KR20110073079A - NOVEL TRANSITION METAL COMPLEXES AND CATALYSTS COMPOSITIONS FOR PREPARING ELASTOMERIC COPOLYMERS OF ETHYLENE AND α-OLEFINS - Google Patents

NOVEL TRANSITION METAL COMPLEXES AND CATALYSTS COMPOSITIONS FOR PREPARING ELASTOMERIC COPOLYMERS OF ETHYLENE AND α-OLEFINS Download PDF

Info

Publication number
KR20110073079A
KR20110073079A KR1020090130243A KR20090130243A KR20110073079A KR 20110073079 A KR20110073079 A KR 20110073079A KR 1020090130243 A KR1020090130243 A KR 1020090130243A KR 20090130243 A KR20090130243 A KR 20090130243A KR 20110073079 A KR20110073079 A KR 20110073079A
Authority
KR
South Korea
Prior art keywords
group
ethylene
copolymer
aryl
alkyl
Prior art date
Application number
KR1020090130243A
Other languages
Korean (ko)
Other versions
KR101454693B1 (en
Inventor
한정석
신동철
이호성
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to KR1020090130243A priority Critical patent/KR101454693B1/en
Publication of KR20110073079A publication Critical patent/KR20110073079A/en
Application granted granted Critical
Publication of KR101454693B1 publication Critical patent/KR101454693B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Abstract

PURPOSE: A method for preparing elastomeric copolymers of ethylene and α-olefins is provided to produce a polymer with narrow molecular weight distribution using a single site catalyst with excellent high catalyst activity and good copolymerization reactivity with higher alpha-olefins. CONSTITUTION: A method for preparing elastomeric copolymers of ethylene and α-olefins comprises a step of copolymerizing ethylene and C3-C18 α-olefin comonomer in the presence of a transition metal catalyst of chemical formula 1 in a single reactor or serial or parallel secondary continuous reactor to prepare copolymers of ethylene and α-olefins with density of 0.850~0.900 g/cc.

Description

에틸렌과 α-올레핀의 탄성 공중합체 제조방법 {Novel transition metal complexes and catalysts compositions for preparing elastomeric copolymers of ethylene and α-olefins}{Novel transition metal complexes and catalysts compositions for preparing elastomeric copolymers of ethylene and α-olefins}

본 발명은 전이금속 촉매 조성물을 이용한 에틸렌과 α-올레핀의 탄성 공중합체 제조방법에 관한 것으로, 보다 구체적으로는 4족 전이금속 주위에 시클로펜타디엔 유도체 및 오르토( ortho -) 위치에 헤테로고리형 아릴 유도체가 치환된 아릴옥사이드 리간드를 최소 하나 이상 포함하고 리간드 상호간 가교되지 않은 것을 특징으로 하는 4족 전이금속 화합물과, 알루미늄 화합물 및 붕소 화합물로부터 선택되는 1종 이상의 조촉매를 포함하는 전이금속 촉매 조성물을 이용한 에틸렌과 α-올레핀의 탄성 공중합체의 제조방법에 관한 것이다.The present invention relates to a method for producing an elastic copolymer of ethylene and α-olefin using a transition metal catalyst composition, and more particularly, to a cyclopentadiene derivative and a heterocyclic aryl at an ortho ( ortho ) position around a Group 4 transition metal. A transition metal catalyst composition comprising a Group 4 transition metal compound comprising at least one aryl oxide ligand substituted with a derivative and not crosslinked with each other, and at least one promoter selected from an aluminum compound and a boron compound. It relates to a method for producing an elastic copolymer of ethylene and α-olefin used.

종래에 에틸렌과 α-올레핀과 공중합체 제조에는 일반적으로 티타늄 또는 바나듐 화합물의 주촉매 성분과 알킬알루미늄 화합물의 조촉매 성분으로 구성되는 이른바 지글러-나타 촉매계가 사용되어 왔다. 그런데 지글러-나타 촉매계는 에틸렌 단독 중합에 대하여 고활성을 나타내지만, 불균일한 촉매 활성점 때문에 고급 α-올레핀과의 공중합 반응성이 좋지 못하여 일반적으로 밀도 0.900 이하의 탄성을 나 타내는 에틸렌과 α-올레핀과의 공중합체 제조를 위해서는 다량의 α-올레핀 공단량체를 사용하여야 하며 이러한 조건에서는 촉매의 활성도가 낮아지는 단점이 있다. 또한 이러한 촉매를 사용하여 생성된 공중합체는 조성분포가 매우 불균일하고 분자량 분포가 넓어 탄성중합체로서 적합한 물성을 가지기가 어렵다.In the past, so-called Ziegler-Natta catalyst systems composed of a main catalyst component of a titanium or vanadium compound and a cocatalyst component of an alkylaluminum compound have been generally used for preparing ethylene, α-olefin and copolymer. However, the Ziegler-Natta catalyst system exhibits high activity against ethylene homopolymerization, but due to its inhomogeneous catalytic activity, copolymerization with higher α-olefins is not good, and ethylene and α-olefins generally exhibit an elasticity of 0.900 or less. In order to prepare a copolymer of a large amount of α-olefin comonomers must be used, under these conditions there is a disadvantage that the activity of the catalyst is lowered. In addition, the copolymer produced using such a catalyst is very difficult to have suitable physical properties as an elastomer because the composition distribution is very uneven and the molecular weight distribution is wide.

최근에 티타늄, 지르코늄, 하프늄 등 주기율표 4족 전이금속의 메탈로센 화합물과 조촉매인 메틸알루미녹산(methylaluminoxane)으로 구성되는 이른바 메탈로센 촉매계가 개발되었다. 메탈로센 촉매계는 단일 종의 촉매활성점을 갖는 균일계 촉매이기 때문에 기존의 지글러-나타 촉매계에 비하여 분자량분포가 좁고 조성분포가 균일한 에틸렌과 α-올레핀의 공중합체를 제조할 수 있는 특징을 가지고 있다. 예를 들면, 유럽공개특허 제 320,762호, 제 3,726,325호 또는 일본 특개소63-092621호, 일본 특개평02-84405호, 또는 특개평03-2347호에서는 Cp2TiCl2, Cp2ZrCl2, Cp2ZrMeCl, Cp2ZrMe2, 에틸렌(IndH4)2ZrCl2 등에서 메탈로센 화합물을 조촉매 메틸알루미녹산으로 활성화시킴으로써 에틸렌과 α-올레핀을 고활성으로 공중합시켜 분자량분포(Mw/Mn)가 1.5~2.0 범위인 공중합체를 제조할 수 있음을 발표하였다. 그러나 상기 촉매계로는 80℃ 이상의 고온에서 실시되는 용액중합법에 적용할 경우 촉매 자체의 입체장애 효과로 인하여 밀도 0.900 이하의 탄성공중합체를 제조하기 위하여 지글러-나타계의 촉매와 마찬가지로 다량의 고급 α-올레핀을 사용하여야 단점이 있으며, 또한 이러한 경우 β-수소이탈반응이 우세하여 중량평균분자량(Mw)이 30,000 이상의 고분자량 중합체를 제조하기에는 적합하지 않다.Recently, a so-called metallocene catalyst system has been developed, which is composed of a metallocene compound of a periodic table Group 4 transition metal such as titanium, zirconium, and hafnium and methylaluminoxane as a promoter. Since the metallocene catalyst system is a homogeneous catalyst having a single catalytic activity point, it is possible to prepare a copolymer of ethylene and α-olefin having a narrower molecular weight distribution and a uniform composition distribution than the conventional Ziegler-Natta catalyst system. Have. For example, European Patent Nos. 320,762, 3,726,325 or JP 63-092621, JP 02-84405, or JP 03-2347 disclose Cp 2 TiCl 2 , Cp 2 ZrCl 2 , Cp 2 ZrMeCl, Cp 2 ZrMe 2 , Ethylene (IndH 4 ) 2 Activated metallocene compound with cocatalyst methylaluminoxane in ZrCl 2, etc. to copolymerize ethylene and α-olefin with high activity and have a molecular weight distribution (Mw / Mn) of 1.5 It has been reported that copolymers in the range of -2.0 can be prepared. However, as the catalyst system, when applied to a solution polymerization method performed at a high temperature of 80 ° C. or higher, a large amount of advanced α, like a Ziegler-Natta catalyst, is used to prepare an elastomer having a density of 0.900 or less due to the steric hindrance effect of the catalyst itself. The use of -olefins has disadvantages, and in this case, the β-hydrogen derivatization reaction predominates, so that the weight average molecular weight (Mw) is not suitable for producing a high molecular weight polymer of 30,000 or more.

한편, 용액중합 조건에서 에틸렌과 α-올레핀과의 공중합에서 높은 촉매활성과 고분자량의 중합체를 제조할 수 있는 촉매로서, 전이금속을 고리형태로 연결시킨 소위 기하구속형 비 메탈로센계 촉매가 공지되었다. 유럽특허 제 0416815호와 동 특허 제 0420436 호에서는 하나의 시클로펜타디엔 리간드에 아미드기를 고리형태로 연결시킨 예를 제시하였고, 동 특허 제 0842939호에서는 전자주게 화합물로서 페놀계 리간드를 시클로펜타디엔 리간드와 고리형태로 연결시킨 촉매의 예를 보여준다. 그러나 이러한 기하구속형 촉매의 경우 촉매 자체의 낮아진 입체 장애 효과로 인하여 고급 α-올레핀과의 반응성이 현저히 개선되었다. 그러나 촉매 제조 단계가 복잡하고 리간드와 전이금속화합물간의 고리 형성 반응 과정의 수율이 매우 낮기 때문에 밀도 0.900 이하의 에틸렌과 α-올레핀과의 공중합체 제조에 적합한 경제성 있는 제조공정을 구현하기에는 많은 어려움이 있다.On the other hand, as a catalyst capable of producing a high catalytic activity and a high molecular weight polymer in copolymerization of ethylene and α-olefin under solution polymerization conditions, so-called geometric non-metallocene catalysts in which transition metals are linked in a ring form are known. . In European Patent No. 0416815 and Patent No. 0420436, an example in which an amide group is linked to one cyclopentadiene ligand in a cyclic form is disclosed. In Patent No. 0842939, a phenol-based ligand is used as an electron donor compound and a cyclopentadiene ligand. An example of a catalyst connected in a cyclic form is shown. However, in the case of these geometric catalysts, the reactivity with higher α-olefins is remarkably improved due to the reduced steric hindrance of the catalyst itself. However, due to the complexity of the catalyst preparation step and the low yield of the ring formation reaction between the ligand and the transition metal compound, it is difficult to realize an economical manufacturing process suitable for preparing a copolymer of ethylene and α-olefin having a density of 0.900 or less. .

반면, 기하구속형이 아닌 비메탈로센계 촉매의 예로는 미국특허 제6,329,478호와 한국공개특허공보 제 2001-0074722호를 들 수 있다. 이러한 특허에서는 최소한 하나 이상의 포스핀이민 화합물을 리간드로 사용한 단일활성점 촉매가 140℃ 이상의 고온 용액 중합조건에서 에틸렌과 α-올레핀 공중합 시 높은 에틸렌 전환율을 보이고 있는 것을 볼 수 있다. 그러나 이러한 촉매는 메탈로센 촉매의 경우와 마찬가지로 고급 α-올레핀에 반응성이 높지 않아 에틸렌과 고급 α-올레핀의 탄성중합체 특히, 밀도 0.900 이하의 에틸렌과 고급 α-올레핀의 탄성중합체를 제조하기에 적합하지 않다.On the other hand, examples of non-metallic non-metallocene catalysts include US Patent No. 6,329,478 and Korean Patent Publication No. 2001-0074722. In this patent, a single-site catalyst using at least one phosphineimine compound as a ligand shows high ethylene conversion when copolymerizing ethylene and α-olefin under high temperature solution polymerization conditions of 140 ° C or higher. However, these catalysts, like metallocene catalysts, are not as reactive as higher α-olefins, making them suitable for preparing elastomers of ethylene and higher α-olefins, especially elastomers of ethylene and higher α-olefins with a density of 0.900 or less. Not.

상기 종래 기술의 문제점을 극복하기 위하여 본 발명자들은 광범위한 연구를 수행한 결과, 시클로펜타디엔 유도체 및 오르토(ortho-) 위치에 헤테로고리형 아릴 유도체가 치환된 아릴옥사이드 리간드를 포함한 비가교형 전이금속 촉매계가 좁은 분자량 분포 및 균일한 밀도분포를 가지는 밀도 0.900 이하의 에틸렌과 α-올레핀의 탄성 공중합체 제조에 적합한 것을 발견하였고, 본 발명은 이에 기초하여 완성되었다. In order to overcome the problems of the prior art, the present inventors have conducted extensive research, and as a result, a non-crosslinked transition metal catalyst system including a cyclopentadiene derivative and an aryloxide ligand in which a heterocyclic aryl derivative is substituted at an ortho- position is obtained. It has been found suitable for the production of elastic copolymers of ethylene and α-olefins having a density of 0.900 or less having a narrow molecular weight distribution and uniform density distribution, and the present invention has been completed based on this.

따라서, 본 발명의 목적은 필름, 연질포장재, 몰딩제품, 전선, 내충격성 보강재, 핫멜트 접착제 등으로 다양하게 응용 가능한 밀도 0.900 이하의 에틸렌과 α-올레핀의 공중합체의 제조용 촉매로 유용한, 전이금속 화합물을 포함하는 촉매 조성물을 이용하여 밀도 0.900 이하에서 탄성을 나타내는 에틸렌과 α-올레핀의 공중합체을 제조하는 방법을 제공하는 것이며, 밀도 0.900 이하의 에틸렌과 α-올레핀 공중합에서 활성이 높고 고급 α-올레핀에 대한 반응성이 우수한 단일활성점 촉매 및 이러한 촉매 성분을 이용하여 좁은 분자량 분포 및 조성 분포와 중량평균 분자량 30,000 이상의 에틸렌과 α-올레핀의 공중합체를 상업적인 관점에서 경제적으로 제조할 수 있는 중합방법을 제공하는데 있다.Accordingly, an object of the present invention is a transition metal compound useful as a catalyst for preparing a copolymer of ethylene and α-olefin having a density of 0.900 or less that can be variously applied as a film, a soft packaging material, a molded product, an electric wire, an impact reinforcement material, a hot melt adhesive, or the like. It is to provide a method for producing a copolymer of ethylene and α-olefin exhibiting elasticity at a density of 0.900 or less using a catalyst composition comprising a, high activity in high-density α-olefin copolymerization of ethylene and α-olefin with a density of 0.900 or less It provides a single point catalyst having excellent reactivity and a polymerization method for producing a narrow molecular weight distribution and composition distribution and a copolymer of ethylene and α-olefin having a weight average molecular weight of 30,000 or more from a commercial point of view. have.

