KR20110065232A - Method for detecting analytes using fluorescence quenching induced by gold nanoparticle enlargement - Google Patents

Method for detecting analytes using fluorescence quenching induced by gold nanoparticle enlargement Download PDF

Info

Publication number
KR20110065232A
KR20110065232A KR1020090122116A KR20090122116A KR20110065232A KR 20110065232 A KR20110065232 A KR 20110065232A KR 1020090122116 A KR1020090122116 A KR 1020090122116A KR 20090122116 A KR20090122116 A KR 20090122116A KR 20110065232 A KR20110065232 A KR 20110065232A
Authority
KR
South Korea
Prior art keywords
gold
weight
parts
gold nanoparticles
analyte
Prior art date
Application number
KR1020090122116A
Other languages
Korean (ko)
Other versions
KR101121556B1 (en
Inventor
박찬범
임성윤
김재홍
이준석
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020090122116A priority Critical patent/KR101121556B1/en
Publication of KR20110065232A publication Critical patent/KR20110065232A/en
Application granted granted Critical
Publication of KR101121556B1 publication Critical patent/KR101121556B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence

Abstract

PURPOSE: A method for detecting an analyte of high sensitivity using fluorescence reduction by gold nanoparticles is provided to apply to manufacturing various fluorescence-based optical biosensor. CONSTITUTION: A method for detecting an analyte by fluorescence reduction due to the growth of gold nanoparticles comprises: a step of adding gold nanoparticles and fluorescence dye to a gold nanoparticle growth solution to prepare a mixture; a step of adding a reducible analyte to the mixture to induce the growth of gold nanoparticles; and a step of measuring fluorescence intensity of the mixture to detect the reducible analyte. The gold nanopaticle growth solution is HAuCl_4, NaAuCl_4, AuCl_3, or K(AuCl_4). The fluorescence dye is fluorescein, rhodamine, eosin, elexa, or rose bengal.

Description

금 나노입자 성장에 의한 형광저하를 이용한 고감도 분석물 검출방법 {Method for Detecting Analytes Using Fluorescence Quenching Induced by Gold Nanoparticle Enlargement}Method for Detecting Analytes Using Fluorescence by Gold Nanoparticle Growth {Method for Detecting Analytes Using Fluorescence Quenching Induced by Gold Nanoparticle Enlargement}

본 발명은 금 나노입자 성장에 의한 형광저하를 이용한 고감도 분석물 검출방법에 관한 것으로, 보다 상세하게는, 분석물인 환원제에 의해 유도된 금 나노입자의 성장과 형광염료의 형광신호 저하를 이용하여 고감도로 분석물을 검출하는 것을 특징으로 하는, 금 나노입자 성장에 의한 형광저하를 이용한 고감도 분석물 검출방법에 관한 것이다.The present invention relates to a method for detecting a high sensitivity analyte using fluorescence reduction by growth of gold nanoparticles, and more particularly, to a high sensitivity using growth of gold nanoparticles induced by a reducing agent as an analyte and a decrease in fluorescence signal of a fluorescent dye. It relates to a high sensitivity analyte detection method using fluorescence reduction by the growth of gold nanoparticles, characterized by detecting the analyte.

최근 나노기술 분야의 급진적인 발전으로 인하여, 생체인식 과정에 있어서 금속 나노입자가 주요 표지(lable)로서 참여하는 것이 가능하게 되었다 (Niemeyer CM., Angew Chem, 40:4128-4158, 2001). Recent rapid developments in the field of nanotechnology have made it possible for metal nanoparticles to participate as major labels in biometric processes (Niemeyer CM., Angew Chem, 40: 4128-4158, 2001).

예를 들어, 금속 나노입자-뉴클레오티드 접합체를 이용하여, 표면 플라즈몬 공명(surface plasmon resonance), 표면-향상 라만 분산(surface-enhanced Raman scattering), 수정진동자 미소저울(quartz-crystal microbalance) 등의 방법을 통해 DNA 혼성화를 탐지할 수 있음을 입증한 연구개발 결과가 공개된 바 있다 (Cao et al., Science, 297:1536-1540, 2002; He et al., J Am Chem Soc, 122:9071-9077, 2000).For example, using metal nanoparticle-nucleotide conjugates, methods such as surface plasmon resonance, surface-enhanced Raman scattering, quartz-crystal microbalance, etc. Research and development results have been published demonstrating that DNA hybridization can be detected (Cao et al., Science, 297: 1536-1540, 2002; He et al., J Am Chem Soc , 122: 9071-9077). , 2000).

또한, 다양한 산화환원반응에 있어서 효소반응 동안에 생성된 H2O2와 같은 환원제에 의한 금 이온의 환원을 통해 금 나노입자가 성장할 때, 금 나노입자의 흡광도 변화를 측정함으로써, 다양한 산화환원반응 효소의 활성을 분석할 수 있음이 보고되었다 (Zayats, M. et al., Nano Lett., 5:21-25, 2005; Baron, R., Anal. Chem., 77:1566-1571, 2005; Xiao, Y. et al., Angew. Chem., Int. Ed., 43:4519-4522, 2004).In addition, various redox enzymes are measured by measuring the absorbance change of gold nanoparticles when gold nanoparticles grow through reduction of gold ions by a reducing agent such as H 2 O 2 generated during the enzymatic reaction in various redox reactions. It is reported that the activity of (Zayats, M. et al., Nano Lett. , 5: 21-25, 2005; Baron, R., Anal. Chem., 77: 1566-1571, 2005; Xiao , Y. et al., Angew.Chem ., Int. Ed. , 43: 4519-4522, 2004).

한편, 금 나노입자의 성장 기술을 이용하여 형광 기반 광학 바이오센서를 개발하려는 연구가 지속되어 왔다 (Bultzingslowen C. et al., Anal. Chem. Acta, 480:275-283, 2003; Pickup, J. C. et al., Biosens. Bioelectron, 20:2555-2565, 2005). 대표적으로, 생물학적으로 중요한 분석물을 검출하기 위하여 금 나노입자를 형광-기반 어세이에 도입한 예가 있다 (Griffin, J. et al., Chem. Eur. J., 15:342-351, 2009; Lee, S. et al., Angew. Chem., Int. Ed., 47:2804-2807, 2008). 상기 형광-기반 어세이는 대부분 FRET 현상을 도입한 것으로, FRET을 기반으로 하는 검출 프로브의 디자인은 특정 방향 또는 거리에서 금속 나노입자의 배열을 조정하도록 형광분자의 변형을 필요로 하므로, 센싱 부재의 제조가 쉽지 않다 (Zhu, L. et al., Lab Chip, 6:115-120, 2006).On the other hand, research into the development of fluorescence-based optical biosensors using the growth technology of gold nanoparticles has been continued (Bultzingslowen C. et al., Anal. Chem. Acta , 480: 275-283, 2003; Pickup, JC et al., Biosens. Bioelectron , 20: 2555-2565, 2005). Typically, gold nanoparticles have been introduced into fluorescence-based assays to detect biologically important analytes (Griffin, J. et al., Chem. Eur. J. , 15: 342-351, 2009; Lee, S. et al., Angew.Chem ., Int. Ed. , 47: 2804-2807, 2008). Most of the fluorescence-based assays incorporate FRET phenomena, and the design of the FRET-based detection probes requires modification of the fluorescent molecules to adjust the arrangement of the metal nanoparticles in a specific direction or distance. Manufacturing is not easy (Zhu, L. et al., Lab Chip , 6: 115-120, 2006).

이에 본 발명자는 금 나노입자를 이용하여 간단하면서도 고감도의 형광 기반 센싱 기술을 개발하고자 예의 노력한 결과, 분석물에 의해 유도되는 금 나노입자 성장반응으로 인한 형광 염료의 형광신호 소멸을 이용할 경우, 고감도로 분석물을 검출할 수 있다는 것을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made efforts to develop a simple and highly sensitive fluorescence-based sensing technology using gold nanoparticles. As a result, when the fluorescent signal disappearance of the fluorescent dye due to the gold nanoparticle growth reaction induced by the analyte is used, It was confirmed that the analyte can be detected and the present invention was completed.

본 발명의 목적은 분석물인 환원제에 의해 유도되는 금 나노입자의 성장에 의한 형광염료의 형광신호 저하를 이용하여, 상기 분석물을 고감도로 검출하는 것을 특징으로 하는, 금 나노입자 성장에 의한 형광저하를 이용한 고감도 분석물 검출방법을 제공하는데 있다.An object of the present invention is to detect the analyte with high sensitivity by using the fluorescent signal degradation of the fluorescent dye caused by the growth of the gold nanoparticles induced by the reducing agent as an analyte, fluorescence decrease by the growth of gold nanoparticles To provide a high sensitivity analyte detection method using.

