KR20110064845A - Zinc oxide-titanium oxide nanofibers and method of manufacturing the same - Google Patents

Zinc oxide-titanium oxide nanofibers and method of manufacturing the same Download PDF

Info

Publication number
KR20110064845A
KR20110064845A KR1020090121593A KR20090121593A KR20110064845A KR 20110064845 A KR20110064845 A KR 20110064845A KR 1020090121593 A KR1020090121593 A KR 1020090121593A KR 20090121593 A KR20090121593 A KR 20090121593A KR 20110064845 A KR20110064845 A KR 20110064845A
Authority
KR
South Korea
Prior art keywords
zinc oxide
titanium dioxide
nanofibers
nanofiber
dioxide nanofibers
Prior art date
Application number
KR1020090121593A
Other languages
Korean (ko)
Inventor
김학용
수 진 박
파힘 알자메드 셰이크
무자파르 아마드 칸잘
긍 식 정
영 식 강
Original Assignee
전북대학교산학협력단
웅진케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단, 웅진케미칼 주식회사 filed Critical 전북대학교산학협력단
Priority to KR1020090121593A priority Critical patent/KR20110064845A/en
Publication of KR20110064845A publication Critical patent/KR20110064845A/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06BTREATING TEXTILE MATERIALS USING LIQUIDS, GASES OR VAPOURS
    • D06B1/00Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating
    • D06B1/02Applying liquids, gases or vapours onto textile materials to effect treatment, e.g. washing, dyeing, bleaching, sizing or impregnating by spraying or projecting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE: A zinc oxide-titanium dioxide nanofiber and a producing method thereof are provided to increase the dye decomposition effect of the nanofiber by maximizing the surface area using zinc oxide nanoprotrusions. CONSTITUTION: A zinc oxide-titanium dioxide nanofiber contains a titanium dioxide nanofiber and zinc oxide nanoprotrusions formed on the surface of the titanium dioxide nanofiber in a branch form. A producing method of the zinc oxide-titanium dioxide nanofiber comprises the following steps: mixing a polymer solution, titanium isopropoxide, acid catalysts, and zinc oxide particles to obtain an electrospinning solution; electrospinning the obtained electrospinning solution for obtaining a zinc oxide-titanium dioxide isopropoxide/polymer hybrid nanofiber; plasticizing the hybrid nanofiber at 500~1,000deg C to obtain the titanium dioxide nanofiber with the zinc oxide particles; and hydrothermal-processing the nanofiber to transform the zinc oxide particles into the zinc oxide nanoprotrusions.

Description

산화아연-이산화티타늄 나노섬유 및 그의 제조방법{Zinc oxide-titanium oxide nanofibers and method of manufacturing the same}Zinc oxide-titanium oxide nanofibers and method of manufacturing the same

본 발명은 염료 등을 분해시키는 광촉매로 유용한 산화아연-이산화티타늄 나노섬유 및 그의 제조방법에 관한 것으로서, 보다 구체적으로는 이산화티타늄 나노섬유 표면에 산화아연 나노돌기들이 가지(Branch) 형태로 형성된 나노섬유(이하 "산화아연-이산화티타늄 나노섬유"라고 칭한다) 및 그의 제조방법에 관한 것이다.The present invention relates to a zinc oxide-titanium dioxide nanofibers useful as a photocatalyst for decomposing dyes and the like, and more particularly, to nanoparticles in which zinc oxide nanoprotrusions are formed in the form of branches on the surface of the titanium dioxide nanofibers. (Hereinafter referred to as "zinc oxide-titanium dioxide nanofibers") and a method for producing the same.

통상적으로, 나노섬유는 직경이 10~1,000㎚ 수준인 섬유를 의미한다.Typically, nanofibers refer to fibers having a diameter of 10 to 1,000 nm.

매년 0.7백만톤 이상의 유기 합성 염료가 생산된다. 주로 이와 같은 염료는 프리팅 및 섬유산업, 가죽제품, 플라스틱 등에 활용된다. 염료가 포함된 폐수 등은 환경 오염의 주된 원인이 된다. 환경 보존 차원에서 이와 같은 염료가 포함된 폐수로부터 염료를 제거하는 것, 즉 염료를 분해하는 기술은 매우 중요하다.More than 0.7 million tons of organic synthetic dyes are produced each year. These dyes are mainly used in the friting and textile industries, leather goods and plastics. Wastewater containing dyes is a major cause of environmental pollution. For the purpose of environmental preservation, the removal of dyes from wastewater containing such dyes, namely the decomposition of dyes, is very important.

많은 산화 반도체 광촉매가 있지만 이산화티타늄(TiO2)을 근간으로 한 나노재료가 가장 많은 연구가 이루어져 있는데 그 이유는 화학적 혹은 생물학적으로 자연계에서 불활성이고 장기간의 광안정성과 강력한 산화 능력을 가지고 있기 때문이 다. A. L. Linsebigler 등(Chem. Rev., 95, 735 (1995))은 TiO2 입자의 표면을 개질하거나 혹은 설파이드(sulfide)와 결합되었을 경우에 광촉매 특성에 관한 연구를 행하였다. V. Sukharev 등(Journal of Photochemistry and Photobiology A: Chemistry, 98, 165 (1996))은 TiO2와 ZnO가 결합된 입자인 경우에 광촉매 효과가 우수하다고 하였다.Although there are many semiconductor oxide photocatalysts, nanomaterials based on titanium dioxide (TiO 2 ) are the most studied because they are chemically or biologically inert in nature and have long-term photostability and strong oxidation capacity. . AL Linsebigler et al. (Chem. Rev., 95, 735 (1995)) studied photocatalytic properties when modifying the surface of TiO 2 particles or when combined with sulfides. V. Sukharev et al. (Journal of Photochemistry and Photobiology A: Chemistry, 98, 165 (1996)) reported that the photocatalytic effect is excellent when TiO 2 and ZnO are combined particles.

상기의 종래 광촉매들은 폐수 중에 포함된 염료를 최대한 짧은 시간에 효율적으로 분해하는 성능이 부족한 문제점이 있었다.The conventional photocatalysts have a problem in that they lack the ability to efficiently decompose the dye contained in the waste water in the shortest possible time.

본 발명은 이와 같은 종래의 문제점들을 해결할 수 있도록 폐수 중에 포함된 염료를 최대한 짧은 시간에 효율적으로 분해할 수 있는 산화아연-이산화티타늄 나노섬유를 제공하고자 한다.The present invention is to provide a zinc oxide-titanium dioxide nanofibers capable of efficiently decomposing the dye contained in the waste water in the shortest possible time to solve these problems.

본 발명에서는 상기 과제를 달성하기 위해 이산화티타늄 나노섬유 표면에 산화아연 나노돌기들이 가지(Branch) 형태로 형성되어 있는 산화아연-이산화티타늄 나노섬유를 광촉매로 제공한다.In order to achieve the above object, the present invention provides a zinc oxide-titanium dioxide nanofiber having a zinc oxide nanoprotuberant formed on a surface of a titanium dioxide nanofiber as a photocatalyst.

상기 산화아연-이산화티타늄 나노섬유는 표면에 가지 형태로 형성된 산화아연 나노돌기들에 의해 표면적이 최대화되어 염료가 자외선(UV)에 의해서 잘 분해되도록 한다.The zinc oxide-titanium dioxide nanofibers have a surface area maximized by zinc oxide nanoprotrusions formed in the form of branches on the surface so that the dye is well decomposed by ultraviolet (UV).

본 발명에 따른 산화아연-이산화티타늄 나노섬유는 이산화티타늄 나노섬유 표면에 산화아연 나노돌기들이 가지(Branch) 형태로 형성된 구조이기 때문에 표면적이 최대화되어 폐액 중 염료 등을 짧은 시간내에 분해하는 성능이 뛰어나 폐수 처리용 광촉매로 유용하다.Since zinc oxide-titanium dioxide nanofibers according to the present invention have a structure in which zinc oxide nanoprotuberants are formed in the form of branches on the surface of titanium dioxide nanofibers, the surface area is maximized, so that the dyes in the waste liquid are decomposed within a short time. It is useful as a photocatalyst for wastewater treatment.

또한, 본 발명에 따른 산화아연-이산화티타늄 나노섬유는 CO 등의 가스센서 등으로도 활용될 수 있다.In addition, the zinc oxide-titanium dioxide nanofibers according to the present invention may be utilized as a gas sensor such as CO.

이하, 첨부한 도면 등을 통하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

본 발명에 따른 산화아연-이산화티타늄 나노섬유는 도 1 내지 도 2에 도시된 바와 같이 이산화티타늄 나노섬유 표면에 산화아연 나노돌기들이 가지(Branch) 형태로 형성되어 있는 것을 특징으로 한다.The zinc oxide-titanium dioxide nanofiber according to the present invention is characterized in that the zinc oxide nanoprotrusions are formed in the form of a branch on the titanium dioxide nanofiber surface as shown in FIGS. 1 to 2.

도 1은 본 발명에 따른 산화아연-이산화티타늄 나노섬유의 투과전자현미경(TEM) 사진이고, 도 2는 본 발명에 따른 산화아연-이산화티타늄 나노섬유의 전자현미경(SEM) 사진이다.1 is a transmission electron microscope (TEM) picture of a zinc oxide-titanium dioxide nanofiber according to the present invention, Figure 2 is an electron microscope (SEM) picture of a zinc oxide-titanium dioxide nanofiber according to the present invention.

상기 산화아연 나노돌기의 길이는 100~1,000㎚, 보다 바람직하기로는 150~1,000㎚인 것이 바람직하다.The length of the zinc oxide nano protrusions is preferably 100 to 1,000 nm, more preferably 150 to 1,000 nm.

본 발명에 따른 산화아연-이산화티타늄 나노섬유의 제조방법은 (ⅰ) 고분자 유기용매에 용해하여 제조한 고분자 용액에 티타늄 이소프로폭사이드[Titanium isopropoxide ; Ti(Iso)], 산 촉매 및 산화아연 입자를 첨가, 혼합하여 전기방사용 용액을 제조하는 공정; (ⅱ) 상기 전기방사용 용액을 전기방사하여 산화아연-티타늄 이소프로폭사이드[ZnO-Ti(Iso)]/고분자 하이브리드 나노섬유를 제조하는 공정; (ⅲ) 상기 하이브리드 나노섬유를 500℃~1,000℃에서 소결처리하여 산화아연 나노입자를 포함하는 이산화티타늄 나노섬유를 제조하는 공정; 및 (ⅳ) 상기 산화아연 나노입자를 포함하는 이산화티타늄 나노섬유를 열수화 처리(Hydrothermal treatment)하여 이산화티타늄 나노섬유에 포함된 상기 산화아연 나노입자를 이산화티타늄 나노섬유 표면에 가지(Brench)형태로 형성된 산화아연 나노돌기로 변형시키는 공정;들을 포함하는 것을 특징으로 한다.The method for producing zinc oxide-titanium dioxide nanofibers according to the present invention comprises (i) titanium isopropoxide in a polymer solution prepared by dissolving in a polymer organic solvent; Ti (Iso)], an acid catalyst and zinc oxide particles are added and mixed to prepare an electrospinning solution; (Ii) electrospinning the electrospinning solution to produce zinc oxide-titanium isopropoxide [ZnO-Ti (Iso)] / polymer hybrid nanofibers; (Iii) sintering the hybrid nanofibers at 500 ° C. to 1,000 ° C. to produce titanium dioxide nanofibers including zinc oxide nanoparticles; And (iii) hydrothermal treatment of the titanium dioxide nanofibers including the zinc oxide nanoparticles to form the branches of the zinc oxide nanoparticles contained in the titanium dioxide nanofibers in the form of branches on the surface of the titanium dioxide nanofibers. It characterized in that it comprises a; step of transforming into a zinc oxide nano-protrusion formed.

상기 열수화 처리는 산화아연 나노섬유를 포함하는 이산화티타늄 나노섬유를 비스-헥사메틸렌 트리아민(Bis-hexamethylene triamine)과 징크 니트레이트 헥사 하이드레이트(Zinc nitrate hexahydrate)이 용해된 물에 투입한 다음, 100~250℃의 온도에서 0.5~2시간 동안 교반처리하는 방법으로 실시하는 것이 바람직하다.In the heat-hydration treatment, titanium dioxide nanofibers including zinc oxide nanofibers are added to water in which bis-hexamethylene triamine and zinc nitrate hexahydrate are dissolved, and then 100 It is preferable to carry out by the method of stirring for 0.5 to 2 hours at a temperature of ~ 250 ℃.

본 발명에 따른 산화아연-이산화티타늄 나노섬유의 제조방법을 보다 구체적으로 살펴본다.The method for producing zinc oxide-titanium dioxide nanofibers according to the present invention will be described in more detail.

먼저, 고분자 유기용매에 용해하여 제조한 고분자 용액에 티타늄 이소프로폭사이드[Titanium isopropoxide ; Ti(Iso)], 산 촉매 및 산화아연 입자를 첨가, 혼합하여 전기방사용 용액을 제조한다.First, titanium isopropoxide [Titanium isopropoxide; Ti (Iso)], an acid catalyst and zinc oxide particles are added and mixed to prepare an electrospinning solution.

구체적으로, 유기용매에 폴리비닐아세테이트(PVAc), 폴리비닐알코올(PVA), 폴리비닐피롤리돈(PVP) 등의 고분자를 용해하여 용액을 제조하고 이 용액과 티타늄 이소프로폭사이드(Ti(Iso))를 혼합 하고 이 용액에 아세틱 액시드와 같은 산 촉매 를 투입하여 투명한 용액을 제조한다. 이 투명한 용액에 산화아연 입자를 첨가하여 전기방사용 졸(sol)-겔(gel) 용액을 제조한다.Specifically, a solution is prepared by dissolving a polymer such as polyvinylacetate (PVAc), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP) in an organic solvent, and the solution and titanium isopropoxide (Ti (Iso). )) Is mixed and an acid catalyst such as acetic acid is added to the solution to prepare a clear solution. Zinc oxide particles are added to this transparent solution to prepare an electrospinning sol-gel solution.

다음으로는, 상기 전기방사용 용액을 전기방사하여 산화아연-티타늄 이소프로폭사이드[ZnO-Ti(Iso)]/고분자 하이브리드 나노섬유를 제조한다.Next, the electrospinning solution is electrospun to produce zinc oxide-titanium isopropoxide [ZnO-Ti (Iso)] / polymer hybrid nanofibers.

다음으로는, 상기 하이브리드 나노섬유를 500℃~1,000℃에서 소결처리하여 산화아연 나노입자를 포함하는 이산화티타늄 나노섬유를 제조한다.Next, the hybrid nanofibers are sintered at 500 ° C. to 1,000 ° C. to produce titanium dioxide nanofibers including zinc oxide nanoparticles.

다음으로는, 상기 산화아연 나노입자를 포함하는 이산화티타늄 나노섬유를 열수화 처리(Hydrothermal treatment)하여 이산화티타늄 나노섬유에 포함된 상기 산화아연 나노입자를 이산화티타늄 나노섬유 표면에 가지(Brench)형태로 형성된 산화아연 나노돌기로 변형시켜 본 발명에 따른 산화아연-이산화티타늄 나노섬유를 제조한다.Next, the thermally treated titanium dioxide nanofibers containing the zinc oxide nanoparticles are subjected to hydrothermal treatment, and the zinc oxide nanoparticles contained in the titanium dioxide nanofibers are branched on the surface of the titanium dioxide nanofibers. The zinc oxide-titanium dioxide nanofibers according to the present invention are prepared by modifying the formed zinc oxide nanoprotrusions.

상기 열수화 처리의 구체적인 예로는, 비스-헥사메틸렌 트리아민(bis-hexamethylene triamine)을 물에 용해하고 또 다른 용기에 징크 니트레이트 헥사하이드레이트(zinc nitrate hexahydrate)를 물에 용해한다. 이 두 용액을 혼합한다. 이 혼합 용액에 일정량을 앞서 언급한 소결 처리한 ZnO 나노입자를 포함한 TiO2 나노섬유를 혼합한다. 나노섬유가 포함한 용액을 오랜 동안 격렬하게 교반한다. 내부에 테프론 용기가 설치된 열수화 장치를 이용하여 소결처리한 나노섬유가 포함된 용액을 테프론 용기에 투입한다. 그런 다음에 밀봉하고 150℃에서 1시간 동안 처리한다. 반응 후에 상온까지 냉각한다. 얻어진 시료를 필터하여 수집한다. 채취한 시 료를 여러 번 증류수로 세척을 한다. 그리고 60℃에서 12 시간 동안 건조한다. 이렇게 하여 산화아연 나노돌기가 TiO2 나노섬유 표면에 부착된 구조를 얻는다.As a specific example of the thermal hydration treatment, bis-hexamethylene triamine is dissolved in water, and zinc nitrate hexahydrate is dissolved in water in another container. Mix these two solutions. The mixed solution is mixed with TiO 2 nanofibers containing a predetermined amount of the sintered ZnO nanoparticles mentioned above. The solution containing the nanofibers is stirred vigorously for a long time. A solution containing sintered nanofibers is introduced into a Teflon container by using a heat hydration device having a Teflon container inside. It is then sealed and treated at 150 ° C. for 1 hour. Cool down to room temperature after reaction. The obtained sample is collected by filtration. Samples are washed several times with distilled water. And dried at 60 ° C. for 12 hours. In this way, a structure in which the zinc oxide nanoprojections are attached to the TiO 2 nanofiber surface is obtained.

도 4 및 도 5에 도시된 바와 같이 소결처리 공정을 거쳐 산화아연 나노입자를 포함하는 TiO2 나노섬유는 표면에 가지형태의 산화아연 나노돌기들이 아직 형성되어 있지 않다.As illustrated in FIGS. 4 and 5, the TiO 2 nanofibers including zinc oxide nanoparticles are not yet formed on the surface of the zinc oxide nanoprojections.

다음으로, 소결처리에 의해 얻어진 상기 산화아연 나노입자를 포함하는 TiO2 나노섬유를 열수화 처리하여 도 1 내지 도 2와 같이 이산화티타늄 나노섬유 표면에 산화아연 나노돌기들이 가지(Branch) 형태로 형성되어 있는 산화아연-이산화티타늄 나노섬유를 제조한다.Next, the TiO 2 nanofibers including the zinc oxide nanoparticles obtained by the sintering treatment are thermally hydrated to form zinc oxide nanoprotrusions in the form of branches on the titanium dioxide nanofiber surface as shown in FIGS. 1 to 2. To prepare a zinc oxide-titanium dioxide nanofiber.

상기 열수화 처리는 스테인레스 스틸 용기이고 길이 15cm, 직경 7cm인 용기에서 행하였다. 비스-헥사메틸렌 트리아민(bis-hexamethylene triamine) 1g을 물 50g에 용해한다. 또 다른 용기에 징크 니트레이트 헥사하이드레이트(zinc nitrate hexahydrate) 1.5g을 물 50g에 용해한다. 이 두 용액을 혼합한다. 이 용액에 소결 처리한 ZnO-TiO2 나노섬유 10mg을 이 혼합용액에 첨가하고 오랜 동안 격렬하게 교반한다. 열수화 장치 내부에 테프론 용기에 이 용액을 투입한다. 그런 다음에 밀봉하고 150℃에서 1시간 동안 열수화 처리를 행하였다. 반응 후에 상온까지 냉각한다. 얻어진 시료를 필터하여 수집한다. 채취한 시료를 여러 번 증류수로 세척을 한다. 그리고 60℃에서 12시간 동안 건조하였다. 이렇게 제조된 열수처리한 ZnO-TiO2 나노 섬유의 투과전자현미경 사진은 도 1이고 전자현미경 사진은 도 2이다. 도 1에서 알 수 있듯이 TiO2 나노섬유 표면에 ZnO 나노돌기들이 가지 형태로 매우 잘 형성되어 있음을 알 수가 있으며, 고화상 투과전자현미경을 통하여 나노돌기가 ZnO 임을 확인하였다.The heat hydration treatment was performed in a stainless steel container, a container of 15 cm in length and 7 cm in diameter. 1 g of bis-hexamethylene triamine is dissolved in 50 g of water. In another container, 1.5 g of zinc nitrate hexahydrate is dissolved in 50 g of water. Mix these two solutions. 10 mg of ZnO-TiO 2 nanofibers sintered to this solution is added to the mixed solution and stirred vigorously for a long time. Pour this solution into a Teflon container inside the heat hydration unit. It was then sealed and subjected to heat hydration treatment at 150 ° C. for 1 hour. Cool down to room temperature after reaction. The obtained sample is collected by filtration. The sample collected is washed several times with distilled water. And dried at 60 ℃ for 12 hours. The transmission electron micrograph of the hydrothermally treated ZnO-TiO 2 nanofibers thus prepared is shown in FIG. 1, and the electron micrograph is shown in FIG. 2. As can be seen in Figure 1, the surface of the TiO 2 nanofibers ZnO nanoprotrusions can be seen that the very well formed in the form of a branch, it was confirmed that the nano-protuberance ZnO through a high-resolution transmission electron microscope.

도 6은 본 발명에 따른 산화아연-이산화티타늄 나노섬유(소결처리 및 열수화 처리됨)와 소결처리 후 열수화 처리전인 산화아연 나노입자를 포함하는 이산화티타늄 나노섬유의 X선 회절 그래프이다.FIG. 6 is an X-ray diffraction graph of titanium dioxide nanofibers including zinc oxide-titanium dioxide nanofibers (sintered and thermally hydrated) and zinc oxide nanoparticles after sintering and before thermal hydration.

도 6 중 A 그래프는 본 발명에 따른 산화아연-이산화티타늄 나노섬유(소결처리 및 열수화 처리됨)의 X선 회절 그래프이고, B 그래프는 산화아연 나노입자를 포함하는 이산화티타늄 나노섬유(소결처리 후 열수화 처리는 안됨)의 X선 회절 그래프이고, T는 이산화티타늄(Titanum dioxide)이고 Z는 산화아연(Zinc oxide)를 나타낸다.In Figure 6, A graph is an X-ray diffraction graph of zinc oxide-titanium dioxide nanofibers (sintered and thermally hydrated) according to the present invention, and B graph shows titanium dioxide nanofibers (after sintering). X-ray diffraction graph of the thermal hydration treatment), T is titanium dioxide (D) and Z is zinc oxide (Zinc oxide).

이하, 실시예를 통하여 본 발명을 보다 구체적으로 살펴본다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예 1Example 1

상온에서 N, N-디메킬포름아미드(DMF) 용매에 폴리비닐아세테이트(PVAc)를 용해하여 고분자 함량이 14중량%인 폴리비닐아세테이트(PVAc) 용액을 제조하였다.A polyvinylacetate (PVAc) solution having a polymer content of 14% by weight was prepared by dissolving polyvinylacetate (PVAc) in N, N-dimethylformamide (DMF) solvent at room temperature.

한편, 티타늄 이소프로폭사이드[Titanium isopropoxide ; Ti(Iso)]용액 6g에 아세틱 산(Acetic acid)를 용액이 투명해질때까지 적가한 후 여기에 0.1g의 산화아염 입자를 첨가하였다.On the other hand, titanium isopropoxide [Titanium isopropoxide; Acetic acid was added dropwise to 6 g of Ti (Iso)] solution until the solution became clear, and then 0.1 g of chlorite oxide particles were added thereto.

상기 폴리비닐아세테이트(PVAc)용액 5g과 산화아연이 첨가된 Ti(Iso)용액을 혼합한 후 10분간 교반하여 전기방사용 용액을 제조하였다.5 g of the polyvinyl acetate (PVAc) solution and a Ti (Iso) solution containing zinc oxide were mixed, followed by stirring for 10 minutes to prepare an electrospinning solution.

다음으로는, 상기와 같이 제조된 전기방사용 용액을 통상의 전기방사장치로 전기방사하여 산화아연-티타늄 이소프로폭사이드[ZnO-Ti(Iso)]/폴리비닐아세테이트(PVAc) 하이브리드 나노섬유들로 구성된 매트를 제조한 후 80℃에서 24시간동안 진공하에서 상기 매트를 건조하였다.Next, the electrospinning solution prepared as described above was electrospun with a conventional electrospinning apparatus to form zinc oxide-titanium isopropoxide [ZnO-Ti (Iso)] / polyvinylacetate (PVAc) hybrid nanofibers. After preparing a mat consisting of dried the mat under vacuum for 24 hours at 80 ℃.

상기 전기방사시 전압을 12kV, 노즐과 컬렉터 사이 거리는 15㎝로 조정하였다.The voltage during the electrospinning was adjusted to 12 kV, and the distance between the nozzle and the collector was 15 cm.

상기 ZnO-Ti(Iso)/PVAc 하이브리드 나노섬유의 전자현미경 사진은 도 3과 같다.An electron micrograph of the ZnO-Ti (Iso) / PVAc hybrid nanofiber is shown in FIG. 3.

다음으로, 상기 ZnO-Ti(Iso)/PVAc 하이브리드 나노섬유를 공기중에서 600℃로 1시간동안 소결처리하여 산화아연 나노입자를 포함하는 TiO2 나노섬유를 제조하였다.Next, TiO 2 nanofibers containing zinc oxide nanoparticles were prepared by sintering the ZnO-Ti (Iso) / PVAc hybrid nanofibers at 600 ° C. for 1 hour in air.

도 4는 상기 산화아연 나노입자를 포함하는 TiO2 나노섬유의 투과 전자현미경 사진이고, 도 5는 상기 산화아연 나노입자를 포함하는 TiO2 나노섬유의 전자현미경 사진이다.4 is a transmission electron micrograph of the TiO 2 nanofibers containing the zinc oxide nanoparticles, Figure 5 is an electron micrograph of the TiO 2 nanofibers containing the zinc oxide nanoparticles.

다음으로, 소결처리에 의해 얻어진 상기 산화아연 나노입자를 포함하는 TiO2 나노섬유를 열수화 처리하여 도 1 내지 도 2와 같이 이산화티타늄 나노섬유 표면에 산화아연 나노돌기들이 가지(Branch) 형태로 형성되어 있는 산화아연-이산화티타늄 나노섬유를 제조한다.Next, the TiO 2 nanofibers including the zinc oxide nanoparticles obtained by the sintering treatment are thermally hydrated to form zinc oxide nanoprotrusions in the form of branches on the titanium dioxide nanofiber surface as shown in FIGS. 1 to 2. To prepare a zinc oxide-titanium dioxide nanofiber.

상기 열수화 처리는 스테인레스 스틸 용기이고 길이 15cm, 직경 7cm인 용기에서 행하였다. 비스-헥사메틸렌 트리아민(bis-hexamethylene triamine) 1g을 물 50g에 용해한다. 또 다른 용기에 징크 니트레이트 헥사하이드레이트(zinc nitrate hexahydrate) 1.5g을 물 50g에 용해한다. 이 두 용액을 혼합한다. 이 용액에 소결 처리한 ZnO-TiO2 나노섬유 10mg을 이 혼합용액에 첨가하고 오랜 동안 격렬하게 교반한다. 열수화 장치 내부에 테프론 용기에 이 용액을 투입한다. 그런 다음에 밀봉하고 150℃에서 1시간 동안 열수화 처리를 행하였다. 반응 후에 상온까지 냉각한다. 얻어진 시료를 필터하여 수집한다. 채취한 시료를 여러 번 증류수로 세척을 한다. 그리고 60℃에서 12시간 동안 건조하였다. 이렇게 제조된 열수처리한 ZnO-TiO2 나노섬유의 투과전자현미경 사진은 도 1이고 전자현미경 사진은 도 2이다. 도 1에서 알 수 있듯이 TiO2 나노섬유 표면에 ZnO 나노돌기들이 가지 형태로 매우 잘 형성되어 있음을 알 수가 있으며, 고화상 투과전자현미경을 통하여 나노돌기가 ZnO 임을 확인하였다.The heat hydration treatment was performed in a stainless steel container, a container of 15 cm in length and 7 cm in diameter. 1 g of bis-hexamethylene triamine is dissolved in 50 g of water. In another container, 1.5 g of zinc nitrate hexahydrate is dissolved in 50 g of water. Mix these two solutions. 10 mg of ZnO-TiO 2 nanofibers sintered to this solution is added to the mixed solution and stirred vigorously for a long time. Pour this solution into a Teflon container inside the heat hydration unit. It was then sealed and subjected to heat hydration treatment at 150 ° C. for 1 hour. Cool down to room temperature after reaction. The obtained sample is collected by filtration. The sample collected is washed several times with distilled water. And dried at 60 ℃ for 12 hours. The transmission electron micrograph of the hydrothermally treated ZnO-TiO 2 nanofibers thus prepared is shown in FIG. 1, and the electron micrograph is shown in FIG. 2. As can be seen in Figure 1, the surface of the TiO 2 nanofibers ZnO nanoprotrusions can be seen that the very well formed in the form of a branch, it was confirmed that the nano-protuberance ZnO through a high-resolution transmission electron microscope.

실시예 1에 의해 제조된 본 발명의 산화아연-이산화티타늄 나노섬유의 광분해 거동을 메틸 레드(Methyl red) 염료와 Rhodamine 염료를 이용하여 측정하였다.Photolysis behavior of the zinc oxide-titanium dioxide nanofibers of the present invention prepared by Example 1 was measured using methyl red dye and Rhodamine dye.

또한, 광분해 거동 비교를 위해서 (ⅰ) 산화아연 나노입자와, (ⅱ) TiO2 나노섬유와, (ⅲ) 실시예 1에서 소결처리 공정 후 얻어진 산화아연 나노입자를 포함하는 이산화티타늄 나노섬유(열수화 처리는 거치지 않았슴)들의 광분해 거동도 메 틸 레드(Methyl red) 염료와 Rhodamine 염료를 이용하여 측정하였다.Titanium dioxide nanofibers comprising (i) zinc oxide nanoparticles, (ii) TiO 2 nanofibers, and (iii) zinc oxide nanoparticles obtained after the sintering process in Example 1 for comparison of photolysis behavior (thermal The photodegradation behavior of the hydrated) was measured using methyl red dye and Rhodamine dye.

광분해 거동은 아래와 같이 측정하였다. 각 시료와 메틸 레드 염료 및 Rhodamine 염료가 들어가 있는 1000cc 유리 용기에 넣고 파장이 365nm인 UV 램프를 설치하고 광분해 반응 동안에는 계속하여 교반해준다. 염료 농도는 10ppm이고 용액 100cc와 각각의 시료를 50mg을 사용하였다. 유리 용기로부터 측정하고자 하는 시간마다 2cc를 취하고 잔류 촉매를 분리하기 위해서 원심 분리한다. 그런 다음에 해당된 파장에서 흡수 강도를 측정한다. 측정된 흡수 강도로부터 농도를 알기 위해서 미리 검량 곡선을 만들어서 사용한다. 메틸 레드 염료를 농도별(1 to 8.75 mg/l)로 UV 흡수스펙트럼을 320-560nm범위에서 측정하였다. 흡수 강도는 429nm에서 최대치를 보였다. 이러한 흡수 강도는 도 9와 같이 염료 농도에 따라서 직선적인 관계가 있다.Photolysis behavior was measured as follows. Place each sample in a 1000cc glass jar containing methyl red dye and Rhodamine dye, install a UV lamp with a wavelength of 365nm, and continue stirring during the photolysis reaction. The dye concentration was 10 ppm and 100 cc of solution and 50 mg of each sample were used. Take 2 cc every hour to be measured from the glass vessel and centrifuge to separate the residual catalyst. Then the absorption intensity is measured at the wavelength of interest. In order to know the concentration from the measured absorption intensity, a calibration curve is used in advance. Methyl red dye by concentration (1 to 8.75 mg / l) UV absorption spectra were measured in the 320-560 nm range. Absorption intensity peaked at 429 nm. This absorption intensity has a linear relationship according to the dye concentration as shown in FIG.

도 9는 메틸 레드(Methyl red) 염료의 농도와 자외선(UV) 흡수강도 간의 상관관계를 나타내는 그래프이다.9 is a graph showing the correlation between the concentration of methyl red dye and ultraviolet (UV) absorption intensity.

이러한 검량 곡선으로부터 각 시료의 광분해 효과를 측정하였다.The photolysis effect of each sample was measured from this calibration curve.

도 7은 광분해 시간과 메틸 레드(Methyl red) 염료의 광분해 효과 간의 상관관계를 나타내는 그래프이다.7 is a graph showing the correlation between photolysis time and photodegradation effect of methyl red dye.

도 7 중 a 그래프는 광촉매로 산화아연 나노입자를 사용한 경우의 광분해 시간과 메틸 레드(Methly red) 염료의 광분해 효과 간의 상관관계를 나타내는 그래프 이고, b 그래프는 광촉매로 이산화티타늄 나노섬유를 사용한 경우의 광분해 시간과 메틸 레드(Methly red) 염료의 광분해 효과 간의 상관관계를 나타내는 그래프이고, c 그래프는 광촉매로 산화아연 나노입자를 포함하는 이산화티타늄 나노섬유(소결처리 후 열수화 처리 안됨)를 사용한 경우의 광분해 시간과 메틸 레드(Methly red) 염료의 광분해 효과 간의 상관관계를 나타내는 그래프이고, d 그래프는 광촉매로 본 발명에 따른 산화아연-이산화티타늄 나노섬유(소결처리 및 열수화 처리됨)를 사용한 경우의 광분해 시간과 메틸 레드(Methly red) 염료의 광분해 효과 간의 상관관계를 나타내는 그래프이다.In FIG. 7, a graph is a graph showing a correlation between photodegradation time when a zinc oxide nanoparticle is used as a photocatalyst and a photolysis effect of a methyl red dye, and b is a graph when titanium dioxide nanofibers are used as a photocatalyst. The graph shows the correlation between the photolysis time and the photodegradation effect of the methyl red dye, and the graph c shows a case where titanium dioxide nanofibers containing zinc oxide nanoparticles (not thermally hydrated after sintering) were used as photocatalysts. The graph shows the correlation between the photolysis time and the photodegradation effect of the methyl red dye, and the d graph shows the photodegradation when using zinc oxide-titanium dioxide nanofibers (sintered and thermally hydrated) according to the present invention as a photocatalyst. It is a graph showing the correlation between time and the photolytic effect of the methyl red dye.

ZnO 나노입자를 광분해 거동을 비교하기 위해서 산화아연 입자를 이산화티탄늄 나노섬유와 같은 조건으로 열수화 처리를 하였다. 그 결과 산화아연의 입자 결정형태가 꽃과 같았다, 도 10에 산화아연 입자를 열수화 처리한 후의 입자를 보인 전자현미경(SEM) 사진이고 도 11에 도 10의 산화아연 입자를 확대 촬영한 전자현미경(SEM) 사진을 보였다. 산화아연 입자의 광분해시간 180분에서도 메틸 레드 염료가 30% 이하만이 제거 되었다. 또한 순수한 TiO2나노섬유는 광분해시간 180분에 40% 정도가 제거되었으며, 소결처리 공정 후 얻어진 산화아연 나노입자를 포함하는 이산화티타늄 나노섬유(열수화 처리는 안됨)는 80% 정도가 180분에 제거되었다. 그러나, 본 발명에 따른 ZnO-TiO2 나노섬유(소결처리 후 열수화 처리됨)는 90분 만에 모든 메틸 레드 염료를 제거하였다.In order to compare photodegradation behavior of ZnO nanoparticles, zinc oxide particles were thermally hydrated under the same conditions as titanium dioxide nanofibers. As a result, the particle crystal form of zinc oxide was like a flower. An electron microscope (SEM) photograph showing the particles after zinc oxide particles were thermally hydrated in FIG. 10, and an enlarged electron microscope image of the zinc oxide particles in FIG. 10. (SEM) showed the picture. Only 180% of methyl red dye was removed even at 180 minutes of photodegradation of zinc oxide particles. In addition, pure TiO 2 nanofibers were removed about 40% at 180 minutes of photolysis time, and titanium dioxide nanofibers (not thermally hydrated) containing zinc oxide nanoparticles obtained after the sintering process were about 80% at 180 minutes. Removed. However, the ZnO-TiO 2 nanofibers (heat hydrated after sintering) according to the present invention removed all methyl red dyes in 90 minutes.

또한, Rhodamine B(이하 "RB"라 함) 염료를 농도별(0.2 to 10 mg/l)로 UV 흡수스펙트럼을 460-600nm범위에서 측정하였다. 흡수 강도는 554nm에서 최대치를 보였다. 이러한 흡수 강도는 염료 농도에 따라서 직선적인 관계가 있다. 이러한 검량 곡선으로부터 각 시료의 광분해 효과를 측정한 결과는 도 8과 같았다.In addition, the Rhodamine B (hereinafter referred to as "RB") dye by concentration (0.2 to 10 mg / l) UV absorption spectrum was measured in the range of 460-600 nm. Absorption intensity peaked at 554 nm. This absorption intensity has a linear relationship depending on the dye concentration. The photodegradation effect of each sample was measured from the calibration curve as shown in FIG. 8.

도 8은 광분해 시간과 Rhodamine B 염료의 광분해 효과 간의 상관관계를 나타내는 그래프이다.8 is a graph showing the correlation between photodegradation time and photodegradation effect of Rhodamine B dye.

도 8 중 e 그래프는 광촉매로 산화아연 나노입자를 사용한 경우의 광분해 시간과 Rhodamine B 염료의 광분해 효과 간의 상관관계를 나타내는 그래프이고, f 그래프는 광촉매로 이산화티타늄 나노섬유를 사용한 경우의 광분해 시간과 Rhodamine B 염료의 광분해 효과 간의 상관관계를 나타내는 그래프이고, g 그래프는 광촉매로 산화아연 나노입자를 포함하는 이산화티타늄 나노섬유(소결처리 후 열수화 처리 안됨)를 사용한 경우의 광분해 시간과 Rhodamine B 염료의 광분해 효과 간의 상관관계를 나타내는 그래프이고, h 그래프는 광촉매로 본 발명에 따른 산화아연-이산화티타늄 나노섬유(소결처리 및 열수화 처리됨)를 사용한 경우의 광분해 시간과 Rhodamine B 염료의 광분해 효과 간의 상관관계를 나타내는 그래프이다.8 is a graph showing the correlation between the photodegradation time when using zinc oxide nanoparticles as a photocatalyst and the photodegradation effect of Rhodamine B dye, the f graph is a photodegradation time and Rhodamine when using titanium dioxide nanofibers as a photocatalyst The graph shows the correlation between the photodegradation effect of the B dye, and the g graph shows the photodegradation time and the photodegradation of Rhodamine B dye when the titanium dioxide nanofibers containing zinc oxide nanoparticles were used as the photocatalyst (not thermally hydrated after sintering). The graph shows the correlation between the effects, and the h graph shows the correlation between the photolysis time and the photolysis effect of Rhodamine B dye when the zinc oxide-titanium dioxide nanofibers (sintered and thermally hydrated) according to the present invention are used as the photocatalyst. It is a graph.

도 8에 도시된 바와 같이 본 발명에 따른 ZnO-TiO2 나노섬유(소결처리 후 열수화 처리됨)는 105분만에 RB 염료를 완전하게 분해, 제거하였으나, ZnO 나노입자, TiO2 나노섬유 및 소결처리 공정 후 얻어진 산화아연 나노입자를 포함하는 나노섬유(열수화 처리 안된 것)들은 3시간의 처리시간에서도 RB 염료를 완전하게 제거하지 못하였다.As shown in FIG. 8, ZnO-TiO 2 nanofibers (thermal hydration after sintering) according to the present invention completely decomposed and removed RB dye in 105 minutes, but ZnO nanoparticles, TiO 2 nanofibers, and sintered Nanofibers containing zinc oxide nanoparticles obtained after the process (not heat-treated) did not completely remove the RB dye even after 3 hours of treatment.

도 1은 본 발명에 따른 산화아연-이산화티타늄 나노섬유의 투과전자현미경(TEM) 사진.1 is a transmission electron microscope (TEM) photograph of zinc oxide-titanium dioxide nanofibers according to the present invention.

도 2는 본 발명에 따른 산화아연-이산화티타늄 나노섬유의 전자현미경(SEM) 사진.Figure 2 is an electron microscope (SEM) photograph of the zinc oxide-titanium dioxide nanofibers according to the present invention.

도 3은 산화아연-티타늄 이소프로폭사이드[ZnO-Ti(Iso)]/폴리비닐아세테이트(PVAc) 하이브리드 나노섬유의 전자현미경(SEM) 사진.3 is an electron microscope (SEM) photograph of zinc oxide-titanium isopropoxide [ZnO-Ti (Iso)] / polyvinylacetate (PVAc) hybrid nanofibers.

도 4는 도 3의 하이브리드 나노섬유를 소결처리하여 제조한 산화아연 나노입자를 포함하는 이산화티타늄 나노섬유의 투과전자현미경(TEM) 사진.4 is a transmission electron microscope (TEM) photograph of titanium dioxide nanofibers including zinc oxide nanoparticles prepared by sintering the hybrid nanofibers of FIG. 3.

도 5는 도 3의 하이브리드 나노섬유를 소결처리하여 제조한 산화아연 나노입자를 포함하는 이산화티타늄 나노섬유의 전자현미경(SEM) 사진.FIG. 5 is an electron microscope (SEM) photograph of titanium dioxide nanofibers including zinc oxide nanoparticles prepared by sintering the hybrid nanofibers of FIG. 3.

도 6은 본 발명에 따른 산화아연-이산화티타늄 나노섬유(소결처리 및 열수화 처리됨)와 소결처리 후 열수화 처리전인 산화아연 나노입자를 포함하는 이산화티타늄 나노섬유의 X선 회절 그래프.FIG. 6 is an X-ray diffraction graph of titanium dioxide nanofibers including zinc oxide-titanium dioxide nanofibers (sintered and thermally hydrated) and zinc oxide nanoparticles after sintering and before thermal hydration.

도 7은 광분해 시간과 메틸 레드(Methyl red) 염료의 광분해 효과 간의 상관관계를 나타내는 그래프.7 is a graph showing the correlation between photolysis time and photodegradation effect of methyl red dye.

도 8은 광분해 시간과 Rhodamine B 염료의 광분해 효과 간의 상관관계를 나타내는 그래프.8 is a graph showing the correlation between photodegradation time and photodegradation effect of Rhodamine B dye.

도 9는 메틸 레드(Methyl red) 염료의 농도와 자외선(UV) 흡수강도 간의 상관관계를 나타내는 그래프.9 is a graph showing the correlation between the concentration of methyl red dye and ultraviolet (UV) absorption intensity.

도 10은 산화아연 입자를 열수화 처리한 후의 입자를 보인 전자현미경(SEM) 사진.FIG. 10 is an electron microscope (SEM) photograph showing the particles after zinc oxide particles are thermally hydrated. FIG.

도 11은 도 10의 산화아연 입자를 확대촬영한 전자현미경(SEM) 사진.FIG. 11 is an SEM photograph of the zinc oxide particles of FIG. 10.

* 도면중 주요부분에 대한 부호설명* Code description of the main parts of the drawings

A : 본 발명에 따른 산화아연-이산화티타늄 나노섬유(소결처리 및 열수화 처리됨)의 X선 회절 그래프.A: X-ray diffraction graph of zinc oxide-titanium dioxide nanofibers (sintered and thermally hydrated) according to the present invention.

B : 산화아연 나노입자를 포함하는 이산화티타늄 나노섬유(소결처리 후 열수화 처리는 안됨)의 X선 회절 그래프.B: X-ray diffraction graph of titanium dioxide nanofibers containing zinc oxide nanoparticles (not thermally hydrated after sintering).

T : 티타늄 디옥사이드(Titanum dioxide)T: Titanum dioxide

Z : 징크 옥사이드(Zinc oxide)Z: Zinc oxide

a : 광촉매로 산화아연 나노입자를 사용한 경우의 광분해 시간과 메틸 레드(Methly red) 염료의 광분해 효과 간의 상관관계를 나타내는 그래프.a: Graph showing the correlation between photolysis time and photodegradation effect of methyl red dye when zinc oxide nanoparticles are used as photocatalyst.

b : 광촉매로 이산화티타늄 나노섬유를 사용한 경우의 광분해 시간과 메틸 레드(Methly red) 염료의 광분해 효과 간의 상관관계를 나타내는 그래프.b: Graph showing the correlation between photodegradation time and photodegradation effect of methyl red dye when titanium dioxide nanofibers are used as photocatalyst.

c : 광촉매로 산화아연 나노입자를 포함하는 이산화티타늄 나노섬유(소결처리 후 열수화 처리 안됨)를 사용한 경우의 광분해 시간과 메틸 레드(Methly red) 염료의 광분해 효과 간의 상관관계를 나타내는 그래프.c: Graph showing the correlation between photodegradation time and photodegradation effect of the methyl red dye when titanium dioxide nanofibers containing zinc oxide nanoparticles (not thermally hydrated after sintering) were used as photocatalysts.

d : 광촉매로 본 발명에 따른 산화아연-이산화티타늄 나노섬유(소결처리 및 열수화 처리됨)를 사용한 경우의 광분해 시간과 메틸 레드(Methly red) 염료의 광분해 효과 간의 상관관계를 나타내는 그래프.d: Graph showing the correlation between photodegradation time and photodegradation effect of the methyl red dye when the zinc oxide-titanium dioxide nanofibers (sintered and thermally hydrated) according to the present invention are used as a photocatalyst.

e : 광촉매로 산화아연 나노입자를 사용한 경우의 광분해 시간과 Rhodamine B 염료의 광분해 효과 간의 상관관계를 나타내는 그래프.e: A graph showing the correlation between photodegradation time and photodegradation effect of Rhodamine B dye when zinc oxide nanoparticles were used as photocatalyst.

f : 광촉매로 이산화티타늄 나노섬유를 사용한 경우의 광분해 시간과 Rhodamine B 염료의 광분해 효과 간의 상관관계를 나타내는 그래프.f: Graph showing the correlation between photodegradation time and photodegradation effect of Rhodamine B dye when titanium dioxide nanofibers are used as photocatalyst.

g : 광촉매로 산화아연 나노입자를 포함하는 이산화티타늄 나노섬유(소결처리 후 열수화 처리 안됨)를 사용한 경우의 광분해 시간과 Rhodamine B 염료의 광분해 효과 간의 상관관계를 나타내는 그래프.g: Graph showing the correlation between photodegradation time and photodegradation effect of Rhodamine B dye when titanium dioxide nanofibers containing zinc oxide nanoparticles (not thermally hydrated after sintering) were used as photocatalysts.

h : 광촉매로 본 발명에 따른 산화아연-이산화티타늄 나노섬유(소결처리 및 열수화 처리됨)를 사용한 경우의 광분해 시간과 Rhodamine B 염료의 광분해 효과 간의 상관관계를 나타내는 그래프.h: Graph showing the correlation between photodegradation time and photodegradation effect of Rhodamine B dye when the zinc oxide-titanium dioxide nanofibers (sintered and thermally hydrated) according to the present invention were used as photocatalyst.

Claims (4)

이산화티타늄 나노섬유 표면에 산화아연 나노돌기들이 가지(Branch) 형태로 형성되어 있는 것을 특징으로 하는 산화아연-이산화티타늄 나노섬유.Zinc oxide nano-titanium dioxide nanofibers, characterized in that the zinc oxide nanoprotrusions are formed on the surface of the titanium dioxide nanofibers (branch). 제1항에 있어서, 산화아연 나노돌기의 길이가 100~1,000㎚인 것을 특징으로 하는 산화아연-이산화티타늄 나노섬유.The zinc oxide-titanium dioxide nanofiber according to claim 1, wherein the zinc oxide nano-protrusions have a length of 100 to 1,000 nm. (ⅰ) 고분자 유기용매에 용해하여 제조한 고분자 용액에 티타늄 이소프로폭사이드[Titanium isopropoxide ; Ti(Iso)], 산 촉매 및 산화아연 입자를 첨가, 혼합하여 전기방사용 용액을 제조하는 공정;(Iii) Titanium isopropoxide in a polymer solution prepared by dissolving in a polymer organic solvent; Ti (Iso)], an acid catalyst and zinc oxide particles are added and mixed to prepare an electrospinning solution; (ⅱ) 상기 전기방사용 용액을 전기방사하여 산화아연-티타늄 이소프로폭사이드[ZnO-Ti(Iso)]/고분자 하이브리드 나노섬유를 제조하는 공정;(Ii) electrospinning the electrospinning solution to produce zinc oxide-titanium isopropoxide [ZnO-Ti (Iso)] / polymer hybrid nanofibers; (ⅲ) 상기 하이브리드 나노섬유를 500℃~1,000℃에서 소결처리하여 산화아연 나노입자를 포함하는 이산화티타늄 나노섬유를 제조하는 공정; 및 (Iii) sintering the hybrid nanofibers at 500 ° C. to 1,000 ° C. to produce titanium dioxide nanofibers including zinc oxide nanoparticles; And (ⅳ) 상기 산화아연 나노입자를 포함하는 이산화티타늄 나노섬유를 열수화 처리(Hydrothermal treatment)하여 이산화티타늄 나노섬유에 포함된 상기 산화아연 나노입자를 이산화티타늄 나노섬유 표면에 가지(Brench)형태로 형성된 산화아연 나노돌기로 변형시키는 공정;들을 포함하는 것을 특징으로 하는 산화아연-이산화티타늄 나노섬유의 제조방법.(Iii) hydrothermal treatment of the titanium dioxide nanofibers containing the zinc oxide nanoparticles, thereby forming the zinc oxide nanoparticles contained in the titanium dioxide nanofibers in the form of branches on the surface of the titanium dioxide nanofibers. A process for producing zinc oxide-titanium dioxide nanofibers; 제3항에 있어서, 열수화 처리는 산화아연 나노섬유를 포함하는 이산화티타늄 나노섬유를 비스-헥사메틸렌 트리아민(Bis-hexamethylene triamine)과 징크 니트레이트 헥사 하이드레이트(Zinc nitrate hexahydrate)이 용해된 물에 투입한 다음, 100~250℃의 온도에서 0.5~2시간 동안 교반처리하는 것을 특징으로 하는 산화아연-이산화티타늄 나노섬유의 제조방법.The method of claim 3, wherein the heat hydration treatment is performed by dissolving titanium dioxide nanofibers including zinc oxide nanofibers in water in which bis-hexamethylene triamine and zinc nitrate hexahydrate are dissolved. After the addition, the method of producing zinc oxide-titanium dioxide nanofibers, characterized in that the stirring treatment for 0.5 to 2 hours at a temperature of 100 ~ 250 ℃.
KR1020090121593A 2009-12-09 2009-12-09 Zinc oxide-titanium oxide nanofibers and method of manufacturing the same KR20110064845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090121593A KR20110064845A (en) 2009-12-09 2009-12-09 Zinc oxide-titanium oxide nanofibers and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090121593A KR20110064845A (en) 2009-12-09 2009-12-09 Zinc oxide-titanium oxide nanofibers and method of manufacturing the same

Publications (1)

Publication Number Publication Date
KR20110064845A true KR20110064845A (en) 2011-06-15

Family

ID=44398210

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090121593A KR20110064845A (en) 2009-12-09 2009-12-09 Zinc oxide-titanium oxide nanofibers and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR20110064845A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406587B1 (en) * 2012-07-25 2014-06-11 서울대학교산학협력단 Fabrication of SnO2 nanofibers decorated with nitrogen doped ZnO nanonodules by using single-nozzle co-electrospinning for visible light photocatalyst
KR20170016910A (en) * 2017-02-06 2017-02-14 주식회사 대창 Nanofiber filter
WO2018043842A1 (en) * 2016-08-30 2018-03-08 고려대학교 산학협력단 Nanofiber-nanowire composite and preparation method therefor
KR20200098256A (en) * 2019-02-12 2020-08-20 영남대학교 산학협력단 Method of preparing functional polymer nanofiber composite and method of preparing functional substrate using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101406587B1 (en) * 2012-07-25 2014-06-11 서울대학교산학협력단 Fabrication of SnO2 nanofibers decorated with nitrogen doped ZnO nanonodules by using single-nozzle co-electrospinning for visible light photocatalyst
WO2018043842A1 (en) * 2016-08-30 2018-03-08 고려대학교 산학협력단 Nanofiber-nanowire composite and preparation method therefor
CN108138367A (en) * 2016-08-30 2018-06-08 高丽大学校产学协力团 Nanofiber-nanowire composite and its production method
JP2019505700A (en) * 2016-08-30 2019-02-28 コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーションKorea University Research And Business Foundation Nanofiber-nanowire composite and method for producing the same
US10895023B2 (en) 2016-08-30 2021-01-19 Korea University Research And Business Foundation Nanofiber-nanowire composite and preparation method therefor
KR20170016910A (en) * 2017-02-06 2017-02-14 주식회사 대창 Nanofiber filter
KR20200098256A (en) * 2019-02-12 2020-08-20 영남대학교 산학협력단 Method of preparing functional polymer nanofiber composite and method of preparing functional substrate using the same

Similar Documents

Publication Publication Date Title
Selvamani et al. Phase-controlled synthesis of bismuth oxide polymorphs for photocatalytic applications
Shafiq et al. Development of hierarchically porous LaVO4 for efficient visible-light-driven photocatalytic desulfurization of diesel
Lu et al. In situ synthesis of mesoporous C-doped TiO2 single crystal with oxygen vacancy and its enhanced sunlight photocatalytic properties
Zhao et al. Mesoporous WO3/TiO2 spheres with tailored surface properties for concurrent solar photocatalysis and membrane filtration
Lu et al. Electrospinning fabrication of ZnWO4 nanofibers and photocatalytic performance for organic dyes
Feng et al. One-pot hydrothermal synthesis of ZnS–reduced graphene oxide composites with enhanced photocatalytic properties
Zhang et al. Hierarchical nanostructure of WO 3 nanorods on TiO 2 nanofibers and the enhanced visible light photocatalytic activity for degradation of organic pollutants
Kanjwal et al. Functionalization of electrospun titanium oxide nanofibers with silver nanoparticles: strongly effective photocatalyst
Ayappan et al. Facile preparation of novel Sb2S3 nanoparticles/rod-like α-Ag2WO4 heterojunction photocatalysts: continuous modulation of band structure towards the efficient removal of organic contaminants
Jia et al. Towards a highly efficient simulated sunlight driven photocatalyst: a case of heterostructured ZnO/ZnS hybrid structure
Rahman et al. Structural, optical and photocatalytic studies of trimetallic oxides nanostructures prepared via wet chemical approach
Hou et al. Controllable synthesis of CuS decorated TiO 2 nanofibers for enhanced photocatalysis
Pudukudy et al. Simple chemical synthesis of novel ZnO nanostructures: role of counter ions
Luo et al. Preparation, characterization and visible-light photocatalytic performances of composite films prepared from polyvinyl chloride and SnO2 nanoparticles
Singaram et al. Preparation of cerium and sulfur codoped TiO2 nanoparticles based photocatalytic activity with enhanced visible light
Li et al. Enhanced visible-light-driven photocatalysis of surface nitrided electrospun TiO 2 nanofibers
Wang et al. Hierarchical nanostructures assembled from ultrathin Bi2WO6 nanoflakes and their visible-light induced photocatalytic property
Lu et al. Photoactive β-Bi2O3 architectures prepared by a simple solution crystallization method
Boscaro et al. C, N-doped TiO2 monoliths with hierarchical macro-/mesoporosity for water treatment under visible light
Cheng et al. A novel preparation of Ag@ TiO 2 tubes and their potent photocatalytic degradation efficiency
Sahoo et al. Hydrothermal synthesis of hexagonal ZnO microstructures in HPMC polymer matrix and their catalytic activities
Rahman et al. Synthesis and characterization of CuO rods for enhanced visible light driven dye degradation
KR20110064845A (en) Zinc oxide-titanium oxide nanofibers and method of manufacturing the same
Gao et al. Hierarchical TiO2/V2O5 multifunctional membrane for water purification
Palhares et al. Clarifying the roles of hydrothermal treatment and silica addition to synthesize TiO 2-based nanocomposites with high photocatalytic performance

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application