KR20110056042A - Nano particles for tumor-targeting and processes for the preparation thereof - Google Patents

Nano particles for tumor-targeting and processes for the preparation thereof Download PDF

Info

Publication number
KR20110056042A
KR20110056042A KR1020090112718A KR20090112718A KR20110056042A KR 20110056042 A KR20110056042 A KR 20110056042A KR 1020090112718 A KR1020090112718 A KR 1020090112718A KR 20090112718 A KR20090112718 A KR 20090112718A KR 20110056042 A KR20110056042 A KR 20110056042A
Authority
KR
South Korea
Prior art keywords
pharmaceutical composition
nano
acid
nanoparticles
oil
Prior art date
Application number
KR1020090112718A
Other languages
Korean (ko)
Inventor
박성배
김주은
양준모
민미홍
최현호
우민나
안병락
Original Assignee
주식회사유한양행
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사유한양행 filed Critical 주식회사유한양행
Priority to KR1020090112718A priority Critical patent/KR20110056042A/en
Priority to PCT/KR2010/008149 priority patent/WO2011062420A2/en
Publication of KR20110056042A publication Critical patent/KR20110056042A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid, pantothenic acid
    • A61K31/198Alpha-aminoacids, e.g. alanine, edetic acids [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/351Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom not condensed with another ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5138Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Abstract

PURPOSE: A pharmaceutical composition containing nanoparticles in an aqueous medium is provided to enable active and passive targeting of an anticancer drug. CONSTITUTION: A pharmaceutical composition of nano-dispersion for targeting contains nanoparticles having 10-1,000 nm of average particle size in an aqueous medium. The nanoparticle contains therapeutically effective amount of anticancer drug; bivalent or trivalent transition metal ion or alkali earth metal ion; and oil. Hyaluronic acid or salt thereof is conjugated on the surface of the nanoparticles. The aqueous medium is distilled water, injection solution, saline solution, dextrose, or amino acid liquid.

Description

종양세포 표적지향을 위한 나노 입자 및 이의 제조방법{Nano particles for tumor-targeting and processes for the preparation thereof}Nanoparticles for tumor-targeting and processes for the preparation etc

본 발명은 수동표적지향 및 능동표적지향이 가능한 항암제를 포함하는 약학 조성물에 관한 것이다. 더욱 상세하게는 치료학적으로 유효한 양의 항암제; 2가 또는 3가의 전이금속 이온 또는 알카리 토금속 이온; 오일; 및 히알루론산 또는 그의 염을 포함하는 수동표적지향 및 능동표적지향이 가능한 나노 입자에 관한 것이다.The present invention relates to a pharmaceutical composition comprising an anticancer agent capable of passive targeting and active targeting. More specifically, a therapeutically effective amount of an anticancer agent; Divalent or trivalent transition metal ions or alkaline earth metal ions; oil; And nanoparticles capable of passive target orientation and active target orientation including hyaluronic acid or salts thereof.

항암제(또는 항종양제)를 이용한 종래의 암치료는 암세포뿐만 아니라 인체 내의 정상세포에도 영향을 미치므로, 다양한 부작용을 초래하는 것으로 알려져 있다. 이를 개선하기 위해 수동표적지향(passive targeting) 및 능동표적지향(active targeting)을 포함한 다양한 표적지향 방법이 연구되고 있으나, 아직 만족할만한 수준에는 이르지 못하고 있다. Conventional cancer treatment using an anticancer agent (or antitumor agent) is known to cause various side effects because it affects not only cancer cells but also normal cells in the human body. In order to improve this, various target targeting methods including passive targeting and active targeting have been studied, but are not yet satisfactory.

