resin layer exceeds 20% by weight, As the resin content increases, the performance of the composite material decreases.

이하 설명하는 실시예에서, 전술한 복합재료의 구성 중 복합재료의 제조공정과 동일한 부분에 대해서는 구체적인 설명을 생략하기로 한다.In the embodiments described below, detailed description of the same parts as the manufacturing process of the composite material of the above-described configuration of the composite material will be omitted.

본 발명의 복합재료의 제조방법은, 아라미드 원단을 제조하는 단계, 페놀수지, 폴리비닐부티랄수지(polyvinylbutyral) 및 무기입자를 포함하는 조성물을 준비하는 단계, 및 상기 조성물을 상기 아라미드 원단에 함침시켜 수지층을 제조하는 단계를 포함하여 이루어져 있다.Method for producing a composite material of the present invention, the step of preparing an aramid fabric, a step of preparing a composition comprising a phenolic resin, polyvinylbutyral and inorganic particles, and impregnating the composition into the aramid fabric It comprises the step of preparing a resin layer.

상기 아라미드 원단을 제조하는 단계와 상기 조성물을 준비하는 단계는 특별히 공정 순서가 있는 것은 아니다.The step of preparing the aramid fabric and the step of preparing the composition does not have a particular process sequence.

먼저, 상기 아라미드 원단을 제조하는 단계를 설명하기로 한다. 아라미드 원단은 직물, 일방향, 브레이드 등의 형태일 수 있고, 이들은 통상의 방법으로 제조할 수 있다. 예를 들어, 아라미드 직물은, 20g/d 이상의 인장 강도를 갖는 아라미드 필라멘트를 경사 및 위사에 이용하여 용도에 따라 밀도를 조절하여 완성할 수 있다. 또한, 일방향 아라미드 원단은, 아라미드 필라멘트가 감겨있는 다수의 보빈들에서 아라미드 필라멘트들을 풀고 균일한 장력이 유지된 상태에서 상기 아라미드 필라멘트들을 나란히 배열시켜 완성할 수 있다. 또한, 상기 아라미드 브레이드는 아라미드 필라멘트들을 브레이팅 장치에 공급하여 튜브 형상으로 편직시켜 완성할 수 있다.First, the step of preparing the aramid fabric will be described. Aramid fabric may be in the form of woven, unidirectional, braid, etc., they can be produced by conventional methods. For example, the aramid fabric can be completed by using aramid filaments having a tensile strength of 20 g / d or more for warp and weft yarn by adjusting the density according to the application. In addition, the one-way aramid fabric can be completed by releasing the aramid filaments in a plurality of bobbin wound around the aramid filament and arranging the aramid filaments side by side while maintaining a uniform tension. In addition, the aramid braid can be completed by feeding the aramid filaments to the brazing device to knit into a tube shape.

다음, 조성물을 제조하는 단계를 설명하기로 한다. 상기 조성물은 페놀수지, 폴리부틸랄수지 및 무기입자를 포함하고 있고, 용액 또는 필름 형상일 수 있다.Next, the steps for preparing the composition will be described. The composition includes a phenol resin, a polybutylral resin and inorganic particles, and may be in the form of a solution or a film.

이러한 조성용액은 수지, 무기입자 및 용매로 이루어질 수 있다. 상기 용매는 디메틸포름아미드, 디메틸아세트아마이드, 메탄올 등의 다양한 용매를 이용할 수 있는데, 첨가되는 무기입자에 따라 적절하게 선택하는 것이 바람직하다.Such a composition solution may consist of a resin, inorganic particles, and a solvent. The solvent may be used a variety of solvents such as dimethylformamide, dimethylacetamide, methanol, etc., it is preferable to select appropriately according to the inorganic particles to be added.

상기 수지를 용매에 녹인 수지용액에 무기입자를 첨가하여 고르게 분산시켜 조성용액을 제조할 수 있다. 상기 무기입자는 상기 수지용액에 첨가하기 전에 무기입자들 사이의 분산성 등을 향상시키기 위해 전처리를 할 수 있다. 이렇게 제조된 조성용액은 침지(dipping) 방법을 통해 상술한 바와 같이 제조된 아라미드 원단에 직접 적용될 수 있다. 또는, 상기 조성용액을 적절한 방법을 이용하여 필름을 제작한 후 이들 필름을 아라미드 원단에 라미네이팅(laminating)시킬 수 있다. Inorganic particles may be added to the resin solution in which the resin is dissolved in a solvent to uniformly disperse the composition solution. The inorganic particles may be pretreated to improve the dispersibility between the inorganic particles before adding to the resin solution. The composition solution thus prepared may be directly applied to the aramid fabric prepared as described above through a dipping method. Alternatively, the composition solution may be prepared by using an appropriate method, and then the films may be laminated on an aramid fabric.