상기 목적을 달성하기 위한 본 발명의 한 측면은 하기 화학식 1에 표시된 바와 같이 4족 전이금속 주위에 시클로펜타디엔 유도체 및 오르토( ortho -) 위치에 헤 테로고리형 아릴 유도체가 치환된 아릴옥사이드 리간드를 최소 하나 이상 포함하고 리간드 상호간 가교되지 않은 것을 특징으로 하는 전이금속 촉매과, 알루미늄 화합물 및 붕소 화합물로부터 선택되는 1종 이상의 조촉매를 활성화제로 사용하는 촉매 조성물 존재 하에서 에틸렌 및 하나 이상의 C3-C18의 α-올레핀 공단량체를 공중합시켜 밀도 0.850 내지 0.900g/cc의 에틸렌 및 α-올레핀 공중합체를 제조하는 방법을 제공한다. One aspect of the present invention for achieving the above object relates to a cyclopentadiene derivative and ortho (ortho -) around the Group 4 transition metal, as shown in formula (1) where RE for interrogating a substituted aryl oxide ligand cyclic aryl derivative Α- of ethylene and at least one of C3-C18 in the presence of a catalyst composition comprising at least one transition metal catalyst comprising at least one and not cross-linking between ligands and at least one promoter selected from aluminum compounds and boron compounds Provided is a method of copolymerizing olefin comonomers to produce ethylene and α-olefin copolymers having a density of 0.850 to 0.900 g / cc.

[화학식 1] [Formula 1]

Figure 112009079922642-PAT00001
Figure 112009079922642-PAT00001

상기 식에서, M은 주기율표 상 4 족의 전이금속이고;  Wherein M is a transition metal of Group 4 on the periodic table;

Cp는 중심 금속 M과 η5-결합할 수 있는 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이며, 상기 시클로펜타디에닐 고리 또는 시클로펜타디에닐 융합고리는 (C1-C20)알킬기, (C6-C30)아릴기, (C2-C20)알케닐기, (C6-C30)아릴(C1-C20)알킬기로 더 치환될 수 있고; Cp is a fused ring comprising a cyclopentadienyl ring or a cyclopentadienyl ring capable of bonding a central metal M with a η 5 -bond, wherein the cyclopentadienyl ring or cyclopentadienyl fused ring is (C1-C20) Alkyl group, (C6-C30) aryl group, (C2-C20) alkenyl group, (C6-C30) aryl (C1-C20) alkyl group can be further substituted;

A는 하기 구조의 치환체

Figure 112009079922642-PAT00002
또는
Figure 112009079922642-PAT00003
이고; R1, R2, R3, R4, R5, R6, R7 및 R8 은 서로 독립적으로 수소 원자, (C1-C20)알킬기, (C3-C20)시클 로알킬기, (C1-C20)알킬 치환 또는 (C6-C30)아릴 치환 실릴기, (C6-C30)아릴기, (C6-C30)아릴(C1-C10)알킬기, (C1-C20)알콕시기, (C1-C20)알킬 치환 또는 (C6-C20)아릴 치환 실록시기, (C1-C20)알킬 치환 또는 (C6-C30)아릴 치환 아미노기, (C1-C20) 알킬 치환 또는 (C6-C30)아릴 치환 포스핀기, (C1-C20)알킬 치환 머캡토기 또는 니트로기이며, 상기 R1 내지 R8 의 알킬기, 아릴 또는 알콕시기는 할로겐으로 더 치환되거나 인접한 치환체와 함께 융합고리를 형성할 수 있으며; A is a substituent of the following structure
Figure 112009079922642-PAT00002
or
Figure 112009079922642-PAT00003
ego; R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, a (C1-C20) alkyl group, a (C3-C20) cycloalkyl group, (C1-C20 ) Alkyl substituted or (C6-C30) aryl substituted silyl group, (C6-C30) aryl group, (C6-C30) aryl (C1-C10) alkyl group, (C1-C20) alkoxy group, (C1-C20) alkyl substituted Or (C6-C20) aryl substituted siloxy group, (C1-C20) alkyl substituted or (C6-C30) aryl substituted amino group, (C1-C20) alkyl substituted or (C6-C30) aryl substituted phosphine group, (C1-C20 An alkyl substituted mercapto group or a nitro group, wherein the alkyl group, aryl or alkoxy group of R 1 to R 8 may be further substituted with halogen or may form a fused ring with adjacent substituents;

D는 N-R9, 산소 또는 황 원자이며; R9은 선형 또는 비선형의 (C1-C20)알킬기, (C6-C30)아릴기, (C1-C20)알킬 치환 또는 (C6-C30)아릴 치환 실릴기이고; D is NR 9 , oxygen or sulfur atom; R 9 is a linear or nonlinear (C 1 -C 20) alkyl group, (C 6 -C 30) aryl group, (C 1 -C 20) alkyl substituted or (C 6 -C 30) aryl substituted silyl group;

n은 정수 1 또는 2이며; n is an integer of 1 or 2;

X는 서로 독립적으로 할로겐 원자, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C6-C30)아릴(C1-C20)알킬기, (C1-C20)알콕시기, (C3-C20)알킬실록시기, (C1-C20) 알킬 치환 또는 (C6-C30)아릴 치환 아미노기, (C1-C20) 알킬 치환 또는 (C6-C30)아릴 치환 포스핀기 및 (C1-C20)알킬치환 머캡토기로 이루어진 군으로부터 선택된다.X independently of one another is a halogen atom, (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6-C30) aryl (C1-C20) alkyl group, (C1-C20) alkoxy group, (C3-C20) alkyl Group consisting of a siloxy group, (C1-C20) alkyl substituted or (C6-C30) aryl substituted amino group, (C1-C20) alkyl substituted or (C6-C30) aryl substituted phosphine group and (C1-C20) alkyl substituted mercapto group Is selected from.

이하, 본 발명을 좀 더 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail.

상기 화학식 1의 전이금속 화합물에서 중심금속인 M은 바람직하게는 티타늄, 지르코늄 또는 하프늄이다. 또한 Cp는 중심 금속과 η5-결합할 수 있는 시클로펜타디엔 음이온 또는 시클로펜타디에닐 고리를 포함하며 치환되거나 치환되지 않은 융합고리 유도체의 구체적인 예는, 시클로펜타디에닐, 메틸시클로펜타디에닐, 디메틸 시클로펜타디에닐, 테트라메틸시클로펜타디에닐, 펜타메틸시클로펜타디에닐, 부틸시클로펜타디에닐, sec-부틸시클로펜티디에닐, tert-부틸메틸시클로펜타디에닐, 트리메틸실릴시클로펜타디에닐, 인데닐, 메틸인데닐, 디메틸인데닐, 에틸인데닐, 이소프로필인데닐, 플로레닐, 메틸플로레닐, 디메틸플로레닐, 에틸플로레닐 또는 이소프로필플로레닐 등으로부터 선택되는 것이다.In the transition metal compound of Formula 1, M, which is a central metal, is preferably titanium, zirconium or hafnium. In addition, Cp includes a cyclopentadiene anion or a cyclopentadienyl ring capable of bonding η 5 -to the central metal, and specific examples of the substituted or unsubstituted fused ring derivatives include cyclopentadienyl, methylcyclopentadienyl, Dimethyl cyclopentadienyl, tetramethylcyclopentadienyl, pentamethylcyclopentadienyl, butylcyclopentadienyl, sec -butylcyclopentadienyl, tert -butylmethylcyclopentadienyl, trimethylsilylcyclopentadienyl, Indenyl, methyl indenyl, dimethyl indenyl, ethyl indenyl, isopropyl indenyl, florenyl, methyl fluorenyl, dimethyl fluorenyl, ethyl fluorenyl or isopropyl fluorenyl and the like.

본 발명의 전이금속 화합물은 구체적으로 A의 치환체가

Figure 112009079922642-PAT00004
또는
Figure 112009079922642-PAT00005
로서, 하기 화학식 2 또는 화학식 3의 화합물로서 표시된다.The transition metal compound of the present invention is specifically a substituent of A
Figure 112009079922642-PAT00004
or
Figure 112009079922642-PAT00005
As a compound of the following formula (2) or (3).

[화학식 2][Formula 2]

Figure 112009079922642-PAT00006
Figure 112009079922642-PAT00006

[화학식 3](3)

Figure 112009079922642-PAT00007
Figure 112009079922642-PAT00007

상기 화학식 1 내지 화학식 3의 헤테로고리형 아릴기 치환 아릴옥사이드 리간드 상의 R1, R2, R3, R4, R5, R6, R7 및 R8과 관련하여서는, 할로겐원자의 예로서 불소, 염소, 브롬 또는 요오드원자; With respect to R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 on the heterocyclic aryl group substituted aryloxide ligand of Formula 1 to Formula 3, examples of the fluorine atom include fluorine , Chlorine, bromine or iodine atoms;

선형 또는 비선형 (C1-C20)알킬기의 예로서 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, sec-부틸기, tert-부틸기, n-펜틸기, 네오펜틸기, 아밀기, n-헥실기, n-옥틸기, n-데실기, n-도데실기, n-펜타데실기 또는 n-에이코실기이고, 이 중 바람직한 것은 메틸기, 에틸기, 이소프로필기 또는 tert-부틸기이며; Examples of linear or nonlinear (C1-C20) alkyl groups are methyl, ethyl, n-propyl, isopropyl, n-butyl, sec -butyl, tert -butyl, n-pentyl, neopentyl, A wheat group, n-hexyl group, n-octyl group, n-decyl group, n-dodecyl group, n-pentadecyl group or n-eicosyl group, of which methyl, ethyl, isopropyl or tert -butyl group are preferred. Is;

(C3-C20)시클로알킬기는 예를 들면 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로로헥실기, 시클로로햅틸기, 또는 아다만틸기이고, 이들 중 바람직한 것은 시클로펜틸기 또는 시클로헥실기이고; The (C3-C20) cycloalkyl group is, for example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cychlorohexyl group, a cychlorohaptyl group, or an adamantyl group, of which a cyclopentyl group or cyclohexyl group is preferable. ego;

(C1-C20)알킬 치환 또는 (C6-C30)아릴 치환 실릴기의 예로서 메틸실릴기, 에틸실릴기, 페닐실릴기, 디메틸에틸실릴기, 디에틸메틸실릴기, 디페닐메틸실릴기, 트리메틸실릴기, 트리에틸실릴기, 트리-n-프로필실릴기, 트리이소프로필실릴기, 트리-n-부틸실릴기, 트리-sec-부틸실릴기, 트리-tert-부틸실릴기, 트리-이소부틸실릴기, tert-부틸디메틸실릴기, 트리-n-펜틸실릴기, 트리-n-헥실실릴기, 트리시클로헥실실릴기 또는 트리페닐실릴기를 들 수 있고, 이 중 바람직한 것은 트리메틸실릴기, tert-부틸디메틸실릴기 또는 트리페닐실릴기이며; Examples of the (C1-C20) alkyl substituted or (C6-C30) aryl substituted silyl group are methylsilyl group, ethylsilyl group, phenylsilyl group, dimethylethylsilyl group, diethylmethylsilyl group, diphenylmethylsilyl group, trimethyl Silyl group, triethylsilyl group, tri-n-propylsilyl group, triisopropylsilyl group, tri-n-butylsilyl group, tri- sec -butylsilyl group, tri- tert -butylsilyl group, tri-isobutyl Silyl group, tert -butyldimethylsilyl group, tri-n-pentylsilyl group, tri-n-hexylsilyl group, tricyclohexylsilyl group, or triphenylsilyl group, Among these, trimethylsilyl group, tert- Butyldimethylsilyl group or triphenylsilyl group;

(C6-C30)아릴기 또는 (C1-C20)알킬(C6-C30)아릴기는 예를 들면, 페닐기, 2-톨릴기, 3-톨릴기, 4-톨릴기, 2,3-크실릴기, 2,4-크실릴기, 2,5-크실릴기, 2,6-크 실릴기, 3,4-크실릴기, 3,5-크실릴기, 2,3,4-트리메틸페닐기, 2,3,5-트리메틸페닐기, 2,3,6-트리메틸페닐기, 2,4,6-트리메틸페닐기, 3,4,5-트리메틸페닐기, 2,3,4,5-테트라메틸페닐기, 2,3,4,6-테트라메틸페닐기, 2,3,5,6-테트라메틸페닐기, 펜타메틸페닐기, 에틸페닐기, n-프로필페닐기, 이소프로필페닐기, n-부틸페닐기, sec-부틸페닐기, tert-부틸페닐기, n-펜틸페닐기, 네오펜틸페닐기, n-헥실페닐기, n-옥틸페닐기, n-데실페닐기, n-도데실페닐기, n-테트라데실페닐기, 비페닐 (biphenyl), 플로레닐, 트리페닐, 나프틸기 또는 안트라세닐기이고, 이들 중 바람직한 것은 페닐기, 나프틸기, 비페닐 (biphenyl), 2-이소프로필페닐, 3,5-크실릴기 또는 2,4,6-트리메틸페닐기이며; The (C6-C30) aryl group or the (C1-C20) alkyl (C6-C30) aryl group is, for example, a phenyl group, 2-tolyl group, 3-tolyl group, 4-tolyl group, 2,3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 2,3,4-trimethylphenyl group, 2 , 3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethylphenyl group, 2,3,4,5-tetramethylphenyl group, 2,3 , 4,6-tetramethylphenyl group, 2,3,5,6-tetramethylphenyl group, pentamethylphenyl group, ethylphenyl group, n-propylphenyl group, isopropylphenyl group, n-butylphenyl group, sec -butylphenyl group, tert -butyl Phenyl group, n-pentylphenyl group, neopentylphenyl group, n-hexylphenyl group, n-octylphenyl group, n-decylphenyl group, n-dodecylphenyl group, n-tetradecylphenyl group, biphenyl (biphenyl), florenyl, triphenyl, Naphthyl group or anthracenyl group, of which preferred is phenyl group, naphthyl group, biphenyl, biisopropylphenyl, 3,5-xylyl group It is 2,4,6, and;

(C6-C30)아릴(C1-C10)알킬기의 예로서 벤질기, (2-메틸페닐)메틸기, (3-메틸페닐)메틸기, (4-메틸페닐)메틸기, (2,3-디메틸페닐)메틸기, (2,4-디메틸페닐)메틸기, (2,5-디메틸페닐)메틸기, (2,6-디메틸페닐)메틸기, (3,4-디메틸페닐)메틸기, (4,6-디메틸페닐)메틸기, (2,3,4-트리메틸페닐)메틸기, (2,3,5-트리메틸페닐)메틸기, (2,3,6-트리메틸-페닐)메틸기, (3,4,5-트리메틸페닐)메틸기, (2,4,6-트리메틸페닐)메틸기, (2,3,4,5-테트라메틸페닐)메틸기, (2,3,4,6-테트라메틸페닐)메틸기, (2,3,5,6-테트라메틸페닐)메틸기, (펜타메틸페닐)메틸기, (에틸페닐)메틸기, (n-프로필페닐)메틸기, (이소프로필페닐)메틸기, (n-부틸페닐)메틸기, (sec-부틸페닐)메틸기, (tert-부틸페닐)메틸기, (n-펜틸페닐)메틸기, (네오펜틸페닐)메틸기, (n-헥실페닐)메틸기, (n-옥틸페닐)메틸기, (n-데실페닐)메틸기, (n-데실페닐)메틸기, (n-테트라데실페닐)메틸기, 트리페닐메틸기, 나프틸메틸기 또는 안트라세닐메틸기 를 들 수 있고, 이 중 바람직한 것은 벤질기, 트리페닐메틸기이며; Examples of the (C6-C30) aryl (C1-C10) alkyl group are benzyl group, (2-methylphenyl) methyl group, (3-methylphenyl) methyl group, (4-methylphenyl) methyl group, (2,3-dimethylphenyl) methyl group, ( 2,4-dimethylphenyl) methyl group, (2,5-dimethylphenyl) methyl group, (2,6-dimethylphenyl) methyl group, (3,4-dimethylphenyl) methyl group, (4,6-dimethylphenyl) methyl group, ( 2,3,4-trimethylphenyl) methyl group, (2,3,5-trimethylphenyl) methyl group, (2,3,6-trimethyl-phenyl) methyl group, (3,4,5-trimethylphenyl) methyl group, (2 , 4,6-trimethylphenyl) methyl group, (2,3,4,5-tetramethylphenyl) methyl group, (2,3,4,6-tetramethylphenyl) methyl group, (2,3,5,6-tetramethylphenyl) Methyl group, (pentamethylphenyl) methyl group, (ethylphenyl) methyl group, (n-propylphenyl) methyl group, (isopropylphenyl) methyl group, (n-butylphenyl) methyl group, (sec-butylphenyl) methyl group, (tert-butylphenyl ) Methyl group, (n-pentylphenyl) methyl group, (neopentylphenyl) methyl group, (n-hexylphenyl) methyl group, (n-octylphenyl) methyl group, (n-decylphenyl) methyl group, (n-decylpe ) Methyl group, (n- tetradecyl-phenyl) methyl, triphenylmethyl group, naphthyl can be mentioned a methyl group or an anthracenyl group, of which preferred is a benzyl group, a triphenylmethyl group, and;

(C1-C20)알콕시기의 예로는 메톡시기, 에톡시기, n-프로폭시기, 이소프로폭시기, n-부톡시기, sec-부톡시기, tert-부톡시기, n-펜톡시기, 네오펜톡시기, n-헥속시기, n-옥톡시기, n-도데속시기, n-펜타데속시기 또는 n-에이코속시기를 들 수 있고, 이 중 바람직한 것은 메톡시기, 에톡시기, 이소프로폭시기 또는 tert-부톡시기이며; Examples of the (C1-C20) alkoxy group are methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec -butoxy group, tert -butoxy group, n-pentoxy group and neopentoxy group , n-hexoxy group, n-octoxy group, n-dodecoxy group, n-pentadexyl group or n-ecosoxy group, and among these, methoxy group, ethoxy group, isopropoxy group or tert- Butoxy group;

(C1-C20)알킬 치환 또는 (C6-C20)아릴 치환 실록시기의 예로서 트리메틸실록시기, 트리에틸실록시기, 트리-n-프로필실록시기, 트리이소프로필실록시기, 트리-n-부틸실록시기, 트리-sec-부틸실록시기, 트리-tert-부틸실록시기, 트리-이소부틸실록시기, tert-부틸디메틸실록시기, 트리-n-펜틸실록시기, 트리-n-헥실실록시기 또는 트리시클로헥실실록시기를 들 수 있고, 이 중 바람직한 것은 트리메틸실록시기, 또는 tert-부틸디메틸실록시기이고; Examples of the (C1-C20) alkyl substituted or (C6-C20) aryl substituted siloxy group include trimethylsiloxy group, triethylsiloxy group, tri-n-propylsiloxy group, triisopropylsiloxy group, and tri-n-butylsiloxy group , Tri- sec -butylsiloxy group, tri- tert -butylsiloxy group, tri-isobutylsiloxy group, tert -butyldimethylsiloxy group, tri-n-pentylsiloxy group, tri-n-hexylsiloxy group or tricyclohexyl Siloxy groups; preferred are trimethylsiloxy groups or tert -butyldimethylsiloxy groups;

(C1-C20)알킬 치환 또는 (C6-C30)아릴 치환 아미노기의 예로서 디메틸아미노기, 디에틸아미노기, 디-n-프로필아미노기, 디이소프로필아미노기, 디-n-부틸아미노기, 디-sec-부틸아미노기, 디-tert-부틸아미노기, 디이소부틸아미노기, tert-부틸이소프로필아미노기, 디-n-헥실아미노기, 디-n-옥틸아미노기, 디-n-데실아미노기, 디페닐아미노기, 디벤질아미노기, 메틸에틸아미노기, 메틸페닐아미노기, 벤질헥실아미노기, 비스트리메틸실릴아미노기 또는 비스-tert-부틸디메틸실릴아미노기, 또는 동일 알킬치환 포스핀기이고, 이 중 바람직한 것은 디메틸아미노기, 디에틸아미노기 또는 디페닐아미노기이며; Examples of the (C1-C20) alkyl substituted or (C6-C30) aryl substituted amino group include dimethylamino group, diethylamino group, di-n-propylamino group, diisopropylamino group, di-n-butylamino group, di- sec -butyl Amino group, di- tert -butylamino group, diisobutylamino group, tert - butylisopropylamino group, di-n-hexylamino group, di-n-octylamino group, di-n-decylamino group, diphenylamino group, dibenzylamino group, Methylethylamino group, methylphenylamino group, benzylhexylamino group, bistrimethylsilylamino group or bis-tert-butyldimethylsilylamino group, or the same alkyl substituted phosphine group, of which dimethylamino group, diethylamino group or diphenylamino group are preferable;

(C1-C20)알킬 치환 또는 (C6-C30)아릴 치환 포스핀기의 예로서 디메틸포스핀기, 디에틸포스핀기, 디-n-프로필포스핀기, 디이소프로필포스핀기, 디-n-부틸포스핀기, 디-sec-부틸포스핀기, 디-tert-부틸포스핀기, 디이소부틸포스핀기, tert-부틸이소프로필포스핀기, 디-n-헥실포스핀기, 디-n-옥틸포스핀기, 디-n-데실포스핀기, 디페닐포스핀기, 디벤질포스핀기, 메틸에틸포스핀기, 메틸페닐포스핀기, 벤질헥실포스핀기, 비스트리메틸실릴포스핀기 또는 비스-tert-부틸디메틸실릴포스핀기를 들 수 있고, 이 중 바람직한 것은 디메틸포스핀기, 디에틸포스핀기 또는 디페닐포스핀기이고; Examples of the (C1-C20) alkyl substituted or (C6-C30) aryl substituted phosphine group include dimethylphosphine group, diethylphosphine group, di-n-propylphosphine group, diisopropylphosphine group, di-n-butylphosphine group , Di- sec -butylphosphine group, di- tert -butylphosphine group, diisobutylphosphine group, tert -butylisopropylphosphine group, di-n-hexylphosphine group, di-n-octylphosphine group, di-n -Decyl phosphine group, diphenyl phosphine group, dibenzyl phosphine group, methyl ethyl phosphine group, methyl phenyl phosphine group, benzyl hexyl phosphine group, bistrimethylsilyl phosphine group or bis-tert- butyl dimethyl silyl phosphine group, Preferred among them are a dimethylphosphine group, diethylphosphine group or diphenylphosphine group;

(C1-C20)알킬치환 머캡토기의 예로서 메틸머캡탄, 에틸머캡탄, 프로필머캡탄, 이소프로필머캡탄, 1-부틸머캡탄, 이소펜틸머캡탄이고, 바람직하기로는 에틸머캡탄, 또는 이소프로필머캡탄이고; Examples of (C1-C20) alkyl-substituted mercapto groups are methylmercaptan, ethylmercaptan, propylmercaptan, isopropylmercaptan, 1-butylmercaptan, isopentylmercaptan, preferably ethylmercaptan, or iso Propylmercaptan;

상기 R1 내지 R8 의 알킬, 아릴 또는 알콕시기는 할로겐으로 더 치환되거나 인접한 치환체와 함께 융합고리를 형성할 수 있다.The alkyl, aryl or alkoxy group of R 1 to R 8 may be further substituted with halogen or may form a fused ring with adjacent substituents.

R9은 선형 또는 비선형의 (C1-C20)알킬기로서 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, sec-부틸기, tert-부틸기, n-펜틸기, 네오펜틸기, 아밀기, n-헥실기, n-옥틸기, n-데실기, n-도데실기, n-펜타데실기, 또는 n-에이코실기로 예시되며, 이 중 바람직한 것은 메틸기, 에틸기, 이소프로필기, tert-부틸기, 아밀기이고; R 9 is a linear or non-linear (C1-C20) alkyl group which is methyl, ethyl, n-propyl, isopropyl, n-butyl, sec -butyl, tert -butyl, n-pentyl or neopentyl , Amyl group, n-hexyl group, n-octyl group, n-decyl group, n-dodecyl group, n-pentadecyl group, or n-eicosyl group, and among these, methyl group, ethyl group and isopropyl group are preferable. , tert -butyl group, amyl group;

(C1-C20)알킬 치환 또는 (C6-C30)아릴 치환 실릴기의 예로서 메틸실릴기, 에틸실릴기, 페닐실릴기, 디메틸실릴기, 디에틸실릴기 또는 디페닐실릴기, 트리메틸실릴기, 트리에틸실릴기, 트리-n-프로필실릴기, 트리이소프로필실릴기, 트리-n-부틸실릴기, 트리-sec-부틸실릴기, 트리-tert-부틸실릴기, 트리-이소부틸실릴기, tert-부틸디메틸실릴기, 트리-n-펜틸실릴기, 트리-n-헥실실릴기, 트리시클로헥실실릴기 또는 트리페닐실릴기를 들 수 있고, 이 중 바람직한 것은 트리메틸실릴기, tert-부틸디메틸실릴기 또는 트리페닐실릴기이다.Examples of the (C1-C20) alkyl substituted or (C6-C30) aryl substituted silyl group include methylsilyl group, ethylsilyl group, phenylsilyl group, dimethylsilyl group, diethylsilyl group or diphenylsilyl group, trimethylsilyl group, Triethylsilyl group, tri-n-propylsilyl group, triisopropylsilyl group, tri-n-butylsilyl group, tri- sec -butylsilyl group, tri- tert -butylsilyl group, tri-isobutylsilyl group, and tert -butyldimethylsilyl group, tri-n-pentylsilyl group, tri-n-hexylsilyl group, tricyclohexylsilyl group or triphenylsilyl group, and among these, trimethylsilyl group and tert -butyldimethylsilyl Group or triphenylsilyl group.

X는 할로겐 원자의 예로서, 불소, 염소, 브롬 또는 요오드원자; X is an example of a halogen atom, and a fluorine, chlorine, bromine or iodine atom;

Cp 유도체가 아닌 (C1-20)알킬기의 예로서 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, sec-부틸기, tert-부틸기, n-펜틸기, 네오펜틸기, 아밀기, n-헥실기, n-옥틸기, n-데실기, n-도데실기, n-펜타데실기 또는 n-에이코실기이고, 이 중 바람직한 것은 메틸기, 에틸기, 이소프로필기, tert-부틸기 또는 아밀기이며; Examples of (C1-20) alkyl groups other than Cp derivatives include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec -butyl, tert -butyl, n-pentyl and neopentyl, Amyl group, n-hexyl group, n-octyl group, n-decyl group, n-dodecyl group, n-pentadecyl group or n-eicosyl group, of which methyl, ethyl, isopropyl and tert -butyl are preferred. Group or amyl group;

(C3-C20)시클로알킬기는 예를 들면 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기, 시클로로햅틸기 또는 아다만틸기이고, 이들 중 바람직한 것은 시클로펜틸기 또는 시클로로헥실기이며; (C6-C30)아릴(C1-C20)알킬기의 예로서 벤질기, (2-메틸페닐)메틸기, (3-메틸페닐)메틸기, (4-메틸페닐)메틸기, (2,3-디메틸페닐)메틸기, (2,4-디메틸페닐)메틸기, (2,5-디메틸페닐)메틸기, (2,6-디메틸페닐)메틸기, (3,4-디메틸페닐)메틸기, (4,6-디메틸페닐)메틸기, (2,3,4-트리메틸페닐)메틸기, (2,3,5-트리메틸페닐)메틸기, (2,3,6-트리메틸-페닐)메틸기, (3,4,5-트리 메틸페닐)메틸기, (2,4,6-트리메틸페닐)메틸기, (2,3,4,5-테트라메틸페닐)메틸기, (2,3,4,6-테트라메틸페닐)메틸기, (2,3,5,6-테트라메틸페닐)메틸기, (펜타메틸페닐)메틸기, (에틸페닐)메틸기, (n-프로필페닐)메틸기, (이소프로필페닐)메틸기, (n-부틸페닐)메틸기, (sec-부틸페닐)메틸기, (tert-부틸페닐)메틸기, (n-펜틸페닐)메틸기, (네오펜틸페닐)메틸기, (n-헥실페닐)메틸기, (n-옥틸페닐)메틸기, (n-데실페닐)메틸기, (n-데실페닐)메틸기, (n-테트라데실페닐)메틸기, 나프틸메틸기 또는 안트라세닐메틸기를 들 수 있고, 이 중 바람직한 것은 벤질기이며; The (C3-C20) cycloalkyl group is, for example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cychlorohaptyl group or an adamantyl group, of which a cyclopentyl group or a cychlorohexyl group is preferable. ; Examples of (C6-C30) aryl (C1-C20) alkyl group are benzyl group, (2-methylphenyl) methyl group, (3-methylphenyl) methyl group, (4-methylphenyl) methyl group, (2,3-dimethylphenyl) methyl group, ( 2,4-dimethylphenyl) methyl group, (2,5-dimethylphenyl) methyl group, (2,6-dimethylphenyl) methyl group, (3,4-dimethylphenyl) methyl group, (4,6-dimethylphenyl) methyl group, ( 2,3,4-trimethylphenyl) methyl group, (2,3,5-trimethylphenyl) methyl group, (2,3,6-trimethyl-phenyl) methyl group, (3,4,5-trimethylphenyl) methyl group, (2 , 4,6-trimethylphenyl) methyl group, (2,3,4,5-tetramethylphenyl) methyl group, (2,3,4,6-tetramethylphenyl) methyl group, (2,3,5,6-tetramethylphenyl) Methyl group, (pentamethylphenyl) methyl group, (ethylphenyl) methyl group, (n-propylphenyl) methyl group, (isopropylphenyl) methyl group, (n-butylphenyl) methyl group, (sec-butylphenyl) methyl group, (tert-butylphenyl ) Methyl group, (n-pentylphenyl) methyl group, (neopentylphenyl) methyl group, (n-hexylphenyl) methyl group, (n-octylphenyl) methyl group, (n-decylphenyl) methyl group, (n-decylpe ) Methyl group, (n- tetradecyl phenyl) methyl group, can be mentioned a naphthyl group or an anthracenyl group, of which preferred is a benzyl group;