상기 목적을 달성하기 위하여 본 발명은, (a) 금 나노입자의 성장용액에 금 나노입자 및 형광염료를 첨가하여 혼합물을 제조하는 단계; (b) 상기 혼합물에 환원 가능한 분석물을 첨가하여 금 나노입자 성장을 유도하는 단계; 및 (c) 상기 성장된 금 나노입자를 함유하는 혼합물의 형광강도를 측정하여 환원 가능한 분석물을 검출하는 단계를 포함하는, 금 나노입자의 성장에 의한 형광저하를 이용한, 분석물의 검출방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of: (a) preparing a mixture by adding gold nanoparticles and fluorescent dye to the growth solution of gold nanoparticles; (b) adding a reducible analyte to the mixture to induce gold nanoparticle growth; And (c) detecting a reducible analyte by measuring the fluorescence intensity of the mixture containing the grown gold nanoparticles, using a decrease in fluorescence caused by the growth of the gold nanoparticles. do.

본 발명은 또한, (a) 금 나노입자 성장용액, 금 나노입자, 형광염료 및 효소의 혼합물을 제조하는 단계; (b) 상기 혼합물에 분석물을 첨가하여 상기 분석물과 효소의 반응을 유도하는 단계; 및 (c) 상기 분석물이 첨가된 혼합물의 형광강도를 측정한 뒤, 형광염료의 형광강도에 비교하여, 형광신호 저하 정도를 이용하여 분석물을 검출하는 단계를 포함하는, 금 나노입자의 성장에 의한 형광신호 저하를 이용한, 분석물의 검출방법을 제공한다.The present invention also comprises the steps of (a) preparing a mixture of gold nanoparticle growth solution, gold nanoparticles, fluorescent dyes and enzymes; (b) adding an analyte to the mixture to induce a reaction of the analyte with an enzyme; And (c) measuring the fluorescence intensity of the mixture to which the analyte is added, and comparing the fluorescence intensity of the fluorescent dye to detect the analyte using the degree of fluorescence signal degradation. Provided is a method for detecting an analyte using a decrease in fluorescence signal.

본 발명은 또한, 금 나노입자의 성장용액, 금 나노입자 및 형광염료를 포함하는, 금 나노입자 성장에 사용되는 환원가능한 분석물 검출용 바이오센서를 제공한다.The present invention also provides a biosensor for reducing analyte detection used for growth of gold nanoparticles, comprising a growth solution of gold nanoparticles, gold nanoparticles and a fluorescent dye.

본 발명은 또한, 금 나노입자의 성장용액, 금 나노입자, 형광염료 및 효소를 포함하는, 상기 효소의 기질 검출용 바이오센서를 제공한다.The present invention also provides a biosensor for detecting a substrate of the enzyme, including a growth solution of gold nanoparticles, gold nanoparticles, a fluorescent dye, and an enzyme.

본 발명에 따르면, 금 나노입자 성장 후 흡광도 변화를 측정하는 방식에 비해 고감도로 분석물을 검출할 수 있고, 다양한 형광 기반 광학 바이오센서의 제조에 응용할 수 있다.According to the present invention, the analyte can be detected with higher sensitivity than the method of measuring the absorbance change after the growth of gold nanoparticles, and can be applied to the manufacture of various fluorescence-based optical biosensors.

본 발명은 일 관점에서, (a) 금 나노입자의 성장용액에 금 나노입자 및 형광염료를 첨가하여 혼합물을 제조하는 단계; (b) 상기 혼합물에 환원 가능한 분석물을 첨가하여 금 나노입자 성장을 유도하는 단계; 및 (c) 상기 성장된 금 나노입자를 함유하는 혼합물의 형광강도를 측정하여 환원 가능한 분석물을 검출하는 단계를 포함하는, 금 나노입자의 성장에 의한 형광저하를 이용한, 분석물의 검출방법에 관한 것이다 (도 1의 (A)).The present invention in one aspect, (a) adding a gold nanoparticles and a fluorescent dye to the growth solution of gold nanoparticles to prepare a mixture; (b) adding a reducible analyte to the mixture to induce gold nanoparticle growth; And (c) detecting a reducible analyte by measuring the fluorescence intensity of the mixture containing the grown gold nanoparticles, using a decrease in fluorescence caused by the growth of the gold nanoparticles. (FIG. 1A).

본 발명은 성장한 금 나노입자와 형광염료가 동시에 존재할 때, 형광염료의 방출밴드와 성장한 금 나노입자의 흡수밴드가 중첩(overlap)되면서, 형광염료의 형 광이 저하되는 현상을 이용하여, 금 나노입자의 성장을 유도하는 분석물, 특히, 환원제를 검출하는 원리를 기반으로 한다. According to the present invention, when the grown gold nanoparticles and the fluorescent dye are present at the same time, the emission band of the fluorescent dye and the absorption band of the grown gold nanoparticles overlap, and thus the fluorescent dye of the fluorescent dye is deteriorated. It is based on the principle of detecting analytes, in particular reducing agents, which induce the growth of particles.

본 발명에 있어서, 상기 환원 가능한 분석물은 H2O2, hydroquinone(HQ), adrenaline, noradrenaline, dopamine, L-Dopa, mercaptosuccinic acid, 4-aminophenol, 3-aminophenol, 1,4-phenylenediamine, aniline, triethylamine, indole, 4-bromoaniline,, 1-methylindole, 3-amino-1-propanol, pyridine, 3-indole propionic acid, glucine, DL-tryptophan, Sodium cirate, citric acid, sodium boro hydride, hydroxylamine, HCl, acetone, oxalic acid 및 b-diketone으로 구성된 군에서 선택되는 환원제인 것을 특징으로 할 수 있으나, 금 이온을 환원시킬 수 있는 환원제라면 이에 국한되는 것은 아니다.In the present invention, the reducible analyte is H 2 O 2 , hydroquinone (HQ), adrenaline, noradrenaline, dopamine, L-Dopa, mercaptosuccinic acid, 4-aminophenol, 3-aminophenol, 1,4-phenylenediamine, aniline, triethylamine, indole, 4-bromoaniline ,, 1-methylindole, 3-amino-1-propanol, pyridine, 3-indole propionic acid, glucine, DL-tryptophan, Sodium cirate, citric acid, sodium boro hydride, hydroxylamine, HCl, acetone , oxalic acid and b-diketone may be characterized in that the reducing agent selected from the group consisting of, but is not limited to a reducing agent capable of reducing gold ions.

본 발명에 있어서, 상기 금 나노입자 성장용액은 HAuCl4, NaAuCl4, AuCl3 및 K(AuCl4)으로 구성된 군에서 선택되는 금이온 생성물질의 수용액인 것을 특징으로 할 수 있으나, 수용액 내에서 금 이온을 생성할 수 있는 용액이라면 이에 국한되지 않는다.In the present invention, the gold nanoparticle growth solution is a gold ion generating material selected from the group consisting of HAuCl 4 , NaAuCl 4 , AuCl 3 and K (AuCl 4 ) It may be characterized as an aqueous solution, but is not limited to a solution capable of producing gold ions in the aqueous solution.

본 발명에 있어서, 상기 형광염료는 플루오로세인(fluorescein), 로다민류 (rhodamine), 에오신류(Eosin), 알렉사류(Alexa) 및 장미 벵갈(rose bengal)로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 형광을 나타낼 수 있는 물질이라면 이에 국한되지 않는다.In the present invention, the fluorescent dye is selected from the group consisting of fluorescein (fluorescein), rhodamines (rhodamine), eosin (Eosin), Alexa (rose) and rose bengal (rose bengal) However, if the material can exhibit fluorescence is not limited thereto.

본 발명에 있어서, 상기 금 성장용액 100 중량부에 대해 금 나노입자 10-4 ~ 10-2 중량부 및 형광염료 10-6 ~ 10-2 중량부를 첨가하는 것을 특징으로 할 수 있다. 금 나노입자의 첨가량이 10-4 중량부 미만이면, 금 나노입자의 형광염료에 대한 영향이 미약해지고, 10-2 중량부를 초과하면 금 나노입자의 변화가 미미해져 정밀한 측정이 불가능해지는 문제점이 있다. 또한, 상기 형광염료의 첨가량이 10-6 중량부 미만이면 형광 신호의 안정성이 떨어지고, 10-2 중량부를 초과하면 금 나노입자의 변화에 따른 전체 형광세기에 대한 영향이 미약해져 분석 목표 분자의 양이 적은 경우 측정이 불가능해지는 문제점이 있다.In the present invention, gold nanoparticles 10 -4 to 10 -2 parts by weight and fluorescent dyes 10 -6 to 10 -2 parts by weight based on 100 parts by weight of the gold growth solution may be added. If the amount of the gold nanoparticles added is less than 10 -4 parts by weight, the effect of the gold nanoparticles on the fluorescent dye is weak, and if it exceeds 10 -2 parts by weight, the change of the gold nanoparticles is insignificant, which makes it impossible to make accurate measurements. . Further, when the amount of the fluorescent dye added is less than 10 -6 parts by weight, the stability of the fluorescence signal is lowered. When the amount of the fluorescent dye is more than 10 -2 parts by weight, the effect on the total fluorescence intensity due to the change of the gold nanoparticles is weakened. If less, there is a problem that can not be measured.