다음, 수지층을 제조하는 단계에 대해 설명한다. 사용하는 조성물의 형태에 따라 제조공정이 다소 차이가 있을 수 있다. 즉, 용액 상태의 조성용액을 사용할 경우, 아라미드 원단에 조성용액을 침지공정 등을 이용하여 적절한 함량으로 도포한 후 용매를 제거하기 위해 건조공정을 수행하여 수지층을 제조할 수 있다. 한편, 필름 형상의 조성물을 사용할 경우, 라미네이팅 공정 즉, 아라미드 원단에 필름을 부착한 후 고온 및 고압 하에서 상기 필름을 융착시키는 공정을 통해 수지층을 제조할 수 있다.Next, the steps for producing the resin layer will be described. The manufacturing process may vary slightly depending on the type of composition used. That is, in the case of using the composition solution in the solution state, the resin layer may be prepared by applying the composition solution to the aramid fabric in an appropriate content using an immersion process, etc., and then performing a drying process to remove the solvent. On the other hand, when using a film-like composition, it is possible to manufacture a resin layer through a laminating process, that is, a step of fusion bonding the film under high temperature and high pressure after attaching the film to the aramid fabric.

상기 라미네이팅 공정을 통해 수지층을 제조하는 경우, 수지를 아라미드 원단 전체에 균일하게 함침시킬 수 있고, 수지의 구성성분의 함량을 정확히 조절할 수 있는 장점이 있다. 따라서, 이와 같은 라미네이팅 공정을 통해 제조된 복합재료를 방탄헬멧에 이용할 경우 우수한 경량화 및 방탄성능을 갖는 방탄헬멧을 제조할 수 있고, 건축용 보강재료에 이용할 경우 우수한 전단강도 및 굽힘강도를 갖는 보강재료를 제조할 수 있다.When the resin layer is manufactured through the laminating process, the resin may be uniformly impregnated in the entire aramid fabric, and there is an advantage in that the content of the components of the resin can be precisely controlled. Therefore, when the composite material prepared through the laminating process is used for a bulletproof helmet, a bulletproof helmet having excellent weight reduction and bulletproof performance can be manufactured, and when used in a building reinforcing material, a reinforcing material having excellent shear strength and bending strength is used. It can manufacture.

상기 수지층 중 폴리비닐부티랄의 함량은 30 내지 70중량%일 수 있다. 상기 폴리비닐부티랄의 함량이 30중량% 미만일 경우에는, 유연성이 떨어져 가공성이 불량하게 되고, 반면, 상기 폴리비닐부티랄의 함량이 70중량%를 초과하는 경우에는, 유연성은 좋아지나 내열성이 떨어지게 된다.The content of polyvinyl butyral in the resin layer may be 30 to 70% by weight. If the content of the polyvinyl butyral is less than 30% by weight, the flexibility is poor and poor workability, while if the content of the polyvinyl butyral exceeds 70% by weight, the flexibility is good but the heat resistance is poor do.

이하, 실시예 및 비교예를 통해 본 발명을 구체적으로 설명한다. 다만, 하기의 실시예는 본 발명의 이해를 돕기 위한 것일 뿐이므로 본 발명의 권리범위가 제한되어서는 안 된다.Hereinafter, the present invention will be described in detail through Examples and Comparative Examples. However, the following examples are only intended to help the understanding of the present invention, and the scope of the present invention should not be limited.

실시예Example 1 One

파라-페닐렌디아민과 테레프탈로일 디클로라이드를 N-메틸-2-피롤리돈 중합용매 내에서 중합시켜 폴리 파라페닐렌테레프탈아미드 중합체를 제조하였고, 그 후 상기 중합체를 농황산 용매에 용해시켜 방사도프를 제조하고, 방사도프를 방사구금을 통해 방사한 후 응고시켜 1,000 데니어의 아라미드 섬유를 제조하였다.Para-phenylenediamine and terephthaloyl dichloride were polymerized in an N-methyl-2-pyrrolidone polymerization solvent to prepare a poly paraphenylene terephthalamide polymer, which was then dissolved in concentrated sulfuric acid solvent to spin dope. Was prepared, and the spinning dope was spun through a spinneret and then solidified to prepare 1,000 denier aramid fibers.

