KR20110066382A - Solid state polymeric electrolytes containing hole transporting moieties for low-cost dye-sensitized solar cell applications - Google Patents

Solid state polymeric electrolytes containing hole transporting moieties for low-cost dye-sensitized solar cell applications Download PDF

Info

Publication number
KR20110066382A
KR20110066382A KR1020090123008A KR20090123008A KR20110066382A KR 20110066382 A KR20110066382 A KR 20110066382A KR 1020090123008 A KR1020090123008 A KR 1020090123008A KR 20090123008 A KR20090123008 A KR 20090123008A KR 20110066382 A KR20110066382 A KR 20110066382A
Authority
KR
South Korea
Prior art keywords
solar cell
dye
sensitized solar
hole transporting
htm
Prior art date
Application number
KR1020090123008A
Other languages
Korean (ko)
Other versions
KR101596918B1 (en
Inventor
김환규
주명종
송복주
송해민
최인택
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020090123008A priority Critical patent/KR101596918B1/en
Publication of KR20110066382A publication Critical patent/KR20110066382A/en
Application granted granted Critical
Publication of KR101596918B1 publication Critical patent/KR101596918B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hybrid Cells (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Conductive Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: Solid electrolyte for a dye-sensitized solar cell is provided to ensure high ionic conductivity, thereby increasing open-circuit-voltage and short-circuit-current and improving optical conversion efficiency. CONSTITUTION: Solid electrolyte for a dye-sensitized solar cell includes a hole transport material(HTM) of the structure of chemical formula 1. In chemical formula 1, R1 is C2~C8 linear or branched alkyl group; R2 is C1~C8 linear or branched alkyl group; R3 is C1, C2 or C3~C6 linear or branched alkyl group; X is O and NH group; and a and b are a molar ratio and a+b=1.

Description

저가형 염료감응 태양전지용 정공수송물질 함유한 폴리에틸렌옥사이드계 고체 전해질의 제조{Solid State Polymeric Electrolytes Containing Hole Transporting Moieties for Low-Cost Dye-Sensitized Solar Cell Applications}Fabrication of Polyethylene Oxide Solid Electrolytes Containing Hole Transporting Materials for Low-Cost Dye-Sensitized Solar Cells {Solid State Polymeric Electrolytes Containing Hole Transporting Moieties for Low-Cost Dye-Sensitized Solar Cell Applications}

본 발명은 태양전지에 사용하는 새로운 형태의 정공수송 물질인 HTM(Hole transporting material)을 포함한 고분자 전해질에 관한 것이다.The present invention relates to a polymer electrolyte including a hole transporting material (HTM), a new type of hole transport material used in solar cells.

화석연료의 고갈, 환경오염, CO2 및 SO2 발생 등으로 환경 및 에너지 문제로 인해, 태양에너지는 무한 청정 에너지로서 환경친화적인 차세대 대체에너지로서 각광 받고 있다. 태양전지는 태양광을 전류(전압)으로 직접 변환할 수 있는 소자로서, 기존의 무기물 반도체의 p-n junction을 이용한 p-n junction 태양전지 외 저가의 유기태양전지 연구가 활발히 진행 중에 있다. 유기태양전지의 장점은 저가, 환경 친화적인 면 이외에, in-door 응용 및 power window를 실현시킬 수 있는 투명하고, 얇고, 가벼운 특성을 가진다. 이러한 유기태양전지 중 가시광선을 흡수하는 염료(dye)를 넓은 밴드갭을 갖는 반도체에 흡착시켜 염료 감응과정(dye-sensitization)을 이용한 태양전지가 염료감응 태양전지(dye-sensitized solar cells, DSSCs)이다.      Due to environmental and energy issues such as fossil fuel depletion, environmental pollution, CO2 and SO2 generation, solar energy is in the spotlight as the next generation of environmentally friendly alternative energy as infinitely clean energy. Solar cells are devices that can directly convert sunlight into current (voltage), and research on low-cost organic solar cells other than p-n junction solar cells using p-n junctions of existing inorganic semiconductors is actively underway. The advantages of organic solar cells, besides being inexpensive and environmentally friendly, are transparent, thin and light properties that can realize in-door applications and power windows. Dye-sensitized solar cells (DSSCs) are used for dye-sensitization solar cells using dye-sensitization by adsorbing dyes absorbing visible light in a semiconductor having a wide bandgap. to be.

DSSC는 1991년에 스위스 그라첼(Gratzel) 그룹에서 광학적으로 투명한 나노입자 크기 (15-20nm)를 가지는 TiO2 금속 산화물에 Ru(Ⅱ)계열의 착화합물을 흡착시켜 처음 개발한 것으로, 투명전극, 반도체층 금속산화물, 염료 광감응제, 전해질, 및 전극으로 구성되어 있다.       DSSC was first developed in 1991 by the Gratzel Group, Switzerland, by adsorbing Ru (II) -based complexes on TiO2 metal oxides with optically transparent nanoparticle sizes (15-20 nm). It consists of a metal oxide, dye photosensitive agent, electrolyte, and an electrode.

이를 구체적으로 살펴보면, 양쪽 전극의 기판으로 사용되는 fluorinated tin oxide(FTO), indium tin oxide(ITO)와 같은 투명전극(transparent conducting oxide electrode)과 TiO2, ZnO 와 같은 nonoparticulated oxide semi-conductor layer, ruthenium과 같은 inorganic 또는 organic dye와 같은 dye-sensitizer, 전해질 및 산화/환원쌍(redox couple)이 포함된 전해질과 상대전극의 역할을 하는 백금과 같은 metallic catalysts로 성된다.     Specifically, transparent conducting oxide electrodes such as fluorinated tin oxide (FTO) and indium tin oxide (ITO), and nonoparticulated oxide semi-conductor layers such as TiO2 and ZnO, ruthenium and It consists of dye-sensitizers such as inorganic or organic dyes, electrolytes containing electrolytes and redox couples, and metallic catalysts such as platinum that acts as counter electrodes.

염료감응 나노입자 산화물 태양전지의 작동원리는 태양 빛(가시광선)이 흡수되면 염료분자는 전자-홀 쌍을 생성하며, 전자는 반도체 산화물의 전도띠로 주입된다. 반도체 산화물 전극으로 주입된 전자는 나노입자간 계면을 통하여 투명 전도성 막으로 전달되어 전류를 발생시키게 된다. 염료 분자에 생산된 홀은 산화-환원 전해질에 의해 전자를 받아 다시 환원되어 염료감응 태양전지 작동 과정에 의해 태양전지가 완성된다.      The principle of operation of dye-sensitized nanoparticle oxide solar cells is that when the sunlight (visible light) is absorbed, dye molecules generate electron-hole pairs, and electrons are injected into the conduction band of the semiconductor oxide. Electrons injected into the semiconductor oxide electrode are transferred to the transparent conductive film through the interface between the nanoparticles to generate a current. The holes produced in the dye molecules receive electrons by the redox electrolyte and are reduced again to complete the solar cell by operating the dye-sensitized solar cell.

그러나, 상기 염료감응 태양전지에 있어서, 주로 사용하는 전해질의 종류에는 액체전해질과 이온성액체 전해질이 있다. 하지만 다음과 같은 문제점을 노출시키고 있다. 즉 TiO2의 표면에 에스터 결합으로 흡착되어 있는 염료가 고온에서 요오드 이 온과 친핵성 치환반응을 하여 탈착될 수 있고, 밀봉이 잘되지 않을 경우 전해질 용액이 증발하거나 공기 중의 물분자나 산소분자가 침투하여 전해질과 반응함으로써 효율을 저하시킬 수 있어서 소자의 안정성에 문제가 생기거나, 하나의 지지체(substrate)에 여러 개의 전지를 화학적으로 분리시키면서 전기적으로 연결시킬 수 없으며, 강한 부식성이 있는 요오드의 크기는 약 0.2nm로 다공성 TiO2 뿐만 아니라 전극의 표면까지 도달할 수 있어 전극의 안정성에 문제가 된다.However, in the dye-sensitized solar cell, a kind of electrolyte mainly used includes a liquid electrolyte and an ionic liquid electrolyte. However, it exposes the following problems. That is, dyes adsorbed on the surface of TiO 2 by ester bonds can be desorbed by nucleophilic substitution reaction with iodine ions at high temperature, and if the sealing is not good, electrolyte solution evaporates or water molecules or oxygen molecules in the air penetrate. This can reduce the efficiency by reacting with the electrolyte, causing problems in the stability of the device, or can not be electrically connected while chemically separating a plurality of cells on a single substrate (substrate), the size of the strong corrosive iodine At about 0.2 nm, not only the porous TiO 2 but also the surface of the electrode can be reached, which is a problem in the stability of the electrode.

상기의 단점을 해소하기 위하여, 용액전해질에 유기 경화제를 첨가하여 고형화하는 방법, 고분자 중합체를 사용하여 고형화하는 방법, 고점도의 이온성 액체(ionic liquid)를 사용함으로써 준고상의 DSSC를 제조하는 방법, 그리고 유기물 HTM(hole transporting materials)을 전해질 대체로 하는 방법 등 DSSC를 고체화하는 기술 등이 있다.     In order to solve the above disadvantages, a method of solidifying by adding an organic curing agent to a solution electrolyte, a method of solidifying using a high molecular polymer, a method of producing a semi-solid DSSC by using a high viscosity ionic liquid, In addition, there is a technique for solidifying DSSC, such as a method of replacing organic HTM (hole transporting materials) as an electrolyte.

고체 고분자 전해질은 주로 poly(ethylene oxide)(PEO),poly(propylene oxide)(PPO), ployphospazene, polysiloxane 등의 유도체가 있지만, 높은 분자량의 PEO는 높은 결정성(crystallinity)(~80%)을 갖게 되고, 이러한 높은 결정성은 상온에서 낮은 이온 전도도( ~S/cm)와 확산계수를 갖는 단점이 있다. 또 다른 방법으로는 젤 고분자 전해질(준고체 고분자 전해질)을 이용하는 방법이 있는데, 이는 고분자, 유기용매, 염으로 구성되는 시스템으로, 고체 고분자 내에 유기 전해액을 스며들게 한 것이다. 젤 고분자 전해질에서는 고분자가 화합 결합 또는 분자간 상호 작용에 의한 물리적 결합에 의해 3차원적 망상구조를 형서하기 때문에 필름 내에 용매 분자를 보유, 유지할 수 있는 팽윤체의 형태를 띠게 된다. 이들은 외형상으로는 고체 필름상태이지만, 분자수준에서는 고분자내 스며든 전해액에 의한 이온 전도도 값이 ~S/cm)와 이상이므로, 고체 고분자 전해질이 갖는 가공성 및 안정성과 액체 전해질의 높은 이온전도 특성을 모두 갖고 있지만, 기계적 강도가 약하며 여전히 밀봉의 문제점이 있으며 role to role 공정에 적용하기에 많은 어려움이 있다.Solid polymer electrolytes mainly contain derivatives such as poly (ethylene oxide) (PEO), poly (propylene oxide) (PPO), ployphospazene and polysiloxane, but high molecular weight PEO has high crystallinity (~ 80%). This high crystallinity has disadvantages of low ion conductivity (˜S / cm) and diffusion coefficient at room temperature. Another method is to use a gel polymer electrolyte (semi-solid polymer electrolyte), which is a system composed of a polymer, an organic solvent, and a salt, in which an organic electrolyte is infiltrated into a solid polymer. In the gel polymer electrolyte, since the polymer forms a three-dimensional network by physical bonds through compound bonds or intermolecular interactions, the gel polymer electrolyte has a swelling body capable of retaining and retaining solvent molecules in the film. They are in the form of a solid film on the outside, but at the molecular level, the ionic conductivity value of the electrolyte solution permeated into the polymer is greater than or equal to ~ S / cm). However, the mechanical strength is weak, there is still a problem of sealing and there are many difficulties in applying to the role to role process.

또 다른 방법으로는 유기물 HTM(Hole transporting materials) 전해질을 사용하는 방법이 있는데 HTM(Hole transporting materials)로 쓰이는 물질은 triarylamines, polythiophene, PEDOT, PANI-DBSA, OMe-TAD 등이 있다. triarylamines은 높은 charge carrier mobility를 지녔으며 낮은 온도에서도 녹는 특징이 있다. polythiophene은 thermally 과 environmentally 안정하며 solubility, electronic, electrochemical properties가 tuning 가능한 장점이 있다. 하지만 pore filling problem을 가지고 있다. PEDOT는 가시광선영역에서 높은 광투과성과 conductivity, 상온에서의 높은 안정성을 보여준다. PANI-DBSA는 높은 conductivity를 가지지만 S/cm이상의 high conductivity를 갖는 경우에는 Voc와 Jsc가 낮아지는 단점이 있다. OMe-TAD는 conductivity는 높지만 pore filling problem의 단점이 있다. 유기물 HTM의 장점은 role to role 공정이 가능하고 대면적화에 유리하며 가공성이 뛰어나다는 점이다. 하지만 가시광선의 빛을 흡수하여 효율을 저하 시키는 요소로 작용한다.    Another method is to use organic HTM (Hole transporting materials) electrolyte, and the materials used as HTM (Hole transporting materials) include triarylamines, polythiophene, PEDOT, PANI-DBSA, OMe-TAD. Triarylamines have high charge carrier mobility and are soluble at low temperatures. Polythiophene is thermally and environmentally stable and has the advantage of tuning solubility, electronic and electrochemical properties. But there is a pore filling problem. PEDOT shows high light transmittance and conductivity in the visible region and high stability at room temperature. PANI-DBSA has high conductivity but Voc and Jsc are lowered when it has high conductivity of S / cm or more. OMe-TAD has high conductivity but has the disadvantage of pore filling problem. The advantage of organic HTM is that it can be role to role process, is advantageous for large area and excellent in processability. However, it absorbs visible light and acts as a factor to reduce efficiency.

본 발명의 목적은 상기의 전해질의 단점을 모두 해소할 수 있는 새로운 형태의 고체전해질을 제공하는 것에 목적이 있다.An object of the present invention is to provide a new type of solid electrolyte that can solve all the disadvantages of the electrolyte.

본 발명자들은 본 발명의 기술적 과제를 해결하기 위하여 노력한 결과, 각 성분을 한 번에 빠른 시간에 정량화 할 수는 것을 발견하고 본 발명을 완성하게 되었다.The present inventors have endeavored to solve the technical problem of the present invention and, as a result, have found that each component can be quantified at a time in a short time and have completed the present invention.

즉, 본 발명은 기존의 HTM형태의 전해질과 고분자 고체전해질의 구조를 모두 포함하는 새로운 형태의 고체전해질을 채택함으로써, 상기 문제점을 해소할 수 있는 매우 우수한 성능의 태양전지용 고체전해질을 제공할 수 있음을 알게 되어 본 발명을 완성하였다.That is, the present invention adopts a new type of solid electrolyte containing both the structure of the conventional HTM type electrolyte and the polymer solid electrolyte, thereby providing a solid electrolyte for a solar cell having a very good performance that can solve the above problems. The present invention has been completed.

본 발명은 다양한 조성비를 가지는 알킬렌옥시드-에피클로하드린의 공중합체를 주쇄로 하는 고분자화합물에 HTL물질을 측사슬에 접지(그라프트)하여 제조되는 새로운 형태의 고체전해질을 발명함으로써, 기존의 태양전지의 전해질을 대체함으로서, 우수한 성능의 전해질을 제공하고, 또한 이를 이용한 염료감응형 태양전지를 제공하는 것이다.The present invention by inventing a new type of solid electrolyte prepared by grounding (grafted) HTL material on the side chain to a polymer compound having a copolymer of alkylene oxide-epiclohadrin having various composition ratios as a main chain, By replacing the electrolyte of the solar cell, to provide an electrolyte of excellent performance, and to provide a dye-sensitized solar cell using the same.

화학식 1의 중합체에, 예를 들면, poly(ethylene oxide-co-epichlrohydrin)에 HTM(Hole transporting material)물질을 포함하는 copolymer형태를 통해 HTM(Hole transporting material)물질에 의한 poly(ethylene oxide-co-epichlrohydrin)의 결정성을 약화시켜 무정형의 영역을 증가시키고, free volume을 통해 무정형영역에서 일어나는 분자 사슬의 이동도를 높여 ionic conductivity 증가할 수 있다. The polymer of formula (I), e.g., poly (ethylene oxide- co -epichlrohydrin) in HTM (Hole transporting material) by HTM (Hole transporting material) material through a copolymer form poly (ethylene oxide- containing material co - It is possible to increase the ionic conductivity by decreasing the crystallinity of epichlrohydrin) and increasing the amorphous region and increasing the mobility of the molecular chain in the amorphous region through the free volume.

또한, HTM의 단점인 Pore filling problem을 억제를 작은 분자량의 HTM을 사용함으로써 TiO2계면까지 침투가 가능하여 Pore filling problem를 최소화가 가능하다.       In addition, by using HTM of small molecular weight to suppress the Pore filling problem, which is a disadvantage of HTM, it is possible to penetrate to TiO2 interface and minimize the Pore filling problem.

또한 화학식 1에서 일어나는 분자 사슬의 이동과 HTM(Hole transporting material)에 의한 홀 전달현상으로 ionic conductivity의 효과가 더해져서 보다 높은 ionic conductivity의 실현으로 Voc (open-circuit-voltage) 및 Jsc (short-circuit-current)가 증가하여 광전환변환효율이 향상된다.      In addition, the effect of ionic conductivity is added by the transport of molecular chain and hole transporting by HTM (Hole transporting material) in Equation 1, resulting in higher ionic conductivity. -current) is increased to improve the optical conversion efficiency.

또한 예를 들면 poly(ethylene oxide-co-epichlrohydrin)에서 일어나는 분자 사슬의 이동에 의한 ionic conductivity에 HTM(Hole transporting material)에 의한 홀전달현상으로 일어나는 ionic conductivity의 효과가 더해져서 보다 높은 ionic conductivity를 실현할 수 있다. 따라서, 염료감응태양전지의 개방전압(Voc; open-circuit-voltage) 및 단락전류(Jsc; short-circuit-current)가 증가하여 광전환변환효율이 향상된다. In addition, for example, ionic conductivity caused by the transport of molecular chains in poly (ethylene oxide- co- epichlrohydrin) is added to the effect of ionic conductivity caused by hole transporting by HTM (Hole transporting material) to realize higher ionic conductivity. Can be. Therefore, the open-circuit-voltage (Voc) and short-circuit-current (Jsc) of the dye-sensitized solar cell are increased to improve the light conversion conversion efficiency.

또한 LiI, KI등을 이용하여 젤 고분자 전해질에서 같은 높은 이온성 conductivity를 실현할 수 있으며, 소수성기 고분자 사슬에 접지된 HTM에 의해 TiO2계면과 요오드의 전해질에서 일어나는 recombination을 줄일 수 있고 더구나, 기존의 고체전해질이 가지는 대면적화에 유리할 뿐만 아니라 role-to-role 공정을 통해서 높은 사업성을 실현할 수 있다. 따라서, 염료감응태양전지의 개방전압(Voc; open-circuit-voltage) 및 단락전류(Jsc; short-circuit-current)가 증가하여 염료감응태양전지의 광전환변환효율이 향상된다. In addition, it is possible to realize the same high ionic conductivity in gel polymer electrolyte using LiI, KI, etc., and to reduce recombination in TiO2 interface and iodine electrolyte by HTM grounded to hydrophobic polymer chain. This branch is not only advantageous in large area, but also can realize high business feasibility through role-to-role process. Therefore, the open-circuit-voltage (Voc) and short-circuit-current (Jsc) of the dye-sensitized solar cell are increased to improve the light conversion conversion efficiency of the dye-sensitized solar cell.

이하에서는 이를 구체적으로 설명한다.This will be described in detail below.

본 발명은 하기 화학식 1과 같은 구조를 가지는 태양전지용 고체전해질에 관한 것이다.The present invention relates to a solid electrolyte for solar cells having a structure such as the following formula (1).

(화학식 1)(Formula 1)

Figure 112009076574068-PAT00001
Figure 112009076574068-PAT00001

(상기 식에서 R1 은 C2~C8의 직쇄 또는 분지쇄 알킬기, R2 는 C1~C8의 직쇄 또는 분지쇄 알킬기, R3는 C1, C2 또는 C3~C6의 직쇄 또는 분지쇄 알킬기이고, X 는 O, NH 기를 나타내며, a 및 b는 몰비를 나타내며 a+b=1이며, a는 0 일 수 있고, 이때 b는 1이다.)(Wherein R1 is a C2-C8 straight or branched alkyl group, R2 is C1-C8 straight or branched alkyl group, R3 is C1, C2 or C3-C6 straight or branched alkyl group, X is O, NH group Where a and b represent the molar ratio and a + b = 1, a may be 0, where b is 1.

상기 화학식 1의 물질의 예를 하기의 화학 Scheme 1을 이용하여 구체적으로 예를 들어서 설명하면 다음과 같다. 하기 화학 Scheme 2와 같이 Poly(ethylene oxide-co-epichlrohydrin)을 합성한 후, HTM(hole transfer material) 구조를 포함하는 화합물의 친핵성 치환체를 에피크롤로히드린의 염소와 친핵치환반응을 통하여 본 발명에서 원하는 HTM을 함유하는 새로운 고체전해질을 제공한다. Examples of the material of Chemical Formula 1 will be described in detail using the following Chemical Scheme 1 as an example. After synthesizing Poly (ethylene oxide- co- epichlrohydrin) as shown in Chemical Scheme 2, nucleophilic substituents of compounds containing HTM (hole transfer material) structures were observed through nucleophilic substitution with chlorine of epicrolohydrin. The invention provides a new solid electrolyte containing the desired HTM.

Figure 112009076574068-PAT00002
Figure 112009076574068-PAT00002

(Scheme 2)                                    (Scheme 2)

상기의 고분자 주사슬(Backbone)에 치환시키고자하는 HTM물질의 예는 하기 화학식 2에 구체적으로 기재하고 있으나, 이 분야에 사용하는 HTM이라면 제한되지 않는다.Examples of the HTM material to be substituted in the polymer backbone are described in the following Chemical Formula 2, but are not limited to the HTM used in this field.

Figure 112009076574068-PAT00003
Figure 112009076574068-PAT00003

Claims (3)

하기 화학식의 구조의 HTM을 고분자의 측쇄로 하는 염료감응형 태양전지용 고체전해질.A solid electrolyte for dye-sensitized solar cells using HTM having a structure of the following formula as a side chain of a polymer.
Figure 112009076574068-PAT00004
Figure 112009076574068-PAT00004
(상기 식에서 R1 은 C2~C8의 직쇄 또는 분지쇄 알킬기, R2 는 C1~C8의 직쇄 또는 분지쇄 알킬기, R3는 C1, C2 또는 C3~C6의 직쇄 또는 분지쇄 알킬기이고, X 는 O, NH 기를 나타내며, a 및 b는 몰비를 나타내며 a+b=1이며, a는 0 일 수 있고, 이때 b는 1이고, HTM은 홀이동물질을 의미한다.)(Wherein R1 is a C2-C8 straight or branched alkyl group, R2 is C1-C8 straight or branched alkyl group, R3 is C1, C2 or C3-C6 straight or branched alkyl group, X is O, NH group Where a and b represent molar ratios and a + b = 1, a can be 0, where b is 1 and HTM means hole transport material.)
상기 1항에 있어서 The method of claim 1 상기 R1 및 R2가 -CH2CH2- 이고,R3가 -CH2- 이며, X가 O인 태양전지용 고체전해질. R 1 and R 2 are —CH 2 CH 2 —, R 3 is —CH 2 — and X is O. 제 1항 또는 제 2항에 있어서, The method according to claim 1 or 2, 상기 HTM은 하기 화학식의 화합물로부터 얻어지는 것인 태양전지용 고체전해질.       The HTM is a solid electrolyte for a solar cell is obtained from a compound of the following formula.
Figure 112009076574068-PAT00005
Figure 112009076574068-PAT00005
KR1020090123008A 2009-12-11 2009-12-11 Solid State Polymeric Electrolytes Containing Hole Transporting Moieties for Low-Cost Dye-Sensitized Solar Cell Applications KR101596918B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090123008A KR101596918B1 (en) 2009-12-11 2009-12-11 Solid State Polymeric Electrolytes Containing Hole Transporting Moieties for Low-Cost Dye-Sensitized Solar Cell Applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090123008A KR101596918B1 (en) 2009-12-11 2009-12-11 Solid State Polymeric Electrolytes Containing Hole Transporting Moieties for Low-Cost Dye-Sensitized Solar Cell Applications

Publications (2)

Publication Number Publication Date
KR20110066382A true KR20110066382A (en) 2011-06-17
KR101596918B1 KR101596918B1 (en) 2016-02-23

Family

ID=44399223

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090123008A KR101596918B1 (en) 2009-12-11 2009-12-11 Solid State Polymeric Electrolytes Containing Hole Transporting Moieties for Low-Cost Dye-Sensitized Solar Cell Applications

Country Status (1)