본 발명에 있어서, 상기 금 성장용액 100 중량부에 대해 분석물 10-18 ~ 10-1 중량부를 첨가하는 것을 특징으로 할 수 있고, 분석물의 첨가량이 상기 수치범위를 벗어나면, 분석물 검출의 정확도가 저하되는 문제점이 있다.In the present invention, may be characterized in that the addition of the gold growth solution 100 parts by weight of the analyte 10 -18 to 10 -1 parts by weight, for, if the addition amount of analytes out of the above numerical range, the analysis accuracy of water detection There is a problem that is lowered.

본 발명은 다른 관점에서, (a) 금 나노입자 성장용액, 금 나노입자, 형광염료 및 효소의 혼합물을 제조하는 단계; (b) 상기 혼합물에 분석물을 첨가하여 상기 분석물과 효소의 반응을 유도하는 단계; 및 (c) 상기 분석물이 첨가된 혼합물의 형광강도를 측정한 뒤, 형광염료의 형광강도에 비교하여, 형광신호 저하 정도를 이용하여 분석물을 검출하는 단계를 포함하는, 금 나노입자의 성장에 의한 형광신호 저하를 이용한, 분석물의 검출방법에 관한 것이다.In another aspect, the present invention, (a) preparing a mixture of gold nanoparticle growth solution, gold nanoparticles, fluorescent dyes and enzymes; (b) adding an analyte to the mixture to induce a reaction of the analyte with an enzyme; And (c) measuring the fluorescence intensity of the mixture to which the analyte is added, and comparing the fluorescence intensity of the fluorescent dye to detect the analyte using the degree of fluorescence signal degradation. It relates to a method for detecting an analyte using a decrease in fluorescence signal by

본 발명은 효소반응시 생성된 전자에 의해 성장한 금 나노입자와 형광염료가 동시에 존재할 때, 형광염료의 방출밴드와 성장한 금 나노입자의 흡수밴드가 중첩(overlap)되면서, 형광염료의 형광이 저하되는 현상을 이용하여, 금 나노입자의 성장을 유도하는 효소기질을 검출하는 원리를 기반으로 한다. In the present invention, when the gold nanoparticles grown by the electrons generated during the enzyme reaction and the fluorescent dye are present at the same time, the emission band of the fluorescent dye and the absorption band of the grown gold nanoparticles overlap (overlap), the fluorescence of the fluorescent dye is reduced The phenomenon is based on the principle of detecting enzyme substrates that induce the growth of gold nanoparticles.

본 발명에 있어서, 상기 효소는 AChE(acetylthiocholinesterase), 콜린 옥시다제(choline oxidase), 글루코즈 옥시다제(glucose oxidase), 싸이토크롬 옥시다제 (Cytochrome oxidase), ascorbic 잔틴 옥시다제 (xanthine oxidase), 폴리페놀 옥시다제 (polyphenol oxidase), 카테콜 옥시다제 (catechol oxidase), 라이실 옥시다제 NADPH 옥시다제 (NADPH oxidase), 모노아민 옥시다제 (monoamine oxidase) 및 라카아제 (laccase)로 구성된 군에서 선택되는 것을 특징으로 할 수 있고, 상기 분석물은 acetylthiocholine, acetylcholine, hydroquinone, glucose, adrenaline, noradrenaline, dopamine, L-Dopa, mecaptosuccinic acid, 4-aminophenol, 3-aminophenol, 1,4-phenylenediamine, aniline, triethylamine, indole, 4-bromoaniline,, 1-methylindole, 3-amino-1-propanol, pyridine, 3-indole propionic acid, glucine, DL-tryptophan, Sodium cirate, citric acid, sodium boro hydride, hydroxylamine, HCl, acetone, oxalic acid 및 b-diketone로 구성된 군에서 선택되는 효소기질 할 수 있으나, 효소와 효소 기질과의 반응 후에 금 이온의 환원시켜 금 나노입자 성장을 유도할 수 있는 환원제 및 전자를 방출할 수 있는 효소 및 효소기질이라면 이에 국한되지 않는다.In the present invention, the enzyme is AChE (acetylthiocholinesterase), choline oxidase (choline oxidase), glucose oxidase (glucose oxidase), cytochrome oxidase (cytochrome oxidase), ascorbic xanthine oxidase (xanthine oxidase), polyphenols It is selected from the group consisting of oxidase (polyphenol oxidase), catechol oxidase (catechol oxidase), lysyl oxidase NADPH oxidase (NADPH oxidase), monoamine oxidase (monoamine oxidase) and laccase (laccase) The analyte may be acetylthiocholine, acetylcholine, hydroquinone, glucose, adrenaline, noradrenaline, dopamine, L-Dopa, mecaptosuccinic acid, 4-aminophenol, 3-aminophenol, 1,4-phenylenediamine, aniline, triethylamine, indole, 4-bromoaniline, 1-methylindole, 3-amino-1-propanol, pyridine, 3-indole propionic acid, glucine, DL-tryptophan, Sodium cirate, citric acid, sodium boro hydride, hydroxylamine, HCl, acetone, oxalic acid and b-diketone It can be an enzyme substrate selected from the group consisting of, but is not limited to a reducing agent capable of inducing the growth of gold nanoparticles by the reduction of gold ions after the reaction between the enzyme and the enzyme substrate, and an enzyme and enzyme substrate capable of releasing electrons. .

본 발명에 있어서, 상기 금 나노입자 성장용액은 HAuCl4, NaAuCl4, AuCl3, K(AuCl4)로 구성된 군에서 선택되는 금이온 생성물질의 수용액인 것을 특징으로 할 수 있으나, 수용액 내에서 금 이온을 생성할 수 있는 용액이라면 이에 국한되지 않는다.In the present invention, the gold nanoparticle growth solution may be characterized in that the aqueous solution of a gold ion generating material selected from the group consisting of HAuCl 4 , NaAuCl 4 , AuCl 3 , K (AuCl 4 ), gold in an aqueous solution Any solution capable of generating ions is not limited thereto.

본 발명에 있어서, 상기 형광염료는 플루오로세인(fluorescein), 로다민류(rhodamine), 에오신 (Eosin) 및 장미 벵갈(rose bengal)로 구성된 군에서 선택되는 것을 특징으로 할 수 있으나, 형광을 나타낼 수 있는 물질이라면 이에 국한되지 않는다.In the present invention, the fluorescent dye may be selected from the group consisting of fluorescein, rhodamine, eosin, and rose bengal, but may exhibit fluorescence. Substance is not limited thereto.

본 발명에 있어서, 상기 금 성장용액 100 중량부에 대해 금 나노입자 10-4 ~ 10-2 중량부, 형광염료 10-6 ~ 10-2 중량부 및 효소 10-8 ~ 10-2 중량부를 첨가하는 것을 특징으로 할 수 있다. 금 나노입자의 첨가량이 10-4 중량부 미만이면, 금 나노입자의 형광염료에 대한 영향이 미약해지고, 10-2 중량부를 초과하면 금 나노입자의 변화가 미미해져 정밀한 측정이 불가능해지는 문제점이 있다. 또한, 상기 형광염료의 첨가량이 10-6 중량부 미만이면 형광 신호의 안정성이 떨어지고, 10-2 중량부를 초과하면 금 나노입자의 변화에 따른 전체 형광세기에 대한 영향이 미약해져 분석 목표 분자의 양이 적은 경우 측정이 불가능해지는 문제점이 있다. 또한, 상기 효소의 첨가량이 10-8 ~ 10-2 중량부일 때, 금 나노입자 성장반응을 유도할 수 있는 충분한 양의 전자를 방출하는 효소반응을 도출할 수 있다.In the present invention, the growth of gold was added to 100 parts by weight of the gold nano-particles 10 -4 to 10 -2 parts by weight of a fluorescent dye 10 -6 to 10 -2 parts by weight of the enzyme 10 -8 to 10 -2 parts by weight of It can be characterized by. If the amount of the gold nanoparticles added is less than 10 -4 parts by weight, the effect of the gold nanoparticles on the fluorescent dye is weak, and if it exceeds 10 -2 parts by weight, the change of the gold nanoparticles is insignificant, which makes it impossible to make accurate measurements. . Further, when the amount of the fluorescent dye added is less than 10 -6 parts by weight, the stability of the fluorescence signal is lowered. When the amount of the fluorescent dye is more than 10 -2 parts by weight, the effect on the total fluorescence intensity due to the change of the gold nanoparticles is weakened. If less, there is a problem that can not be measured. In addition, when the addition amount of the enzyme is 10 -8 to 10 -2 parts by weight, it is possible to derive an enzyme reaction that releases a sufficient amount of electrons to induce the gold nanoparticle growth reaction.