그 후, 상기 아라미드 섬유를 경사 및 위사에 적용하고 평직으로 제직하여 350g/㎡의 밀도를 갖는 아라미드 직물을 제조하였다.The aramid fibers were then applied to warp and weft yarns and woven into plain weave to produce aramid fabrics having a density of 350 g / m 2.

페놀수지 70g 및 폴리비닐부티랄수지 25g을 메탄올 용매에 녹인 후 무기입자로 탄소나노튜브(단일벽, Carbon Nanotechnologies Inc.) 2.5g을 첨가하여 고르게 분산시켜 조성용액을 만든 후, 상기 메탄올을 제거하여 필름 조성물을 제조하였다.After dissolving 70 g of phenol resin and 25 g of polyvinyl butyral resin in a methanol solvent, 2.5 g of carbon nanotubes (single wall, Carbon Nanotechnologies Inc.) were added as inorganic particles to disperse evenly to form a composition solution, and then the methanol was removed. A film composition was prepared.

이어서, 상기 아라미드 직물 상에 필름 조성물을 부착시켜 40℃의 온도를 유지하고 있는 챔버에서 압력을 가하여 아라미드 직물 대비 15중량%의 수지층이 형성된 복합재료를 얻었다.Subsequently, the film composition was attached onto the aramid fabric and pressure was applied in a chamber maintaining a temperature of 40 ° C. to obtain a composite material having a resin layer of 15% by weight relative to the aramid fabric.

실시예Example 2 2

전술한 실시예 1에서, 탄소나노튜브 대신 나노클레이로 알킬 암모늄으로 개질된 몬트몰릴로나이트(Garamite-1958, Southern Clay Product, USA)를 사용하는 것을 제외하고는 실시예 1과 동일한 방법에 의해 복합재료를 얻었다.In Example 1 described above, the composite was prepared in the same manner as in Example 1 except for using montmolylonite (Garamite-1958, Southern Clay Product, USA) modified with alkyl ammonium as nanoclay instead of carbon nanotubes. Obtained the material.

실시예Example 3 3

전술한 실시예 1에서, 탄소나노튜브 대신 제올라이트(TS-1 zeolite, xTiO2(1-x)SiO2, KICET)를 사용하는 것을 제외하고는 실시예 1과 동일한 방법에 의해 복합재료를 얻었다.In Example 1 described above, a composite material was obtained by the same method as Example 1 except for using zeolite (TS-1 zeolite, xTiO 2 (1-x) SiO 2 , KICET) instead of carbon nanotubes.

비교예Comparative example

전술한 실시예 1에서, 무기입자가 첨가되지 않은 조성용액을 사용하는 것을 제외하고는 실시예 1과 동일한 방법에 의해 복합재료를 얻었다.In Example 1 described above, a composite material was obtained by the same method as Example 1 except for using the composition solution to which the inorganic particles were not added.

실시예 및 비교예에 의해 제조된 복합재료의 물성을 다음의 방법으로 측정하여 아래의 표 1에 나타내었다.The physical properties of the composite material prepared according to Examples and Comparative Examples were measured by the following method and are shown in Table 1 below.

접착력Adhesion

실시예 및 비교예에 의해 제조된 복합재료 2매를 적층 후, 160bar의 압력 및 150℃의 온도로 유지된 몰드에서 20분간 성형하여 샘플을 제조하였다.After laminating two composite materials prepared in Examples and Comparative Examples, a sample was prepared by molding in a mold maintained at a pressure of 160 bar and a temperature of 150 ° C. for 20 minutes.

상기 각 샘플들의 접착강력(㎏f)은, ASTM D903에 의거한 필테스트(peel test)에 의해 측정되었다. 한편, 상기 테스트는 1㎏f의 로드셀과 100㎜/분의 속도에서 수행하였다.The adhesive strength (kgf) of each of the samples was measured by a peel test according to ASTM D903. On the other hand, the test was carried out at a load cell of 1kgf and a speed of 100mm / min.

전단강도Shear strength

상기 각 샘플들의 전단강도는, ASTM D2344-84(Standard test method for apparent interlaminar shear strength of parallel fiber composite by short-beam method)에 의해 측정되었고, 다음과 같은 식을 통하여 계산되었다.The shear strength of each sample was measured by ASTM D2344-84 (Standard test method for apparent interlaminar shear strength of parallel fiber composite by short-beam method), and was calculated by the following equation.

전단강도 = 0.75P/bhShear strength = 0.75P / bh

여기서, P는 페일로드(failure load)이고, b와 h는 각각 시편의 넓이와 두께이다.Where P is a fail load and b and h are the width and thickness of the specimen, respectively.