수동표적지향 방법은 미세입자가 몸속에서 지속적인 혈액순환에 의해 비정상적인 혈관을 가진 암세포에만 선택적으로 축적되는 것을 의미한다. 예를 들어, 암세포의 경우 정상세포와는 달리 비정상적인 성장속도로 비대해지기 때문에 정상적인 세포의 일정한 내피세공(aligned endothelial pores)에 비해 크기가 크거나 약 10 nm 에서 1000 nm까지의 다양한 크기의 내피세공을 지니고 있다. 따라서, 항암제를 함유한 입자성 전달체를 미세화하여 혈액 속에서 계속적으로 순환시킬 경우, 암세포에만 나노입자들이 축적되고 정상세포의 혈관내피에는 침투하지 못하는데, 이를 투과성/잔류성 향상 효과 (Enhanced permeation and retention effect, "EPR" 효과)라 한다. 수동표적지향 방법의 예로는 소립자 리포좀 에어로졸을 이용하여 항암제를 암세포에 전달하는 방법(국제특허공개 제WO1999/15153)이 알려져 있다.Passive target orientation means that the microparticles are selectively accumulated only in cancer cells with abnormal blood vessels by continuous blood circulation in the body. For example, cancer cells are enlarged at abnormal growth rates unlike normal cells, so they are larger in size than normal aligned endothelial pores or vary in size from about 10 nm to 1000 nm. It has Therefore, when microparticles containing anticancer agents are circulated continuously in the blood, nanoparticles accumulate only in cancer cells and do not penetrate the vascular endothelium of normal cells, which enhances permeation and retention effect (Enhanced permeation and retention effect). , "EPR" effect. As an example of the passive target-oriented method, a method for delivering an anticancer agent to cancer cells using small particle liposome aerosol (WO 1999/15153) is known.

능동표적지향 방법은 암세포 표면에 과발현되는 분자를 특이적으로 인식하는 수용체, 예를 들어 렉틴, 성장인자, 사이토카인, 호르몬, 불포화지방산, 저밀도 지질단백질, 엽산 등의 수용체를 이용하여 약물송달시스템을 제작하여, 암세포에 항암제를 수송하는 방법이다(S.P Vyas., et. al., Advanced Drug Delivery Review 43 (2000) 101-164). 생분해성 고분자 또는 리포좀 등에 항암제를 결합 및/또는 봉입시킨 후, 암세포 표면에 과발현되는 분자를 특이적으로 인식하는 수용체를 부착시킨 다양한 약물송달시스템이 알려져 있다. 예를 들어, 미국특허 제6,593,308호는 리포좀 등의 캡슐화 수송 비히클(encapsulating delivery vehicle) 및 히알루로난(hyaluronan) 리간드를 포함하는 약물송달시스템을 개시하고 있다. 상기 약물송달시스템에서 항암제는 상기 비히클 내에 봉입되게 되며, 비이클에 리간드를 부착시키기 위한 연결제(linking agent) 또는 킬레이트화제로서 금속이온을 사용한다. 기타, 미국특허 제6,699,471호는 히알루론산의 벤질 에스테르 또는 히알루론산의 자가-가교된(auto-cross-linked) 유도체를 포함하는 겔 형태의 주사용 제제를 개시한 바 있다. 기타, 암세포에 친화도가 매우 높다고 알려진 단일클론 항체를 이용한 표적지향 방법(Stanislv J., et al., Bioorg. Medic. chem.(2005) 13, 5043-5054)도 보고되고 있다. Active target-oriented methods employ drug delivery systems using receptors that specifically recognize molecules overexpressed on the surface of cancer cells, such as lectins, growth factors, cytokines, hormones, unsaturated fatty acids, low density lipoproteins, and folic acid. And a method for transporting an anticancer agent to cancer cells (SP Vyas., Et. Al., Advanced Drug Delivery Review 43 (2000) 101-164). Various drug delivery systems are known in which an anticancer agent is bound to and / or encapsulated in a biodegradable polymer or liposome, followed by attachment of a receptor that specifically recognizes an overexpressed molecule on a cancer cell surface. For example, US Pat. No. 6,593,308 discloses a drug delivery system comprising an encapsulating delivery vehicle such as liposomes and a hyaluronan ligand. In the drug delivery system, the anticancer agent is encapsulated in the vehicle and uses metal ions as a linking agent or chelating agent for attaching a ligand to the vehicle. In addition, US Pat. No. 6,699,471 discloses injectable preparations in gel form comprising benzyl esters of hyaluronic acid or auto-cross-linked derivatives of hyaluronic acid. In addition, targeting methods using monoclonal antibodies known to have a very high affinity to cancer cells (Stanislv J., et al., Bioorg. Medic. Chem. (2005) 13, 5043-5054) have also been reported.