본 발명은 또 다른 관점에서, 금 나노입자의 성장용액, 금 나노입자 및 형광염료를 포함하는, 금 나노입자 성장에 사용되는 환원가능한 분석물 검출용 바이오센서에 관한 것이다.In yet another aspect, the present invention relates to a biosensor for reducing analyte used for growing gold nanoparticles, including a growth solution of gold nanoparticles, gold nanoparticles, and a fluorescent dye.

상기 금 나노입자 성장에 사용되는 환원가능한 분석물 검출용 바이오센서에 있어서, 상기 금 성장용액 100 중량부에 대해 금 나노입자 10-4 ~ 10-2 중량부 및 형광염료 10-6 ~ 10-2 중량부가 포함되어 있는 것을 특징으로 할 수 있다.In the biosensor for reducing analyte detection used for the growth of gold nanoparticles, 10 -4 ~ 10 -2 parts by weight of gold nanoparticles and fluorescent dyes 10 -6 ~ 10 -2 to 100 parts by weight of the gold growth solution The weight part may be included.

본 발명은 또 다른 관점에서, 금 나노입자의 성장용액, 금 나노입자, 형광염료 및 효소를 포함하는, 상기 효소의 기질 검출용 바이오센서에 관한 것이다.In another aspect, the present invention relates to a biosensor for detecting a substrate of the enzyme, including a growth solution of gold nanoparticles, gold nanoparticles, a fluorescent dye, and an enzyme.

상기 효소의 기질 검출용 바이오센서에 있어서, 상기 금 성장용액 100 중량부에 대해 금 나노입자 10-4 ~ 10-2 중량부, 형광염료 10-6 ~ 10-2 중량부 및 효소 10-8 ~ 10-2 중량부가 포함되어 있는 것을 특징으로 할 수 있다.In the substrate detection of the enzyme biosensor for the growth of gold solution 100 parts by weight of the gold nano-particles 10 -4 to 10 -2 parts by weight of a fluorescent dye 10 -6 to 10 -2 parts by weight of an enzyme for 10 -8 ~ 10 -2 parts by weight may be included.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only to illustrate the invention, it will be apparent to those of ordinary skill in the art that the scope of the present invention is not to be construed as limited by these examples.

실시예 1: 환원제에 의해 유도된 금 나노입자 성장에 의한 형광저하를 이용한, 환원제 검출실험Example 1 Reducing Agent Detection Experiment Using Fluorescence Reduction by Gold Nanoparticle Growth Induced by Reducing Agent

1-1. 형광염료로서 fluorescein을 사용한 경우1-1. In case of using fluorescein as fluorescent dye

0.2 mM의 HAuCl4 수용액 2.5㎖에 0.22μM의 금 나노입자 수용액 75㎕ 및 1mM의 fluorescein 10㎕를 첨가하여 혼합물을 제조하였다.A mixture was prepared by adding 75 µl of 0.22 µM aqueous gold nanoparticles solution and 10 µl of 1 mM fluorescein to 2.5 ml of 0.2 mM HAuCl 4 aqueous solution.

상기 혼합물에 환원제인 10mM의 H2O2 2.5㎕를 첨가하여 금 나노입자의 성장을 유도하였다. 2.5 μl of 10 mM H 2 O 2 as a reducing agent was added to the mixture to induce the growth of gold nanoparticles.

상기 H2O2가 첨가된 혼합물의 형광강도를 형광분광광도계(RF-5301PC, Shimadzu, Japan)을 이용하여 측정하여, H2O2 검출실험을 하였다.The fluorescence intensity of the mixture to which the H 2 O 2 was added was measured by using a fluorescence spectrophotometer (RF-5301PC, Shimadzu, Japan) to conduct an H 2 O 2 detection experiment.

또한, 디지털 카메라를 이용하여 상기 H2O2가 첨가된 혼합물의 사진을 찍어 관찰하였다.In addition, a digital camera was used to take a picture of the mixture to which the H 2 O 2 was added and observed.

그 결과, 도 1의 (B)에 나타난 바와 같이, 금 나노입자의 성장 후에 형광강도가 현저하게 저하된 것을 알 수 있으며, 사진상으로도 녹색의 형광이 금 나노입자의 성장 후의 현저하게 저하된 것을 확인할 수 있었다.As a result, as shown in Figure 1 (B), it can be seen that after the growth of the gold nanoparticles, the fluorescence intensity was remarkably decreased, and even in the photograph, the green fluorescence was significantly reduced after the growth of the gold nanoparticles. I could confirm it.

1-2. 형광염료로서 rhodamine B를 사용한 경우1-2. When rhodamine B is used as a fluorescent dye

0.2 mM의 HAuCl4 수용액 2.5㎖에 0.22μM의 금 나노입자 수용액 75㎕ 및 1mM 의 rhodamine B 5㎕를 첨가하여 혼합물을 제조하였다.A mixture was prepared by adding 75 µl of 0.22 µM gold nanoparticle aqueous solution and 5 µl of 1 mM rhodamine B to 2.5 ml of 0.2 mM HAuCl 4 aqueous solution.

상기 혼합물에 환원제인 10mM의 H2O2 2.5㎕를 첨가하여 금 나노입자의 성장을 유도하였다. 2.5 μl of 10 mM H 2 O 2 as a reducing agent was added to the mixture to induce the growth of gold nanoparticles.

상기 H2O2가 첨가된 혼합물의 형광강도를 형광분광광도계(RF-5301PC, Shimadzu, Japan)을 이용하여 측정하여, H2O2 검출실험을 하였다.The fluorescence intensity of the mixture to which the H 2 O 2 was added was measured by using a fluorescence spectrophotometer (RF-5301PC, Shimadzu, Japan) to conduct an H 2 O 2 detection experiment.

또한, 디지털 카메라를 이용하여 상기 H2O2가 첨가된 혼합물의 사진을 찍어 관찰하였다.In addition, a digital camera was used to take a picture of the mixture to which the H 2 O 2 was added and observed.

그 결과, 도 1의 (C)에 나타난 바와 같이, 금 나노입자의 성장 후에 형광강도가 현저하게 저하된 것을 알 수 있으며, 사진상으로도 주황의 형광이 금 나노입자의 성장 후의 현저하게 저하된 것을 확인할 수 있었다.As a result, as shown in FIG. 1C, it can be seen that the fluorescence intensity was significantly decreased after the growth of the gold nanoparticles, and that the fluorescence of the orange was markedly lowered after the growth of the gold nanoparticles. I could confirm it.

실험예 1: 환원제, 금 나노입자 성장 및 형광염료의 형광저하 사이의 상호관계Experimental Example 1 Correlation between Reducing Agent, Gold Nanoparticle Growth and Fluorescence Decay of Fluorescent Dye

실시예 1-1에 따라 환원제에 의해 유도된 금 나노입자 성장에 의한 형광저하를 이용한, 환원제 검출실험을 실시하되, 첨가하는 환원제, 즉, H2O2의 농도를 0~200μM의 범위에서 증가시키면서 환원제 검출실험을 실시하였다.In accordance with Example 1-1, a reducing agent detection experiment using fluorescence reduction by growth of gold nanoparticles induced by a reducing agent was conducted, but the concentration of the reducing agent added, that is, H 2 O 2 , was increased in the range of 0 to 200 μM. The reducing agent detection experiment was performed.

실시예 1-1에 따라 금 나노입자 성장을 유도한 후, TEM(transmission electron microscope)(HD-2300A, Hidachi, Japan)를 이용하여 H2O2 농도에 따른 금 나노입자의 사진을 찍고, H2O2 농도에 따른 형광 저하의 표준등급(Normalized degree of quenching)과 금 나노입자의 평균크기(Avr. size of Au NPs(nm)) 사이의 상관관계 그래프를 도출하였다. After inducing the growth of gold nanoparticles according to Example 1-1, using a transmission electron microscope (TEM) (HD-2300A, Hidachi, Japan) to take a picture of the gold nanoparticles according to the H 2 O 2 concentration, H The correlation graph between the normalized degree of quenching and the average size of Au nanoparticles (Avr. Size of Au NPs (nm)) of 2 O 2 concentration was derived.

그 결과, 도 2의 (A) i~vi에 나타난 바와 같이, H2O2의 농도가 증가할 수록 금 나노입자의 크기도 커지는 것을 알 수 있었다. 또한, 도 2의 (B)에 나타난 바와 같이, H2O2의 농도가 증가할수록 형광 저하의 표준등급 및 금 나노입자의 평균크기도 커지는 것을 알 수 있었다. 여기서, 형광 저하의 표준등급이 커진다는 것은 형광 저하가 심해지는 것을 의미한다.As a result, as shown in (A) i ~ vi of Figure 2, it was found that the size of the gold nanoparticles increases as the concentration of H 2 O 2 increases. In addition, as shown in Figure 2 (B), it was found that as the concentration of H 2 O 2 increases, the standard grade of fluorescence decrease and the average size of the gold nanoparticles also increases. Here, increasing the standard grade of fluorescence reduction means that fluorescence reduction is intensified.