굽힘강도Bending strength

상기 각 샘플들의 굽힘강도는 ASTMD790에 의해 측정되었다. Flexural strength of each of the samples was measured by ASTMD790.

방탄성능Bulletproof performance

실시예 및 비교예에 의해 제조된 복합재료 15매를 적층 후, 160bar의 압력 및 150℃의 온도로 유지된 몰드에서 30분간 성형하여 샘플을 제조하였다.Samples were prepared by laminating 15 composite materials prepared according to Examples and Comparative Examples, and molding them in a mold maintained at a pressure of 160 bar and a temperature of 150 ° C. for 30 minutes.

각 샘플들을 MIL-STD-662F 규정에 따라 Cal.22구경 파편모의탄(FSP)으로 완전 관통과 부분 관통 사이에서의 평균 속도인 V50으로 방탄성능을 측정하였다.Each sample was measured for ballistic performance at V50, the average speed between full penetration and partial penetration with Cal.22 diameter fragment debris (FSP) according to MIL-STD-662F.

구분division 접착력(㎏f)Adhesive force (㎏f) 전단강도(MPa)Shear strength (MPa) 굽힘강도(GPa)Bending strength (GPa) 방탄성능(V50=m/s)Bulletproof performance (V50 = m / s) 실시예 1Example 1 4.44.4 4242 7.97.9 690690 실시예 2Example 2 4.14.1 4040 7.47.4 660660 실시예 3Example 3 3.93.9 3838 7.27.2 650650 비교예 Comparative example 2.12.1 2525 6.66.6 600600

Claims (10)

아라미드 원단; 및Aramid fabric; And 상기 아라미드 원단에 함침된 수지층을 포함하되,Including the resin layer impregnated in the aramid fabric, 상기 수지층은 페놀수지, 폴리비닐부티랄수지(polyvinylbutyral), 및 무기입자를 포함하고 있는 복합재료.The resin layer is a composite material containing a phenol resin, polyvinyl butyral resin, and inorganic particles. 제1항에 있어서,The method of claim 1, 상기 무기입자는 탄소나노튜브를 포함하는 것을 특징으로 하는 복합재료.The inorganic particles are composite materials comprising carbon nanotubes. 제2항에 있어서,The method of claim 2, 상기 탄소나노튜브의 평균 직경이 1 ~ 100㎚ 것을 특징으로 하는 복합재료.Composite material, characterized in that the average diameter of the carbon nanotubes 1 ~ 100nm. 제2항에 있어서,The method of claim 2, 상기 탄소나노튜브의 함량이 0.01 ~ 5중량%인 것을 특징으로 하는 복합재료.Composite material, characterized in that the content of the carbon nanotubes of 0.01 to 5% by weight. 제1항에 있어서,The method of claim 1, 상기 무기입자는 나노클레이 또는 제올라이트를 포함하는 것을 특징으로 하는 복합재료.The inorganic particles are composite material characterized in that it comprises nanoclay or zeolite. 제1항에 있어서,The method of claim 1, 상기 수지층의 함량이 10 ~ 20중량%인 것을 특징으로 하는 복합재료.Composite material, characterized in that the content of the resin layer is 10 to 20% by weight. 아라미드 원단을 제조하는 단계;Preparing an aramid fabric; 페놀수지, 폴리비닐부티랄수지(polyvinylbutyral) 및 무기입자를 포함하는 조성물을 준비하는 단계; 및Preparing a composition comprising a phenol resin, a polyvinylbutyral resin, and inorganic particles; And 상기 조성물을 상기 아라미드 원단에 함침시켜 수지층을 제조하는 단계를 포함하는 복합재료의 제조방법.Method for producing a composite material comprising the step of impregnating the composition to the aramid fabric to produce a resin layer. 제7항에 있어서,The method of claim 7, wherein 상기 수지층을 제조하는 단계는 라미네이팅 공정을 포함하는 것을 특징으로 하는 복합재료의 제조방법.The step of preparing the resin layer is a method for producing a composite material, characterized in that it comprises a laminating process. 제8항에 있어서,The method of claim 8, 상기 라미네이팅 공정은 상기 조성물을 포함하는 필름을 사용하는 것을 특징으로 하는 복합재료의 제조방법.The laminating process is a method for producing a composite material, characterized in that using the film containing the composition. 제7항에 있어서,The method of claim 7, wherein 상기 무기입자는 탄소나노튜브, 나노클레이 및 제올라이트 중 적어도 하나를 포함하는 복합재료의 제조방법.The inorganic particle manufacturing method of a composite material comprising at least one of carbon nanotubes, nanoclays and zeolites.
KR1020090130605A 2009-12-24 2009-12-24 Composite of aramid and method for manufacturing the same KR101312803B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090130605A KR101312803B1 (en) 2009-12-24 2009-12-24 Composite of aramid and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090130605A KR101312803B1 (en) 2009-12-24 2009-12-24 Composite of aramid and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20110073841A true KR20110073841A (en) 2011-06-30
KR101312803B1 KR101312803B1 (en) 2013-09-27