또한, 미국특허 제6,890,901호는 리포좀에 히알루론산을 히스티딘과 화학적 결합방법에 의해 표면에 붙인 제형을 개시하고 있으며, 미국특허 제6,593,308호는 리포좀 표면에 히알루론산을 화학적 결합방법으로 코팅한 제형을 개시하고 있다. 그러나, 리포좀 제형의 경우, 이중 지질막이 불안정하여 장기 안정성이 떨어지며 대식세포에 잡혀 식세포작용에 의해 분해되고, 히알루론산과의 화학적 결합을 유도하는 제조과정이 복잡하고 다른 물질을 생산하는 등의 안정성에 문제를 지니고 있다.In addition, US Pat. No. 6,890,901 discloses a formulation in which hyaluronic acid is attached to liposomes on a surface by chemical bonding with histidine, and US Pat. No. 6,593,308 discloses a formulation in which hyaluronic acid is coated on a liposome surface by chemical bonding method. Doing. However, in the case of liposome formulations, double lipid membranes are unstable, resulting in poor long-term stability, being caught by macrophages, degraded by phagocytosis, and complex manufacturing processes that induce chemical bonds with hyaluronic acid. I have a problem.

미국특허 공개 제2006/0188578호는 키토산과 트리폴리포스페이트를 사용하여 제조하는 일반적인 키토산 나노입자 제조방법에 히알루론산을 겉 표면에 이온결합 시키는 방법을 개시하고 있으나, 이 경우는 히알루론산이 혈액과 같은 완충용액 상에서 쉽게 용해되는 단점을 지니고 있어 암세포와의 친화도가 빠른 시간 내에 쉽게 소진되며 천연 수용성 고분자인 키토산의 사용으로 약물함유 시 약물방출이 급속하게 진행되어 약물지속방출이 이루어지지 않는 단점을 지닌다. 또한, 미국특허 공개 제2007/0036728호는 히알루론산과 히드라자이드(Hydrazide)를 섞어 O/W 형태의 히알루론산 나노에멀전을 사용한 경피 약물 수송방법을 개시하고 있다.US Patent Publication No. 2006/0188578 discloses a method of ionically coupling hyaluronic acid to the surface of a conventional chitosan nanoparticle manufacturing method using chitosan and tripolyphosphate, in which case hyaluronic acid is a buffer such as blood. It has the disadvantage of dissolving easily in solution, so that the affinity with cancer cells is easily consumed within a short time, and the drug release proceeds rapidly due to the use of chitosan, which is a natural water-soluble polymer, and thus the drug release does not occur. In addition, US Patent Publication No. 2007/0036728 discloses a transdermal drug transport method using hyaluronic acid nanoemulsion of O / W type by mixing hyaluronic acid and hydrazide.

기타, 미국특허 제2007/0031503호는 폴리락트산, 폴리글리콜산, 또는 이들의 공중합체가 결합된 히알루론산 변형물을 개시한 바 있다. 그러나, 상기 미국특허에 따라 히알루론산 변형물을 제조할 경우, 상기 고분자에 결합되는 히알루론산의 양 이 현저히 적어 암세포로의 표적지향 능력이 떨어지며, 제형 자체가 불안정하다는 문제점이 있다. 또한 얻어지는 히알루론산 변형물이 사용되는 약물의 이온 강도, pH 등에 영향을 받게 되는 문제가 있다. 이외에, 국제특허 공개 제WO00/041730호는 수용성 항암제와 히알루론산의 단순 혼합에 의하여 항암 치료효과를 증대시키는 것을 개시한 바 있으며, 미국특허 제7,371,738호는 히알루론산, 히드라자이드(Hydrazide), 및 가교제를 유화 시스템을 이용하여 혼화한 후, 일정양의 알코올을 첨가함으로써 나노입자 석출물을 얻는 방법을 개시한 바 있다.In addition, US 2007/0031503 discloses a modification of hyaluronic acid to which polylactic acid, polyglycolic acid, or copolymers thereof are bound. However, when the hyaluronic acid modified according to the US patent is prepared, the amount of hyaluronic acid bound to the polymer is significantly less, the ability of targeting to cancer cells, there is a problem that the formulation itself is unstable. In addition, there is a problem that the resulting hyaluronic acid modification is affected by the ionic strength, pH, etc. of the drug used. In addition, International Patent Publication No. WO00 / 041730 discloses to increase anticancer treatment effect by simple mixing of a water-soluble anticancer agent and hyaluronic acid, and US Pat. No. 7,371,738 discloses hyaluronic acid, hydrazide, and a crosslinking agent. After admixing using an emulsification system, a method of obtaining nanoparticle precipitates by adding a certain amount of alcohol has been disclosed.