Country Link
KR (1) KR101596918B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013126537A1 (en) * 2012-02-21 2013-08-29 Northwestern University Liquid electrolyte-free, solid-state solar cells with inorganic hole transport materials
US9966198B2 (en) 2014-04-24 2018-05-08 Northwestern University Solar cells with perovskite-based light sensitization layers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010114262A (en) * 1999-05-12 2001-12-31 보지트,로버트,존 Organic semiconductors based on statistical copolymers
KR20030020856A (en) * 2001-09-04 2003-03-10 소니 인터내셔널(유로파) 게엠베하 Device having a solid conjugated semiconductor and method for preparing the same
KR20050053687A (en) * 2002-09-25 2005-06-08 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Organic electroluminescent compositions
JP2005285381A (en) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd Organic electroluminescence element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010114262A (en) * 1999-05-12 2001-12-31 보지트,로버트,존 Organic semiconductors based on statistical copolymers
KR20030020856A (en) * 2001-09-04 2003-03-10 소니 인터내셔널(유로파) 게엠베하 Device having a solid conjugated semiconductor and method for preparing the same
KR20050053687A (en) * 2002-09-25 2005-06-08 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Organic electroluminescent compositions
JP2005285381A (en) * 2004-03-26 2005-10-13 Fuji Photo Film Co Ltd Organic electroluminescence element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013126537A1 (en) * 2012-02-21 2013-08-29 Northwestern University Liquid electrolyte-free, solid-state solar cells with inorganic hole transport materials
US9181475B2 (en) 2012-02-21 2015-11-10 Northwestern University Photoluminescent compounds
US9803136B2 (en) 2012-02-21 2017-10-31 Northwestern University Liquid electrolyte-free, solid-state solar cells with inorganic hole transport materials
US9966198B2 (en) 2014-04-24 2018-05-08 Northwestern University Solar cells with perovskite-based light sensitization layers

Also Published As

Publication number Publication date
KR101596918B1 (en) 2016-02-23

Similar Documents

Publication Publication Date Title
Mozaffari et al. An overview of the Challenges in the commercialization of dye sensitized solar cells
Mehmood et al. Effect of temperature on the photovoltaic performance and stability of solid-state dye-sensitized solar cells: A review
Fagiolari et al. Poly (3, 4‐ethylenedioxythiophene) in dye‐sensitized solar cells: toward solid‐state and platinum‐free photovoltaics
Su’ait et al. Review on polymer electrolyte in dye-sensitized solar cells (DSSCs)
Singh et al. Present status of solid state photoelectrochemical solar cells and dye sensitized solar cells using PEO-based polymer electrolytes
Bella Polymer electrolytes and perovskites: lights and shadows in photovoltaic devices
Lee et al. Economical low-light photovoltaics by using the Pt-free dye-sensitized solar cell with graphene dot/PEDOT: PSS counter electrodes
Li et al. Review of recent progress in solid-state dye-sensitized solar cells
Mahmood Recent research progress on quasi-solid-state electrolytes for dye-sensitized solar cells
KR101166018B1 (en) Method for modifying surface of a counter electrode and surface-modified counter electrode
Hsu et al. Effects of environmentally benign solvents in the agarose gel electrolytes on dye-sensitized solar cells
Jiao et al. Development of rapid curing SiO2 aerogel composite-based quasi-solid-state dye-sensitized solar cells through screen-printing technology
Mahalingam et al. Bio and non‐bio materials‐based quasi‐solid state electrolytes in DSSC: A review
Arsyad et al. Revealing the limiting factors that are responsible for the working performance of quasi-solid state DSSCs using an ionic liquid and organosiloxane-based polymer gel electrolyte
Kurokawa et al. Controlling the electrocatalytic activities of conducting polymer thin films toward suitability as cost-effective counter electrodes of dye-sensitized solar cells
KR101596918B1 (en) Solid State Polymeric Electrolytes Containing Hole Transporting Moieties for Low-Cost Dye-Sensitized Solar Cell Applications
Bashir et al. Hybrid organic polymer electrolytes for dye-sensitized solar cells
Lee et al. Solid-state ionic liquid based electrolytes for dye-sensitized solar cells
Nandi et al. Recent progress in graphene research for the solar cell application
Li et al. Application of poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate in polymer heterojunction solar cells
Zhang et al. Optimization of polymer electrolytes for quasi-solidstate dye-sensitized solar cells
Pavithra et al. Advantages of Polymer Electrolytes Towards Dye‐sensitized Solar Cells
Calisir et al. Polymer nanocomposites for dye-sensitized solar cells
Benabdellah et al. Improving Performance of Dye Sensitized Solar Cells Based On Composite Quasi Solid-State Electrolytes of Poly (ionic liquid)/Ionic liquid/TiO 2.
Li et al. New class of ionic liquids for dye-sensitized solar cells

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190211

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200106

Year of fee payment: 5