실험예 2: 환원제 종류에 따른, 환원제에 의해 유도된 금 나노입자 성장에 의한 형광저하를 이용한, 환원제 검출실험Experimental Example 2 Reducing Agent Detection Experiment Using Fluorescence Reduction by Gold Nanoparticle Growth Induced by Reducing Agent According to Reducing Agent Type

1-1. 금 나노입자 및 금 성장용액을 사용하지 않을 경우의 실험1-1. Experiment without gold nanoparticles and gold growth solution

phosphate buffer 2.5㎖에 형광염료인 fluorescein 5㎕를 첨가하여 5μM의 fluorescein 수용액(이하, Dye only라 함)을 제조하였다.5 μl of a fluorescent dye fluorescein was added to 2.5 ml of phosphate buffer to prepare a 5 μM aqueous solution of fluorescein (hereinafter referred to as Dye only).

상기 fluorescein 수용액에 환원제인 10mM의 H2O2 2.5㎕, 10mM의 hydroquinone 5㎕ 및 1mM의 acetylthiocholine 5㎕을 각각 첨가하여 금 나노입자의 성장을 유도하였다. 2.5 μl of 10 mM H 2 O 2 , 5 μl of 10 mM hydroquinone and 5 μl of 1 mM acetylthiocholine were added to the aqueous fluorescein solution to induce the growth of gold nanoparticles.

상기 H2O2 40μM, hydroquinone 40μM 및 acetylthiocholine 40μM가 각각 첨가된 3개의 혼합물 및 fluorescein 수용액의 형광강도를 형광분광광도계(RF-5301PC, Shimadzu, Japan)을 이용하여 측정하여, 환원제 검출실험을 하였다.The fluorescence intensities of three mixtures of 40 μM of H 2 O 2, 40 μM of hydroquinone, and 40 μM of acetylthiocholine and an aqueous fluorescein solution were measured using a fluorescence spectrophotometer (RF-5301PC, Shimadzu, Japan), and a reducing agent detection experiment was performed.

그 결과, 도 3의 (A)에 나타난 바와 같이, H2O2 40μM, hydroquinone 40μM 및 acetylthiocholine 40μM가 각각 첨가된 3개의 혼합물 및 fluorescein 수용액의 형광강도 측정실험에서 형광저하는 일어나지 않았다.As a result, as shown in (A) of FIG. 3, fluorescence deterioration did not occur in the measurement of fluorescence intensity of three mixtures of 40 μM of H 2 O 2, 40 μM of hydroquinone, and 40 μM of acetylthiocholine, respectively, and an aqueous solution of fluorescein.

이로부터, 금 나노입자 및 금 나노입자 성장용액이 존재하여야만, 환원제에 의해 금 나노입자 성장이 이루어져 형광저하가 일어나고, 이로부터 환원제를 검출할 수 있다는 것을 알 수 있었다. 즉, 형광염료만을 함유하는 용액에서 환원제를 첨가할 경우에는 형광저하를 발견할 수 없었다.From this, it was found that only when the gold nanoparticles and the gold nanoparticle growth solution were present, the growth of the gold nanoparticles was caused by the reducing agent and the fluorescence was lowered, thereby detecting the reducing agent. That is, when the reducing agent was added to the solution containing only the fluorescent dye, no fluorescence was found.

1-2. 금 나노입자 및/또는 금 성장용액을 사용할 경우의 실험1-2. Experiment using gold nanoparticles and / or gold growth solution

phosphate buffer 2.5㎖에 형광염료인 fluorescein 5㎕를 첨가하여 5μM의 fluorescein 수용액(이하, Dye only라 함)을 제조하였다.5 μl of a fluorescent dye fluorescein was added to 2.5 ml of phosphate buffer to prepare a 5 μM aqueous solution of fluorescein (hereinafter referred to as Dye only).

또한, 상기 fluorescein 수용액에 0.22μM의 금 나노입자 수용액을 첨가한 혼합물(이하, +Au NPs라 함)을 제조하였다.In addition, a mixture (hereinafter referred to as + Au NPs) of 0.22 μM gold nanoparticles aqueous solution was added to the aqueous fluorescein solution.

또한, 상기 fluorescein 수용액에 금 나노입자 성장용액인 1mM의 HAuCl4 수용액 5㎕을 첨가한 혼합물(이하, +HAuCl4라 함)을 제조하였다.In addition, a mixture (hereinafter referred to as + HAuCl 4 ) of 5 μl of a 1 mM HAuCl 4 aqueous solution of gold nanoparticle growth solution was prepared in the aqueous fluorescein solution.

또한, 상기 fluorescein 수용액에 0.22μM의 금 나노입자 수용액 75㎕ 및 1 mM의 HAuCl4 수용액 5㎕을 첨가한 혼합물(이하, +Au NPs +HAuCl4라 함)을 제조하였다.In addition, a mixture (hereinafter, + Au NPs + HAuCl 4 ) was prepared by adding 75 μl of 0.22 μM gold nanoparticle solution and 5 μl of 1 mM HAuCl 4 solution to the fluorescein aqueous solution.

그 후, 상기 fluorescein 수용액 및 3개의 혼합물에 환원제인 200μM의 H2O2 을 각각 첨가하여 금 나노입자의 성장을 유도하였다. Thereafter, 200 μM of H 2 O 2 , a reducing agent, was added to the aqueous fluorescein solution and three mixtures to induce the growth of gold nanoparticles.

상기 H2O2가 각각 첨가된 fluorescein 수용액 및 3개의 혼합물의 형광강도를 형광분광광도계(RF-5301PC, Shimadzu, Japan)을 이용하여 측정하여, 환원제 검출실험을 하였다.Fluorescence intensities of the fluorescein aqueous solution and three mixtures of H 2 O 2 added thereto were measured using a fluorescence spectrophotometer (RF-5301PC, Shimadzu, Japan), and a reducing agent detection experiment was performed.

그 결과, 도 3의 (B)에 나타난 바와 같이, fluorescein 수용액의 경우 형광저하가 일어나지 않았고, 금 나노입자 및/또는 HAuCl4이 첨가된 혼합물에서는 형광저하가 일어나는 것을 확인할 수 있었다. As a result, as shown in Figure 3 (B), in the case of the aqueous solution of fluorescein fluorescence did not occur, it was confirmed that the fluorescence decrease occurs in the mixture of gold nanoparticles and / or HAuCl 4 added.

결국, 형광저하를 관찰하기 위해서는 형광염료, 금 나노입자 및/도는 금 나노입자 성장용액 및 환원제가 모두 필수적인 존재하여야 한다는 것을 확인할 수 있었다.As a result, it was confirmed that fluorescent dyes, gold nanoparticles and / or gold nanoparticles growth solution and reducing agent should all be present in order to observe fluorescence deterioration.

실험예 3: 형광저하 및 흡광도 변화를 이용한 검출실험의 민감도 변화Experimental Example 3: Sensitivity Change of Detection Experiment Using Fluorescence Reduction and Absorbance Change

0.1 mM의 HAuCl4 수용액 5㎕에 0.22μM의 금 나노입자 수용액 75㎕ 및 1mM의 fluorescein 5㎕를 첨가하여 혼합물을 제조하였다.A mixture was prepared by adding 75 µl of 0.22 µM gold nanoparticle aqueous solution and 5 µl of 1 mM fluorescein to 5 µl of 0.1 mM HAuCl 4 aqueous solution.

상기 혼합물에 환원제인 hydroquinone 10㎕을 첨가하여 금 나노입자의 성장을 유도하였다.10 μl of hydroquinone as a reducing agent was added to the mixture to induce the growth of gold nanoparticles.

상기 hydroquinone이 첨가된 혼합물의 형광강도 및 흡광도를 각각 형광분광광도계(RF-5301PC, Shimadzu, Japan) 및 자외-가시선 분광광도계(UV-vis spectrophotometer Biospec-mini, Shimadzu, Japan)이용하여 측정하여, hydroquinone 검출실험을 하였다.The fluorescence intensity and the absorbance of the hydroquinone-added mixture were measured using a fluorescence spectrophotometer (RF-5301PC, Shimadzu, Japan) and an ultraviolet-vis spectrophotometer (UV-vis spectrophotometer Biospec-mini, Shimadzu, Japan), respectively. Detection experiment was performed.

그 결과, 도 3의 (A)에 나타난 바와 같이, hydroquinone의 농도가 0μM에서 6μM로 증가할수록, 형광강도는 저하되고, hydroquinone의 검출한계는 0.006μM인 것을 알 수 있었다. 또한, 형광저하의 구체적인 일 예로서, 파장이 535nm일 때 0.8μM의 hydroquinone이 첨가된 혼합물의 형광저하 정도는 13% 정도였다. As a result, as shown in Fig. 3A, as the hydroquinone concentration increased from 0 μM to 6 μM, the fluorescence intensity decreased, and the detection limit of the hydroquinone was 0.006 μM. In addition, as a specific example of the decrease in fluorescence, the degree of fluorescence reduction of the mixture to which 0.8 μM hydroquinone was added when the wavelength was 535 nm was about 13%.