상기한 종래의 표적지향 방법은 수동표적지향만을 목적으로 하거나 또는 능동표적지향만을 목적으로 설계된 것으로, 고형암 뿐만 아니라 전이암을 동시에 치료할 수 있는 표적지향 방법 즉, 수동표적지향 및 능동표적지향을 동시에 달성할 수 있는 표적지향 방법이 요구된다. 나아가, 항암제 수송을 위해 리포좀 등의 별도의 비히클을 설계하여야 하는 데에서 비롯되는 제조상의 문제점(예를 들어, 제조과정의 복잡성 등)을 해결할 수 있는 표적지향 방법이 당업계에 요구된다.The conventional target-oriented method is designed for passive target-oriented or active target-oriented only, and achieves a target-oriented method that can simultaneously treat not only solid cancer but also metastatic cancer, namely passive target-oriented and active target-oriented. What is needed is a targeted method. Furthermore, there is a need in the art for a target-oriented method that can solve manufacturing problems (eg, complexity of the manufacturing process) resulting from the design of a separate vehicle such as liposomes for the transport of anticancer agents.

본 발명자들은 수동표적지향 및 능동표적지향을 동시에 달성할 수 있는 히알루론산 또는 그의 염을 이용한 표적지향을 위한 약물송달시스템을 개발한 바 있다(대한민국 특허등록 제774,925호, 및 대한민국 특허공개 제10-2009-0040979호). 상기 약물송달시스템은 항암제(항종양제)와 히알루론산 또는 그의 염의 혼합물을 금속이온 및/또는 수-난용성 생분해성 고분자를 사용하여 나노입자를 형성시켜 제조함으로써, 투과성/잔류성 향상 효과 (Enhanced permeation and retention effect, "EPR" 효과)에 의한 항암제의 수동표적지향(passive targeting) 및 히알루론산에 의한 항암제의 능동표적지향(active targeting)을 동시에 달성할 수 있다.The present inventors have developed a drug delivery system for target orientation using hyaluronic acid or a salt thereof that can simultaneously achieve passive target orientation and active target orientation (Korean Patent Registration No. 774,925, and Korean Patent Publication No. 10-). 2009-0040979). The drug delivery system is prepared by forming a mixture of an anticancer agent (antitumor agent) and hyaluronic acid or a salt thereof by forming nanoparticles using metal ions and / or water-soluble biodegradable polymers, thereby improving permeation / residual enhancement effect (Enhanced permeation). and active targeting of anticancer agents by anti-cancer agents by " EPR " and simultaneous hyaluronic acid.

본 발명은 수동표적지향 및 능동표적지향을 동시에 달성할 수 있는 히알루론산 또는 그의 염을 이용한 표적지향을 위한 약물송달시스템을 제공한다. 즉, 항암제(항종양제)를 금속이온, 오일 등과 함께 나노 입자 형태로 제조하고, 상기 금속이온과 상호작용에 의해 상기 나노 입자 표면에 히알루론산 또는 그의 염을 결합시킴으로써, 투과성/잔류성 향상 효과 (Enhanced permeation and retention effect, "EPR" 효과)에 의한 항암제의 수동표적지향(passive targeting) 및 히알루론산에 의한 항암제의 능동표적지향(active targeting)을 동시에 달성할 수 있으며, 또한, 항암제의 봉입효율(Encapsulation efficiency)을 현저하게 높일 수 있는 약물송달시스템을 제공한다.The present invention provides a drug delivery system for targeting by using hyaluronic acid or a salt thereof, which can simultaneously achieve passive targeting and active targeting. That is, by preparing an anticancer agent (antitumor agent) in the form of nanoparticles with metal ions, oils, and the like, and binding the hyaluronic acid or a salt thereof to the surface of the nanoparticles by interacting with the metal ions, a permeability / residual enhancement effect ( Passive targeting of the anticancer agent by the enhanced permeation and retention effect ("EPR" effect) and active targeting of the anticancer agent by hyaluronic acid can be simultaneously achieved, and the encapsulation efficiency of the anticancer agent ( It provides a drug delivery system that can significantly increase the encapsulation efficiency.

따라서, 본 발명은 수동표적지향 및 능동표적지향을 동시에 달성할 수 있고, 또한 항암제의 봉입효율이 높은 나노 입자를 포함하는 나노-분산액 형태의 약학 조성물을 제공하는 것을 목적으로 한다. 또한, 본 발명은 상기 나노 입자를 포함하는 나노-분산액 형태의 약학 조성물의 제조방법을 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a pharmaceutical composition in the form of nano-dispersion liquid, which can simultaneously achieve passive target orientation and active target orientation, and also includes nanoparticles with high encapsulation efficiency of anticancer agents. It is also an object of the present invention to provide a method for preparing a pharmaceutical composition in the form of a nano-dispersion containing the nanoparticles.

본 발명의 일 태양에 따라, 수성 매질 중에 10 ∼ 1,000 nm의 평균 입자경을 갖는 나노 입자를 포함하는 나노-분산액 형태의 표적 지향을 위한 약학 조성물로서, 상기 나노 입자가 치료학적으로 유효한 양의 항암제; 2가 또는 3가의 전이금속 이온 또는 알카리 토금속 이온; 및 오일을 포함하고, 상기 나노 입자의 표면 상에 히알루론산 또는 그의 염이 결합된 것을 특징으로 하는 약학 조성물이 제공된다.According to one aspect of the invention, there is provided a pharmaceutical composition for target orientation in the form of nano-dispersions comprising nanoparticles having an average particle diameter of 10 to 1,000 nm in an aqueous medium, wherein the nanoparticles are in a therapeutically effective amount of an anticancer agent; Divalent or trivalent transition metal ions or alkaline earth metal ions; And an oil, and a hyaluronic acid or a salt thereof is bound to a surface of the nanoparticles.

본 발명의 다른 태양에 따라, 상기 나노-분산액 형태의 약학 조성물을 동결건조, 회전증발건조(rotary evaporation drying), 분무건조(spray drying), 또는 유동층 건조(fluidized-bed drying)에 의해 건조시켜 얻어진, 표적 지향을 위한 나노 입자가 제공된다.According to another aspect of the invention, the pharmaceutical composition in the form of nano-dispersions is obtained by drying by lyophilization, rotary evaporation drying, spray drying, or fluidized-bed drying Nanoparticles for target orientation are provided.

본 발명의 또 다른 태양에 따라, (a) 치료학적으로 유효한 양의 항암제, 2가 또는 3가의 전이금속 이온 또는 알카리 토금속 이온, 및 오일을 포함하는 유상(oil phase)을 제조하는 단계; (b) 히알루론산 또는 그의 염을 수성 매질에 용해시켜 수상(aqueous phase)을 얻는 단계; 및 (c) 단계(a)에서 얻어진 유상과 단계(b)에서 얻어진 수상을 혼합하고 균질화하여 평균 입자경 10 ∼ 1,000 nm의 나노 입자로서 히알루론산 또는 그의 염이 표면 상에 결합된 나노 입자를 형성시키는 단계를 포함하는, 표적 지향을 위한 나노-분산액 형태의 약학 조성물의 제조방법이 제공된다.According to another aspect of the present invention, there is provided a method of preparing an oil phase comprising (a) preparing an oil phase comprising a therapeutically effective amount of an anticancer agent, a divalent or trivalent transition metal ion or an alkaline earth metal ion, and an oil; (b) dissolving hyaluronic acid or a salt thereof in an aqueous medium to obtain an aqueous phase; And (c) mixing and homogenizing the oil phase obtained in step (a) and the water phase obtained in step (b) to form nanoparticles having hyaluronic acid or a salt thereof bound on the surface as nanoparticles having an average particle diameter of 10 to 1,000 nm. Provided is a method of preparing a pharmaceutical composition in nano-dispersion form for target orientation, comprising the step.

본 발명의 또 다른 태양에 따라, 상기 나노-분산액 형태의 약학 조성물을 동결건조, 회전증발건조, 분무건조, 또는 유동층 건조에 의해 건조 시키는 단계를 포함하는, 표적 지향을 위한 나노 입자의 제조방법이 제공된다.According to another aspect of the invention, there is provided a method for producing nanoparticles for target orientation, comprising the step of drying the pharmaceutical composition in the form of nano-dispersion by lyophilization, rotary evaporation, spray drying, or fluidized bed drying Is provided.

본 발명의 수성 매질 중에 나노 입자를 포함하는 나노-분산액 형태의 약학 조성물은 항암제(항종양제), 금속이온, 및 오일을 포함하는 나노 입자의 표면에 히알루론산 또는 그의 염이 결합되어 얻어진 약물송달시스템이다. 본 발명에 따른 약물송달시스템은 투과성/잔류성 향상 효과를 통한 항암제의 수동표적지향 및 히알루 론산과 암세포와의 친화력을 통한 항암제의 능동표적지향을 동시에 가능하게 한다. 즉, 본 발명에 따른 나노 입자는 암세포에 선택적으로 작용할 수 있는 나노-약물송달시스템으로서, 고형암 뿐만 아니라 전이암에도 선택적으로 작용할 수 있다. 특히, 본 발명의 나노-분산액 형태의 약학 조성물은 항암제의 봉입효율을 원하는 양만큼(즉, 거의 100%의 원하는 양만큼) 높일 수 있다. 또한, 본 발명의 나노-분산액 형태의 약학 조성물은 생체적합성이 뛰어나고, 우수한 물리화학적 안정성을 갖는다.Pharmaceutical compositions in the form of nano-dispersions comprising nanoparticles in the aqueous medium of the present invention are drug delivery obtained by combining hyaluronic acid or a salt thereof on the surface of the nanoparticles including an anticancer agent (antitumor agent), a metal ion, and an oil. System. The drug delivery system according to the present invention enables the active target orientation of the anticancer agent through the manual target orientation of the anticancer agent and the affinity between the hyaluronic acid and the cancer cell through the permeability / residual enhancement effect. That is, the nanoparticles according to the present invention is a nano-drug delivery system that can selectively act on cancer cells, and can selectively act on metastatic cancer as well as solid cancer. In particular, the pharmaceutical composition of the nano-dispersion form of the present invention can increase the encapsulation efficiency of the anticancer agent by a desired amount (ie, by a desired amount of almost 100%). In addition, the pharmaceutical compositions in the form of nano-dispersions of the present invention are excellent in biocompatibility and have excellent physicochemical stability.

본 명세서에서, "나노 입자"라 함은 약 1000 nm 이하, 예를 들어 10 ∼ 1,000 nm, 바람직하게는 50 ∼ 500 nm, 더욱 바람직하게는 50 ∼ 300 nm의 크기를 갖는 입자를 말한다. 또한, 본 발명에서 “나노-분산액(nano-dispersion)”이라 함은 상기 나노 입자가 수성 매질 중에 분산되어 얻어진 약물전달체를 말하며, 나노-에멀젼(nano-emulsion) 또는 나노-현탁액(nano-suspension)의 형태를 포함한다. 상기 "나노-에멀젼"이라 함은 상기 나노 입자가 상온(약 25 ℃)에서 오일 형태로 수성 매질 중에 분산되어 있는 에멀젼 형태의 약물전달체를 말한다. 또한, 상기 “나노-현탁액"이라 함은 상기 나노 입자가 상온(약 25 ℃)에서 고체 입자 형태로 수성 매질 중에 분산되어 있는 현탁액 형태의 약물전달체를 일컫는다. 상기 나노-분산액 중, 나노 입자의 평균입자경은 EPR 효과를 가능하게 하는 크기, 예를 들어 10 ∼ 1,000 nm, 바람직하게는 50 ∼ 500 nm, 더욱 바람직하게는 50 ∼ 300 nm를 갖는다.As used herein, the term "nanoparticles" refers to particles having a size of about 1000 nm or less, for example, 10 to 1,000 nm, preferably 50 to 500 nm, more preferably 50 to 300 nm. In addition, in the present invention, the term "nano-dispersion" refers to a drug carrier obtained by dispersing the nanoparticles in an aqueous medium, and refers to a nano-emulsion or a nano-suspension. Include the form of. The "nano-emulsion" refers to a drug carrier in the form of an emulsion in which the nanoparticles are dispersed in an aqueous medium in oil form at room temperature (about 25 ° C). In addition, the "nano-suspension" refers to a drug carrier in the form of a suspension in which the nanoparticles are dispersed in an aqueous medium in the form of solid particles at room temperature (about 25 ℃). In the nano-dispersion, the average of the nanoparticles The particle diameter has a size that enables the EPR effect, for example, 10 to 1,000 nm, preferably 50 to 500 nm, more preferably 50 to 300 nm.

본 발명은 수성 매질 중에 10 ∼ 1,000 nm의 평균 입자경을 갖는 나노 입자 를 포함하는 나노-분산액 형태의 표적 지향을 위한 약학 조성물로서, 상기 나노 입자가 치료학적으로 유효한 양의 항암제; 2가 또는 3가의 전이금속 이온 또는 알카리 토금속 이온; 및 오일을 포함하고, 상기 나노 입자의 표면 상에 히알루론산 또는 그의 염이 결합된 것을 특징으로 하는 약학 조성물을 제공한다.The present invention provides a pharmaceutical composition for target orientation in the form of nano-dispersions comprising nanoparticles having an average particle diameter of 10 to 1,000 nm in an aqueous medium, wherein the nanoparticles are in a therapeutically effective amount of an anticancer agent; Divalent or trivalent transition metal ions or alkaline earth metal ions; And an oil, and hyaluronic acid or a salt thereof is bound to a surface of the nanoparticles.

본 발명에 따른 약학 조성물은 항암제를 금속이온 및 오일과 함께 나노 입자를 형성시킨 후, 히알루론산과 금속이온간의 상호작용(킬레이트 결합)에 의하여 히알루론산이 나노 입자 표면에 결합함으로써 형성된다. 여기서 히알루론산은 나노 입자 외부에 존재하고 금속이온은 나노 입자 내부에 존재한다. (도 1 및 도 2 참조).The pharmaceutical composition according to the present invention is formed by forming a nanoparticle with an anticancer agent together with a metal ion and oil, and then hyaluronic acid is bound to the nanoparticle surface by the interaction (chelate bond) between the hyaluronic acid and the metal ion. Here hyaluronic acid is present outside the nanoparticles and metal ions are present inside the nanoparticles. (See FIGS. 1 and 2).