(C1-C20)알콕시기의 메톡시기, 에톡시기, n-프로폭시기, 이소프로폭시기, n-부톡시기, sec-부톡시기, tert-부톡시기, n-펜톡시기, 네오펜톡시기, n-헥속시기, n-옥톡시기, n-도데속시기, n-펜타데속시기 또는 n-에이코속시기를 들 수 있고, 이 중 바람직한 것은 메톡시기, 에톡시기, 이소프로폭시기 또는 tert-부톡시기이며; (C3-C20)알킬실록시기의 예로서 트리메틸실록시기, 트리에틸실록시기, 트리-n-프로필실록시기, 트리이소프로필실록시기, 트리-n-부틸실록시기, 트리-sec-부틸실록시기, 트리-tert-부틸실록시기, 트리-이소부틸실록시기, tert-부틸디메틸실록시기, 트리-n-펜틸실록시기, 트리-n-헥실실록시기 또는 트리시클로헥실실록시기를 들 수 있고, 이 중 바람직한 것은 트리메틸실록시기, 또는 tert-부틸디메틸실록시기이며; (C1-C20) Alkoxy group methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec -butoxy group, tert -butoxy group, n-pentoxy group, neopentoxy group, n -Hexoxy group, n-octoxy group, n-dodecoxy group, n-pentadexyl group or n-ecosoxy group, and among these, a methoxy group, an ethoxy group, an isopropoxy group or a tert -butoxy group is preferable. Is; Examples of the (C3-C20) alkylsiloxy group include trimethylsiloxy group, triethylsiloxy group, tri-n-propylsiloxy group, triisopropylsiloxy group, tri-n-butylsiloxy group, tri- sec -butylsiloxy group, Tri- tert -butylsiloxy group, tri-isobutylsiloxy group, tert -butyldimethylsiloxy group, tri-n-pentylsiloxy group, tri-n-hexylsiloxy group or tricyclohexylsiloxy group, among which Preferred are trimethylsiloxy groups, or tert -butyldimethylsiloxy groups;

(C1-C20)알킬 치환 또는 (C6-C30)아릴 치환 아미노기, 또는 (C1-C20)알킬 치환 또는 (C6-C30)아릴 치환 포스핀기의 예로서 디메틸아미노기, 디에틸아미노기, 디-n-프로필아미노기, 디이소프로필아미노기, 디-n-부틸아미노기, 디-sec-부틸아미노기, 디-tert-부틸아미노기, 디이소부틸아미노기, tert-부틸이소프로필아미노기, 디-n-헥실아미노기, 디-n-옥틸아미노기, 디-n-데실아미노기, 디페닐아미노기, 디벤질아미노기, 메틸에틸아미노기, 메틸페닐아미노기, 벤질헥실아미노기, 비스트리메틸실릴아미노기 또는 비스-tert-부틸디메틸실릴아미노기, 또는 동일 알킬치환 포스핀기이고, 이 중 바람직한 것은 디메틸아미노기, 디에틸아미노기 또는 디페닐아미노기이며; Examples of (C1-C20) alkyl substituted or (C6-C30) aryl substituted amino groups, or (C1-C20) alkyl substituted or (C6-C30) aryl substituted phosphine groups, include dimethylamino groups, diethylamino groups, di-n-propyl Amino group, diisopropylamino group, di-n-butylamino group, di- sec -butylamino group, di- tert -butylamino group, diisobutylamino group, tert - butylisopropylamino group, di-n-hexylamino group, di-n -Octylamino group, di-n-decylamino group, diphenylamino group, dibenzylamino group, methylethylamino group, methylphenylamino group, benzylhexylamino group, bistrimethylsilylamino group or bis-tert-butyldimethylsilylamino group, or the same alkyl substituted phosphine group Among these, preferred are dimethylamino group, diethylamino group or diphenylamino group;

(C1-C20)알킬치환 머캡토기의 예로서 메틸머캡탄, 에틸머캡탄, 프로필머캡탄, 이소프로필머캡탄, 1-부틸머캡탄 또는 이소펜틸머캡탄이다.Examples of the (C1-C20) alkyl substituted mercapto group are methylmercaptan, ethylmercaptan, propylmercaptan, isopropylmercaptan, 1-butylmercaptan or isopentylmercaptan.

한편, 본 발명에 따른 상기 화학식 1의 전이금속 화합물은 올레핀 중합에 사용되는 활성촉매 성분이 되기 위하여, 바람직하게는 본 발명에 따른 전이금속 화합물 중의 X 리간드를 추출하여 중심금속을 양이온화 시키면서 약한 결합력을 가진 반대이온, 즉 음이온으로 작용할 수 있는 붕소 화합물 또는 알루미늄 화합물, 또는 이들의 혼합물이 조촉매로서 사용된다. 이때 사용되는 알루미늄 화합물은 수분 등 촉매독으로 작용하는 미량의 극성물질을 제거하기 위함이지만, X 리간드가 할로겐인 경우에는 알킬화제로서 작용할 수도 있다.On the other hand, the transition metal compound of Formula 1 according to the present invention, in order to become an active catalyst component used in the polymerization of olefins, preferably weak binding force while extracting the X ligand in the transition metal compound according to the present invention to cation the central metal A counterion having an ion, ie a boron compound or an aluminum compound, or a mixture thereof, capable of acting as an anion, is used as promoter. In this case, the aluminum compound used is to remove traces of polar substances such as water, which act as catalyst poisons. However, when the X ligand is halogen, it may also act as an alkylating agent.

본 발명에서 조촉매로 사용될 수 있는 붕소화합물은 미국특허 제 5,198,401호에서 볼 수 있는 바와 같이 하기 화학식 4 내지 6으로 표시되는 화합물 중에서 선택 될 수 있다. The boron compound which may be used as a promoter in the present invention may be selected from compounds represented by the following Chemical Formulas 4 to 6 as shown in US Patent No. 5,198,401.

[화학식 4] [Formula 4]

B(R10)3 B (R 10 ) 3

[화학식 5] [Chemical Formula 5]

[R11]+[B(R10)4]- [R 11 ] + [B (R 10 ) 4 ] -

[화학식 6] [Formula 6]

[(R12)qZH]+[B(R10)4]- [(R 12 ) q ZH] + [B (R 10 ) 4 ] -

상기 화학식 4 내지 화학식 6에서, B는 붕소원자; R10는 페닐기이며, 상기 페닐기는 불소원자 또는 불소원자에 의해 치환되거나 치환되지 않은 (C1-C20)알킬기, 또는 불소 원자에 의해 치환되거나 치환되지 않은 (C1-C20)알콕시기로부터 선택된 3 내지 5 개의 치환기로 더 치환될 수 있으며;In Chemical Formulas 4 to 6, B is a boron atom; R 10 is a phenyl group, wherein the phenyl group is 3 to 5 selected from a fluorine atom or a (C1-C20) alkyl group unsubstituted or substituted by a fluorine atom, or a (C1-C20) alkoxy group unsubstituted or substituted by a fluorine atom May be further substituted with 4 substituents;

R11은 (C5-C7)방향족 라디칼 (C1-C20)알킬(C6-C20)아릴 라디칼 또는 (C6-C30)아릴(C1-C20)알킬 라디칼, 예를 들면 트리페닐메틸 라디칼;R 11 is a (C5-C7) aromatic radical (C1-C20) alkyl (C6-C20) aryl radical or a (C6-C30) aryl (C1-C20) alkyl radical such as a triphenylmethyl radical;

Z는 질소 또는 인 원자이며;Z is nitrogen or phosphorus atom;

R12은 (C1-C20)알킬 라디칼, 또는 질소원자와 함께 2개의 (C1-C10)알킬기로 치환된 아닐리니움 라디칼이고; q는 2 또는 3의 정수이다.R 12 is a (C1-C20) alkyl radical, or an annilium radical substituted with two (C1-C10) alkyl groups with a nitrogen atom; q is an integer of 2 or 3.

상기 붕소계 조촉매의 바람직한 예로는 트리스(펜타플루오로페닐)보레인, 트리스(2,3,5,6-테트라플루오로페닐)보레인, 트리스(2,3,4,5-테트라플루오로페닐)보 레인, 트리스(3,4,5-트리플루오로페닐)보레인, 트리스(2,3,4-트리플루오로페닐)보레인, 페닐비스(펜타플루오로페닐)보레인, 테트라키스(펜타플루오로페닐)보레이트, 테트라키스(2,3,5,6-테트라플루오로페닐)보레이트, 테트라키스(2,3,4,5-테트라플루오로페닐)보레이트, 테트라키스(3,4,5-테트라플루오로페닐)보레이트, 테트라키스(2,2,4-트리플루오로페닐)보레이트, 페닐비스(펜타플루오로페닐)보레이트 또는 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트를 들 수 있다. 또한 이들의 특정 배합예로는 페로세늄 테트라키스(펜타플루오로페닐)보레이트, 1,1'-디메틸페로세늄 테트라키스(펜타플루오로페닐)보레이트, 은 테트라키스(펜타플루오로페닐)보레이트, 트리페닐메틸 테트라키스(펜타플루오로페닐)보레이트, 트리페닐메틸 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트, 트리에틸암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리프로필암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(노르말 부틸)암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리(노르말 부틸)암모늄 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디에틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, N,N-2,4,6-펜타메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트, N,N-디메틸아닐리늄 테트라키스(3,5-비스트리플루오로메틸페닐)보레이트, 디이소프로필암모늄 테트라키스(펜타플루오로페닐)보레이트, 디시클로헥실암모늄 테트라키스(펜타플루오로페닐)보레이트, 트리페닐포스포늄 테트라키스(펜타플루오로페닐)보레이트, 트리(메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트, 또는 트리(디메틸페닐)포스포늄 테트라키스(펜타플루오로페닐)보레이트가 포 함되고, 이 중 가장 바람직한 것은 N,N-디메틸아닐리니움 테트라키스펜타플루오르페닐보레이트, 트리페닐메틸리니움 테트라키스펜타플루오르페닐보레이트 또는 트리스펜타플루오르보보레인이다.Preferred examples of the boron-based cocatalysts include tris (pentafluorophenyl) borane, tris (2,3,5,6-tetrafluorophenyl) borane, tris (2,3,4,5-tetrafluoro Phenyl) borane, tris (3,4,5-trifluorophenyl) borane, tris (2,3,4-trifluorophenyl) borane, phenylbis (pentafluorophenyl) borane, tetrakis (Pentafluorophenyl) borate, tetrakis (2,3,5,6-tetrafluorophenyl) borate, tetrakis (2,3,4,5-tetrafluorophenyl) borate, tetrakis (3,4 , 5-tetrafluorophenyl) borate, tetrakis (2,2,4-trifluorophenyl) borate, phenylbis (pentafluorophenyl) borate or tetrakis (3,5-bistrifluoromethylphenyl) borate Can be mentioned. Specific examples of these compounds include ferrocenium tetrakis (pentafluorophenyl) borate, 1,1'-dimethylferrocenium tetrakis (pentafluorophenyl) borate, silver tetrakis (pentafluorophenyl) borate, tri Phenylmethyl tetrakis (pentafluorophenyl) borate, triphenylmethyl tetrakis (3,5-bistrifluoromethylphenyl) borate, triethylammonium tetrakis (pentafluorophenyl) borate, tripropylammonium tetrakis (penta) Fluorophenyl) borate, tri (normal butyl) ammonium tetrakis (pentafluorophenyl) borate, tri (normal butyl) ammonium tetrakis (3,5-bistrifluoromethylphenyl) borate, N, N-dimethylanilinium Tetrakis (pentafluorophenyl) borate, N, N-diethylanilinium Tetrakis (pentafluorophenyl) borate, N, N-2,4,6-pentamethylanilinium tetrakis (pentafluorofe Borate, N, N-dimethylanilinium tetrakis (3,5-bistrifluoromethylphenyl) borate, diisopropylammonium tetrakis (pentafluorophenyl) borate, dicyclohexylammonium tetrakis (pentafluorophenyl ) Borate, triphenylphosphonium tetrakis (pentafluorophenyl) borate, tri (methylphenyl) phosphonium tetrakis (pentafluorophenyl) borate, or tri (dimethylphenyl) phosphonium tetrakis (pentafluorophenyl) borate And most preferred of these are N, N-dimethylanilinium tetrakispentafluorophenylborate, triphenylmethyllinium tetrakispentafluorophenylborate or trispentafluoroborate.

본 발명에서 사용되는 알루미늄 화합물은 하기 화학식 7 또는 화학식 8의 알루미녹산 화합물, 화학식 9의 유기알루미늄 화합물, 또는 화학식 10 또는 화학식 11의 유기알루미늄 히드로카빌옥사이드 화합물이 사용될 수 있다.As the aluminum compound used in the present invention, an aluminoxane compound of Formula 7 or Formula 8, an organoaluminum compound of Formula 9, or an organoaluminum hydrocarbyl oxide compound of Formula 10 or Formula 11 may be used.

[화학식 7] [Formula 7]

(-Al(R13)-O-)m (-Al (R 13 ) -O-) m

[화학식 8][Formula 8]

(R13)2Al-(-O(R13)-)p-(R13)2 (R 13 ) 2 Al-(-O (R 13 )-) p- (R 13 ) 2

[화학식 9] [Formula 9]

(R14)rAl(E)3-r (R 14 ) r Al (E) 3-r

[화학식 10][Formula 10]

(R15)2AlOR16 (R 15 ) 2 AlOR 16

[화학식 11][Formula 11]

R15Al(OR16)2 R 15 Al (OR 16 ) 2

상기 화학식 7 내지 화학식 11에서, R13는 (C1-C20)알킬기로서, 바람직하게는 메틸기 또는 이소부틸기이고, m과 p는 5 내지 20 사이의 정수이고; R14 및 R15는 서로 독립적으로 (C1-C20)알킬기; E는 수소원자 또는 할로겐원자; r은 1 내지 3의 정수; R16은 (C1-C20)알킬기 또는 (C6-C30)아릴기 중에서 선택 될 수 있다. In Formulas 7 to 11, R 13 is a (C1-C20) alkyl group, preferably a methyl group or an isobutyl group, m and p are integers between 5 and 20; R 14 and R 15 are each independently of the (C1-C20) alkyl group; E is a hydrogen atom or a halogen atom; r is an integer of 1 to 3; R 16 may be selected from a (C1-C20) alkyl group or a (C6-C30) aryl group.

상기 알루미늄 화합물로 사용할 수 있는 구체적인 예로서, As a specific example that can be used as the aluminum compound,

알루미녹산 화합물은 메틸알루미녹산, 개량메틸알루미녹산 또는 테트라이소부틸알루미녹산이 있고; Aluminoxane compounds include methylaluminoxane, improved methylaluminoxane or tetraisobutylaluminoxane;

유기알루미늄 화합물의 예로서 트리메틸알루미늄, 트리에틸알루미늄, 트리프로필알루미늄, 트리이소부틸알루미늄 또는 트리헥실알루미늄을 포함하는 트리알킬알루미늄; 디메틸알루미늄클로라이드, 디에틸알루미늄클로라이드, 디프로필알루미늄 클로라이드, 디이소부틸알루미늄클로라이드 또는 디헥실알루미늄클로라이드를 포함하는 디알킬알루미늄클로라이드; 메틸알루미늄디클로라이드, 에틸알루미늄디클로라이드, 프로필알루미늄디클로라이드, 이소부틸알루미늄디클로라이드 또는 헥실알루미늄디클로라이드를 포함하는 알킬알루미늄디클로라이드; 디메틸알루미늄히드리드, 디에틸알루미늄히드리드, 디프로필알루미늄히드리드, 디이소부틸알루미늄히 드리드 또는 디헥실알루미늄히드리드를 포함하는 디알킬알루미늄히드라이드를 들 수 있으며, 바람직하게는 트리알킬알루미늄, 보다 바람직하게는 트리에틸알루미늄 또는 트리이소부틸알루미늄이다.Examples of organoaluminum compounds include trialkylaluminums including trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum or trihexylaluminum; Dialkylaluminum chlorides including dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, diisobutylaluminum chloride or dihexylaluminum chloride; Alkylaluminum dichlorides including methylaluminum dichloride, ethylaluminum dichloride, propylaluminum dichloride, isobutylaluminum dichloride or hexylaluminum dichloride; And dialkylaluminum hydrides including dimethylaluminum hydride, diethylaluminum hydride, dipropylaluminum hydride, diisobutylaluminum hydride or dihexylaluminum hydride, preferably trialkylaluminum, More preferably, it is triethyl aluminum or triisobutyl aluminum.

이 때 중심금속인 전이금속원자(M): 붕소원자: 알루미늄원자의 몰비는 바람직하게는 1: 0.1~100: 10~1,000, 보다 바람직하게는 1: 0.5~5: 25~500 이다.In this case, the molar ratio of the transition metal atom (M): boron atom: aluminum atom, which is the central metal, is preferably 1: 0.1 to 100: 10 to 1,000, and more preferably 1: 0.5 to 5: 25 to 500.

본 발명의 상기 전이금속 촉매 조성물을 이용하여 밀도 0.900 이하의 에틸렌과 α-올레핀의 공중합체의 제조방법은 적절한 유기용매의 존재 하에 상기 전이금속 촉매, 조촉매, 및 에틸렌 및 α-올레핀 공단량체를 접촉시켜 용액상에서 진행된다. 또한 반응기는 하나 이상의 연속 교반형 또는 파이프형이 사용될 수 있으며, 2개 이상이 연속 또는 병렬로 사용될 경우는 각 반응기의 조건을 달리하여 반응 분획에 따라 서로 다른 분자량 및 밀도를 가진 공중합체가 물리적 화학적으로 혼합된 형태의 공중합체를 제조 할 수도 있다.The method for preparing a copolymer of ethylene and an α-olefin having a density of 0.900 or less using the transition metal catalyst composition of the present invention is carried out using the transition metal catalyst, a promoter, and an ethylene and α-olefin comonomer in the presence of a suitable organic solvent. In contact with the solution. In addition, one or more continuous stirring or pipe types may be used in the reactor, and when two or more are used in series or in parallel, copolymers having different molecular weights and densities according to reaction fractions may be different depending on the reaction conditions of each reactor. It is also possible to prepare a copolymer in a mixed form.

상기 제조방법에 사용될 수 있는 바람직한 유기용매는 C3-C20의 탄화수소이며, 그 구체적인 예로는 부탄, 이소부탄, 펜탄, 헥산, 헵탄, 옥탄, 이소옥탄, 노난, 데칸, 도데칸, 시클로헥산, 메틸시클로헥산, 벤젠, 톨루엔 또는 크실렌 등을 들 수 있으며, 경우에 따라서는 두 개 이상의 상기 유기용매의 혼합물이 사용 될 수 있다.Preferred organic solvents that can be used in the preparation method are C3-C20 hydrocarbons, specific examples of which are butane, isobutane, pentane, hexane, heptane, octane, isooctane, nonane, decane, dodecane, cyclohexane, methylcyclohexane , Benzene, toluene or xylene, and the like, and in some cases, a mixture of two or more of the above organic solvents may be used.

공단량체로 C3~C18의 α-올레핀을 사용할 수 있으며, 바람직하기로는 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-옥텐, 1-데센, 1-도데센, 1-헥사데센, 및 1-옥타데센으로 이루어진 군으로부터 1종 이상을 선택할 수 있다. 보다 바 람직하게는 1-부텐, 1-헥센, 1-옥텐 또는 1-데센과, 에틸렌을 공중합시킬 수 있다.As the comonomer, C3-C18 α-olefins may be used, and preferably propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene, 1- At least one can be selected from the group consisting of dodecene, 1-hexadecene, and 1-octadecene. More preferably, 1-butene, 1-hexene, 1-octene or 1-decene can be copolymerized with ethylene.

중합 반응은 반응기 내부의 반응물이 용액상태로 존재 할 수 있는 압력과 온도에서 수행된다. 이 경우 바람직한 중합반응기 압력은 10 내지 200 기압 바람직하게는 20 내지 150 기압이고, 중합반응 온도는 60 내지 250℃, 바람직하기로는 80 내지 170℃이다.The polymerization reaction is carried out at a pressure and at a temperature where the reactants in the reactor can be in solution. In this case, the preferable polymerization reactor pressure is 10 to 200 atm, preferably 20 to 150 atm, and the polymerization temperature is 60 to 250 ° C, preferably 80 to 170 ° C.

본 발명의 방법에 따라 제조된 공중합체는 보통 에틸렌 40~90중량%을 함유하며, 바람직하기로는 50 내지 85 중량 %의 에틸렌을 포함하며, 더욱 바람직하기로는 55 내지 80 중량%의 범위이다. 밀도 범위는 0.850 내지 0.900g/cc, 바람직하기로는 0.855 내지는 0.899 g/cc 사이, 더욱 바람직하기로는 0.860 내지는 0.890 g/cc 범위이다. Copolymers prepared according to the process of the invention usually contain 40 to 90% by weight of ethylene, preferably 50 to 85% by weight of ethylene, more preferably in the range of 55 to 80% by weight. The density range is between 0.850 and 0.900 g / cc, preferably between 0.855 and 0.899 g / cc, more preferably between 0.860 and 0.890 g / cc.

공중합체 제조 시 분자량을 조절하기 위해 수소를 분자량조절제로 사용할 수 있으며, 통상 30,000~500,000 범위의 중량평균분자량 (Mw)을 가지며, 1.5 내지는 3.0 범위의 분자량분포를 갖는다.Hydrogen may be used as a molecular weight regulator to control the molecular weight when preparing the copolymer, and usually has a weight average molecular weight (Mw) in the range of 30,000 to 500,000, and has a molecular weight distribution in the range of 1.5 to 3.0.

상기와 같이 제조된 에틸렌과 α-올레핀의 공중합체는 고분자량 부분에는 α-올레핀으로 인한 분지가 적고 저분자량 부분에 대부분의 분지가 몰려있는 기존 지글러-나타계 촉매에서 제조된 공중합체와 달리 고분자량 부분에도 균일하게 α-올레핀 분지가 분포되어 있고 헥산 등에 추출될 수 있는 α-올레핀 분지가 다량 포함된 저분자량 성분이 거의 없어 탄성체로서의 중요한 물성을 제공할 뿐 아니라 최종 제품의 위생성을 크게 개선 시킬 수 있다. 따라서 이와 같이 제조된 에틸렌과 α-올레핀의 공중합체는 결정성 폴리머의 내충격성 보강재, 필름, 연질포장재, 몰딩제 품, 전선피복, 핫멜트 접착제 등 다양하게 응용 가능하다.The copolymer of ethylene and α-olefin prepared as described above is different from the copolymer prepared from the existing Ziegler-Natta catalyst, which has a small branch due to α-olefin in the high molecular weight portion and most branches are concentrated in the low molecular weight portion. Even in the molecular weight part, the α-olefin branch is uniformly distributed, and there is almost no low molecular weight component containing a large amount of α-olefin branch that can be extracted from hexane, etc., thereby providing important physical properties as an elastomer and greatly improving hygiene of the final product. Can be. Therefore, the copolymer of ethylene and α-olefin prepared in this way can be variously applied, such as impact resistance reinforcement of the crystalline polymer, film, soft packaging material, molding product, wire coating, hot melt adhesive.

본 발명에서 제시된 촉매 조성물은 중합반응기 내에서 균일한 형태로 존재하기 때문에 해당 중합체의 용융점 이상의 온도에서 실시하는 용액중합공정에 적용하는 것이 바람직하다. 그러나 미국특허 제4,752,597호에 개시된 바와 같이 다공성 금속옥사이드 지지체에 상기 전이금속 촉매 및 조촉매를 지지시켜 비균일 촉매 조성물로서 슬러리 중합이나 기상 중합 공정에 이용될 수도 있다.Since the catalyst composition presented in the present invention is present in a uniform form in the polymerization reactor, it is preferable to apply to the solution polymerization process carried out at a temperature above the melting point of the polymer. However, as disclosed in US Pat. No. 4,752,597, the transition metal catalyst and the promoter may be supported on a porous metal oxide support, and may be used in slurry polymerization or gas phase polymerization as a non-uniform catalyst composition.

본 발명에 따른 전이금속 촉매 조성물과 이를 이용한 에틸렌과 α-올레핀의 공중합체 제조방법은 촉매 활성이 높을 뿐 아니라, 고급 α-올레핀류와의 공중합 반응성이 매우 좋고 고분자량의 중합체를 높은 수율로 제조할 수 있기 때문에 이미 알려진 메탈로센 및 비 메탈로센계 단일활성점 촉매에 비해 밀도 0.850 내지 0.900 g/cc의 탄성을 가지는 공중합체 제조에 상업적인 실용성이 높다. 또한 비가교형 단일활성점 촉매이기 때문에 촉매의 제조단계가 단순하고 제조 수율이 높아서 낮은 촉매 제조원가를 보임과 동시에 α-올레핀 공단량체의 사용량이 적기 때문에 공정의 경제성이 뛰어난 장점이 있다.The transition metal catalyst composition according to the present invention and a method for preparing a copolymer of ethylene and an α-olefin using the same have a high catalytic activity and have excellent copolymerization reactivity with higher α-olefins and produce a high molecular weight polymer in high yield. As a result, commercial practicality is high in preparing a copolymer having an elasticity of 0.850 to 0.900 g / cc compared to metallocene and non-metallocene-based single site catalysts. In addition, since it is a non-crosslinked single-site catalyst, the production process of the catalyst is simple and the production yield is high. Thus, the catalyst production cost is low, and the amount of the α-olefin comonomer is used is low.

따라서 본 발명에 따른 전이금속 촉매 조성물 및 제조방법은 다양한 물성과 탄성을 갖는 에틸렌과 α-올레핀의 공중합체의 제조에 유용하게 사용될 수 있다.Therefore, the transition metal catalyst composition and preparation method according to the present invention can be usefully used for the preparation of copolymers of ethylene and α-olefins having various physical properties and elasticity.

이하 실시예를 통하여 본 발명을 구체적으로 설명하지만, 하기의 실시예에 의하여 본 발명의 범주가 본 발명을 한정하는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the scope of the present invention is not limited by the following Examples.

별도로 언급되는 경우를 제외하고 모든 리간드 및 촉매 제조 공정은 질소 분위기 하에서 표준 슐렝크 (Schlenk) 또는 글로브박스 기술을 사용하여 수행되었으며 반응에 사용되는 유기용매는 나트륨금속과 벤조페논 하에서 환류시켜 수분을 제거하여 사용직전 증류하여 사용하였다. 제조된 리간드 및 촉매의 1H-NMR 분석은 상온에서 Varian Oxford 300 MHz을 사용하여 수행하였다.Except where noted, all ligand and catalyst manufacturing processes were carried out using standard Schlenk or glovebox techniques under nitrogen atmosphere and the organic solvent used for the reaction was refluxed under sodium metal and benzophenone to remove moisture Distilled immediately before use. 1 H-NMR analysis of the prepared ligand and catalyst was carried out using Varian Oxford 300 MHz at room temperature.

중합용매인 시클로헥산은 Q-5 촉매 (BASF 사 제품), 실리카겔 및 활성알루미나가 충진된 관을 통과시키고 고순도의 질소로 버블링시켜 수분, 산소 및 기타 촉매독 물질을 충분히 제거시킨 후 사용하였다. Cyclohexane, a polymerization solvent, was used after passing through a tube filled with a Q-5 catalyst (manufactured by BASF), silica gel and activated alumina and bubbling with high purity nitrogen to sufficiently remove moisture, oxygen and other catalyst poisons.

중합된 중합체는 아래에 설명된 방법에 의하여 분석되었다.The polymerized polymer was analyzed by the method described below.

1. 용융흐름지수 (MI)1. Melt Flow Index (MI)

ASTM D 2839에 의거하여 측정하였다.It measured according to ASTM D 2839.

2. 밀도2. Density

ASTM D 1505에 의거, 밀도구배관을 사용하여 측정하였다.According to ASTM D 1505, it was measured using a density gradient tube.

3. 융용점 (Tm) 분석3. Melting Point (Tm) Analysis

Dupont DSC2910을 이용하여 질소분위기 하에서 10℃/min의 속도로 2nd 가열조건에서 측정하였다.Dupont DSC2910 was used in a 2 nd heating conditions at a rate of 10 ℃ / min under a nitrogen atmosphere.