Family

ID=44404309

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090130605A KR101312803B1 (en) 2009-12-24 2009-12-24 Composite of aramid and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR101312803B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101282664B1 (en) * 2011-10-21 2013-07-12 한국항공우주연구원 Manufacture method for structure protecting electronic equipment of space launch vehicle
KR101598758B1 (en) * 2015-06-15 2016-02-29 서울시립대학교 산학협력단 manufacture method of bulletproof fiber using ferroelectric fiber

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910003993B1 (en) * 1988-02-24 1991-06-20 동양나이론 주식회사 Frp comprex layer which is bulletproop
KR900007461B1 (en) * 1988-03-16 1990-10-10 동양나이론 주식회사 Method for manufacturing a fabric reinforced composite article having improved durability and ballestic resistance
JPH07180997A (en) * 1993-12-22 1995-07-18 Sumitomo Bakelite Co Ltd Bulletproof helmet
JP2003269898A (en) * 2002-03-12 2003-09-25 Sumitomo Bakelite Co Ltd Composite laminated body and bulletproof helmet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101282664B1 (en) * 2011-10-21 2013-07-12 한국항공우주연구원 Manufacture method for structure protecting electronic equipment of space launch vehicle
KR101598758B1 (en) * 2015-06-15 2016-02-29 서울시립대학교 산학협력단 manufacture method of bulletproof fiber using ferroelectric fiber

Also Published As

Publication number Publication date
KR101312803B1 (en) 2013-09-27

Similar Documents

Publication Publication Date Title
Das et al. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review
Aljarrah et al. Improvement of the mode I interlaminar fracture toughness of carbon fiber composite reinforced with electrospun nylon nanofiber
Masuelli Introduction of fibre-reinforced polymers− polymers and composites: concepts, properties and processes
Zheng et al. Synergetic improvement of interlaminar fracture energy in carbon fiber/epoxy composites with nylon nanofiber/polycaprolactone blend interleaves
Song et al. Interlaminar toughening in carbon fiber/epoxy composites interleaved with CNT-decorated polycaprolactone nanofibers
US6265333B1 (en) Delamination resistant composites prepared by small diameter fiber reinforcement at ply interfaces
US9233492B2 (en) Composite materials reinforced with carbon nanotube yarns
US20140322504A1 (en) Carbon fiber base, prepreg and carbon-fiber-reinforced composite material
CN101736480B (en) Carbon fiber hybrid fabrics for impact resistant composite material
KR101898394B1 (en) Towpreg including epoxy resin composition
JP7007630B2 (en) Carbon fiber reinforced plastic containing cellulose nanofibers
Mirdehghan Fibrous polymeric composites
Gao et al. Toughening and self-healing fiber-reinforced polymer composites using carbon nanotube modified poly (ethylene-co-methacrylic acid) sandwich membrane
KR101155765B1 (en) Composite of aramid and Method for manufacturing tComposite of aramid and Method for manufacturing the same he same
İnal et al. Progress in interlaminar toughening of aerospace polymer composites using particles and non-woven veils
Zhao et al. Hybrid multi-scale thermoplastic composites reinforced with interleaved nanofiber mats using in-situ polymerization of cyclic butylene terephthalate
KR101312803B1 (en) Composite of aramid and method for manufacturing the same
Latifi Engineered Polymeric Fibrous Materials
RU2427594C1 (en) Prepreg and article made from said prepreg
KR102463416B1 (en) Polyamide complex composition reinforced with glass fiber and carbon fiber
Zou et al. Preparation and characterization of silk hybridizing carbon fiber/polybutylene succinate composite
Shinde et al. Flexural behavior of fiberglass polymer composite with and without TEOS electrospun nanofibers
Gunoz et al. Mechanical behavior of the polyamide 6.6 nanofiber and MWCNT‐reinforced hybrid nanocomposites
CN104356325A (en) Manometer layered silicate clay modified phenolic resin and preparation method thereof
KR101639982B1 (en) Process Of Producing HighTenacity Hybrid UniDirection Prepreg

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee