KR20110065347A - Apparatus and method for vehicle communication handover - Google Patents

Apparatus and method for vehicle communication handover Download PDF

Info

Publication number
KR20110065347A
KR20110065347A KR1020100120696A KR20100120696A KR20110065347A KR 20110065347 A KR20110065347 A KR 20110065347A KR 1020100120696 A KR1020100120696 A KR 1020100120696A KR 20100120696 A KR20100120696 A KR 20100120696A KR 20110065347 A KR20110065347 A KR 20110065347A
Authority
KR
South Korea
Prior art keywords
vehicle
rsu
handover
obu
information
Prior art date
Application number
KR1020100120696A
Other languages
Korean (ko)
Other versions
KR101732155B1 (en
Inventor
이상우
김민정
한경수
최현균
오현서
정종문
박용석
최명준
김민석
Original Assignee
한국전자통신연구원
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원, 연세대학교 산학협력단 filed Critical 한국전자통신연구원
Publication of KR20110065347A publication Critical patent/KR20110065347A/en
Application granted granted Critical
Publication of KR101732155B1 publication Critical patent/KR101732155B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

PURPOSE: An apparatus and a method for vehicle communication handover support are provided to embody a stable media access based on contention free with the access method of a WPCF(WAVE Point Coordination Function) channel in handover. CONSTITUTION: A first RSU(Roadside Unit)(100a) receives vehicle information from a first vehicle(200a) which newly enters into. The first RSU transfers a channel connection order to the first vehicle. The first RSU transfers handover information about the first vehicle through a WAVE handover controller(310) to a second RSU(100b). The second RSU receives the vehicle information from the first vehicle. The second RSU transfers the channel connection order to the first vehicle.

Description

차량통신 핸드오버 지원을 위한 장치 및 방법{APPARATUS AND METHOD FOR VEHICLE COMMUNICATION HANDOVER}Apparatus and method for supporting vehicle communication handover {APPARATUS AND METHOD FOR VEHICLE COMMUNICATION HANDOVER}

본 발명은 차량통신 핸드오버 지원을 위한 장치 및 방법에 관한 것으로, 특히 차량 환경용 무선 접속(Wireless Access For Vehicular Environment, WAVE)에서 차량과 노변의 끊김 없는 통신을 통해 Layer 2 MAC(Medium Access Control)에서의 핸드오버(handover) 기능을 제공하기 위한 장치 및 방법에 관한 것이다. 보다 구체적으로, 본 발명은 차량이라는 고속 이동체 환경에서 데이터를 끊임없이 주고 받을 수 있도록 하는 소프트 핸드오버와 최소의 지연 시간으로 하드 핸드오버 통신을 지원하는 시간 조정 및 채널 접속에 관한 것이다.The present invention relates to a device and a method for supporting a vehicle communication handover, and in particular, Layer 2 Medium Access Control (MAC) through seamless communication between a vehicle and a roadside in a wireless access for vehicular environment (WAVE). An apparatus and method for providing a handover function in. More specifically, the present invention relates to soft handover that enables the continuous transmission and reception of data in a high-speed vehicle environment such as a vehicle, and to time adjustment and channel access that support hard handover communication with minimal delay time.

지능형 교통 시스템(Intelligent Transportation System, ITS)의 개발은 현재의 교통 시스템에 효율적이고 안전한 교통 관리를 제공하는 중요한 역할을 하고 있다. 이러한 ITS의 차량 교통과 이동성은 통신 네트워크에 차량용 애드혹 네트워크(Vehicular Ad Hoc Network, VANET)의 발전을 가져왔다. VANET의 작동은 최대 시속 200km/h로 이동하는 차량들간 및 차량과 노변 인프라스트럭쳐 간의 통신을 위해 DSRC(Dedicated Short Range Communication) 대역 안에서 이루어지며, 미국은 5.9 GHz를 유럽과 일본은 5.8 GHz 대역의 DSRC 스펙트럼을 할당하였다. DSRC 대역 안에서 IEEE 802.11 무선 LAN 장치를 작동시키는 모드인 WAVE는 2004년 IEEE 802.11 표준 그룹에 의해 정의되었다. WAVE의 정의 및 개선은 IEEE 802.11 Task Group과 IEEE 1609 Working Group에 의해 진행되고 있고, 고속 이동 환경에서의 데이터 교환을 지원하기 위한 IEEE 802.11 MAC(Medium Access Control)과 PHY(Physical Layer)의 수정 판인 IEEE 802.11p를 정의 하였다. The development of the Intelligent Transportation System (ITS) plays an important role in providing efficient and safe traffic management to the current transportation system. The vehicle traffic and mobility of ITS has led to the development of vehicular ad hoc networks (VANETs) in communication networks. The operation of the VANET is within the Dedicated Short Range Communication (DSRC) band for communication between vehicles traveling at up to 200 km / h and between vehicles and roadside infrastructure, with DSRC in the 5.9 GHz band in the US and 5.8 GHz band in Europe and Japan. Spectrum was allocated. WAVE, a mode for operating IEEE 802.11 wireless LAN devices within the DSRC band, was defined by the IEEE 802.11 standards group in 2004. WAVE is defined and refined by the IEEE 802.11 Task Group and the IEEE 1609 Working Group, and is a revision of IEEE 802.11 Medium Access Control (MAC) and Physical Layer (PHY) to support data exchange in high-speed mobile environments. 802.11p was defined.

이러한 차량 환경은 고속 이동 특성 때문에 ITS의 연속적인 통신이 요구되어 왔다. 차량 통신 환경에서의 일반적인 장치들은 접속이 지연되는 것을 용납하지 않지 않으며, 높은 통신 신뢰도를 요구한다. 따라서 ITS 중 하나의 도로변 장치(Roadside Unit, 이하 "RSU"라고 함)로부터 차량용 단말기(On-board Unit, 이하 "OBU"라고 함)가 서비스를 받으며 다른 RSU의 통신영역으로 이동해 가는 경우, 연속적인 연결을 지원해 줄 수 있는 핸드오버(handover) 기술이 필요하다. 핸드오버 기술은 움직이는 이동체에 서비스 제공자가 끊김 없는 통신을 지원해주는 기술이며, 보다 빠른 통신을 위해 Layer 2 단계에서 접근점(Access Point, 이하 "AP"라고 함)과 스테이션(station) 간에 IEEE(Institute of Electrical and Electronics Engineers) 802.11 표준에 정의된 관리 프레임(Management Frame) 및 컨트롤 프레임(Control Frame) 등의 신호를 송수신하면서 이루어진다.This vehicle environment has been required for continuous communication of ITS due to the high speed of movement. Typical devices in a vehicular communication environment do not tolerate delayed connections and require high communication reliability. Therefore, when a vehicle terminal (On-board Unit, hereinafter referred to as "OBU") receives service from one roadside unit (hereinafter referred to as "RSU") of ITS and moves to the communication area of another RSU, There is a need for handover technology that can support connectivity. Handover technology is a technology that enables a service provider to seamlessly communicate with a moving mobile device.In order to achieve faster communication, an IEEE (Institute) is used between an access point (hereinafter referred to as an "AP") and a station at Layer 2 level for faster communication. of Electrical and Electronics Engineers) This is achieved by transmitting and receiving signals such as a management frame and a control frame defined in the 802.11 standard.

기존의 IEEE 802.11 표준에서 핸드오버는 스캐닝(scanning), 인증(authentication) 및 결합(association) 등의 단계를 거쳐 이루어지며 평균 252ms의 지연시간이 존재한다. In the existing IEEE 802.11 standard, handover is performed through scanning, authentication, and association, and there is an average delay time of 252ms.

IEEE 802.11p는 고속 이동체를 지원하기 위해 인증 및 결합 단계를 거치지 않고 데이터를 교환할 수 있도록 하며, 무선환경에서 원활한 데이터 교환을 위해 EDCA(Enhanced Distributed Channel Access)을 사용한다. EDCA는 데이터 교환의 QoS(Quality of Service)를 지원하기 위한 IEEE 802.11의 수정 버전인 IEEE 802.11e MAC(Medium Access Control) 표준으로 높은 우선권을 가진 데이터가 낮은 우선권을 가진 데이터보다 먼저 전송되도록 작동한다. 그러나 EDCA는 랜덤 백오프(Random Backoff) 메커니즘을 기반으로 한 CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance) 프로토콜을 사용하므로 사용자의 실제 전송시간의 예측을 어렵게 한다. 현재의 WAVE MAC에서 이러한 예측가능 하지 못한 지연은 지능형 교통 시스템(Intelligent Transport Systems) 장치들 간의 신뢰도 높은 통신을 보장하지 못하게 하는 문제점이 있다. 이 현상은 차량이 RSU 서비스 가능 영역인 끝에 가까워져서 다른 RSU에게 핸드오버를 수행해야 하는 경우, 예측하지 못한 지연 시간으로 인해 RSU와 차량 사이의 통신이 끊기는 문제를 발생 시킬 수 있다. IEEE 802.11p enables data exchange without authentication and combining steps to support high-speed mobiles, and uses Enhanced Distributed Channel Access (EDCA) for smooth data exchange in wireless environments. EDCA is an IEEE 802.11e Medium Access Control (MAC) standard that is a modification of IEEE 802.11 to support the Quality of Service (QoS) of data exchange, and operates so that high-priority data is transmitted before low-priority data. However, EDCA uses the Carrier Sense Multiple Access with Collision Avoidance (CSMA / CA) protocol based on a random backoff mechanism, making it difficult to predict the actual transmission time of the user. This unpredictable delay in current WAVE MACs does not guarantee reliable communication between Intelligent Transport Systems devices. This phenomenon may cause a problem that the communication between the RSU and the vehicle is lost due to an unexpected delay time when the vehicle is near the end of the RSU serviceable area and a handover is required to another RSU.

본 발명이 이루고자 하는 기술적 과제는 차량 통신 환경에서 차량과 노변의 끊김 없는 통신을 위한 핸드오버 기술을 제공하기 위한 장치 및 방법에 관한 것이다. An object of the present invention is to provide an apparatus and method for providing a handover technology for seamless communication between a vehicle and a roadside in a vehicle communication environment.

상기한 목적을 달성하기 위한 본 발명의 특징에 따른 복수의 노변 기지국을 포함하는 지능형 교통 시스템에서 차량의 핸드오버를 지원하는 방법에 있어서,In a method of supporting a handover of a vehicle in an intelligent transportation system including a plurality of roadside base station according to a feature of the present invention for achieving the above object,

상기 복수의 노변 기지국 중 제1 노변 기지국은 서비스 영역에 위치한 적어도 하나의 차량 중 새로 진입한 제1 차량으로부터 차량정보를 전달받는 단계, 상기제1 노변 기지국은 상기 차량정보에 따라 채널 접속 순서를 결정하여 상기 제1 차량에게 알리는 단계, 상기 제1 노변 기지국은 상기 제1 차량이 핸드오버를 요청하는 경우, WAVE 핸드오버 제어부(WAVE Handover Controller)를 통해 상기 제1 차량에 대한 핸드오버 정보를 상기 복수의 노변 기지국 중 상기 제1 차량이 진행하는 방향에 위치한 제2 노변 기지국으로 전달되도록 하는 단계, 상기 제2 노변 기지국은 서비스 영역에 진입한 상기 제1 차량으로부터 상기 차량정보를 전달받는 단계, 그리고 상기 제2 노변 기지국은 상기 차량정보에 따라 상기 채널 접속 순서를 할당하여 상기 제1 차량으로 알리는 단계를 포함한다.A first roadside base station among the plurality of roadside base stations receiving vehicle information from a newly entered first vehicle among at least one vehicle located in a service area, and the first roadside base station determines a channel access order according to the vehicle information; Informing the first vehicle, and when the first vehicle requests a handover, the first roadside base station transmits a plurality of handover information about the first vehicle through a WAVE handover controller. Transmitting the second roadside base station to a second roadside base station located in a direction in which the first vehicle travels, wherein the second roadside base station receives the vehicle information from the first vehicle entering the service area; and The second roadside base station allocates the channel access order to inform the first vehicle according to the vehicle information; Include.

본 발명의 실시예에 따르면 차량 통신 환경에서의 핸드오버 시 WPCF(WAVE Point Coordination Function) 채널의 접근 방법을 통하여 비경쟁 기반(Contention Free)으로 안정적인 매체 접속을 가능하게 할 수 있으며, 전용 핸드오버 컨트롤러의 도입을 통해 핸드오버 지원을 위한 시간을 예측하고 핸드오버를 받을 다음 RSU를 선정함으로써 스캐닝 지연시간을 줄여 연속적인 연결성을 제공할 수 있다.According to an embodiment of the present invention, it is possible to enable stable media access on a contention free basis through a WPCF (WAVE Point Coordination Function) channel access method in a handover in a vehicle communication environment. The introduction can predict the time for handover support and select the next RSU to receive the handover to reduce scanning latency and provide continuous connectivity.

또한, 본 발명의 실시예에 따르면 RSU가 지정한 WPCF 순서대로 전송을 수행하다가 전송할 패킷이 없으면 다음으로 큰 WPIFS(WAVE PIFS) 값가진 OBU가 자동적으로 전송을 수행하여 미리 예약된 순서로 전송을 수행함에 따라 전송 시간의 예측이 가능하여 채널 사용 효율성을 증가시킬 수 있으며, 안정적인 핸드오버 기술을 지원할 수 있다.In addition, according to an embodiment of the present invention, if there is no packet to be transmitted while performing the transmission in the WPCF order specified by the RSU, the OBU having the next largest WPIFS (WAVE PIFS) value automatically performs the transmission in a pre-scheduled order. Accordingly, the transmission time can be predicted to increase the efficiency of channel use and to support stable handover technology.

도 1은 본 발명의 실시예에 따른 차량통신 핸드오버 지원을 위한 차량 애드 혹 네트워크의 한 예를 나타내는 도면이다.
도 2는 본 발명의 실시예에 따른 차량통신 핸드오버 지원을 위한 WPCF 방식을 설명하기 위한 도면이다.
도 3은 본 발명의 실시예에 따른 차량통신 핸드오버 지원을 수행하는 순서를 나타내는 도면이다.
도 4는 본 발명의 실시예에 따른 RSU의 동작 순서를 나타내는 도면이다.
도 5는 본 발명의 실시예에 따른 RSU의 구성을 개략적으로 나타내는 도면이다.
도 6은 본 발명의 실시예에 따른 OBU의 동작 순서를 나타내는 도면이다.
도 7은 본 발명의 실시예에 따른 OBU의 구성을 개략적으로 나타내는 도면이다.
1 is a diagram illustrating an example of a vehicle ad hoc network for vehicle communication handover support according to an embodiment of the present invention.
2 is a diagram illustrating a WPCF scheme for supporting vehicle communication handover according to an embodiment of the present invention.
3 is a diagram illustrating a procedure of performing vehicle communication handover support according to an embodiment of the present invention.
4 is a diagram illustrating an operation sequence of an RSU according to an embodiment of the present invention.
5 is a diagram schematically illustrating a configuration of an RSU according to an embodiment of the present invention.
6 is a diagram illustrating an operation procedure of an OBU according to an embodiment of the present invention.
7 is a diagram schematically illustrating a configuration of an OBU according to an embodiment of the present invention.

아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and like reference numerals designate like parts throughout the specification.

명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding other components unless specifically stated otherwise.

도 1은 본 발명의 실시예에 따른 차량통신 핸드오버 지원을 위한 차량 애드 혹 네트워크의 한 예를 나타내는 도면이다. 도 2는 본 발명의 실시예에 따른 차량통신 핸드오버 지원을 위한 WPCF 방식을 설명하기 위한 도면이다.1 is a diagram illustrating an example of a vehicle ad hoc network for vehicle communication handover support according to an embodiment of the present invention. 2 is a diagram illustrating a WPCF scheme for supporting vehicle communication handover according to an embodiment of the present invention.

도 1 및 도 2를 참고하면, 본 발명의 실시예에 따른 차량통신 핸드오버 지원을 위한 차량 애드 혹 네트워크(Vehicular Ad-hoc Network, 이하 "VANET"이라고 함)에서의 지능형 교통 시스템(Intelligent Transport Systems)(10)은 노변 기지국(Roadside Unit, 이하 "RSU"라고 함)(100a-100e), 차량(200a-200g)에 장착된 차량 단말기(On-board Unit, 이하 "OBU"라고 함)(210a-210g) 및 분배 시스템(Distribution System, 이하 "DS"라고 함)(300)을 포함한다. 1 and 2, an intelligent transport system in a vehicular ad-hoc network (hereinafter referred to as "VANET") for supporting vehicle communication handover according to an embodiment of the present invention. 10 is a roadside base station (Roadside Unit (hereinafter referred to as "RSU")) (100a-100e), the vehicle terminal (On-board Unit (hereinafter referred to as "OBU") mounted on the vehicle (200a-200g) (210a) -210g) and a distribution system (hereinafter referred to as "DS") 300.

RSU(100a-100e)는 전방향성 또는 방향성 안테나(Directional Antenna)를 포함하며 지상에 고정된 시설에 장착된다. RSU(100a-100e)는 차량 단말기와 무선신호를 이용하여 양방향 통신을 수행한다. 이러한 RSU(100a-100e)에서의 WAVE Handover Scheme은 WPCF(WAVE Point Coordination Function)를 사용하여 보다 효율적인 무선 채널 접근(Access) 방법을 제공한다. The RSU 100a-100e includes an omni-directional or directional antenna and is mounted in a ground fixed facility. The RSU 100a-100e performs bidirectional communication with the vehicle terminal by using a radio signal. The WAVE Handover Scheme in the RSU 100a-100e provides a more efficient wireless channel access method using a WAVE Point Coordination Function (WPCF).

여기서 WPCF는 SCH(Service Channel) 시간간격 안에서 길이가 변화하는 슈퍼프레임(superframe)(400)을 할당한다. 또한 WPCF는 CFP(Contention Free Period)(410)안에서 길이가 다른 여러 개의 WPIFS(WAVE PIFS)를 각 OBU에게 할당하여 채널 접속 순서를 결정한다. 슈퍼프레임은 CFP-CP(Contention Period)로 구성되고 높은 우선순위와 실시간 IP 기반 데이터들은 CFP 안에서 전송이 이루어진다. 특히 CFP는 핸드오버 메시지 교환에 큰 역할을 수행한다. 우선순위가 낮은 일반적인 교통정보 등은 EDCA(Enhanced Distributed Channel Access) 프로토콜을 이용하는 CP 안에서 전송된다. 서로 다른 크기의 WPIFS를 각 OBU에게 할당하기 위해 RSU는 IEEE 802.11p에 정의되어 있는 타이밍 광고(Timing Advertisement) 메시지의 Vendor Specific 필드(Field)[표 1참고] 안에 슈퍼프레임 기간(Superframe Duration), CFP 최대 기간(CFP Max Duration) 및 네트워크에 참여하는 OBU들의 맥주소 시퀀스(MAC Address Sequence)등의 정보를 포함 시켜 브로드캐스팅(Broadcast) 방식으로 전달한다. 슈퍼프레임 기간과 CFP 최대 기간의 값은 서비스가 요구하는 처리량(throughput)을 RSU가 계산하여 결정한다. OBU의 맥주소(MAC Address) 순서는 CFP안에서 RSU가 서비스를 받는 순서와 동일하다. RSU는 타이밍 광고 프레임에 대한 응답으로 OBU로부터 차량의 네비게이션(Navigation) 정보를 수신하고 이를 토대로 RSU의 서비스 영역, 즉 통신영역 안에서 OBU의 상대적인 위치에 근거하여 결정한다. 예를 들어, RSU(100a)의 영역에서 인접한 RSU(100b)의 영역으로 진입하는 경계에 있는 OBU는 맥주소 시퀀스로 보았을 때 제일 첫 번째 위치에 할당된다. 지금 막 RSU의 영역에 들어온 OBU는 마지막 위치를 할당받는다.Here, the WPCF allocates a superframe 400 whose length varies within a SCH time interval. In addition, the WPCF determines a channel access order by allocating several WPIFSs (WAVE PIFS) having different lengths to each OBU in a CFP (Contention Free Period) 410. Superframe consists of Contention Period (CFP-CP), and high priority and real-time IP-based data are transmitted in CFP. In particular, CFP plays a large role in handover message exchange. Low priority traffic information is transmitted in the CP using the Enhanced Distributed Channel Access (EDCA) protocol. In order to assign different sized WPIFS to each OBU, the RSU uses the Superframe Duration, CFP in the Vendor Specific field of the Timing Advertisement message defined in IEEE 802.11p. Information including the maximum duration (CFP Max Duration) and OBU participating in the network, including the MAC address sequence (MAC Address Sequence) is included in the broadcast (broadcasting) method. The value of the superframe duration and the maximum CFP duration is determined by the RSU calculating the throughput required by the service. The order of OBU's MAC Addresses is the same as the order in which the RSU is serviced within the CFP. The RSU receives navigation information of the vehicle from the OBU in response to the timing advertisement frame, and determines the RSU based on the relative position of the OBU in the service area of the RSU, that is, the communication area. For example, an OBU at the boundary entering the region of the adjacent RSU 100b from the region of the RSU 100a is assigned to the first position when viewed in the beer brewing sequence. OBUs that just entered the RSU's area are assigned the last location.

OBU(210a-210g)는 RSU로부터 타이밍 광고 메시지가 수신되면 자신의 채널접속 순서를 할당 받기 위해 슈퍼프레임에서의 CP 구간이나 CCH(Control Channel) 구간에서 차량정보를 포함하는 메시지를 RSU에게 전송하고, 슈퍼프레임구간의 시작인 CFP 구간이 시작될 때 NAV(Network Allocation Vector)를 설정하여 CFP 최대 기간 동안 채널 접속을 하지 않는다. 이때, 타이밍 광고 메시지의 맥주소 시퀀스필드 안에 자신의 맥 주소가 존재하면 CFP 구간 안에서 채널에 접속하여 데이터를 교환한다. OBU(210a-210g)는 채널에 접속하기 까지 기다리는 시간인 자신의 WPIFS[N] 시간을 설정한다. 여기서, N은 Vendor Specific 필드)[표 1참고]의 맥주소 시퀀스안에서의 맥 주소가 나타나는 순서를 의미하는 번호이다. WPIFS[N]은 {SIFS + (N x Tslot)}으로 설정된다. 여기서, Tslot은 IEEE 802.11p에서 사용하는 슬롯타임(Slot Time)이다. SIFS(Short Interframe Space)는 가장 짧은 인터프레임 스페이스(Interframe Space)로 가장 먼저 채널에 접속할 수 있는 우선권을 가진 접속 지연시간이다. 따라서 자신의 MAC 주소가 맥주소 시퀀스에서 가장 먼저 위치한 OBU는 가장 작은 WPIFS[N] 값을 가지게 되고 CFP 구간 동안 가장 먼저 채널에 접속하여 데이터를 주고받을 수 있는 우선권을 가진다. 즉, 가장 작은 WPIFS[N] 값을 가진 OBU가 제일 처음으로 데이터를 전송하고, 전송이 완료되면 WPIFS[N]을 할당 받은 남아있는 OBU들은 채널에 접속하여 전송하기 위해 채널을 감지하고 있다가 그 다음으로 작은 WPIFS[N] 값을 가진 OBU가 데이터를 전송하게 된다. 이러한 패턴은 WPIFS[N]을 할당받은 모든 OBU가 데이터를 전송하게 될 때까지 계속된다. 모든 데이터의 전송이 완료되면, 해당 RSU는 CF-End 프레임을 전송하여 CFP 구간을 종결하고 현재의 슈퍼프레임 구간 안에서 남은 시간만큼 EDCA 프로토콜을 이용한 채널 접속이 이루어진다. 이러한 SCH(Service Channel)에서 슈퍼프레임의 CFP 구간 설정 및 채널 접속 순서 할당을 통해 효과적이고 빠른 핸드오버 과정을 CFP 구간에서 수행할 수 있다.When the OBU 210a-210g receives a timing advertisement message from the RSU, the OBU 210a transmits a message including vehicle information to the RSU in a CP section or a CCH (Control Channel) section in a superframe in order to allocate its channel access order. When the CFP section, which is the start of the superframe section, is started, the NAV (Network Allocation Vector) is set to prevent channel access for the maximum CFP period. At this time, if its MAC address is present in the beer address sequence field of the timing advertisement message, it accesses a channel within the CFP section and exchanges data. The OBUs 210a-210g set their WPIFS [N] time, which is the time they wait to access the channel. Here, N is a number indicating the order in which the MAC address appears in the beer address sequence of the Vendor Specific field (see Table 1). WPIFS [N] is set to {SIFS + (N x T slot )}. Here, T slot is a slot time used in IEEE 802.11p. Short Interframe Space (SIFS) is the shortest Interframe Space, which is the access delay with priority to connect to the channel first. Therefore, the OBU where its MAC address is the first in the beer station sequence has the smallest WPIFS [N] value and has the priority to access and send data to the channel first during the CFP period. That is, the OBU with the smallest WPIFS [N] value transmits data for the first time. When the transmission is completed, the remaining OBUs that have been assigned WPIFS [N] detect the channel to access and transmit the channel. Next, an OBU with a small WPIFS [N] value sends the data. This pattern continues until all OBUs that have been assigned WPIFS [N] will transmit data. When all data transmission is completed, the RSU transmits a CF-End frame to terminate the CFP section and access the channel using the EDCA protocol for the remaining time in the current superframe section. In the SCH (Service Channel), an effective and fast handover process may be performed in the CFP section through the CFP section setting and the channel access order assignment of the superframe.

RSU의 폴링 리스트(polling list) 안에 있는 OBU의 개수가 증가할수록 낮은 우선 순위의 OBU에 배정되는 WPIFS[N]의 값은 증가하고, 결과적으로 데이터 프레임의 전송 간에 큰 시간 낭비가 발생할 것이다. 이를 해결하기 위하여 모든 OBU는 RSU로부터의 ACK 프레임을 수신하면 동시에 배정된 WPIFS 값을 동일한 크기만큼 감소시키는 방식을 사용한다. 이에 따라 모든 OBU는 애초에 배정된 전송 순서를 그대로 유지하게 된다.As the number of OBUs in the polling list of the RSU increases, the value of WPIFS [N] assigned to the lower priority OBU increases, resulting in a large waste of time between transmissions of data frames. In order to solve this problem, all OBUs use a method of reducing the assigned WPIFS value by the same size when receiving an ACK frame from the RSU. As a result, all OBUs maintain the original transmission order.

구체적으로, WPIFS[N]={SIFS+(N×Tslot)}에 의하여 각 OBU는 각각 슬롯 타임만큼 다른 값들을 배정받는데, 데이터 프레임의 마지막 프래그먼트에 대한 ACK 프레임 수신 시, 배정된 WPIFS 값에서 Tslot만큼 감소시키는 것이다. RSU(100a-100e)가 지정한 WPCF 순서대로 데이터의 전송을 수행하다가 만일 한 시스템이 전송할 프레임이 없으면, 해당 시스템은 더 이상 데이터를 전송하지 않는다. 그러면 다음으로 큰 WPIFS 값을 배정받은 시스템이 자동적으로 데이터를 전송하게 된다. 이 경우, 한 개의 OBU의 전송을 건너뛰었기 때문에, RSU가 마지막 프래그먼트에 대한 ACK 프레임을 전송하면, 이를 수신한 OBU는 현재의 WPIFS 값에서 두 개의 Tslot만큼을 감소시킨다. 표준 상에서 정의된 ACK 프레임에는 목적 노드의 MAC 주소 및 ID에 대한 정보와 마지막 프래그먼트임을 알리는 필드가 정의되어 있으므로 위의 과정은 ACK 프레임 포맷에 대한 별도의 수정 없이 처리될 수 있을 것이다. 이 같은 방식으로 기존에 배정된 우선 순위를 그대로 유지하면서 낭비되는 시간을 최소화할 수 있다.Specifically, each OBU is assigned different values by slot time according to WPIFS [N] = {SIFS + (N × T slot )}, and when receiving an ACK frame for the last fragment of the data frame, the T at the assigned WPIFS value is specified. to decrease by slot . While the data is transmitted in the WPCF order designated by the RSU 100a-100e, if a system does not have a frame to transmit, the system no longer transmits the data. The system with the next highest WPIFS value will then automatically transfer the data. In this case, since the transmission of one OBU is skipped, when the RSU transmits an ACK frame for the last fragment, the received OBU decreases by two T slots in the current WPIFS value. Since the ACK frame defined in the standard defines the MAC address and ID of the target node and a field indicating the last fragment, the above process may be processed without additional modification to the ACK frame format. In this way, you can minimize wasted time while preserving previously assigned priorities.

이와 같이, 본 발명의 실시예에 따르면, 차량통신 핸드오버 지원을 위해 미리 예약된 순서로 데이터를 전송함에 따라 전송시간이 예측 가능하며 CFP 구간 동안 데이터를 전송하지 못하는 경우가 발생되지 않으므로 안정적으로 데이터를 송수신할 수 있으며, 그에 따라 안정적인 핸드오버 기술을 제공할 수 있다. As described above, according to an embodiment of the present invention, the transmission time is predictable as the data is transmitted in a pre-scheduled order for vehicle communication handover support, and the data may not be transmitted during the CFP period, thereby stably providing data. It can transmit and receive, and thus can provide a stable handover technology.

DS(300)는 RSU들간의 핸드오버 프로세스를 제어하는 WAVE 핸드오버 제어부 (WAVE Handover Controller, 이하 "WHC"라고 함)(310)를 포함한다. The DS 300 includes a WAVE Handover Controller (WAVE Handover Controller) 310 which controls the handover process between RSUs.

이러한 VANET 환경에서 RSU(100a)의 서비스 영역은 시작위치(L11)부터 종료위치(L12)까지를 포함하는 (A+B)구간이고, RSU(100b)의 서비스 영역은 시작위치(L21)부터 종료위치(L22)까지를 포함하는 (B+C)구간이며, 차량(200a-200g) 중 핸드오버를 지원받는 차량은 좌측에서 우측방향으로 진행하는 차량(200a)인 것으로 가정한다. 그리고, 차량(200a)이 RSU(100a)의 서비스 영역의 시작위치(L11)로 처음 진입할 때의 시간은 t11이고, 차량(200a)이 처음 RSU(100b)와 통신할 수 있는 시작위치(L21)에 진입하는 시간은 t21이며, 차량(200a)이 각 서비스 영역의 종료위치(L12, L22)에 진입하는 시간은 각각 t12 및 t22인 것으로 가정한다. 차량(200a)이 RSU(100a)의 통신영역에 들어 선 후 WAVE 핸드오버 프로세스를 통해 차량통신 핸드오버 지원을 수행하는 과정에 대하여 이하 도 3 내지 도 7을 참조하여 구체적으로 설명한다. In such a VANET environment, the service area of the RSU 100a is an (A + B) section including the start position (L 11 ) to the end position (L 12 ), and the service area of the RSU 100b is the start position (L 21). It is assumed that the vehicle is a (B + C) section including the end position (L 22 ), and the vehicle 200a-200g supports the handover of the vehicle 200a. Then, the time when the vehicle 200a first enters the start position L 11 of the service area of the RSU 100a is t 11 , and the start position at which the vehicle 200a can communicate with the RSU 100b for the first time. It is assumed that the time for entering the L 21 is t 21, and the time for the vehicle 200a to enter the end positions L 12 and L 22 of each service area is t 12 and t 22 , respectively. A process of performing vehicle communication handover support through the WAVE handover process after entering the communication area of the RSU 100a by the vehicle 200a will be described in detail with reference to FIGS. 3 to 7.

도 3은 본 발명의 실시예에 따른 차량통신 핸드오버 지원을 수행하는 순서를 나타내는 도면이다. 3 is a diagram illustrating a procedure of performing vehicle communication handover support according to an embodiment of the present invention.

도 1 및 도 3을 참고하면, 본 발명의 실시예에 따른 VANET 환경에서 소프트 핸드오버(Soft Handover)가 가능한 경우, RSU(100a)와 RSU(100b)의 서비스 영역이 겹치는 B구간이 있으며 이 때에는 시간(t12)이 시간(t21)보다 큰 경우이다. 반면, 하 드 핸드오버(Hard Handover)는 RSU(100a)와 RSU(100b)의 서비스 영역이 겹치는 B구간이 없는 경우이며 이 때에는 시간(t12 )이 시간(t21)보다 작거나 같은 경우이다.1 and 3, when soft handover is possible in a VANET environment according to an embodiment of the present invention, there is a section B in which service areas of the RSU 100a and the RSU 100b overlap. This is the case when time t 12 is greater than time t 21 . On the other hand, the hard handover is a case where there is no section B where the service areas of the RSU 100a and the RSU 100b overlap, and at this time, t 12 ) Is less than or equal to time t 21 .

소프트 핸드오버(Soft Handover)의 경우에는 이동하는 차량(200a)의 OBU(210a)가 RSU(100a)의 서비스 영역을 벗어나기 전에 RSU(100b)와 통신을 수행하여 지속적인 서비스를 제공받을 수 있으므로 핸드오버가 이루어져도 끊기지 않고 통신을 계속 지원받을 수 있다. 반면, 하드 핸드오버(Hard Handover)는 RSU(100a)와 RSU(100b)의 서비스 영역이 겹치는 구간이 없는 경우이므로 (t12-t21)사이의 시간까지는 통신을 수행하지 못하지만, 본 발명의 실시예에 따른 차량통신 핸드오버 지원방법을 이용하는 경우 미리 핸드오버에 대한 준비를 수행할 수 있으므로 시간(t21 )이 지나자마자 바로 RSU(100b)와 연결되어 지속 되던 통신 링크를 최단 시간에 복구할 수 있다. In the case of soft handover, since the OBU 210a of the moving vehicle 200a communicates with the RSU 100b to receive continuous service before leaving the service area of the RSU 100a, the handover is performed. Can continue to support communication without disconnection. On the other hand, the hard handover (Hard Handover) is a case where the service area of the RSU (100a) and the RSU (100b) does not overlap, so communication is not performed until the time between (t 12- t 21 ), but the implementation of the present invention When using the vehicle communication handover support method according to the example, it is possible to prepare for the handover in advance, so as soon as the time t 21 passes, the communication link that was connected to the RSU 100b and continued can be restored in the shortest time. have.

구체적으로, RSU(100a)는 타이밍 광고 메시지(Timing Advertisement Message, 이하 "TA 메시지"라고 함)를 자신의 서비스 영역에 위치한 차량(200a-200b)의 각 OBU(210a-210b)로 브로드캐스팅 방식으로 전송한다(S300). 즉, 맥계층에서 생성되는 TA 메시지는 CFP 또는 CCH 구간에서 서비스 영역 안에 있는 모든 OBU들을 시스템 시간(System Time)으로 동기화 시키고, RSU(100a)가 제공하는 서비스들을 알리기 위해 브로드캐스팅 방식으로 전달된다. 여기서, TA 메시지에는 사용 가능한 서비스의 정보를 포함하고 있는 상위 계층에서 생성된 WSA(WAVE Service Advertisement)가 포함되며, 슈퍼프레임, CFP 최대 기간 및 맥주소 시퀀스가 정의된 Vendor Specific 필드가 포함되어 있으며 TA 메시지의 한 예는 표 1과 같다.Specifically, the RSU 100a broadcasts a timing advertisement message (hereinafter referred to as a "TA message") to each OBU 210a-210b of the vehicles 200a-200b located in its service area. It transmits (S300). That is, the TA message generated in the MAC layer is transmitted in a broadcasting manner to synchronize all OBUs in a service area in a system time in a CFP or CCH interval to a system time, and inform the services provided by the RSU 100a. Here, the TA message includes a WAVE Service Advertisement (WSA) generated from a higher layer containing information of available services, and includes a Vendor Specific field that defines a superframe, a CFP maximum duration, and a beer station sequence. An example of the message is shown in Table 1.

Figure pat00001
Figure pat00001

차량(200a-200b) 중 차량(200a)이 RSU(100a)의 서비스 영역으로 처음 진입하는 경우, OBU(210a)는 TA 메시지가 수신되면 RSU(100a)의 서비스를 제공받을 지의 여부를 결정한다. 구체적으로 OBU(210a)는 RSU(100a)에서 제공하는 서비스를 제공받기로 결정한 경우, WAVE PCF 요청 메시지를 RSU(100a)로 전달한다(S301). 이때, WAVE PCF 요청 메시지의 한 예는 표2와 같다. WAVE PCF 요청 메시지에는 CFP 구간에서 데이터 전송을 위한 채널 접속 순서를 RSU(100a)에게 요청하는 내용과 RSU(100a)가 수정된 TA 프레임을 생성하여 전송시키게 하는 내용이 포함된다. 그리고 WAVE PCF 요청 메시지는 단지 TA 메시지 안에 있는 WSA 메시지의 수신을 인지했다는 내용뿐만 아니라 차량(200a)의 네비게이션 정보(예를 들어 속도, 가속도, 진행방향, 현위치 및 크루즈(Cruise) 제어모드 등) 등의 내용이 포함된다. RSU(100a)는 이러한 정보를 통해 차량(200a)이 자신의 서비스 영역 안에서 얼마나 오래 머무르게 될 것인가 예측한다. 이러한 시간의 추정은 차량(200a)의 현재 상태에 대한 정보뿐만 아니라 이전에 RSU(100a)의 서비스 영역을 지나간 차량들의 항법 정보 프로파일을 통합하여 이루어질 수 있으며, 추정된 시간 정보는 빠른 하드 핸드오버의 스위칭 제어에 이용된다.When the vehicle 200a first enters the service area of the RSU 100a among the vehicles 200a-200b, the OBU 210a determines whether to receive the service of the RSU 100a when a TA message is received. In detail, when the OBU 210a determines to receive the service provided by the RSU 100a, the OBU 210a transmits a WAVE PCF request message to the RSU 100a (S301). At this time, an example of the WAVE PCF request message is shown in Table 2. The WAVE PCF request message includes a request for the RSU 100a to request a channel access order for data transmission in the CFP section, and a request for the RSU 100a to generate and transmit a modified TA frame. And the WAVE PCF request message not only acknowledges the receipt of the WSA message in the TA message, but also the navigation information of the vehicle 200a (e.g., speed, acceleration, direction of travel, current position and cruise control mode). And the like. Through this information, the RSU 100a predicts how long the vehicle 200a will stay in its service area. This estimation of time can be accomplished by integrating the navigation information profile of the vehicles that have previously passed the service area of the RSU 100a as well as information on the current state of the vehicle 200a, and the estimated time information can be used for fast hard handover. Used for switching control.

Figure pat00002
Figure pat00002

RSU(100a)는 WAVE PCF 요청 메시지가 수신되면, WAVE PCF 요청 메시지에 포함된 OBU(210a)에 대한 정보를 이용하여 수정된 타이밍 광고 메시지(Modified Timing Advertisement Message, 이하 "MTA 메시지"라고 함)를 생성하고, 차량(200a)의 OBU(210a)로 브로드캐스팅 방식으로 전송한다(S302). 구체적으로, RSU(100a)는 WAVE PCF 요청 메시지에 포함된 정보를 이용해서 TA 메시지의 맥주소 시퀀스 필드에 자신의 영역에 진입한 차량들의 OBU의 맥(MAC)주소를 포함하여 순서를 정하고, 이미 저장된 맥주소들의 순서를 재배열하여 MTA 메시지를 생성한다. 그리고, RSU(100a)는 MTA 메시지를 자신의 서비스 영역 안의 다른 OBU들에게 알려서 해당 OBU와 RSU(100b)가 서비스를 지속적으로 수행하여 데이터를 교환하도록 한다.When the WAVE PCF request message is received, the RSU 100a sends a modified timing advertisement message (hereinafter referred to as an "MTA message") by using information about the OBU 210a included in the WAVE PCF request message. It generates and transmits to the OBU 210a of the vehicle 200a in a broadcasting manner (S302). Specifically, the RSU 100a uses the information included in the WAVE PCF request message to determine the order by including the MAC address of the OBU of the vehicles entering the region in the beer address sequence field of the TA message. Rearrange the order of the stored beers to generate the MTA message. The RSU 100a notifies other OBUs in its service area to the MTA message so that the corresponding OBU and the RSU 100b continuously perform a service to exchange data.

OBU(210a)는 MTA 메시지를 수신한 후에, 데이터 교환을 위한 통신 링크를 설정하고 RSU(100a)와 WPCF 방식으로 CF 구간에서 통신을 수행하여 RSU(100a)과 데이터를 송수신한다(S303). 본 발명의 실시예에 따른 MTA 메시지에는 자신의 서비스 영역이 끝나는 종료위치(L12)를 알려주는 정보가 포함되며, RSU(100b)의 서비스 영역에 대한 정보가 미리 수신된 경우 RSU(100b)의 서비스 영역의 시작위치(L21)에 대한 정보도 포함된다. 그리고, MTA 메시지에는 WPCF방식을 사용하는 장치들이 하나의 슈퍼프레임 내에서 사용 가능한 최대전송길이(Maximum Transfer Unit)를 모든 OBU 를 대상으로 하거나 또는 각 OBU 별로 지정한 정보가 포함된다. After receiving the MTA message, the OBU 210a establishes a communication link for data exchange and communicates with the RSU 100a in a CF section in a WPCF manner to transmit and receive data with the RSU 100a (S303). The MTA message according to the embodiment of the present invention includes information indicating an end position (L 12 ) at which its own service area ends. When the information on the service area of the RSU 100b is received in advance, Information on the start position L 21 of the service area is also included. In addition, the MTA message includes information that the WPCF-based devices use for all OBUs or specify a maximum transfer unit that can be used in one superframe.

구체적으로, OBU(210a)는 RSU(100b)의 서비스 영역에 진입하기 전에 RSU(100a)로부터 예측된 시간 정보를 제공받으며, 예측된 시간 정보를 이용하여 끊김 없는 통신을 위한 핸드오버를 지원 받는다. RSU(100a)의 서비스 영역 중에서 RSU(100b)의 서비스 영역이 시작되는 시작위치(L21)에 OBU(210a)가 가까워 질수록 RSU(100a)은 OBU(210a)에게 전송 우선 순위가 높은 작은 WPIFS값을 배정하여 OBU(210a)의 서비스 영역이 끝나는 B구간에 가까운 OBU에게 슈퍼프레임 내에서 먼저 데이터를 전송할 기회를 준다. 그러면, RSU(100a)의 서비스 영역이 끝나는 B 구간에 가까운 OBU(210a)는 RSU(100a)로부터 가장 짧은 PIFS 시간을 할당 받는다. 따라서, OBU(210a)는 슈퍼프레임의 CFP 구간에서 가장 빠르게 채널에 접속할 수 있으며, RSU(100a)의 서비스 영역을 떠나기 전에 가장 안정적으로 데이터 전송을 마칠 수 있다.In detail, the OBU 210a receives the estimated time information from the RSU 100a before entering the service area of the RSU 100b, and supports the handover for seamless communication using the predicted time information. As the OBU 210a approaches the start position L 21 at which the service area of the RSU 100b starts, among the service areas of the RSU 100a, the RSU 100a transmits a small WPIFS to the OBU 210a. By assigning a value, an OBU close to section B where the service area of the OBU 210a ends is given an opportunity to first transmit data within a superframe. Then, the OBU 210a near the section B where the service area of the RSU 100a ends is allocated the shortest PIFS time from the RSU 100a. Accordingly, the OBU 210a may access the channel fastest in the CFP section of the superframe, and may most stably transmit data before leaving the service area of the RSU 100a.

OBU(210a)는 WAVE 핸드오버 요청 메시지(WAVE Handover Request)를 RSU(100a)에게 전달하며, WAVE 핸드오버 요청 메시지의 한 예는 표 3과 같다(S304). 구체적으로, OBU(210a)는 RSU(100a)의 서비스 영역의 종료위치(L12)와 RSU(100b)의 서비스 영역의 시작위치(L21)를 MTA 메시지에 의해 이미 인지하고 있으므로, 차량(200a)이 RSU(100b)의 서비스 영역의 시작위치(L21)로 진입하기 전에 WAVE 핸드오버 요청 메시지를 RSU(100a)에게 전달한다. 이를 통해 OBU(210a)는 차량(200a)이 RSU(100a)의 서비스 영역을 벗어날 것임을 인지시키며, WCH(310)와 RSU(100a)에 인접한 RSU들이 핸드오버를 위한 준비를 시작하게 한다.The OBU 210a transmits a WAVE Handover Request message to the RSU 100a. An example of the WAVE Handover Request message is shown in Table 3 (S304). Specifically, since the OBU 210a has already recognized the end position L 12 of the service area of the RSU 100a and the start position L 21 of the service area of the RSU 100b by the MTA message, the vehicle 200a ) Before passing into the start position L 21 of the service area of the RSU 100b, the WAVE handover request message is transmitted to the RSU 100a. Through this, the OBU 210a recognizes that the vehicle 200a will be out of the service area of the RSU 100a and causes the RCHs adjacent to the WCH 310 and the RSU 100a to start preparation for handover.

Figure pat00003
Figure pat00003

RSU(100a)는 WAVE 핸드오버 요청 메시지에 포함된 OBU(210a)에 대한 핸드오버 정보를 DS(300)의 WHC(310)로 전달한다(S305). 만일 OBU(210a)가 핸드오버가 일어날 때 RSU(100a)와 데이터를 송수신하고 있는 중인 경우, RSU(100a)은 연속적인 연결을 위해 핸드오버 정보를 WHC(310)로 전달한다. 이때, 핸드오버 정보에는 OBU(210a)가 RSU(100a)의 서비스 영역의 종료위치(L12)를 곧 지나갈 것이라는 정보와 아직 OBU(210a)에게 전달하지 못한 서비스 데이터가 포함된다. The RSU 100a transmits handover information about the OBU 210a included in the WAVE handover request message to the WHC 310 of the DS 300 (S305). If the OBU 210a is transmitting and receiving data to and from the RSU 100a when the handover occurs, the RSU 100a transmits the handover information to the WHC 310 for continuous connection. In this case, the handover information includes information that the OBU 210a will soon pass the end position L 12 of the service area of the RSU 100a and service data that has not yet been delivered to the OBU 210a.

WHC(310)는 RSU(100a)로부터 핸드오버 정보가 전달되면 RSU(100b)에게 OBU(210a)에 대한 핸드오버를 요청하기 위해 WAVE 핸드오버 요청 메시지를 RSU(100b)로 전달하며, WAVE 핸드오버 요청 메시지의 한 예는 표 3과 같다(S306). 그리고, WHC(310)는 OBU(210a)에게 전송되지 않은 데이터를 RSU(100b)에게 전달한다. 즉, RSU(100a)는 자신의 서비스 영역 안에서 차량(200a)이 얼마나 오래 머무르게 될 것인가 예측된 시간정보를 가지고 있으며, WHC(310)는 이 정보들을 기반으로 핸드오버가 언제쯤 발생할지 예측할 수 있으므로, WHC(310)는 WAVE 핸드오버 요청 메시지와 OBU(210a)에게 전송되지 않은 데이터를 RSU(100b)로 전달한다. 본 발명의 실시예에서는 차량(200a)이 지나는 도로가 일직선인 것으로 가정하여 RSU(100a)에 인접한 RSU(100b)의 서비스 영역으로 차량(200a)이 지나가게 되므로 WHC(310)는 RSU(100b)에게 핸드오버를 요청한다.When the handover information is transmitted from the RSU 100a, the WHC 310 sends a WAVE handover request message to the RSU 100b to request the RSU 100b to handover the OBU 210a, and the WAVE handover. An example of the request message is shown in Table 3 (S306). In addition, the WHC 310 transmits data not transmitted to the OBU 210a to the RSU 100b. That is, the RSU 100a has time information predicted how long the vehicle 200a will stay in its service area, and the WHC 310 can predict when a handover will occur based on the information. The WHC 310 transmits a WAVE handover request message and data not transmitted to the OBU 210a to the RSU 100b. In the embodiment of the present invention, since the vehicle 200a passes through the service area of the RSU 100b adjacent to the RSU 100a on the assumption that the road passing by the vehicle 200a is straight, the WHC 310 is connected to the RSU 100b. Request a handover.

RSU(100b)는 OBU(210a)가 자신의 서비스 영역의 시작위치(L21)에 진입하게 되면 OBU(210a)와 통신을 시도하기 위해 일정한 주기로 TA 메시지를 브로드캐스팅 방식으로 전달한다(S307).When the OBU 210a enters the start position L 21 of its service area, the RSU 100b transmits a TA message in a broadcast manner at a predetermined period in order to attempt communication with the OBU 210a (S307).

OBU(210a)는 TA 메시지가 수신되면 RSU(100b)에게 WAVE PCF 요청 메시지를 전달한다(S308). 여기서 WAVE PCF 요청 메시지에는 이전에 RSU(100a)에게 전달한 것과 마찬가지로 차량(200a)에 대한 동일한 네비게이션 정보 등의 차량정보가 포함된다.When the TA message is received, the OBU 210a transfers the WAVE PCF request message to the RSU 100b (S308). Here, the WAVE PCF request message includes vehicle information such as the same navigation information for the vehicle 200a as previously transmitted to the RSU 100a.

RSU(100b)는 WAVE PCF 요청 메시지가 전달되면 WHC(310)로 WAVE 핸드오버 확인 메시지(WAVE Handover Confirmation Message)를 전달하여 OBU(210a)와 통신을 지속하여 서비스를 제공하고 있음을 알린다(S309). 여기서, WAVE 핸드오버 확인 메시지에 대한 한 예는 표 4와 같다. When the WAVE PCF request message is transmitted, the RSU 100b notifies the WHC 310 that the WAVE Handover Confirmation Message is transmitted to continue communication with the OBU 210a to provide a service (S309). . Here, an example of the WAVE handover confirmation message is shown in Table 4.

Figure pat00004
Figure pat00004

이때, WHC(310)는 WAVE 핸드오버 확인 메시지가 전달되면, 차량(200a)이 RSU(100b)의 서비스 제공 영역을 지나 교차로로 진입하게 되어 3개의 진행 가능한 방향 중에 어느 곳으로 진입할 것인지 알 수 없으므로 교차로에 인접한 나머지RSU(100c-100e)로 핸드오버가 일어날 수 있으니 준비하라는 WAVE 핸드오버 요청 메시지(WAVE Handover Request)를 전달한다.In this case, when the WAVE handover confirmation message is transmitted, the WHC 310 may enter the intersection through the service providing area of the RSU 100b to determine which of the three possible directions to enter. Since a handover may occur to the remaining RSU (100c-100e) adjacent to the intersection, a WAVE Handover Request message is sent to prepare.

RSU(100b)는 WAVE PCF 요청 메시지가 수신되면, MTA 메시지를 생성하여 차량(200a)의 OBU(210a)로 브로드캐스팅 방식으로 전송한다(S310). 구체적으로, RSU(100b)는 RSU(100a)와 마찬가지로TA 메시지의 맥주소 시퀀스 필드에 자신의 영역에 진입한 차량들의 OBU의 맥주소를 포함하여 순서를 정하고, 이미 저장된 맥주소들의 순서를 재배열하여 MTA 메시지를 생성한다. 그리고 RSU(100b)는 MTA 메시지를 자신의 서비스 영역 안의 OBU들에게 알려서 해당 OBU와 RSU(100b)가 서비스를 지속적으로 수행하여 데이터를 교환하도록 한다. 즉, OBU(210a)는 MTA 메시지를 수신한 후에, 데이터 교환을 위한 통신 링크를 설정하고 RSU(100b)와 WPCF 방식으로 CF 구간에서 통신을 수행하여 데이터를 송수신한다(S311).When the WAVE PCF request message is received, the RSU 100b generates an MTA message and transmits the generated MTA message to the OBU 210a of the vehicle 200a in a broadcast manner (S310). Specifically, the RSU 100b, like the RSU 100a, sets the order in the beer station sequence field of the TA message, including the beer stations of the OBUs of vehicles entering the region, and rearranges the order of the already stored beer stations. To generate an MTA message. The RSU 100b notifies the OBUs in the service area of the MTA message so that the corresponding OBU and the RSU 100b continuously perform the service to exchange data. That is, after receiving the MTA message, the OBU 210a establishes a communication link for data exchange and communicates with the RSU 100b in a CF section in a WPCF manner to transmit and receive data (S311).

도 4는 본 발명의 실시예에 따른 RSU의 동작 순서를 나타내는 도면이다. 도 5는 본 발명의 실시예에 따른 RSU의 구성을 개략적으로 나타내는 도면이다.4 is a diagram illustrating an operation sequence of an RSU according to an embodiment of the present invention. 5 is a diagram schematically illustrating a configuration of an RSU according to an embodiment of the present invention.

도 4에서는 본 발명의 실시예에 따른 차량(200a-200g) 중 핸드오버를 지원받는 차량은 좌측에서 우측으로 한 방향으로 진행하는 차량(200a)인 것으로 가정하였으므로 차량(200a)의 OBU(210a)를 이용하여 동작 순서를 설명한다. 본 발명의 실시예에 따른 RSU(100a-100e)의 구성은 동일하므로 RSU(100a)의 구성을 이용하여 RSU의 동작 순서를 설명하며, RSU(100a)는 차량 제어부(1110a) 및 채널 접속 우선순위 결정부(1120a)를 포함한다.In FIG. 4, it is assumed that the vehicle supported by the handover among the vehicles 200a-200g according to the embodiment of the present invention is the vehicle 200a traveling in one direction from left to right, so that the OBU 210a of the vehicle 200a is provided. The operation sequence will be described with reference to FIG. Since the configuration of the RSUs 100a-100e according to the embodiment of the present invention is the same, an operation sequence of the RSUs is described using the configuration of the RSU 100a, and the RSU 100a includes the vehicle control unit 1110a and the channel connection priority. The decision unit 1120a is included.

도 4 및 도 5를 참고하면, 본 발명의 실시예에 따른 RSU(100a)의 차량 제어부(1110a)는 자신의 서비스 영역에 위치하고 있는 차량(200a-200b)의 해당 OBU로 TA 메시지를 브로드캐스팅 방식으로 전달한다(S400). 4 and 5, the vehicle control unit 1110a of the RSU 100a according to an embodiment of the present invention broadcasts a TA message to a corresponding OBU of a vehicle 200a-200b located in its service area. Transfer to (S400).

차량 제어부(1110a)는 자신의 서비스 영역에 새로 진입한 차량(200a)이 있는 경우, 차량(200a)으로부터 WAVE PCF 요청 메시지가 수신되었는지 판단한다(S410). When there is a vehicle 200a newly entering its service area, the vehicle controller 1110a determines whether a WAVE PCF request message is received from the vehicle 200a (S410).

WAVE PCF 요청 메시지가 수신된 경우, 차량 제어부(1110a)는 WAVE PCF 요청 메시지를 채널 접속 우선순위 결정부(1120a)로 전달한다. 그러면, 채널 접속 우선순위 결정부(1120a)는 WAVE PCF 요청 메시지를 이용하여 차량(200a)의 네비게이션 정보를 검출하고, 네비게이션 정보에 기초하여 차량(200a)이 자신의 서비스 영역에 얼마의 시간 동안 머무르게 될 지에 대한 시간을 추정하고, 추정된 시간에 합당한 순서를 재배열하여 MTA 메시지를 생성하여 브로드캐스팅 방식으로 전송한다(S420). OBU(210a)는 이 MTA 메시지를 수신한 후에, 데이터 교환을 위한 통신 링크를 설정하고 RSU(100a)와 WPCF 방식으로 CF 구간에서 통신을 수행하여 RSU(100a)과 데이터를 송수신한다.When the WAVE PCF request message is received, the vehicle controller 1110a transmits the WAVE PCF request message to the channel access priority determination unit 1120a. Then, the channel access priority determination unit 1120a detects the navigation information of the vehicle 200a using the WAVE PCF request message, and allows the vehicle 200a to stay in its service area for some time based on the navigation information. Estimate the time for whether to be, and rearrange the order in accordance with the estimated time to generate the MTA message and transmit it in a broadcast manner (S420). After receiving the MTA message, the OBU 210a establishes a communication link for data exchange and communicates with the RSU 100a in a CF section in a WPCF manner to transmit and receive data with the RSU 100a.

차량 제어부(1110a)는 OBU(210a)로부터 WAVE 핸드오버 요청 메시지가 전달되었는지 판단한다(S430).The vehicle controller 1110a determines whether a WAVE handover request message is transmitted from the OBU 210a (S430).

WAVE 핸드오버 요청 메시지가 전달된 경우, 차량 제어부(1110a)는 WAVE 핸드오버 요청 메시지에 포함된 OBU(210a)에 대한 핸드오버 정보를 WCH(310)로 전달하여 차량(200a)의 핸드오버를 요청한다(S440). WAVE 핸드오버 요청 메시지가 전달되지 않은 경우, 차량 제어부(1110a)는 OBU(210a)에게 제공되던 서비스가 있는 경우 이를 유지하여 제공한다(S450).When the WAVE handover request message is delivered, the vehicle controller 1110a transmits handover information about the OBU 210a included in the WAVE handover request message to the WCH 310 to request a handover of the vehicle 200a. (S440). If the WAVE handover request message is not delivered, the vehicle controller 1110a maintains and provides the service provided to the OBU 210a (S450).

한편, 차량 제어부(1110a)는 WAVE PCF 요청 메시지가 수신되지 않은 경우, S450 단계로 돌아가 자신의 서비스 영역에 위치한 차량(200a-200b)의 해당 OBU로 제공되던 서비스가 있는 경우 이를 유지하여 제공한다.Meanwhile, when the WAVE PCF request message is not received, the vehicle controller 1110a returns to step S450 and maintains and provides the service provided to the corresponding OBU of the vehicle 200a-200b located in its service area.

도 6은 본 발명의 실시예에 따른 OBU의 동작 순서를 나타내는 도면이다. 도 7는 본 발명의 실시예에 따른 OBU의 구성을 개략적으로 나타내는 도면이다.6 is a diagram illustrating an operation procedure of an OBU according to an embodiment of the present invention. 7 is a diagram schematically illustrating a configuration of an OBU according to an embodiment of the present invention.

도 7에서는 차량(200a-200g)의 구성은 동일하므로 차량(200a)의 구성을 이용하여 OBU의 동작 순서를 설명하며, 이때 차량(200a)의 OBU(210a)는 운행정보 관리부(2110a) 및 운행 제어부(2120a)를 포함한다.In FIG. 7, since the configurations of the vehicles 200a-200g are the same, the operation sequence of the OBU is described using the configuration of the vehicle 200a, wherein the OBU 210a of the vehicle 200a operates and operates the operation information management unit 2110a. The control unit 2120a is included.

도 6 및 도 7을 참고하면, 본 발명의 실시예에 따른 차량(200a-200g) 중 차량(200a)이 RSU(100a)로 진입한 경우, OBU(210a)의 운행정보 관리부(2110a)는 RSU(100a)로부터 TA 메시지를 수신하면 WAVE PCF 요청 메시지를 생성하여 RSU(100a)로 전달한다(S500). 6 and 7, when the vehicle 200a enters the RSU 100a among the vehicles 200a-200g, the driving information management unit 2110a of the OBU 210a may perform the RSU. When receiving the TA message from the 100a, a WAVE PCF request message is generated and transmitted to the RSU 100a (S500).

운행정보 관리부(2110a)는 RSU(100a)로부터 자신의 정보가 반영되어 수정된 MTA 메시지가 전달되었는지를 판단한다(S510).The driving information management unit 2110a determines whether the modified MTA message is transmitted by reflecting its information from the RSU 100a (S510).

MTA 메시지가 수신된 경우, 운행정보 관리부(2110a)는 MTA 메시지를 운행 제어부(2120a)로 전달한다. 그러면, 운행 제어부(2120a)는 MTA 메시지를 이용하여 자신에게 배정된 WPIFS 값 및 길이를 검출한다(S520). 운행 제어부(2120a)는 WPIFS 값이 최소값이 되어 서비스 영역을 벗어나는 지점에 접근하게 될 때 WAVE 핸드오버 요청 메시지를 RSU(100a)로 전달하여 RSU(100b)의 서비스 영역으로의 핸드오버를 요청한다(S530, S540). When the MTA message is received, the driving information manager 2110a transfers the MTA message to the driving controller 2120a. Then, the operation control unit 2120a detects the WPIFS value and the length assigned to the self using the MTA message (S520). When the WPIFS value reaches its minimum value and approaches the point out of the service area, the operation control unit 2120a transmits a WAVE handover request message to the RSU 100a to request a handover to the service area of the RSU 100b ( S530, S540).