4. 분자량 및 분자량분포4. Molecular Weight and Molecular Weight Distribution

PL Mixed-BX2+preCol이 장착된 PL210 GPC를 이용하여 135C에서 1.0mL/min의 속도로 1,2,3-트리클로로벤젠 용매하에서 측정하였으며, PL 폴리스티렌 표준물질을 사용하여 분자량을 보정하였다.PL210 GPC equipped with PL Mixed-BX2 + preCol was used to measure 1.0 mL / min at 135C in 1,2,3-trichlorobenzene solvent and molecular weight was corrected using PL polystyrene standards.

5. 공중합체 중의 α-올레핀 함량 (중량%) 5. α-olefin content (% by weight) in the copolymer

Bruker DRX500 핵자기공명분광기를 이용하여 125MHz에서 1,2,4 트리클로로벤젠/C6D6 (7/3 중량분율) 혼합용매를 사용하여 120C에서 13C-NMR 모드로 측정하였다. (참고문헌: Randal, J. C. JMS - Rev . Macromol. Chem . Phys. 1980, C29, 201) The Bruker DRX500 nuclear magnetic resonance spectrometer was used to measure 13 C-NMR mode at 120 C using a 1,2,4 trichlorobenzene / C 6 D 6 (7/3 weight fraction) mixed solvent at 125 MHz. (Reference: Randal, JC JMS - Rev . Macromol. Chem . Phys . 1980, C29 , 201)

[제조예 1] ( 디클로로 )( 펜타메틸사이클로펜타디에닐 )(2-티오펜-2'-일) 페녹시 )티타늄( IV )의 제조 Preparation Example 1 Preparation of ( dichloro ) ( pentamethylcyclopentadienyl ) (2-thiophen-2'-yl) phenoxy ) titanium ( IV )

2-(2'-2- (2'- 메톡시페닐Methoxyphenyl )티오펜의 제조Preparation of thiophene

2-브로모 티오펜(7.2g, 43.9mmol), 2-메톡시페닐보로닉산 (6.7g, 43.9mmol), 팔라듐아세테이트 (0.14g, 0.62 mmol), 트리페닐포스핀(0.6 mg, 2.3 mmol) 및 인산칼륨 (9.40 g, 44.3 mmol)을 투임한 플라스크에 10 ml의 물과 40mL의 디메톡시에탄 혼합용액을 넣고 6시간 환류시킨다. 상온으로 냉각시킨 후 염화 암모늄 수용액 (50 mL)과 100 mL의 디에틸에테르를 주입한 다음 유기층을 분리하고 잔류물을 디에틸에테르로 추출하여 모아진 유기층을 마그네슘 설페이트로 건조시킨 후 휘발물질을 제 거한 후 실리카겔 크로마토그라피관을 이용하여 헥산으로 정제하여 무색액체인 2-(2'-메톡시페닐)티오펜 7.9g(수율 95% )을 수득하였다.2-bromo thiophene (7.2 g, 43.9 mmol), 2-methoxyphenylboronic acid (6.7 g, 43.9 mmol), palladium acetate (0.14 g, 0.62 mmol), triphenylphosphine (0.6 mg, 2.3 mmol) ) And 10 ml of water and 40 ml of dimethoxyethane mixed solution were added to a flask on which potassium phosphate (9.40 g, 44.3 mmol) was added and refluxed for 6 hours. After cooling to room temperature, an aqueous ammonium chloride solution (50 mL) and 100 mL of diethyl ether were added, the organic layer was separated, the residue was extracted with diethyl ether, the collected organic layer was dried over magnesium sulfate, and volatiles were removed. Then purified by hexane using a silica gel chromatography tube to give 7.9 g (yield 95%) of 2- (2'-methoxyphenyl) thiophene as a colorless liquid.

1H-NMR (C6D6) δ= 3.26(s, 3H), 6.49-6.53(d, 1H), 6.77-7.03(m, 4H), 7.47-7.49(d, 1H), 7.60-7.64(d, 1H) ppm 1 H-NMR (C 6 D 6 ) δ = 3.26 (s, 3H), 6.49-6.53 (d, 1H), 6.77-7.03 (m, 4H), 7.47-7.49 (d, 1H), 7.60-7.64 ( d, 1H) ppm

2-(티오펜-2'-일)페놀의 제조Preparation of 2- (thiophen-2'-yl) phenol

상기 제조된 2-(2'-메톡시페닐)티오펜 (7g, 36.8mmol)을 100 mL의 메틸렌클로라이드에 녹인 후 -78℃에서 40mL의 보론트리브로마이드(1M-메틸렌클로라이드 용액)를 적가한 후 서서히 상온으로 온도를 올려 3시간동안 반응시켰다. 반응 후 얼음(50g)과 디에틸에테르(100mL) 혼합용액을 투입한 다음 유기층을 분리하고 수용액 층을 디에틸에테르로 추출하여 모아진 유기층을 마그네슘 설페이트로 건조시킨 후 휘발물질을 제거한 후 실리카겔 크로마토그라피관을 이용하여 헥산과 메틸렌클로라이드 혼합용액으로 정제하여 무색액체인 2-(티오펜-2'-일)페놀 2.9g(수율 40%) 을 수득하였다. 2- (2'-methoxyphenyl) thiophene (7 g, 36.8 mmol) prepared above was dissolved in 100 mL of methylene chloride, and 40 mL of borontribromide (1M-methylene chloride solution) was added dropwise at -78 ° C. The temperature was gradually raised to room temperature and reacted for 3 hours. After the reaction, a mixed solution of ice (50 g) and diethyl ether (100 mL) were added, the organic layer was separated, the aqueous layer was extracted with diethyl ether, the collected organic layer was dried over magnesium sulfate, and the volatiles were removed. Purified with a mixed solution of hexane and methylene chloride to give 2.9g (yield 40%) of 2- (thiophen-2'-yl) phenol as a colorless liquid.

1H-NMR (C6D6) δ= 6.54-6.58(d, 1H), 6.59-6.95(m, 4H), 7.12-7.15(d, 1H), 7.36-7.41(d, 1H) ppm 1 H-NMR (C 6 D 6 ) δ = 6.54-6.58 (d, 1H), 6.59-6.95 (m, 4H), 7.12-7.15 (d, 1H), 7.36-7.41 (d, 1H) ppm

(( 디클로로Dichloro )() ( 펜타메틸사이클로펜타디에닐Pentamethylcyclopentadienyl )(2-티오펜-2'-일)) (2-thiophene-2'-yl) 페녹시Phenoxy )티타늄()titanium( IVIV ) 의 제조Manufacture of

2-(티오펜-2'-일)페놀 (2.07 g, 11.76 mmol, Aldrich )을 건조된 플라스크에 넣고 디에틸에테르에 녹인 후 잘 교반시키며 온도를 0℃로 내려준다. N-부틸리튬(8.08 ml, 1.6M in hexane, Aldrich )을 혼합물에 천천히 적하한다. 적하가 끝나면 1시간 동안 온도를 유지시킨 후에 상온으로 올리고 12시간 교반한다. 용매층을 제거한 후 침전을 헥산을 이용하여 씻고 얻어진 침전의 휘발물질을 제거하고 톨루엔에 녹인다. 이 혼합물의 온도를 0℃로 내린 후에 펜타메틸사이클로펜타디에닐타이타늄클로라이드(1.70 g, 5.88 mmol)을 톨루엔에 녹여서 천천히 적하한다. 적하가 끝나면 1시간 동안 유지시킨 후에 상온으로 올려주고 다시 24시간 동안 교반시켜준다. 반응이 끝나면 고형분을 필터하여 제거하고 얻어진 용액에서 휘발물질을 제거한 후 다시 톨루엔에 녹여 재결정을 실시하여 주황색결정 1.64 g(수율 65 %) 을 수득하였다. 2- (thiophene-2'-yl) phenol (2.07 g, 11.76 mmol, Aldrich) was added to the dried flask, dissolved in diethyl ether, and stirred well. N-butyllithium (8.08 ml, 1.6 M in hexane, Aldrich) was slowly added dropwise to the mixture. After dropping, the temperature is maintained for 1 hour and then raised to room temperature and stirred for 12 hours. After removing the solvent layer, the precipitate was washed with hexane, and the volatiles of the obtained precipitate were removed and dissolved in toluene. After the temperature of this mixture was lowered to 0 ° C., pentamethylcyclopentadienyl titanium chloride (1.70 g, 5.88 mmol) was dissolved in toluene and slowly added dropwise thereto. After dropping, it is maintained for 1 hour, then raised to room temperature and stirred for another 24 hours. After the reaction was completed, the solids were filtered out, the volatiles were removed from the solution, and then dissolved in toluene to recrystallize to obtain 1.64 g (yield 65%) of orange crystals.

1H-NMR (C6D6) δ= 1.73 (s, 15H), 6.75-6.79(d, 1H), 6.85-6.94(m, 3H), 7.14-7.18(d, 1H), 7.41-7.45(d, 1H)), 7.57-7.59(d, 1H) ppmMass (APCI mode, m/z): 429 1 H-NMR (C 6 D 6 ) δ = 1.73 (s, 15H), 6.75-6.79 (d, 1H), 6.85-6.94 (m, 3H), 7.14-7.18 (d, 1H), 7.41-7.45 ( d, 1H)), 7.57-7.59 (d, 1H) ppmMass (APCI mode, m / z): 429

[제조예 2] ( 디클로로 )( 펜타메틸사이클로펜타디에닐 )(2-(피리딘-2'-일) 페녹시 )티타늄( IV )의 제조 Preparation Example 2 Preparation of ( dichloro ) ( pentamethylcyclopentadienyl ) (2- (pyridin-2'-yl) phenoxy ) titanium ( IV )

2-(2'-2- (2'- 메톡시페닐Methoxyphenyl )피리딘의 제조Preparation of Pyridine

2-브로모 피리딘(4.28ml, 43.9mmol), 2-메톡시페닐보로닉산 (6.7g, 43.9mmol), 팔라듐아세테이트 (0.14g, 0.62 mmol), 트리페닐포스핀(0.6 mg, 2.3 mmol) 및 인산칼륨 (9.40 g, 44.3 mmol)을 투입한 플라스크에 10 ml의 물과 40mL의 디메톡시에탄 혼합용액을 넣고 6시간 환류시킨다. 상온으로 냉각시킨 후 염화 암모늄 수용액 (50 mL)과 100 mL의 디에틸에테르를 주입한 다음 유기층을 분리하고 잔류물을 디에틸에테르로 추출하여 모아진 유기층을 마그네슘 설페이트로 건조시킨 후 휘발물질을 제거한 후 실리카겔 크로마토그라피관을 이용하여 노말헥산으로 정제하여 무색액체인 2-(2'-메톡시페닐)피리딘 7.7g(수율 95%)을 수득하였다.2-bromo pyridine (4.28 ml, 43.9 mmol), 2-methoxyphenylboronic acid (6.7 g, 43.9 mmol), palladium acetate (0.14 g, 0.62 mmol), triphenylphosphine (0.6 mg, 2.3 mmol) 10 ml of water and 40 ml of dimethoxyethane mixed solution were added to a flask to which potassium phosphate (9.40 g, 44.3 mmol) was added and refluxed for 6 hours. After cooling to room temperature, an aqueous ammonium chloride solution (50 mL) and 100 mL of diethyl ether were introduced, the organic layer was separated, the residue was extracted with diethyl ether, the collected organic layer was dried over magnesium sulfate, and volatiles were removed. Purification with normal hexane using a silica gel chromatography tube yielded 7.7 g (yield 95%) of a colorless liquid, 2- (2'-methoxyphenyl) pyridine.

1H-NMR (C6D6) δ= 3.22(s, 3H), 6.55-8.67 (m, 8H) ppm 1 H-NMR (C 6 D 6 ) δ = 3.22 (s, 3H), 6.55-8.67 (m, 8H) ppm

2-(피리딘-2'-일)페놀의 제조Preparation of 2- (pyridin-2'-yl) phenol

35% 염산 40ml에 피리딘 40ml를 넣고 200℃에서 30분간 교반 후 220℃에서 물을 증류시켜 제거한 후 2-(2'-메톡시페닐)피리딘 (6.8g, 36.8mmol)을 투입 하고 200℃에서 12시간 반응시켰다. 온도를 상온으로 낮추고 증류수를 첨가 후 수산화나트륨 수용액으로 적정을 시켰다. 메틸렌클로라이드로 유기층을 추출한 후 마그네슘 설페이트로 건조시킨 후 휘발물질을 제거한 후 실리카겔 크로마토그라피관을 이용하여 헥산과 에틸아세테이트 혼합용액으로 정제하여 노란색고체인 2-(피리딘-2'-일)페놀 3.5g(수율 52%)을 수득하였다. 40 ml of 35% hydrochloric acid was added and 40 ml of pyridine was stirred at 200 ° C. for 30 minutes, followed by distillation of water at 220 ° C. to remove 2- (2'-methoxyphenyl) pyridine (6.8 g, 36.8 mmol), followed by 12 at 200 ° C. The reaction was time. The temperature was lowered to room temperature, and distilled water was added, followed by titration with an aqueous sodium hydroxide solution. Extract the organic layer with methylene chloride, dry with magnesium sulfate, remove volatiles and purify with a mixture of hexane and ethyl acetate using a silica gel chromatography tube. 3.5g of yellow solid 2- (pyridin-2'-yl) phenol (Yield 52%) was obtained.

1H-NMR (C6D6) δ= 6.30-7.72(m, 7H), 8.43-8.67(m, 2H) ppm 1 H-NMR (C 6 D 6 ) δ = 6.30-7.72 (m, 7H), 8.43-8.67 (m, 2H) ppm

(( 디클로로Dichloro )() ( 펜타메틸사이클로펜타디에닐Pentamethylcyclopentadienyl )(2-(피리딘-2'-일)) (2- (pyridin-2'-yl) 페녹시Phenoxy )티타늄()titanium( IVIV )의 제조Manufacturing

2-(피리딘-2'-일)페놀 (2.64 g, 15.42 mmol, Aldrich )을 건조된 플라스크에 넣고 톨루엔에 녹인 후 잘 교반시키며 온도를 0℃로 내려준다. N-부틸리튬(5.86 ml, 2.5M in hexane Aldrich )을 혼합물에 천천히 적하한다. 적하가 끝나면 1시간 동안 온도를 유지시킨 후에 상온으로 올리고 12시간 교반한다. 용매층을 제거한 후 침전물을 정제한 노말헥산으로 씻고 얻어진 침전물의 휘발물질을 제거하고 톨루엔에 녹인다. 이 혼합물의 온도를 0℃로 내린 후에 펜타메틸사이클로펜타디에닐 타이타늄클로라이드(2.23 g, 12.59 mmol)를 톨루엔에 녹여서 천천히 적하한다. 적하가 끝나면 1시간 동안 유지시킨 후에 상온으로 올려주고 다시 24시간 동안 교반시켜준다. 반응이 끝나면 고형분을 필터하여 제거하고 얻어진 용액에서 휘발물질을 제거한 후 다시 톨루엔에 녹여 재결정을 실시하여 주황색결정 2.1 g (수율 49 %)을 수득하였다. 2- (pyridin-2'-yl) phenol (2.64 g, 15.42 mmol, Aldrich) was added to the dried flask, dissolved in toluene, stirred well and the temperature was lowered to 0 ° C. N-butyllithium (5.86 ml, 2.5 M in hexane Aldrich) was slowly added dropwise to the mixture. After dropping, the temperature is maintained for 1 hour and then raised to room temperature and stirred for 12 hours. After removing the solvent layer, the precipitate is washed with purified normal hexane, the obtained volatiles of the precipitate are removed and dissolved in toluene. After the temperature of this mixture was lowered to 0 ° C., pentamethylcyclopentadienyl titanium chloride (2.23 g, 12.59 mmol) was dissolved in toluene and slowly added dropwise thereto. After dropping, it is maintained for 1 hour, then raised to room temperature and stirred for another 24 hours. After the reaction was completed, the solids were filtered out, the volatiles were removed from the solution, and then dissolved in toluene to recrystallize to obtain 2.1 g (yield 49%) of orange crystals.

1H-NMR (C6D6) δ= 1.66 (s, 15H), 6.617.35 (m, 5H), 7.80 (m, 1H), 8.08(m, 1H), 8.62 (m, 1H) ppm 1 H-NMR (C 6 D 6 ) δ = 1.66 (s, 15H), 6.617.35 (m, 5H), 7.80 (m, 1H), 8.08 (m, 1H), 8.62 (m, 1H) ppm

Mass (APCI mode, m/z): 424Mass (APCI mode, m / z): 424

실시예Example 1 One

회분식중합장치를 사용하여 하기와 같이 에틸렌과 1-옥텐과의 공중합을 수행하였다.Copolymerization of ethylene and 1-octene was carried out using a batch polymerization apparatus as follows.

충분히 건조 후 질소로 치환시킨 2000 mL 용량의 스테인레스스틸 반응기에 시클로헥산 1140 mL와 1-옥텐 150 ml를 넣은 다음 개량 메틸알루미녹산-7 (Akzo Nobel사, modified MAO-7, 7 wt% Al Isopar 용액) 54.2 mM, 톨루엔 용액 11.1 mL를 반응기에 투입하였다. 이후 반응기의 온도를 140℃까지 가열한 다음 제조예 1에서 제조한 (디클로로)(펜타메틸사이클로펜타디에닐)(2-티오펜-2'-일)페녹시) 티타늄 (IV) (5mM 톨루엔 용액) 0.4 mL와 0.6 mL의 트리페닐메틸리니움 테트라키스펜타플루오르페닐보레이트 (99%, Boulder Scientific) 10 mM 톨루엔 용액을 순차적으로 투입한 다음 에틸렌으로 반응기내의 압력을 30 kg/cm2까지 채운 후 연속적으로 공급하여 중합되도록 하였다. 반응시작 1분 내에 최대온도 162.5℃까지 도달하였고, 1분이 지나면 100mL의 10vol% 염산수용액 함유한 에탄올을 투입하여 중합을 종료시킨 다음 1.5 L의 에탄올로 1 시간 동안 교반한 후 반응생성물을 여과, 분리하였다. 회수된 반응생성물을 60℃의 진공오븐에서 8시간 동안 건조시킨 결과 37.5 g의 중합체가 얻어졌다. 중합체의 멜트인덱스는 10.5, 밀도는 0.8835 g/cc이었으며, 겔크로마토그라피에 의한 분석시 중량평균분자량(Mw)이 48,000 g/mol, 분자량분포(Mw/Mn)가 2.25이였고, 1-옥텐 함량 25.1 중량%이었다.After sufficiently drying, 1140 mL of cyclohexane and 150 ml of 1-octene were added to a 2000 mL stainless steel reactor substituted with nitrogen, and then modified methylaluminoxane-7 (Akzo Nobel, modified MAO-7, 7 wt% Al Isopar solution). ) 54.2 mM, 11.1 mL of toluene solution was added to the reactor. The reactor was then heated to 140 ° C., followed by (dichloro) (pentamethylcyclopentadienyl) (2-thiophen-2′-yl) phenoxy) titanium (IV) (5 mM toluene solution prepared in Preparation Example 1). ) 0.4 mL and 0.6 mL of triphenylmethyllinium tetrakispentafluorophenylborate (99%, Boulder Scientific) 10 mM toluene solution were added sequentially, followed by filling the reactor with ethylene pressure up to 30 kg / cm 2 and continuously It was supplied to the polymerization to be. Within 1 minute of the reaction, the maximum temperature was reached to 162.5 ° C. After 1 minute, 100 mL of 10 vol% aqueous hydrochloric acid solution was added to terminate the polymerization. After stirring for 1 hour with 1.5 L of ethanol, the reaction product was filtered and separated. It was. The recovered reaction product was dried in a vacuum oven at 60 ° C. for 8 hours to give 37.5 g of polymer. The melt index of the polymer was 10.5, the density was 0.8835 g / cc, the weight average molecular weight (Mw) was 48,000 g / mol, the molecular weight distribution (Mw / Mn) was 2.25, and 1-octene content was analyzed by gel chromatography. 25.1 wt%.

실시예Example 2 2

1-옥텐 230mL를 사용한 것을 제외하고는 실시예1과 동일하게 에틸렌과 1-옥텐과의 공중합을 수행하였다.The copolymerization of ethylene and 1-octene was performed in the same manner as in Example 1 except that 230 mL of 1-octene was used.

최대온도는 164.5 ℃에 도달하였으며 최종적으로 40.0 g의 중합체가 얻어졌다. 중합체의 멜트인덱스는 14.2, 밀도는 0.8710 g/cc이었으며, 겔크로마토그라피에 의한 분석 시 중량평균분자량(Mw)이 36,000 g/mol, 분자량분포(Mw/Mn)가 2.20이였고, 1-옥텐 함량 31.3 중량%이었다.The maximum temperature reached 164.5 ° C. and finally 40.0 g of polymer was obtained. The melt index of the polymer was 14.2, the density was 0.8710 g / cc, the weight average molecular weight (Mw) was 36,000 g / mol, the molecular weight distribution (Mw / Mn) was 2.20, and the 1-octene content was analyzed by gel chromatography. 31.3 wt%.

실시예Example 3 3

1-옥텐 대신 1-데센 150 mL를 사용한 것을 제외하고는 실시예 1과 동일하게 에틸렌과 1-데센과의 공중합을 수행하였다.Copolymerization of ethylene and 1-decene was carried out in the same manner as in Example 1 except that 150 mL of 1-decene was used instead of 1-octene.

최대온도는 165 ℃에 도달하였으며 최종적으로 41.0 g의 중합체가 얻어졌다. 중합체의 멜트인덱스는 12.0, 밀도는 0.8897 g/cc이었으며, 겔크로마토그라피에 의한 분석시 중량평균분자량(Mw)이 42,000 g/mol, 분자량분포(Mw/Mn)가 2.60 이었다.The maximum temperature reached 165 ° C. and finally 41.0 g of polymer was obtained. The melt index of the polymer was 12.0 and the density was 0.8897 g / cc. The weight average molecular weight (Mw) was 42,000 g / mol and the molecular weight distribution (Mw / Mn) was 2.60 when analyzed by gel chromatography.

실시예Example 4 4

촉매 투입 전 반응온도를 80 ℃까지 가열한 것과 1-데센 150mL를 투입한 것을 제외하고는 실시예1과 동일하게 에틸렌과 1-옥텐과의 공중합을 수행하였다.The copolymerization of ethylene and 1-octene was performed in the same manner as in Example 1 except that the reaction temperature was heated to 80 ° C. and 150 mL of 1-decene was added before the catalyst was added.

최대온도 154.0 ℃에 도달하였으며 최종적으로 95.0 g의 중합체가 얻어졌다 중합체의 멜트인덱스는 8.5, 밀도는 0.8840 g/cc이었으며, 겔크로마토그라피에 의한 분석시 중량평균분자량(Mw)이 61,000 g/mol, 분자량분포(Mw/Mn)가 2.30이었다.The maximum temperature of 154.0 ° C was reached and finally 95.0 g of polymer was obtained. The melt index of the polymer was 8.5 and the density was 0.8840 g / cc, and the weight average molecular weight (Mw) was 61,000 g / mol when analyzed by gel chromatography. The molecular weight distribution (Mw / Mn) was 2.30.

실시예Example 5 5

제조예 2에서 제조된 (디클로로)(펜타메틸사이클로펜타디에닐)(2-(피리딘-2'-일)페녹시)티타늄(IV)을 촉매로 사용한 것을 제외하고는 실시예 1과 동일하게 에틸렌과 1-옥텐과의 공중합을 수행하였다.Ethylene was the same as in Example 1 except for using (dichloro) (pentamethylcyclopentadienyl) (2- (pyridin-2'-yl) phenoxy) titanium (IV) prepared in Preparation Example 2 as a catalyst. Copolymerization with 1-octene was carried out.

최대온도 168 ℃에 도달하였으며 최종적으로 47 g의 중합체가 얻어졌다 중합체의 멜트인덱스는 12.5, 밀도는 0.8795 g/cc이었으며, 겔크로마토그라피에 의한 분석시 중량평균분자량(Mw)이 41,000 g/mol, 분자량분포(Mw/Mn)가 2.15이였고, 1-옥텐 함량 29.3 중량%이었다.The maximum temperature of 168 ° C was reached and finally 47 g of polymer was obtained. The melt index of the polymer was 12.5, the density was 0.8795 g / cc, and the weight average molecular weight (Mw) was 41,000 g / mol when analyzed by gel chromatography. The molecular weight distribution (Mw / Mn) was 2.15 and the 1-octene content was 29.3 wt%.

실시예Example 6 6

1-옥텐 60mL를 사용한 것을 제외하고는 실시예 5와 동일하게 에틸렌과 1-옥텐과의 공중합을 수행하였다.Copolymerization of ethylene and 1-octene was performed in the same manner as in Example 5 except that 60 mL of 1-octene was used.

최대온도 171.0 ℃에 도달하였으며 최종적으로 49 g의 중합체가 얻어졌다 중합체의 멜트인덱스는 11.0, 밀도는 0.8998 g/cc이었으며, 겔크로마토그라피에 의한 분석시 중량평균분자량(Mw)이 43,000 g/mol, 분자량분포(Mw/Mn)가 2.10이였고, 1-옥텐 함량 16.5 중량%이었다.The maximum temperature of 171.0 ° C was reached and finally 49 g of polymer was obtained. The melt index of the polymer was 11.0 and the density was 0.8998 g / cc, and the weight average molecular weight (Mw) was 43,000 g / mol, The molecular weight distribution (Mw / Mn) was 2.10 and the 1-octene content was 16.5 wt%.

실시예Example 7 7

1-옥텐 230mL를 사용한 것을 제외하고는 실시예 5와 동일하게 에틸렌과 1-옥텐과의 공중합을 수행하였다.The copolymerization of ethylene and 1-octene was performed in the same manner as in Example 5 except that 230 mL of 1-octene was used.

최대온도는 169 ℃에 도달하였으며 최종적으로 48 g의 중합체가 얻어졌다 중합체의 멜트인덱스는 17.0, 밀도는 0.8690 g/cc이었으며, 겔크로마토그라피에 의한 분석시 중량평균분자량(Mw)이 31,000 g/mol, 분자량분포(Mw/Mn)가 2.25이였고, 1-옥텐 함량 33.5 중량%이었다.The maximum temperature reached 169 ° C and finally 48 g of polymer was obtained. The melt index of the polymer was 17.0 and the density was 0.8690 g / cc. The weight average molecular weight (Mw) was 31,000 g / mol when analyzed by gel chromatography. The molecular weight distribution (Mw / Mn) was 2.25 and the 1-octene content was 33.5 wt%.

실시예Example 8 8

촉매 투입전 반응온도를 80 ℃까지 가열한 것을 제외하고는 실시예 7과 동일하게 에틸렌과 1-옥텐과의 공중합을 수행하였다.The copolymerization of ethylene and 1-octene was performed in the same manner as in Example 7, except that the reaction temperature was heated to 80 ° C. before the catalyst was added.

최대온도는 148 ℃에 도달하였으며 최종적으로 92 g의 중합체가 얻어졌다 중합체의 멜트인덱스는 5.5, 밀도는 0.8810 g/cc이었으며, 겔크로마토그라피에 의한 분석시 중량평균분자량(Mw)이 79,000 g/mol, 분자량분포(Mw/Mn)가 2.05이였고, 1-옥텐 함량 26.3 중량%이었다.The maximum temperature reached 148 ° C and finally 92 g of polymer was obtained. The melt index of the polymer was 5.5 and the density was 0.8810 g / cc. The weight average molecular weight (Mw) was 79,000 g / mol when analyzed by gel chromatography. The molecular weight distribution (Mw / Mn) was 2.05 and the 1-octene content was 26.3 wt%.

상기 실시예들로부터 알 수 있는 바와 같이, 본 발명을 통한 촉매 조성물 및 제조방법을 통해 밀도 0.900g/cc 이하에서 30,000 이상의 높은 분자량과 3 이하의 좁은 분자량 분포를 가지는 에틸렌과 α-올레핀의 공중합체를 회분식 반응조건하에서 성공적으로 제조할 수 있음을 알 수 있다. As can be seen from the above examples, a copolymer of ethylene and α-olefin having a high molecular weight of 30,000 or more and a narrow molecular weight distribution of 3 or less at a density of 0.900 g / cc or less through the catalyst composition and the preparation method according to the present invention It can be seen that can be prepared successfully under the batch reaction conditions.

또한, 본 발명의 촉매계를 이용하여 고온의 용액 중합 조건에서 적은 양의 α-올레핀 공단량체를 투입하면서도 높은 수율로 밀도 0.900g/cc이하의 에틸렌과 α-올레핀의 공중합체를 제조할 수 있음을 보여준다.In addition, using the catalyst system of the present invention, a copolymer of ethylene and α-olefin having a density of 0.900 g / cc or less can be produced with high yield while introducing a small amount of α-olefin comonomer under high temperature solution polymerization conditions. Shows.

이상에서 살펴본 바와 같이 본 발명의 실시예에 대해 상세히 기술되었지만, 본 발명이 속하는 기술분야에 있어서 통상의 지식을 가진 사람이라면, 첨부된 청구범위에 정의된 본 발명의 정신 및 범위를 벗어나지 않으면서 본 발명을 여러 가지로 변형하여 실시할 수 있을 것이다. 따라서 본 발명의 앞으로의 실시예들의 변경은 본 발명의 기술을 벗어날 수 없을 것이다.Although described in detail with respect to embodiments of the present invention as described above, those of ordinary skill in the art, without departing from the spirit and scope of the invention as defined in the appended claims Various modifications may be made to the invention. Therefore, modifications of the embodiments of the present invention will not depart from the scope of the present invention.

Claims (12)

단일반응기, 또는 직렬 또는 병렬식의 2차 연속반응기 중 하기 화학식 1의 전이금속 촉매를 포함하는 촉매 조성물 하에 에틸렌 및 C3-C18의 α-올레핀 공단량체를 공중합시켜 밀도 0.850~0.900g/cc인 에틸렌과 α-올레핀의 공중합체 제조방법.Ethylene having a density of 0.850 to 0.900 g / cc by copolymerization of ethylene and an α-olefin comonomer of C3-C18 in a single reactor or a catalyst composition comprising a transition metal catalyst represented by the following formula (1) in a series or parallel secondary continuous reactor: And a copolymer of α-olefin. [화학식 1][Formula 1]
Figure 112009079922642-PAT00008
Figure 112009079922642-PAT00008
[상기 화학식 1에서, M은 주기율표 상 4 족의 전이금속이고; Cp는 중심 금속 M과 η5-결합할 수 있는 시클로펜타디에닐 고리 또는 시클로펜타디에닐 고리를 포함하는 융합고리이며, 상기 시클로펜타디에닐 고리 또는 시클로펜타디에닐 융합고리는 (C1-C20)알킬기, (C6-C30)아릴기, (C2-C20)알케닐기 또는 (C6-C30)아릴(C1-C20)알킬기로 더 치환될 수 있고; A는 하기 구조의 치환체
Figure 112009079922642-PAT00009
또는
Figure 112009079922642-PAT00010
이고; R1, R2, R3, R4, R5, R6, R7 및 R8 은 서로 독립적으로 수소 원자, (C1-C20) 알킬기, (C3-C20)시클로알킬기, (C1-C20)알킬 치환 또는 (C6-C30)아릴 치환 실릴기, (C6-C30)아릴기, (C6-C30)아릴(C1-C10)알킬기, (C1-C20)알콕시기, (C1-C20)알킬 치환 또는 (C6-C20)아릴 치환 실록시기, (C1-C20) 알킬 치환 또는 (C6-C30)아릴 치환 아미노기 또는 (C1-C20) 알킬 치환 또는 (C6-C30)아릴 치환 포스핀기, (C1-C20)알킬치환 머캡토기 또는 니트로기이며, 상기 R1 내지 R8 의 알킬기, 아릴 또는 알콕시기는 할로겐으로 더 치환되거나 인접한 치환체와 함께 융합고리를 형성할 수 있으며; D는 N-R9, 산소 또는 황원자이며; R9은 선형 또는 비선형의 (C1-C20)알킬기, (C6-C30)아릴기, (C1-C20)알킬 치환 또는 (C6-C30)아릴 치환 실릴기이고; n은 정수 1 또는 2이며; X는 서로 독립적으로 할로겐 원자, (C1-C20)알킬기, (C3-C20)시클로알킬기, (C6-C30)아릴(C1-C20)알킬기, (C1-C20)알콕시기, (C3-C20)알킬실록시기, (C1-C20) 알킬 치환 또는 (C6-C30)아릴 치환 아미노기, (C1-C20) 알킬 치환 또는 (C6-C30)아릴 치환 포스핀기 및 (C1-C20)알킬치환 머캡토기로 이루어진 군으로부터 선택된다.]
[In Formula 1, M is a transition metal of Group 4 on the periodic table; Cp is a fused ring comprising a cyclopentadienyl ring or a cyclopentadienyl ring capable of bonding a central metal M with a η 5 -bond, wherein the cyclopentadienyl ring or cyclopentadienyl fused ring is (C1-C20) Alkyl group, (C6-C30) aryl group, (C2-C20) alkenyl group or (C6-C30) aryl (C1-C20) alkyl group; A is a substituent of the following structure
Figure 112009079922642-PAT00009
or
Figure 112009079922642-PAT00010
ego; R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are each independently a hydrogen atom, a (C1-C20) alkyl group, a (C3-C20) cycloalkyl group, (C1-C20) Alkyl substituted or (C6-C30) aryl substituted silyl, (C6-C30) aryl group, (C6-C30) aryl (C1-C10) alkyl group, (C1-C20) alkoxy group, (C1-C20) alkyl substituted or (C6-C20) aryl substituted siloxy group, (C1-C20) alkyl substituted or (C6-C30) aryl substituted amino group or (C1-C20) alkyl substituted or (C6-C30) aryl substituted phosphine group, (C1-C20) An alkyl-substituted mercapto group or a nitro group, wherein the alkyl, aryl or alkoxy group of R 1 to R 8 may be further substituted with halogen or form a fused ring with adjacent substituents; D is NR 9 , oxygen or sulfur atom; R 9 is a linear or nonlinear (C 1 -C 20) alkyl group, (C 6 -C 30) aryl group, (C 1 -C 20) alkyl substituted or (C 6 -C 30) aryl substituted silyl group; n is an integer of 1 or 2; X independently of one another is a halogen atom, (C1-C20) alkyl group, (C3-C20) cycloalkyl group, (C6-C30) aryl (C1-C20) alkyl group, (C1-C20) alkoxy group, (C3-C20) alkyl Group consisting of a siloxy group, (C1-C20) alkyl substituted or (C6-C30) aryl substituted amino group, (C1-C20) alkyl substituted or (C6-C30) aryl substituted phosphine group and (C1-C20) alkyl substituted mercapto group Is selected from.]
제1항에 있어서, The method of claim 1, 상기 화학식 1의 전이금속 촉매의 M은 Ti, Zr 또는 Hf인 것을 특징으로 하는 에틸렌과 α-올레핀의 공중합체 제조방법.M of the transition metal catalyst of Formula 1 is Ti, Zr or Hf, characterized in that the copolymer of ethylene and α-olefin. 제1항에 있어서,The method of claim 1, 상기 촉매 조성물은 상기 화학식 1의 전이금속 촉매; 알루미녹산 화합물 또는 유기알루미늄 화합물의 조촉매; 및 붕소 화합물의 조촉매;를 포함하는 것을 특징으로 하는 에틸렌과 α-올레핀의 공중합체 제조방법.The catalyst composition is a transition metal catalyst of Formula 1; Cocatalysts of aluminoxane compounds or organoaluminum compounds; And a cocatalyst of the boron compound. 제3항에 있어서,The method of claim 3, wherein 상기 화학식 1의 전이금속 촉매와 상기 조촉매의 비율이 전이금속원자(M): 붕소원자: 알루미늄 원자의 몰비 기준 1:0.5~50:1~1,000인 것을 특징으로 하는 에틸렌과 α-올레핀의 공중합체 제조방법.The ratio of the transition metal catalyst of Formula 1 to the cocatalyst is 1: 0.5 to 50: 1 to 1,000 based on the molar ratio of the transition metal atom (M): boron atom: aluminum atom. Incorporation method. 제3항에 있어서, The method of claim 3, wherein 상기 붕소 화합물의 조촉매는 N, N-디메틸아닐리니움 테트라키스펜타플루오르페닐보레이트 및 트리페닐메틸리니움 테트라키스펜타플루오르페닐보레이트로부터 선택되는 1종 또는 혼합물인 것을 특징으로 하는 에틸렌과 α-올레핀의 공중합체 제조방법.The cocatalyst of the boron compound is one or a mixture selected from N, N-dimethylanilinium tetrakispentafluorophenylborate and triphenylmethyllinium tetrakispentafluorophenylborate. Method of producing a copolymer. 제1항에 있어서,The method of claim 1, 상기 α-올레핀 공단량체는 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-옥텐, 1-데센 및 1-도데센으로부터 선택되는 1종 이상인 것을 특징으로 하는 에틸렌과 α-올레핀의 공중합체 제조방법.The α-olefin comonomer is at least one selected from propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-hexene, 1-octene, 1-decene and 1-dodecene A method for producing a copolymer of ethylene and an α-olefin. 제1항에 있어서, The method of claim 1, 상기 공중합체 중 α-올레핀 공단량체의 함량은 10중량% 내지 60중량%인 것을 특징으로 하는 에틸렌과 α-올레핀의 공중합체 제조방법.Method of producing a copolymer of ethylene and α-olefins, characterized in that the content of α-olefin comonomer in the copolymer is 10% by weight to 60% by weight. 제1항에 있어서, The method of claim 1, 상기 공중합체는 밀도가 0.850 내지 0.899 g/cc인 것을 특징으로 하는 에틸렌과 α-올레핀의 공중합체 제조방법.The copolymer has a density of 0.850 to 0.899 g / cc ethylene and α-olefin copolymer production method. 제8항에 있어서, The method of claim 8, 상기 공중합체는 밀도가 0.860 내지 0.890 g/cc인 것을 특징으로 하는 에틸렌과 α-올레핀의 공중합체 제조방법.The copolymer has a density of 0.860 to 0.890 g / cc ethylene and α-olefin copolymer production method. 제1항에 있어서, The method of claim 1, 상기 공중합체의 중량평균분자량은 30,000 내지 500,000이며, 분자량분포 (Mw/Mn)는 1.5 내지 3.0 인 것을 특징으로 하는 에틸렌과 α-올레핀의 공중합체 제조방법.The weight average molecular weight of the copolymer is 30,000 to 500,000, the molecular weight distribution (Mw / Mn) is 1.5 to 3.0, characterized in that the copolymer of ethylene and α-olefin. 제1항에 있어서,The method of claim 1, 상기 공중합체 제조를 위한 반응기 내의 압력은 10 ~ 150 기압이고, 중합 반응 온도는 80 ~ 250℃인 것을 특징으로 하는 에틸렌과 α-올레핀의 공중합체 제조방법.The pressure in the reactor for preparing the copolymer is 10 to 150 atm, the polymerization reaction temperature is 80 to 250 ℃ characterized in that the copolymer production method of ethylene and α-olefin. 제1항 내지 제11항 중 어느 한 항의 방법으로 제조된 에틸렌과 α-올레핀의 공중합체.A copolymer of ethylene and an -olefin produced by the method of any one of claims 1 to 11.
KR1020090130243A 2009-12-23 2009-12-23 Novel transition metal complexes and catalysts compositions for preparing elastomeric copolymers of ethylene and α-olefins KR101454693B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090130243A KR101454693B1 (en) 2009-12-23 2009-12-23 Novel transition metal complexes and catalysts compositions for preparing elastomeric copolymers of ethylene and α-olefins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090130243A KR101454693B1 (en) 2009-12-23 2009-12-23 Novel transition metal complexes and catalysts compositions for preparing elastomeric copolymers of ethylene and α-olefins

Publications (2)

Publication Number Publication Date
KR20110073079A true KR20110073079A (en) 2011-06-29
KR101454693B1 KR101454693B1 (en) 2014-11-06

Family

ID=44403913

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090130243A KR101454693B1 (en) 2009-12-23 2009-12-23 Novel transition metal complexes and catalysts compositions for preparing elastomeric copolymers of ethylene and α-olefins

Country Status (1)

Country Link
KR (1) KR101454693B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1303543A1 (en) 2000-07-17 2003-04-23 Univation Technologies LLC A catalyst system and its use in a polymerization process
KR101186489B1 (en) * 2008-01-07 2012-09-27 에스케이이노베이션 주식회사 Transition metal complexes, and catalysts compositions for preparing ethylnene homopolymers or copolymers
KR101181314B1 (en) * 2008-03-05 2012-09-11 에스케이이노베이션 주식회사 Ethylene copolymer film and a method of preparing the same
KR101167082B1 (en) * 2008-11-05 2012-07-20 에스케이이노베이션 주식회사 Method for preparing elastomeric copolymers of ethylene and a-olefins

Also Published As

Publication number Publication date
KR101454693B1 (en) 2014-11-06

Similar Documents

Publication Publication Date Title
KR101060838B1 (en) Bis-arylaryloxy catalyst system for preparing ethylene homopolymer or copolymer with α-olefin
RU2374267C2 (en) Arylphenoxy catalyst system for producing homopolymer or copolymers of ethylene and alpha-olefins
KR101151606B1 (en) Transition metal complexes, catalysts composition containing the same, and process for preparing ethylene homopolymers or copolymers of ethylene and a-olefins using the same
KR101470564B1 (en) Method for preparing elastomeric copolymers of ethylene and a-olefins
JP5422208B2 (en) Transition metal compound, transition metal catalyst composition containing the same, and method for producing ethylene homopolymer or copolymer of ethylene and α-olefin
KR101146875B1 (en) Transition metal catalytic systems and methods for preparing ethylene homopolymers or copolymers of ethylene and olefins using the same
KR102300853B1 (en) New Transition metal complexes, catalyst compositions containing the same for olefin polymerization and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same
KR101186489B1 (en) Transition metal complexes, and catalysts compositions for preparing ethylnene homopolymers or copolymers
JP5839521B2 (en) Transition metal catalyst system excellent in copolymerizability and process for producing ethylene homopolymer or copolymer of ethylene and α-olefin using the same
KR101142122B1 (en) New transition metal catalytic systems and methods for preparing ethylene homopolymers or copolymers of ethylene and ?-olefins using the same
KR101470532B1 (en) Novel Transition metal catalytic systems and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same
KR101454693B1 (en) Novel transition metal complexes and catalysts compositions for preparing elastomeric copolymers of ethylene and α-olefins
KR101831258B1 (en) New Transition metal complexes, catalysts composition containing the same, and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same
RU2575004C2 (en) Modern catalytic systems with transition metal based on comonomer incorporation and methods for preparing ethylene homopolymers or copolymers of ethylene and olefins using them
KR101889979B1 (en) new transition metal complex, catalyst composition containing the same for olefin polymerization and methods for preparing ethylene homopolymers or copolymers of ethylene and α-olefins using the same
KR20110133156A (en) ADVANCED TRANSITION METAL CATALYTIC SYSTEMS IN TERMS OF COMONOMER INCORPORATIONS AND METHODS FOR PREPARING ETHYLENE HOMOPOLYMERS OR COPOLYMERS OF ETHYLENE AND α-OLEFINS USING THE SAME

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170809

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180711

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190510

Year of fee payment: 6