또한, 도 3의 (B)에 나타난 바와 같이, hydroquinone의 농도가 0μM에서 6μM로 증가할수록, 흡광도는 증가하지만, hydroquinone의 농도가 0.2μM까지의 범위에서는 형광강도의 변화 없이 거의 일정한 것을 알 수 있었다. 또한, 흡광도 증가의 구체적인 일 예로서, 파장이 535nm일 때 0.8μM의 hydroquinone이 첨가된 혼합물의 형광저하 정도는 3.5% 정도에 불과하였다.In addition, as shown in (B) of FIG. 3, as the hydroquinone concentration increased from 0 µM to 6 µM, the absorbance increased, but it was found that the hydroquinone concentration was almost constant without changing the fluorescence intensity in the range up to 0.2 µM. . In addition, as a specific example of the increase in absorbance, the fluorescence deterioration degree of the mixture containing 0.8 μM hydroquinone at a wavelength of 535 nm was only about 3.5%.

결국, 상기 hydroquinone가 첨가된 혼합물의 형광강도의 저하 및 흡광도의 증가를 이용하여, hydroquinone을 검출할 수 있으나, 형광강도 저하를 이용할 경우 흡광도를 이용할 경우에 비해, hydroquinone 변화에 따라 형광강도의 변화도 크게 나타므로, 검출 감도가 우수하다는 것을 알 수 있었다.As a result, hydroquinone can be detected using a decrease in fluorescence intensity and an increase in absorbance of the mixture to which hydroquinone is added, but the change in fluorescence intensity according to the hydroquinone change can be detected when the fluorescence intensity decrease is used. Since it appears large, it turned out that detection sensitivity is excellent.

실시예 2: 효소반응에 의해 유도된 금 나노입자 성장 형광신호 저하를 이용한, 효소기질 검출방법Example 2 Enzyme Substrate Detection Method Using Degradation of Gold Nanoparticle Growth Fluorescence Signal Induced by Enzyme Reaction

AChE(acetylcholinesterase) 5㎕, 0.1M의 HAuCl4 수용액 5㎕, 0.22μM의 금 나노입자 수용액 및 fluorescein 5㎕의 혼합물을 제조하였다.A mixture of 5 μl of AChE (acetylcholinesterase), 5 μl of 0.1 M HAuCl 4 aqueous solution, 0.22 μM gold nanoparticle aqueous solution and 5 μl fluorescein was prepared.

상기 혼합물에 AChE의 기질인 acetylcholine 5㎕을 첨가하되, acetylcholine의 농도가 0μM, 0.02μM, 0.1μM, 0.4μM, 0.8μM 및 1.6μM로 변화시켜 각각의 실험을 실시하였다.5 μl of acetylcholine, which is a substrate of AChE, was added to the mixture, and the experiments were performed with the concentrations of acetylcholine changed to 0 μM, 0.02 μM, 0.1 μM, 0.4 μM, 0.8 μM, and 1.6 μM.

상기 acetylcholine이 첨가된 혼합물의 형광강도를 형광분광광도계(RF-5301PC, Shimadzu, Japan)를 이용하여 측정하여, acetylcholine 검출실험을 하였다.The fluorescence intensity of the mixture to which acetylcholine was added was measured using a fluorescence spectrophotometer (RF-5301PC, Shimadzu, Japan), and acetylcholine detection experiments were performed.

그 결과, 도 5의 (a) 및 (b)에 나타난 바와 같이, acetylcholine의 농도가 증가할수록 상기 acetylcholine이 첨가된 혼합물의 형광강도는 저하되는 것을 알 수 있었다.As a result, as shown in (a) and (b) of Figure 5, it was found that as the concentration of acetylcholine increases, the fluorescence intensity of the mixture to which the acetylcholine is added decreases.

실험예 4: 형광저하에 소요되는 시간 측정Experimental Example 4: Measurement of time required for fluorescence reduction

실시예 1-1의 방법에 따라, 형광신호 저하를 이용한 H2O2 및 hydroquinone 검출실험을 실시하였다. 또한, 실시예 2에 따라, 형광저하를 이용한 acetylthiocholine 검출실험을 실시하였다. According to the method of Example 1-1, H 2 O 2 and hydroquinone detection experiment using the fluorescent signal degradation was performed. In addition, according to Example 2, an acetylthiocholine detection experiment using fluorescence reduction was performed.

그 결과, 도 6에 나타난 바와 같이, acetylthiocholine을 이용할 경우 형광저하에 소요되는 시간이 5분 이내인 것으로 확인되었다. 이러한 결과는 AChE와 acetylthiocholine 사이의 반응에서 생성된 전자에 의한 HAuCl4의 빠른 환원에 기인한 것이다.As a result, as shown in Figure 6, when using the acetylthiocholine it was confirmed that the time required to reduce the fluorescence within 5 minutes. This result is due to the rapid reduction of HAuCl 4 by the electrons produced in the reaction between AChE and acetylthiocholine.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다. While the present invention has been particularly shown and described with reference to specific embodiments thereof, those skilled in the art will appreciate that such specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

도 1은 환원제 및 AuCl4 -의 존재하에서 금 이온의 환원으로 유도된 금 나노입자의 성장에 의한 형광 저하 반응의 개략도(A), 환원제인 H2O2를 촉매로 한 금 나노입자 성장 전(solid line) 및 후(dotted line)의, fluoresein 함유 용액의 형광강도 변화(B) 및 환원제인 H2O2를 촉매로 한 금 나노입자 성장 전(solid line) 및 후(dotted line)의, rhodamine B 함유 용액의 형광강도 변화(C)를 나타낸 것이다.1 is a schematic diagram (A) of a fluorescence reduction reaction by growth of gold nanoparticles induced by reduction of gold ions in the presence of a reducing agent and AuCl 4 , before growth of gold nanoparticles based on H 2 O 2 as a reducing agent ( rhodamine before and after growth of gold nanoparticles (B) as a catalyst for the change in fluorescence intensity (B) of the fluoresein-containing solution and the reductant H 2 O 2 in solid and dotted lines Fluorescence intensity change (C) of the B-containing solution is shown.

도 2는 H2O2 농도가 (i) 0μM, (ii) 2μM, (iii) 10μM, (iv) 40μM 및 (v) 120μM 및 (vi) 200μM 일 때, 성장 반응 후 금 나노입자의 TEM 이미지(A); 및 H2O2 농도에 따른 형광저하의 표준등급(●)과 H2O2에 따른 금 나노입자의 평균크기(○) 변화를 나타낸 그래프(B)이다. FIG. 2 shows TEM images of gold nanoparticles after growth reaction when H 2 O 2 concentrations are (i) 0 μM, (ii) 2 μM, (iii) 10 μM, (iv) 40 μM and (v) 120 μM and (vi) 200 μM (A); Fluorescence decrease according to H 2 O 2 concentration (●) and H 2 O 2 This is a graph (B) showing the average size (○) change of gold nanoparticles.

도 3은 파장에 따른 분석물은 형광강도 변화를 나타낸 그래프(A) 및 금 나노입자와 금 성장용액 유무에 따른 형광강도 변화를 나타낸 그래프(B)이다.3 is a graph showing a change in fluorescence intensity of the analyte according to the wavelength (A) and a graph showing a change in fluorescence intensity according to the presence or absence of gold nanoparticles and gold growth solution (B).

도 4은 0~6μM의 농도에서 hydroquinone의 존재하에 금 나노입자의 성장 후, 파장에 따른 fluoroscein(5μM)-포함 금 나노입자 성장용액의 형광 강도(A); 및 파장에 따른 UV-vis 흡광도 스펙트럼(B)을 나타낸 그래프이다.Figure 4 shows the fluorescence intensity (A) of the fluoroscein (5 μM) -containing gold nanoparticle growth solution according to the wavelength after the growth of gold nanoparticles in the presence of hydroquinone at a concentration of 0-6 μM; And it is a graph showing the UV-vis absorbance spectrum (B) according to the wavelength.

도 5는 파장 및 acetylthiocholine의 농도에 따른 형광강도변화를 나타낸 그래프(a) 및 acetylthiocholine의 농도에 따른 형광 저하의 표준등급을 나타낸 그래프(b)이다.Figure 5 is a graph showing the change in fluorescence intensity according to the wavelength and the concentration of acetylthiocholine (a) and a graph showing the standard grade of fluorescence degradation according to the concentration of acetylthiocholine (b).

도 6은 분석물의 종류에 따라 시간에 따른 형광강도의 변화를 나타낸 그래프이다.6 is a graph showing the change in fluorescence intensity over time according to the type of analyte.

Claims (17)

다음의 단계를 포함하는, 금 나노입자의 성장에 의한 형광저하를 이용한, 분석물의 검출방법:A method for detecting an analyte, using fluorescence reduction by growth of gold nanoparticles, comprising the following steps: (a) 금 나노입자의 성장용액에 금 나노입자 및 형광염료를 첨가하여 혼합물을 제조하는 단계;(a) preparing a mixture by adding gold nanoparticles and a fluorescent dye to the growth solution of gold nanoparticles; (b) 상기 혼합물에 환원 가능한 분석물을 첨가하여 금 나노입자 성장을 유도하는 단계; 및 (b) adding a reducible analyte to the mixture to induce gold nanoparticle growth; And (c) 상기 성장된 금 나노입자를 함유하는 혼합물의 형광강도를 측정하여 환원 가능한 분석물을 검출하는 단계.(c) detecting a reducible analyte by measuring the fluorescence intensity of the mixture containing the grown gold nanoparticles. 제1항에 있어서, 상기 환원 가능한 분석물은 H2O2, hydroquinone(HQ), adrenaline, noradrenaline, dopamine, L-Dopa, mercaptosuccinic acid, 4-aminophenol, 3-aminophenol, 1,4-phenylenediamine, aniline, triethylamine, indole, 4-bromoaniline,, 1-methylindole, 3-amino-1-propanol, pyridine, 3-indole propionic acid, glucine, DL-tryptophan, Sodium cirate, citric acid, sodium boro hydride, hydroxylamine, HCl, acetone, oxalic acid 및 b-diketone으로 구성된 군에서 선택되는 환원제인 것을 특징으로 하는 방법.The method of claim 1, wherein the reducible analyte is H 2 O 2 , hydroquinone (HQ), adrenaline, noradrenaline, dopamine, L-Dopa, mercaptosuccinic acid, 4-aminophenol, 3-aminophenol, 1,4-phenylenediamine, aniline , triethylamine, indole, 4-bromoaniline ,, 1-methylindole, 3-amino-1-propanol, pyridine, 3-indole propionic acid, glucine, DL-tryptophan, Sodium cirate, citric acid, sodium boro hydride, hydroxylamine, HCl, acetone, oxalic acid and b-diketone. 제1항에 있어서, 상기 금 나노입자 성장용액은 HAuCl4, NaAuCl4, AuCl3 및 K(AuCl4)으로 구성된 군에서 선택되는 금이온 생성물질의 수용액인 것을 특징으로 하는 방법.The gold nanoparticle growth solution of claim 1, wherein the gold nanoparticle growth solution is selected from the group consisting of HAuCl 4 , NaAuCl 4 , AuCl 3 and K (AuCl 4 ). It is an aqueous solution. 제1항에 있어서, 형광염료는 플루오로세인(fluorescein), 로다민류 (rhodamine), 에오신류(Eosin), 알렉사류(Alexa) 및 장미 벵갈(rose bengal)로 구성된 군에서 선택되는 것을 특징으로 하는 방법.The fluorescent dye of claim 1, wherein the fluorescent dye is selected from the group consisting of fluorescein, rhodamine, eosin, Alexa, and rose bengal. Way. 제1항에 있어서, 상기 금 성장용액 100 중량부에 대해 금 나노입자 10-4 ~ 10-2 중량부, 형광염료 10-6 ~ 10-2 중량부 및 효소 10-8 ~ 10-2 중량부를 첨가하는 것을 특징으로 하는 방법.The method of claim 1, wherein the growing gold solution 100 parts by weight of the gold nano-particles 10 of about -4 to 10 -2 parts by weight of a fluorescent dye 10 -6 to 10 -2 parts by weight of the enzyme 10 -8 to 10 -2 parts by weight Adding. 제1항에 있어서, 상기 금 성장용액 100 중량부에 대해 분석물 10-18 ~ 10-1 중 량부를 첨가하는 것을 특징으로 하는 방법.The method of claim 1, wherein 10 parts by weight of analyte 10 -18 to 10 -1 is added to 100 parts by weight of the gold growth solution. 다음의 단계를 포함하는, 금 나노입자의 성장에 의한 형광신호 저하를 이용한, 분석물의 검출방법:A method for detecting an analyte, using a decrease in fluorescence signal by growth of gold nanoparticles, comprising the following steps: (a) 금 나노입자 성장용액, 금 나노입자, 형광염료 및 효소의 혼합물을 제조하는 단계;(a) preparing a mixture of gold nanoparticle growth solution, gold nanoparticles, fluorescent dyes and enzymes; (b) 상기 혼합물에 분석물을 첨가하여 상기 분석물과 효소의 반응을 유도하는 단계; 및 (b) adding an analyte to the mixture to induce a reaction of the analyte with an enzyme; And (c) 상기 분석물이 첨가된 혼합물의 형광강도를 측정한 뒤, 형광염료의 형광강도에 비교하여, 형광신호 저하 정도를 이용하여 분석물을 검출하는 단계.(c) measuring the fluorescence intensity of the mixture to which the analyte is added, and comparing the fluorescence intensity of the fluorescent dye to detect the analyte using the degree of fluorescence signal degradation. 제7항에 있어서, 상기 효소는 AChE(acetylthiocholinesterase), 콜린 옥시다제(choline oxidase), 글루코즈 옥시다제(glucose oxidase), 싸이토크롬 옥시다제 (Cytochrome oxidase), 아스코르베이트 옥시다제(ascorbic oxidase), 잔틴 옥시다제 (xanthine oxidase), 폴리페놀 옥시다제 (polyphenol oxidase), 카테콜 옥시다제 (catechol oxidase), 라이실 옥시다제 NADPH 옥시다제 (NADPH oxidase), 모노아민 옥시다제 (monoamine oxidase) 및 라카아제 (laccase)로 구성된 군에서 선택되는 것을 특징으로 하는 방법.The method of claim 7, wherein the enzyme is acetylthiocholinesterase (AChE), choline oxidase (glucose oxidase), glucose oxidase (cytochrome oxidase), ascorbate oxidase (ascorbic oxidase), Xanthine oxidase, polyphenol oxidase, catechol oxidase, lysyl oxidase NADPH oxidase, monoamine oxidase and lacamine (oxidase) laccase) selected from the group consisting of. 제7항에 있어서, 상기 분석물은 acetylthiocholine, acetylcholine, hydroquinone, glucose, adrenaline, noradrenaline, dopamine, L-Dopa, mecaptosuccinic acid, 4-aminophenol, 3-aminophenol, 1,4-phenylenediamine, aniline, triethylamine, indole, 4-bromoaniline,, 1-methylindole, 3-amino-1-propanol, pyridine, 3-indole propionic acid, glucine, DL-tryptophan, Sodium cirate, citric acid, sodium boro hydride, hydroxylamine, HCl, acetone, oxalic acid 및 b-diketone로 구성된 군에서 선택되는 효소기질인 것을 특징으로 하는 방법. The method of claim 7, wherein the analyte is acetylthiocholine, acetylcholine, hydroquinone, glucose, adrenaline, noradrenaline, dopamine, L-Dopa, mecaptosuccinic acid, 4-aminophenol, 3-aminophenol, 1,4-phenylenediamine, aniline, triethylamine, indole , 4-bromoaniline ,, 1-methylindole, 3-amino-1-propanol, pyridine, 3-indole propionic acid, glucine, DL-tryptophan, Sodium cirate, citric acid, sodium boro hydride, hydroxylamine, HCl, acetone, oxalic acid And b-diketone. 제7항에 있어서, 상기 금 나노입자 성장용액은 HAuCl4, NaAuCl4, AuCl3, K(AuCl4)로 구성된 군에서 선택되는 금이온 생성물질의 수용액인 것을 특징으로 하는 방법.The method of claim 7, wherein the gold nanoparticle growth solution is an aqueous solution of a gold ion generating material selected from the group consisting of HAuCl 4 , NaAuCl 4 , AuCl 3 , K (AuCl 4 ). 제7항에 있어서, 상기 형광염료는 플루오로세인(fluorescein), 로다민류(rhodamine), 에오신 (Eosin) 및 장미 벵갈(rose bengal)로 구성된 군에서 선택 되는 것을 특징으로 하는 방법.The method of claim 7, wherein the fluorescent dye is selected from the group consisting of fluorescein, rhodamine, eosin, and rose bengal. 제7항에 있어서, 상기 금 성장용액 100 중량부에 대해 금 나노입자 10-4 ~ 10-2 중량부, 형광염료 10-6 ~ 10-2 중량부 및 효소 10-8 ~ 10-2 중량부를 첨가하는 것을 특징으로 하는 방법.The method of claim 7, wherein the gold growth solution to 10 with gold nanoparticles 10 -4 parts by weight based on 100 parts by weight of -2, a fluorescent dye 10 -6 to 10 -2 parts by weight of the enzyme 10 -8 to 10 -2 parts by weight Adding. 제7항에 있어서, 상기 금 성장용액 100 중량부에 대해 분석물 10-18 ~ 10-1 중량부를 첨가하는 것을 특징으로 하는 방법.The method according to claim 7, wherein 10 to 18 to 10 -1 parts by weight of the analyte is added to 100 parts by weight of the gold growth solution. 금 나노입자의 성장용액, 금 나노입자 및 형광염료를 포함하는, 금 나노입자 성장에 사용되는 환원가능한 분석물 검출용 바이오센서. A biosensor for the detection of reducible analytes used in the growth of gold nanoparticles, comprising growth solutions of gold nanoparticles, gold nanoparticles, and fluorescent dyes. 제14항에 있어서, 상기 금 성장용액 100 중량부에 대해 금 나노입자 10-4 ~ 10-2 중량부 및 형광염료 10-6 ~ 10-2 중량부가 포함되어 있는 바이오센서.The biosensor according to claim 14, wherein 10 -4 to 10 -2 parts by weight of gold nanoparticles and 10 -6 to 10 -2 parts by weight of fluorescent dyes are included with respect to 100 parts by weight of the gold growth solution. 금 나노입자의 성장용액, 금 나노입자, 형광염료 및 효소를 포함하는, 상기 효소의 기질 검출용 바이오센서.Biosensor for detecting the substrate of the enzyme, comprising a growth solution of gold nanoparticles, gold nanoparticles, fluorescent dyes and enzymes. 제16항에 있어서, 상기 금 성장용액 100 중량부에 대해 금 나노입자 10-4 ~ 10-2 중량부, 형광염료 10-6 ~ 10-2 중량부 및 효소 10-8 ~ 10-2 중량부가 포함되어 있는 바이오센서.According to claim 16, wherein the gold nano-gold for the growth solution 100 parts by weight of the particles 10 -4 to 10 -2 parts by weight of a fluorescent dye 10 -6 to 10 -2 parts by weight of the enzyme 10 -8 to 10 -2 parts by weight Biosensor included.
KR1020090122116A 2009-12-09 2009-12-09 Method for Detecting Analytes Using Fluorescence Quenching Induced by Gold Nanoparticle Enlargement KR101121556B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090122116A KR101121556B1 (en) 2009-12-09 2009-12-09 Method for Detecting Analytes Using Fluorescence Quenching Induced by Gold Nanoparticle Enlargement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090122116A KR101121556B1 (en) 2009-12-09 2009-12-09 Method for Detecting Analytes Using Fluorescence Quenching Induced by Gold Nanoparticle Enlargement

Publications (2)

Publication Number Publication Date
KR20110065232A true KR20110065232A (en) 2011-06-15
KR101121556B1 KR101121556B1 (en) 2012-03-06

Family

ID=44398539

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090122116A KR101121556B1 (en) 2009-12-09 2009-12-09 Method for Detecting Analytes Using Fluorescence Quenching Induced by Gold Nanoparticle Enlargement

Country Status (1)

Country Link
KR (1) KR101121556B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101539389B1 (en) * 2014-04-07 2015-07-28 한국과학기술원 Method for Regenerating Cofactors Using Polydopamine Induced Plasmonic Nanohybrids
US9533354B2 (en) 2013-06-19 2017-01-03 Korea Basic Science Institute Method for preparing size-controlled gold nanoparticles and colorimetric detection method of strong acid using the same
CN106290520A (en) * 2016-08-29 2017-01-04 微泰医疗器械(杭州)有限公司 A kind of preparation method of the electrochemical sensor with surface cure polypeptide probe
KR20180044703A (en) * 2016-10-24 2018-05-03 성균관대학교산학협력단 Au―Pd supra nanoparticle, method for preparing the same, and sensor including the same for detecting hydrogen peroxide
JP2019533816A (en) * 2016-10-26 2019-11-21 インテグレーテッド ナノ−テクノロジーズ,インコーポレイティド Biomolecular target light detection system and method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101356798B1 (en) 2012-03-19 2014-01-27 한국과학기술원 Method for Detecting Analytes Inducing Enlargement of Gold Nanoparticles
KR101711012B1 (en) * 2015-04-27 2017-02-28 한국과학기술연구원 COLORIMETRIC DETECTION SENSOR AND METHOD FOR p-PHENYLENEDIAMINE USING SILVER NANOPARTICLES MODIFIED WITH POLYETHYLENE GLYCOL
CN109709320A (en) * 2019-01-18 2019-05-03 吉林大学 Based on protein-inorganic hybrid nano flower acetylcholine detection kit and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7704704B2 (en) 2005-09-28 2010-04-27 The Texas A&M University System Implantable system for glucose monitoring using fluorescence quenching
US20080299555A1 (en) 2007-05-30 2008-12-04 Hiroaki Nitta Multicolor chromogenic detection of biomarkers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9533354B2 (en) 2013-06-19 2017-01-03 Korea Basic Science Institute Method for preparing size-controlled gold nanoparticles and colorimetric detection method of strong acid using the same
KR101539389B1 (en) * 2014-04-07 2015-07-28 한국과학기술원 Method for Regenerating Cofactors Using Polydopamine Induced Plasmonic Nanohybrids
CN106290520A (en) * 2016-08-29 2017-01-04 微泰医疗器械(杭州)有限公司 A kind of preparation method of the electrochemical sensor with surface cure polypeptide probe
KR20180044703A (en) * 2016-10-24 2018-05-03 성균관대학교산학협력단 Au―Pd supra nanoparticle, method for preparing the same, and sensor including the same for detecting hydrogen peroxide
JP2019533816A (en) * 2016-10-26 2019-11-21 インテグレーテッド ナノ−テクノロジーズ,インコーポレイティド Biomolecular target light detection system and method

Also Published As

Publication number Publication date
KR101121556B1 (en) 2012-03-06

Similar Documents

Publication Publication Date Title
KR101121556B1 (en) Method for Detecting Analytes Using Fluorescence Quenching Induced by Gold Nanoparticle Enlargement
Ling et al. Fluorescent detection of hydrogen peroxide and glucose with polyethyleneimine-templated Cu nanoclusters
Yan et al. Fluorometric and colorimetric analysis of carbamate pesticide via enzyme-triggered decomposition of Gold nanoclusters-anchored MnO2 nanocomposite
Ni et al. Gold nanoclusters-based dual-channel assay for colorimetric and turn-on fluorescent sensing of alkaline phosphatase
Hu et al. H2O2-sensitive quantum dots for the label-free detection of glucose
Wen et al. Polyethyleneimine-capped silver nanoclusters as a fluorescence probe for sensitive detection of hydrogen peroxide and glucose
Peng et al. A new biosensor for glucose determination in serum based on up-converting fluorescence resonance energy transfer
Vaishanav et al. Mn2+ doped-CdTe/ZnS modified fluorescence nanosensor for detection of glucose
Wang et al. A carbon dot-based ratiometric fluorometric and colorimetric method for determination of ascorbic acid and of the activity of ascorbic acid oxidase
Chen et al. Double responsive analysis of carbaryl pesticide based on carbon quantum dots and Au nanoparticles
Zhai et al. Enzyme inhibition methods based on Au nanomaterials for rapid detection of organophosphorus pesticides in agricultural and environmental samples: A review
Fang et al. Tuning surface states to achieve the modulated fluorescence of carbon dots for probing the activity of alkaline phosphatase and immunoassay of α-fetoprotein
Liu et al. A convenient and label-free fluorescence “turn off–on” nanosensor with high sensitivity and selectivity for acid phosphatase
Pezhhan et al. Histidine capped-gold nanoclusters mediated fluorescence detection of glucose and hydrogen peroxide based on glucose oxidase-mimicking property of gold nanoparticles via an inner filter effect mechanism
Lu et al. A turn-on fluorescent probe for vitamin C based on the use of a silicon/CoOOH nanoparticle system
Bao et al. Ultrasensitive off-on-off fluorescent nanosensor for protamine and trypsin detection based on inner-filter effect between N, S-CDs and gold nanoparticles
Xu et al. Fluorometric determination of the activity of alkaline phosphatase based on the competitive binding of gold nanoparticles and pyrophosphate to CePO 4: Tb nanorods
Song et al. Gold nanoclusters-based dual-emission ratiometric fluorescence probe for monitoring protein kinase
Zhang et al. Inter filter effect between fluorescent copper nanoclusters and Cr (VI) and its application for probing the activity of alkaline phosphatase
KR101356798B1 (en) Method for Detecting Analytes Inducing Enlargement of Gold Nanoparticles
Hosogi et al. Plasma membrane anchored nanosensor for quantifying endogenous production of H2O2 in living cells
Hou et al. Etching and anti-etching strategy for sensitive colorimetric sensing of H2O2 and biothiols based on silver/carbon nanomaterial
Li et al. H2O2‐and pH‐sensitive CdTe quantum dots as fluorescence probes for the detection of glucose
Fauzia et al. A localized surface plasmon resonance enhanced dye-based biosensor for formaldehyde detection
Mu et al. Sensitive ratiometric fluorescence probe based on chitosan carbon dots and calcein for Alkaline phosphatase detection and bioimaging in cancer cells

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160128

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190201

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200129

Year of fee payment: 9