한편, MTA 메시지가 수신되지 않은 경우, 운행 제어부(2120a)는 S500 단계로 돌아가 RSU(100a)로 재전송한다.On the other hand, when the MTA message is not received, the operation control unit 2120a returns to step S500 and retransmits to the RSU 100a.

이와 같이, 본 발명의 실시예에 따른 VANET 환경에서의 지능형 교통 시스템(10)에서는 핸드오버 시 WPCF(WAVE Point Coordination Function) 채널의 접근 방법을 통하여 핸드오버 지원을 위한 시간을 예측하고 핸드오버를 받을 다음 RSU를 선정함으로써 스캐닝 지연시간을 줄여 연속적인 연결성을 제공할 수 있으며, 채널 사용 효율성을 증가시켜 안정적으로 핸드오버 기술을 지원할 수 있다. As such, the intelligent traffic system 10 in the VANET environment according to an embodiment of the present invention predicts the time for handover support and receives the handover through a WPCF (WAVE Point Coordination Function) channel access method during handover. By selecting the next RSU, the scanning latency can be reduced to provide continuous connectivity, and the channel usage efficiency can be increased to reliably support handover technology.

이상에서 설명한 본 발명의 실시예는 장치 및 방법을 통해서만 구현이 되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있다. The embodiments of the present invention described above are not only implemented through the apparatus and the method, but may be implemented through a program for realizing a function corresponding to the configuration of the embodiments of the present invention or a recording medium on which the program is recorded.

이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

Claims (1)

복수의 노변 기지국을 포함하는 지능형 교통 시스템에서 차량의 핸드오버를 지원하는 방법에 있어서,
상기 복수의 노변 기지국 중 제1 노변 기지국은 서비스 영역에 위치한 적어도 하나의 차량 중 새로 진입한 제1 차량으로부터 차량정보를 전달받는 단계,
상기 제1 노변 기지국은 상기 차량정보에 따라 채널 접속 순서를 결정하여 상기 제1 차량에게 알리는 단계,
상기 제1 노변 기지국은 상기 제1 차량이 핸드오버를 요청하는 경우, WAVE 핸드오버 제어부(WAVE Handover Controller)를 통해 상기 제1 차량에 대한 핸드오버 정보를 상기 복수의 노변 기지국 중 상기 제1 차량이 진행하는 방향에 위치한 제2 노변 기지국으로 전달되도록 하는 단계,
상기 제2 노변 기지국은 서비스 영역에 진입한 상기 제1 차량으로부터 상기 차량정보를 전달받는 단계, 그리고
상기 제2 노변 기지국은 상기 차량정보에 따라 상기 채널 접속 순서를 할당하여 상기 제1 차량으로 알리는 단계
를 포함하는 차량통신 핸드오버 지원 방법.
What is claimed is: 1. A method of supporting handover of a vehicle in an intelligent transportation system including a plurality of roadside base stations,
A first roadside base station among the plurality of roadside base stations receiving vehicle information from a newly entered first vehicle among at least one vehicle located in a service area;
Determining, by the first roadside base station, the channel access order according to the vehicle information and informing the first vehicle;
When the first vehicle requests a handover, the first roadside base station transmits handover information about the first vehicle through a WAVE Handover Controller. Transmitting to a second roadside base station located in an ongoing direction;
The second roadside base station receiving the vehicle information from the first vehicle entering the service area; and
The second roadside base station notifying the first vehicle by allocating the channel access order according to the vehicle information;
Vehicle communication handover support method comprising a.
KR1020100120696A 2009-12-08 2010-11-30 Apparatus and method for vehicle communication handover KR101732155B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020090121373 2009-12-08
KR20090121373 2009-12-08
KR1020100028563 2010-03-30
KR1020100028563A KR20110065262A (en) 2009-12-08 2010-03-30 Apparatus and method for vehicle communication handover

Publications (2)

Publication Number Publication Date
KR20110065347A true KR20110065347A (en) 2011-06-15
KR101732155B1 KR101732155B1 (en) 2017-05-11

Family

ID=44398565

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020100028563A KR20110065262A (en) 2009-12-08 2010-03-30 Apparatus and method for vehicle communication handover
KR1020100120696A KR101732155B1 (en) 2009-12-08 2010-11-30 Apparatus and method for vehicle communication handover

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020100028563A KR20110065262A (en) 2009-12-08 2010-03-30 Apparatus and method for vehicle communication handover

Country Status (1)

Country Link
KR (2) KR20110065262A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106507449A (en) * 2015-09-07 2017-03-15 中兴通讯股份有限公司 The control method of car networking communication and device
CN108291811A (en) * 2015-11-26 2018-07-17 华为技术有限公司 Switch the method and apparatus of trackside navigation elements in navigation system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101275626B1 (en) * 2011-08-04 2013-06-17 전자부품연구원 WAVE communication system and handover method thereof
KR102391798B1 (en) * 2016-01-06 2022-04-27 현대자동차주식회사 Method for time synchronization of domain based on time information of vehicle
US11069237B2 (en) 2016-06-23 2021-07-20 Telefonaktiebolaget Lm Ericsson (Publ) Methods identifying vehicles and related systems, controllers, and vehicles
KR102317551B1 (en) * 2016-08-12 2021-10-27 삼성전자 주식회사 Method and terminal for performing v2x communicaton
KR102368954B1 (en) * 2020-11-10 2022-03-02 영남대학교 산학협력단 Smart Vehicle Handover Management Method in Overlapping Vehicle Network Environment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141255A (en) * 2006-11-29 2008-06-19 Kyocera Corp Radio communication method and radio communication apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106507449A (en) * 2015-09-07 2017-03-15 中兴通讯股份有限公司 The control method of car networking communication and device
EP3349514A4 (en) * 2015-09-07 2018-07-18 ZTE Corporation Internet of vehicles communication control method and device
CN106507449B (en) * 2015-09-07 2021-01-26 中兴通讯股份有限公司 Control method and device for Internet of vehicles communication
CN108291811A (en) * 2015-11-26 2018-07-17 华为技术有限公司 Switch the method and apparatus of trackside navigation elements in navigation system
US10827399B2 (en) 2015-11-26 2020-11-03 Huawei Technologies Co., Ltd. Method for switching roadside navigation unit in navigation system, and device

Also Published As

Publication number Publication date
KR20110065262A (en) 2011-06-15
KR101732155B1 (en) 2017-05-11

Similar Documents

Publication Publication Date Title
Chung et al. Time coordinated V2I communications and handover for WAVE networks
Gupta et al. Medium access control protocols for safety applications in Vehicular Ad-Hoc Network: A classification and comprehensive survey
KR102057949B1 (en) Method and apparatus for performing data communicationin wireless communication system
US8270429B2 (en) Method of communicating within a mesh network
CN104994583B (en) Multi-channel MAC protocols method based on cluster mechanism in vehicular ad hoc network
CN105722231B (en) A kind of design method for the vehicle-mounted net MAC protocol of multichannel continuously coordinated
KR101732155B1 (en) Apparatus and method for vehicle communication handover
KR101721291B1 (en) Method and device of transmitting data in network linked heterogeneous systems
JP2010028636A (en) Base station, mobile station, and method for controlling communication
Shao et al. A multi-priority supported medium access control in vehicular ad hoc networks
EP2847941B1 (en) Systems and methods to provision quality of service sensitive devices in wireless local area networks
KR20050091774A (en) Method and apparatus for bandwidth provisioning in a wlan
Jayaraj et al. A survey on hybrid MAC protocols for vehicular ad-hoc networks
US11582652B2 (en) Smart vehicle handover method in overlapped network environment
JPH11262054A (en) Radio communication system and subscriber use radio equipment
Böhm et al. Handover in IEEE 802.11 p-based delay-sensitive vehicle-to-infrastructure communication
CN114365579B (en) Apparatus, system, and method for mitigating aggressive medium reservation
Li et al. ASTSMAC: Application suitable time-slot sharing MAC protocol for vehicular ad hoc networks
KR100900942B1 (en) Method and Apparatus for Packet Transmission in Multi-Channel Multi-Interface Wireless Networks
JP5213862B2 (en) Wireless network
Samara An improved CF-MAC protocol for VANET
KR102256269B1 (en) Method for Handover at Overlapped Vehicle Networks
KR101097503B1 (en) System and method get accomplished superframe structure for broadcast service in local area, and apparatus to the same
KR101560486B1 (en) Method for managing TXOP(Transmission Opportunity) limit in Vehicular communication network and vehicular communication network system using thereof
KR101687194B1 (en) Wireless communication terminal and method for controlling thereof

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant