KR20110062286A - Stiffness measuring device and method for bearing in actual shaft system - Google Patents

Stiffness measuring device and method for bearing in actual shaft system Download PDF

Info

Publication number
KR20110062286A
KR20110062286A KR1020090118962A KR20090118962A KR20110062286A KR 20110062286 A KR20110062286 A KR 20110062286A KR 1020090118962 A KR1020090118962 A KR 1020090118962A KR 20090118962 A KR20090118962 A KR 20090118962A KR 20110062286 A KR20110062286 A KR 20110062286A
Authority
KR
South Korea
Prior art keywords
shaft system
bearing
natural frequency
analysis program
modal test
Prior art date
Application number
KR1020090118962A
Other languages
Korean (ko)
Inventor
안찬우
홍도관
백황순
Original Assignee
동아대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단 filed Critical 동아대학교 산학협력단
Priority to KR1020090118962A priority Critical patent/KR20110062286A/en
Publication of KR20110062286A publication Critical patent/KR20110062286A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • G01N3/34Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces generated by mechanical means, e.g. hammer blows
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0032Generation of the force using mechanical means
    • G01N2203/0039Hammer or pendulum

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pure & Applied Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Operations Research (AREA)
  • Algebra (AREA)
  • Evolutionary Biology (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE: A device and a method for measuring rigidity of bearing of actual shaft system are provided to measure the rigidity of a bearing, which supports an actual shaft system, without disassembly by using a modal test. CONSTITUTION: A method for measuring rigidity of bearing of actual shaft system is as follows. The calculated rigidity of bearing value is inputted in an analysis program. The natural frequency of a shaft system is calculated by the analysis program. A modal test device is established in the shaft system. The impact is inputted for the modal test. The natural frequency of the shaft system is measured by the modal test. The natural frequency calculated by the interpretative program is compared with the natural frequency measured through the modal test.

Description

축계의 베어링 강성 측정 방법 및 그 측정 장치{Stiffness Measuring Device and Method for Bearing in Actual Shaft System}Stiffness Measuring Device and Method for Bearing in Actual Shaft System

본 발명은 축계의 베어링 강성 측정에 관한 것으로서, 더욱 상세하게는 실제 구축되어 있는 축계상에서 축계를 지지하는 베어링의 강성을 축계을 분해하지 않고도 정확히 측정하는 방법 및 그 장치에 관한 것이다.The present invention relates to the measurement of bearing stiffness of a shaft system, and more particularly, to a method and an apparatus for accurately measuring the rigidity of a bearing supporting a shaft system on an actually constructed shaft system without disassembling the shaft system.

기존의 베어링 강성 측정 방법은 베어링에 일정 하중을 주어 내륜에 생기는 접촉각의 크기를 측정 후 강성계산식을 이용하여 구하는 것이다.Conventional bearing stiffness measurement method is to measure the size of the contact angle on the inner ring by applying a certain load to the bearing and then to obtain it using the stiffness equation.

이러한 기존의 베어링 강성 측정 방법은 축계을 분해하여 베어링을 축계으로부터 분리시킨 상태에서 베어링의 강성을 구하므로 강성 측정 후 베어링을 재사용하는데 어려움이 있고 구축되어 있는 축계에서의 실질적인 베어링 강성을 측정할 수가 없는 문제점이 있었다.This conventional bearing stiffness measurement method finds the bearing stiffness in the state where the bearing is separated from the shaft system by disassembling the shaft system. Therefore, it is difficult to reuse the bearing after the rigidity measurement and the actual bearing stiffness in the constructed shaft system cannot be measured. There was a problem.

즉, 베어링은 작용하는 하중값에 따라 강성값이 변하므로, 실질적인 베어링의 강성값 측정을 위해서는 구축된 축계 상에서 베어링 강성이 측정되는 것이 바람직하다.That is, since the stiffness value changes according to the load value applied to the bearing, it is preferable that the bearing stiffness is measured on the constructed shaft system in order to measure the stiffness value of the bearing.

하지만, 기존에는 축계을 분해하여 베어링을 분리시킨 상태에서 베어링에 하 중을 가해 베어링의 강성을 측정하게 되므로 실질적인 축계에서의 베어링 강성값을 확인할 수 없었다.However, in the past, the bearing stiffness was measured by applying a load to the bearing in a state where the bearing was separated by disassembling the shaft system.

따라서, 구축되어 있는 축계상의 베어링의 실질적인 강성을 정확하고 효과적으로 측정할 수 있는 방법 및 장치의 개발이 절실한 실정이다.Therefore, there is an urgent need to develop a method and an apparatus capable of accurately and effectively measuring the actual stiffness of the bearings on the shaft system.

본 발명은 상기한 제반 문제점을 해결하기 위한 것으로서, 실제 구축되어 있는 축계상에서 축계를 지지하는 베어링의 강성을 축계을 분해하지 않고도 정확히 측정함으로써, 조립되어 있는 축계을 분해하지 않아도 되는 이점과 더불어 강성 측정에 따라 베어링을 재사용할 수 없었던 종래의 문제점을 해소할 수 있도록 한 모달 테스트를 이용한 축계의 베어링 강성 측정 방법 및 그 측정 장치를 제공하는데 그 목적이 있다. The present invention has been made to solve the above problems, and the rigidity of the bearing supporting the shaft system on the actual shaft system accurately measured without disassembling the shaft system, the rigidity as well as the advantage of not having to disassemble the assembled shaft system SUMMARY OF THE INVENTION An object of the present invention is to provide a method for measuring bearing stiffness of an shaft system using a modal test and a measuring apparatus thereof, which can solve a conventional problem in which a bearing cannot be reused according to the measurement.

상기한 목적을 달성하기 위해 본 발명은, 수정된 해리스식에 의해 축계의 베어링 강성을 계산하는 단계와; 계산된 베어링 강성 값을 해석프로그램에 입력하는 단계와; 상기 해석프로그램에 의한 축계의 고유진동수를 산출하는 단계와; 실제 축계에 모달 테스트 장비를 설치하는 단계와; 모달 테스트를 위해 임팩트를 입력하는 단계와; 모달 테스트에 의한 축계의 고유진동수를 측정하는 단계와; 모달 테스트를 통해 측정된 고유진동수와 해석프로그램에 의해 산출된 고유진동수의 비교하는 단계와; 상기 비교 단계에서 모달 테스트를 통해 측정된 고유진동수와 해석프로그램에 의해 산출된 고유진동수가 일치하면 해석프로그램에 입력된 강성값을 축계의 베어링 강성값으로 확정하는 단계를 포함하는 것을 특징으로 하는 축계의 베어링 강성 측정 방법이 제공된다.In order to achieve the above object, the present invention includes the steps of calculating the bearing stiffness of the shaft system by a modified Harris equation; Inputting the calculated bearing stiffness values into the analysis program; Calculating a natural frequency of the shaft system by the analysis program; Installing modal test equipment on the actual shaft; Inputting an impact for a modal test; Measuring a natural frequency of the shaft system by a modal test; Comparing the natural frequency measured by the modal test with the natural frequency calculated by the analysis program; If the natural frequency measured through the modal test and the natural frequency calculated by the analysis program in the comparing step comprises the step of determining the stiffness value input to the analysis program as the bearing stiffness value of the shaft system A method for measuring bearing stiffness is provided.

전술한 본 발명의 강성 측정 방법에 있어서, 모달 테스트를 통해 측정된 고 유진동수와 해석프로그램에 의해 산출된 고유진동수를 비교하여 일치하지 않으면, 해석프로그램에 입력하는 강성값을 증가시키거나 감소시키면서 두 고유진동수가 일치할 때까지 비교하게 됨을 특징으로 한다.In the stiffness measuring method of the present invention described above, if the high frequency measured through the modal test and the natural frequency calculated by the analysis program do not match, the stiffness value input to the analysis program is increased or decreased. The natural frequencies are compared until they match.

한편, 상기한 목적을 달성하기 위한 본 발명의 다른 형태에 따르면, 축계에 대해 임팩트를 가할 수 있도록 설치되는 임팩트 해머와; 상기 임팩트 해머에 의해 축계에 충격이 가해질 때 축계의 가속도를 측정하도록 설치되는 가속도계(accelerometer)와; 상기 임팩트 해머와 가속도계에 연결되어 축계의 고유진동수를 보여주는 주파수분석기와; 축계의 강성값이 입력됨에 따라 축계의 고유진동수를 산출하는 해석프로그램이 내장된 고유진동수 해석모듈을 포함하여 구성됨을 특징으로 하는 축계의 베어링 강성 측정 장치가 제공된다.On the other hand, according to another aspect of the present invention for achieving the above object, the impact hammer is installed so that the impact on the shaft system; An accelerometer installed to measure the acceleration of the shaft system when an impact is applied to the shaft system by the impact hammer; A frequency analyzer connected to the impact hammer and the accelerometer to show natural frequencies of the shaft system; An apparatus for measuring the bearing stiffness of a shaft system is provided, including an intrinsic frequency analysis module in which an analysis program for calculating the natural frequency of the shaft system is input as the stiffness value of the shaft system is input.

본 발명은 모달테스트를 이용하여 실제 구축되어 있는 축계상에서 축계를 지지하는 베어링의 강성을 축계을 분해하지 않고도 정확히 측정함으로써, 조립되어 있는 축계을 분해하지 않아도 된다.The present invention does not need to disassemble the assembled shaft system by accurately measuring the rigidity of the bearing supporting the shaft system on the shaft system actually constructed using the modal test without disassembling the shaft system.

이와 더불어 본 발명은 강성 측정에 따라 베어링을 재사용할 수 없었던 종래의 문제점을 해소할 수 있는 효과가 있다.In addition, the present invention has the effect that can solve the conventional problem that the bearing could not be reused according to the stiffness measurement.

이하, 본 발명의 실시를 위한 구체적인 내용에 대해 첨부도면 도 1 내지 도 4를 참조하여 상세히 설명하면 다음과 같다.Hereinafter, with reference to the accompanying drawings Figures 1 to 4 for a detailed description of the embodiments of the present invention will be described.

모달 테스트는, 실험적인 모드해석을 통하여 모드변수, 즉 고유진동수, 감쇠 비 및 모드형상으로부터 전반적인 축계의 동적 특성을 파악하여 진동 문제에 대한 원인 규명 및 대책 수립과 함께 실제 축계를 구성하는 베어링의 강성 확인 등을 위해 필요하다.Modal test analyzes the dynamic characteristics of the overall shaft system from the modal variables, ie natural frequency, damping ratio and mode shape, through experimental mode analysis. It is necessary for confirmation and the like.

도 1은 본 발명의 강성 측정법 적용을 위한 축계 구성도이고, 실제 교반기의 축계을 예시한 것으로, 베어링(3)에 의해 지지되는 축계에서 좌측의 자유단과는 달리 우측 끝단(Fix)은 모터(미도시)에 고정됨으로써 축계의 회전이 가능하게 되며, 축계에 대한 모달 테스트는 축이 정지한 상태에서 수행한다.Figure 1 is a shaft configuration for applying the stiffness measurement method of the present invention, and illustrates the shaft system of the actual stirrer, unlike the free end on the left in the shaft system supported by the bearing (3) the right end (Fix) is a motor (not shown) It is possible to rotate the shaft system by fixing it at the time), and the modal test for the shaft system is performed with the shaft stopped.

도 1을 참조하면, 본 발명에 따른 축계의 베어링 강성 측정 장치는, 축계에 대해 임팩트를 가할 수 있도록 설치되는 임팩트 해머(1)와; 상기 임팩트 해머(1)에 의해 축계에 충격이 가해질 때 축계의 가속도를 측정하도록 설치되는 가속도계(2)(accelerometer)와; 상기 임팩트 해머(1)와 가속도계(2)에 연결되어 축계의 고유진동수를 보여주는 주파수분석기(4)와; 축계의 강성값이 입력됨에 따라 축계의 고유진동수를 산출하는 해석프로그램이 내장된 고유진동수 해석모듈(미도시)을 포함하여 구성된다.Referring to Figure 1, the bearing stiffness measuring apparatus of the shaft system according to the present invention, the impact hammer (1) is installed so that the impact on the shaft system; An accelerometer (2) installed to measure the acceleration of the shaft system when an impact is applied to the shaft system by the impact hammer (1); A frequency analyzer (4) connected to the impact hammer (1) and the accelerometer (2) to show the natural frequency of the shaft system; It is configured to include a natural frequency analysis module (not shown) with a built-in analysis program for calculating the natural frequency of the shaft system as the stiffness value of the shaft system is input.

상기에서 축계에 충격을 가하는 임팩트 해머(1)와, 축계의 가속도를 측정하도록 설치되는 가속도계(2)와, 상기 임팩트 해머(1)와 가속도계(2)에 연결되어 축계의 고유진동수를 보여주는 주파수분석기(4)는 모달테스트 장비를 구성하는 요소이다.The impact hammer (1) impacting the shaft system, an accelerometer (2) installed to measure the acceleration of the shaft system, and a frequency analyzer connected to the impact hammer (1) and the accelerometer (2) to show the natural frequency of the shaft system. (4) is a component of modal test equipment.

이와 같이 구성된 본 발명의 베어링 강성 측정 장치에 의한 축계의 베어링 강성 측정 과정은 다음과 같다.The bearing stiffness measuring process of the shaft system by the bearing stiffness measuring apparatus of this invention comprised as mentioned above is as follows.

도 2는 본 발명의 강성 측정 과정을 나타낸 흐름도이고, 도 3은 모달 테스트(Modal test)를 이용하여 측정한 축계의 고유진동수를 보여주는 그래프이며, 도 4는 모달 테스트를 통한 측정값과 해석프로그램상의 해석값을 비교하여 나타낸 참고도이다. FIG. 2 is a flowchart illustrating a stiffness measurement process of the present invention, and FIG. 3 is a graph showing natural frequencies of an axis system measured using a modal test. FIG. 4 is a graph showing measured values and analysis programs through a modal test. A reference diagram comparing the analyzed values.

먼저, 수정된 해리스식에 의해 축계의 베어링(3) 강성을 계산한다.First, the rigidity of the bearing 3 of the shaft system is calculated by the modified Harris equation.

상기 베어링(3)의 강성은 일반적으로 다음과 같이 정의된다.The rigidity of the bearing 3 is generally defined as follows.

Figure 112009074689018-PAT00001
Figure 112009074689018-PAT00001

여기서, Fr은 반경방향 하중, δ는 변위이다. Where Fr is the radial load and δ is the displacement.

상기 강성의 정의로부터 베어링(3) 강성을 구하는 수정된 해리스 식(k)은 다음과 같다.The modified Harris equation (k) for obtaining the bearing 3 stiffness from the definition of the stiffness is as follows.

수정된 해리스식,Modified Harris,

Figure 112009074689018-PAT00002
Figure 112009074689018-PAT00002

여기서, Z는 볼수, D는 볼직경, α는 접촉각, Fr는 하중이다. Where Z is the number of balls, D is the ball diameter, α is the contact angle, and Fr is the load.

그리고, 접촉각 α는 축방향운전과 반경방향운전의 관계식으로 다음과 같이 정의된다.The contact angle α is defined as follows in relation between the axial operation and the radial operation.

Figure 112009074689018-PAT00003
Figure 112009074689018-PAT00003

한편, 상기 접촉각을 구하는 식에서 필요한 축방향운전 PE와 반경방향운전 PD는 다음과 같이 정의된다.On the other hand, the axial operation PE and the radial operation PD required in the equation for obtaining the contact angle are defined as follows.

Figure 112009074689018-PAT00004
Figure 112009074689018-PAT00004

상기 식에서 축방향운전과 반경방향운전 중 하나의 운전이 '0'의 값을 가지며, 이값을 위의 두 식 PE와 PD중 하나에 대입하여 축방향운전 및 반경방향운전의 값을 구하여 접촉각을 구하면 된다. 그리고, 상기 식에서 B는 베어링내륜 곡률+베어링외륜 곡률-1의 값이다.In the above equation, one of the axial and radial operation has a value of '0', and this value is substituted into one of the above two equations PE and PD to obtain the values of the axial operation and the radial operation. do. In the above formula, B is the value of the bearing inner ring curvature + bearing outer ring curvature-1.

따라서, 상기 수정된 해리스식 및 그에 따른 관계식을 이용하여 베어링(3)의 강성을 구할 수 있다.Therefore, the rigidity of the bearing 3 can be obtained using the modified Harris equation and the relational expression.

다음, 구해진 베어링(3)의 강성 값을 고유진동수 해석모듈에 내장된 상용 해석프로그램(예; ANSYS)에 입력하여, 상기 해석프로그램에 의한 축계의 고유진동수를 산출한다(도 4의 (나) 참조).Next, the obtained stiffness value of the bearing 3 is input to a commercial analysis program (e.g., ANSYS) built in the natural frequency analysis module, and the natural frequency of the shaft system is calculated by the analysis program (see FIG. 4B). ).

한편, 상기한 해석 과정과는 별도로, 실제 축계에 대해 모달 테스트를 실시하게 된다.On the other hand, apart from the above-described analysis process, a modal test is performed on the actual shaft system.

이를 위해, 먼저 실제 축계에 모달 테스트 장비를 설치한다. 즉, 축계에 임팩트를 가할 수 있도록 임팩트 해머(1)를 설치하는 한편, 상기 임팩트 해머(1)에 의해 충격이 가해질 때 축계의 가속도를 측정할 수 있도록 하는 가속도계(2)를 설 치하고, 이들을 상기 축계의 고유진동수를 보여주는 주파수분석기(4)에 연결한다.To do this, first install the modal test equipment on the real shaft. That is, the impact hammer (1) is installed to apply the impact to the shaft system, while the accelerometer (2) is installed to measure the acceleration of the shaft system when the impact is applied by the impact hammer (1), And a frequency analyzer 4 showing the natural frequency of the shaft system.

이 같이 모달 테스트 장비의 준비가 완료되면, 임팩트 해머(1)를 이용하여 축계에 임팩트를 입력하게 되고, 이에 따라 상기 임팩트 해머(1) 및 가속도계(2)에 연결된 주파수분석기(4)에서는 축계의 고유진동수가 측정된다(도 3 및 도 4의 (가)참조).When the preparation of the modal test equipment is completed as described above, the impact is input to the shaft system using the impact hammer (1). Accordingly, the frequency analyzer (4) connected to the impact hammer (1) and the accelerometer (2) is used. The natural frequency is measured (see FIGS. 3 and 4 (a)).

한편, 상기 각 과정(해석프로그램에 의한 축계의 고유진동수 산출 과정 및 축계에 대한 모달 테스트 과정)이 완료된 후에는, 모달 테스트를 통해 측정된 고유진동수와, 모달테스트와는 별도로 수행된 해석프로그램에 의해 산출된 고유진동수의 비교하게 된다.On the other hand, after each of the above processes (calculation of the natural frequency of the shaft system by the analysis program and the modal test procedure for the shaft system) is completed, the natural frequency measured through the modal test and the analysis program performed separately from the modal test The calculated natural frequencies are compared.

상기 비교에서 모달 테스트를 통해 측정된 고유진동수와 해석프로그램에 의해 산출된 고유진동수가 일치하면 해석프로그램에 입력된 강성값을 축계의 베어링 강성값으로 확정한다.In the comparison, when the natural frequency measured through the modal test and the natural frequency calculated by the analysis program coincide, the stiffness value input to the analysis program is determined as the bearing stiffness value of the shaft system.

참고로, 도 3의 그래프 및 도 4의 (가)를 참조하면 모달테스트에 의한 고유진동수는 1st Frequency 38.5Hz, 2nd Frequency 234Hz, 3rd Frequency 259Hz, 4th Frequency 292Hz 임을 알 수 있으며, 이 값들은 도 4의 (나)를 참조하면 K=446255.1N/m 일 때의 해석프로그램에 의한 고유진동수 데이터 중에 일치하는 값들이 모두 존재하므로, 베어링의 강성값은 K=446255.1N/m으로 확정된다. For reference, referring to the graph of FIG. 3 and (a) of FIG. 4, the natural frequencies according to the modal test are 1st Frequency 38.5Hz, 2nd Frequency 234Hz, 3rd Frequency 259Hz, and 4th Frequency 292Hz, and these values are shown in FIG. 4. Referring to (b) of the above, since all matching values exist in the natural frequency data by the analysis program when K = 446255.1N / m, the stiffness value of the bearing is determined as K = 446255.1N / m.

한편, 모달 테스트를 통해 측정된 고유진동수와 해석프로그램에 의해 산출된 고유진동수의 비교하여 약간의 차이가 있다면, 해석프로그램에 입력하는 강성값을 조정하게 된다. 즉, 해석프로그램에 입력하는 베어링 강성값을 증가시키거나 감소 시켜 두 고유진동수를 다시 비교하게 되며(도 4의 (가) 및 (나) 참조), 두 고유진동수가 일치하게 되면 그때 해석프로그램에 입력한 강성값이 축계의 베어링 강성값으로 확정된다.On the other hand, if there is a slight difference between the natural frequency measured through the modal test and the natural frequency calculated by the analysis program, the stiffness value input to the analysis program is adjusted. That is, by increasing or decreasing the bearing stiffness value inputted into the analysis program, the two natural frequencies are compared again (see (A) and (B) of FIG. 4). One stiffness value is determined as the bearing stiffness value of the shaft system.

이상에서와 같이, 본 발명은 모달테스트에 의한 실제 축계의 고유진동수 측정값과 수정된 해리스식을 이용한 해석프로그램에 의한 고유진동수 해석값의 비교를 통해 실제 축계에 설치된 베어링의 정확한 강성 값을 구할 수 있으며, 이 과정에서는 베어링의 손상이 발생하지 않는 장점이 있다. As described above, the present invention can obtain an accurate stiffness value of the bearing installed in the actual shaft system by comparing the natural frequency measurement value of the actual shaft system by the modal test with the natural frequency analysis value by the analysis program using the modified Harris equation. In this process, there is an advantage that the damage of the bearing does not occur.

한편, 본 발명은 상기한 실시예로 한정되지 아니하며, 본 발명의 기술사상의 범주를 벗어나지 않는 한, 여러 가지 다양한 형태로 변경 및 수정 가능함은 물론이다. 예컨대, 상기 과정에서 모달테스트가 먼저 수행되어도 무방함은 물론이다.On the other hand, the present invention is not limited to the above embodiments, and may be changed and modified in various forms without departing from the scope of the technical spirit of the present invention. For example, a modal test may be performed first in the above process.

따라서, 본 발명의 권리는 위에서 설명된 실시예들로 한정되지 않고 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 기술사상의 범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.Accordingly, the rights of the present invention are not limited to the embodiments described above, but are defined by what is stated in the claims, and various modifications and changes within the scope of the technical idea described in the claims by those skilled in the art. It's obvious that you can adapt.

본 발명은 실제 구축되어 있는 축계를 지지하는 베어링의 강성을 축계을 분해하지 않고도 정확히 측정함으로써, 조립되어 있는 축계을 분해하지 않아도 되는 이점과 더불어 강성 측정에 따라 베어링을 재사용할 수 없었던 종래의 문제점을 해소할 수 있으므로 산업상 이용가능성이 매우 높은 발명이다.The present invention accurately measures the rigidity of a bearing supporting an actual shaft system without disassembling the shaft system, thereby eliminating the disassembly of the assembled shaft system, and the conventional problem that the bearing cannot be reused according to the rigidity measurement. It is an invention with high industrial applicability since it can be eliminated.

도 1은 본 발명의 강성 측정법 적용을 위한 축계 구성도1 is a configuration of the shaft system for applying the stiffness measurement method of the present invention

도 2는 본 발명의 강성 측정 과정을 나타낸 흐름도2 is a flow chart showing the stiffness measurement process of the present invention

도 3은 모달 테스트(Modal test)를 이용하여 측정한 축계의 고유진동수를 보여주는 그래프3 is a graph showing the natural frequency of the shaft system measured using a modal test

도 4는 모달 테스트를 통한 측정값과 해석프로그램상의 해석값을 비교하여 나타낸 참고도4 is a reference diagram comparing the measured values through the modal test and the interpreted values on the analysis program;

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1:임팩트 해머 2:가속도계1: Impact Hammer 2: Accelerometer

3:베어링 4:주파수분석기3: bearing 4: frequency analyzer

Claims (3)

수정된 해리스식에 의해 축계의 베어링 강성을 계산하는 단계와; Calculating bearing stiffness of the shaft system by the modified Harris equation; 계산된 베어링 강성 값을 해석프로그램에 입력하는 단계와; Inputting the calculated bearing stiffness values into the analysis program; 상기 해석프로그램에 의한 축계의 고유진동수를 산출하는 단계와; Calculating a natural frequency of the shaft system by the analysis program; 실제 축계에 모달 테스트 장비를 설치하는 단계와; Installing modal test equipment on the actual shaft; 모달 테스트를 위해 임팩트를 입력하는 단계와; Inputting an impact for a modal test; 모달 테스트에 의한 축계의 고유진동수를 측정하는 단계와; Measuring a natural frequency of the shaft system by a modal test; 모달 테스트를 통해 측정된 고유진동수와 해석프로그램에 의해 산출된 고유진동수의 비교하는 단계와; Comparing the natural frequency measured by the modal test with the natural frequency calculated by the analysis program; 상기 비교 단계에서 모달 테스트를 통해 측정된 고유진동수와 해석프로그램에 의해 산출된 고유진동수가 일치하면 해석프로그램에 입력된 강성값을 축계의 베어링 강성값으로 확정하는 단계를 포함하는 것을 특징으로 하는 축계의 베어링 강성 측정 방법.If the natural frequency measured through the modal test and the natural frequency calculated by the analysis program in the comparing step comprises the step of determining the stiffness value input to the analysis program as the bearing stiffness value of the shaft system How to measure bearing stiffness. 제 1 항에 있어서,The method of claim 1, 모달 테스트를 통해 측정된 고유진동수와 해석프로그램에 의해 산출된 고유진동수를 비교하여 일치하지 않으면, 해석프로그램에 입력하는 강성값을 증가시키거나 감소시키면서 두 고유진동수가 일치할 때까지 비교하게 됨을 특징으로 하는 축계의 베어링 강성 측정 방법.If the natural frequencies measured through the modal test and natural frequencies calculated by the analysis program are not matched, the natural frequencies measured by the modal test are not matched, and the stiffness value inputted to the analysis program is increased or decreased, until the two natural frequencies are matched. Bearing rigidity measurement method of shaft system. 축계에 대해 임팩트를 가할 수 있도록 설치되는 임팩트 해머와; An impact hammer installed to apply an impact to the shaft system; 상기 임팩트 해머에 의해 축계에 충격이 가해질 때 축계의 가속도를 측정하도록 설치되는 가속도계(accelerometer)와; An accelerometer installed to measure the acceleration of the shaft system when an impact is applied to the shaft system by the impact hammer; 상기 임팩트 해머와 가속도계에 연결되어 축계의 고유진동수를 보여주는 주파수분석기와; A frequency analyzer connected to the impact hammer and the accelerometer to show natural frequencies of the shaft system; 축계의 강성값이 입력됨에 따라 축계의 고유진동수를 산출하는 해석프로그램이 내장된 고유진동수 해석모듈을 포함하여 구성됨을 특징으로 하는 축계의 베어링 강성 측정 장치.An apparatus for measuring bearing stiffness of a shaft system, comprising a natural frequency analysis module having a built-in analysis program that calculates a natural frequency of the shaft system as a stiffness value of the shaft system is input.
KR1020090118962A 2009-12-03 2009-12-03 Stiffness measuring device and method for bearing in actual shaft system KR20110062286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090118962A KR20110062286A (en) 2009-12-03 2009-12-03 Stiffness measuring device and method for bearing in actual shaft system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090118962A KR20110062286A (en) 2009-12-03 2009-12-03 Stiffness measuring device and method for bearing in actual shaft system

Publications (1)

Publication Number Publication Date
KR20110062286A true KR20110062286A (en) 2011-06-10

Family

ID=44396498

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090118962A KR20110062286A (en) 2009-12-03 2009-12-03 Stiffness measuring device and method for bearing in actual shaft system

Country Status (1)

Country Link
KR (1) KR20110062286A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109323831A (en) * 2018-09-05 2019-02-12 哈尔滨工程大学 A kind of elongate rotation shaft modal test device discharging advocate approach suddenly based on preload
CN111144037A (en) * 2018-11-02 2020-05-12 株洲中车时代电气股份有限公司 Method for determining connection rigidity of rail transit converter and vehicle body
CN112747915A (en) * 2021-01-29 2021-05-04 浙江工业大学 Spiral tube natural frequency measuring device
CN112857717A (en) * 2021-01-25 2021-05-28 北京科技大学 Vibration excitation method rigidity measurement tool and measurement method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109323831A (en) * 2018-09-05 2019-02-12 哈尔滨工程大学 A kind of elongate rotation shaft modal test device discharging advocate approach suddenly based on preload
CN111144037A (en) * 2018-11-02 2020-05-12 株洲中车时代电气股份有限公司 Method for determining connection rigidity of rail transit converter and vehicle body
CN111144037B (en) * 2018-11-02 2022-03-18 株洲中车时代电气股份有限公司 Method for determining connection rigidity of rail transit converter cabinet body and vehicle body
CN112857717A (en) * 2021-01-25 2021-05-28 北京科技大学 Vibration excitation method rigidity measurement tool and measurement method
CN112747915A (en) * 2021-01-29 2021-05-04 浙江工业大学 Spiral tube natural frequency measuring device
CN112747915B (en) * 2021-01-29 2024-05-31 浙江工业大学 Spiral pipe natural frequency measuring device

Similar Documents

Publication Publication Date Title
Yang et al. Simulation and experimental analysis of rolling element bearing fault in rotor-bearing-casing system
Gubran et al. Shaft instantaneous angular speed for blade vibration in rotating machine
Rigosi et al. Synchronous vibration parameters identification by tip timing measurements
Hotait et al. Experiments on the relationship between the dynamic transmission error and the dynamic stress factor of spur gear pairs
Reddy et al. Detection and monitoring of coupling misalignment in rotors using torque measurements
US20150369698A1 (en) Bearing device vibration analysis method, bearing device vibration analyzer, and rolling bearing condition monitoring system
CN104880248A (en) Method for quantitatively recognizing contribution amount of motor structural noise excitation source
Pennacchi et al. Light and short arc rubs in rotating machines: experimental tests and modelling
Wu et al. Misalignment diagnosis of rotating machinery through vibration analysis via the hybrid EEMD and EMD approach
CN105738057B (en) Mouse cage elastic bearing device vibration strains and amplitude calibration system and method
KR20110062286A (en) Stiffness measuring device and method for bearing in actual shaft system
Zhao et al. Analysis of nonlinear vibrations and health assessment of a bearing-rotor with rub-impact based on a data-driven approach
Liu et al. A study on waviness induced vibration of ball bearings based on signal coherence theory
Bin et al. Development of whole-machine high speed balance approach for turbomachinery shaft system with N+ 1 supports
JP5280407B2 (en) Damage detection method, damage detection apparatus and program for columnar structure
CN112525533A (en) Online detection method for contact angle of ball bearing of aero-engine
Mohamed et al. Experimental validation of FEM-computed stress to tip deflection ratios of aero-engine compressor blade vibration modes and quantification of associated uncertainties
CN104101464A (en) Multi-wheel-disc rotor dynamic balancing test method based on rotating coordinate system
Heuer et al. An analytical approach to support high cycle fatigue validation for turbocharger turbine stages
CN109357827B (en) Reciprocating equipment shafting vibration experiment and analysis method
Rimpel A simple contact model for simulating tie bolt rotor butt joints with and without pilot fits
JP2013033477A (en) Computing device and methods for presenting data to identify faults within power systems
KR20120084747A (en) Method for determining bearing play of exhaust-gas-turbocharger friction bearings
RU2644646C1 (en) Diagnostics method of technical state of rotor equipment
Noroozi et al. Condition monitoring and diagnostics of an extruder motor and its gearbox vibration problem

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application