상기 히알루론산은 인체 내에 존재하는 친수성 다당체로서, D-글루쿠론산(D-glucuronic acid)과 N-글루코스아민(N-glucosamine)의 이당체(Disaccharide, 분자량 379)의 기본 단위(Unit)가 긴 사슬처럼 연결된 고분자(High molecular weight hetero-polysaccharide)의 형태로 존재하며, 세포의 성장, 분화, 및 이동(migration) 등 세포외 간질(extracelluar matrix) 내에서 다양한 기능을 담당한다. 히알루론산의 광범위한 활성은 세포 표면 당단백질인 CD44 등과 같은 다수의 히알루론산-결합 수용체, 히알루론산-매개 운동성 (Receptor for hyaluronic acid-mediated motility, RHAMM)에 대한 수용체 및 기타 히알루론산-결합 요소(motifs)를 갖는 다른 수용체 등에 의해 설명된다 (S. Jaracz et al., Recent advances in tumor-targeting anticancer drug conjugates, Bioorg. Med. Chem. 13 (2005) 5043-5054). 특히, 다양한 종양, 예를 들어 상피(epithelial), 난소(ovarian), 결 장(colon), 위장(stomach), 및 급성 백혈병(acute leukemia)은 히알루론산-결합 수용체인 CD44 및 RHAMM 을 과발현하는 것으로 알려져 있으며(Day, A. J.; Prestwich, G. D. J. Biol. Chem. 2002, 277, 4585; 및 Turley, E. A.; Belch, A. J.; Poppema, S.; Pilarski, L. M. Blood 1993, 81, 446), 결과적으로 이들 종양 세포들은 증진된 히알루론산의 결합 및 내재화(internalization)을 나타낸다 (Hua, Q.; Knudson, C. B.; Knudson, W. J. Cell Sci. 1993, 106, 365). 또한, 히알루론산은 종양세포의 전이 과정에도 관여한다 [Sleeman, J. et al., Cancer. Res.(1996) 56, 3134]. 따라서, 본 발명에 따른 나노 입자를 포함하는 표적 지향을 위한 나노-분산액 형태의 약학 조성물은 히알루론산을 에너지원으로 사용하거나 종양세포에 특이적인, 즉 능동표적지향이 가능한 약물송달시스템으로서 작용하게 된다.The hyaluronic acid is a hydrophilic polysaccharide present in the human body, and has a long basic unit of disaccharide (Dsaccharide, molecular weight 379) of D-glucuronic acid (D-glucuronic acid) and N-glucosamine (N-glucosamine). It exists in the form of high molecular weight hetero-polysaccharides and is responsible for various functions in the extratracelluar matrix such as cell growth, differentiation, and migration. The widespread activity of hyaluronic acid can be attributed to a number of hyaluronic acid-binding receptors such as CD44, the cell surface glycoprotein, receptors for hyaluronic acid-mediated motility (RHAMM), and other hyaluronic acid-binding elements (motifs). (S. Jaracz et al., Recent advances in tumor-targeting anticancer drug conjugates, Bioorg. Med. Chem. 13 (2005) 5043-5054). In particular, various tumors such as epithelial, ovarian, colon, gastrointestinal, and acute leukemia are known to overexpress hyaluronic acid-binding receptors CD44 and RHAMM. Known (Day, AJ; Prestwich, GDJ Biol. Chem. 2002, 277, 4585; and Turley, EA; Belch, AJ; Poppema, S .; Pilarski, LM Blood 1993, 81, 446) and consequently these tumor cells Show enhanced binding and internalization of hyaluronic acid (Hua, Q .; Knudson, CB; Knudson, WJ Cell Sci. 1993, 106, 365). Hyaluronic acid is also involved in the metastasis process of tumor cells [Sleeman, J. et al., Cancer. Res. (1996) 56, 3134. Therefore, the pharmaceutical composition in the form of a nano-dispersion solution for target orientation containing nanoparticles according to the present invention will act as a drug delivery system that uses hyaluronic acid as an energy source or is specific for tumor cells, that is, active target orientation. .

상기 히알루론산의 분자량은 특별히 제한된 것은 아니며, 예를 들어, 상기 히알루론산의 평균분자량은 379 ∼ 10,000,000 달톤일 수 있고, 바람직하게는 1,000 ∼ 4,000,000 달톤, 더욱 바람직하게는 1,000 ∼ 1,500,000 달톤일 수 있다. 또한, 상기 히알루론산의 염은 다양한 염 형태일 수 있으며, 예를 들어, 히알루론산 코발트, 히알루론산 마그네슘, 히알루론산 아연, 히알루론산 칼슘, 히알루론산 칼륨, 히알루론산 나트륨 등의 무기염 및 히알루론산 테트라부틸암모늄 등의 유기염 형태일 수 있다. 바람직하게는 히알루론산 자유염기(free base) 또는 히알루론산 나트륨을 사용할 수 있다. 상기 나노 입자 표면에는 히알루론산 또는 히알루론산의 염을 각각 결합시키거나, 히알루론산과 히알루론산의 염을 혼합하여 결합될 수 있다. 상기 히알루론산 또는 그의 염의 함량은 상기 조성물 총 중량에 대하여 0.01∼1.0 중량%, 바람직하게는 0.1∼0.5 중량%의 범위일 수 있다.The molecular weight of the hyaluronic acid is not particularly limited, for example, the average molecular weight of the hyaluronic acid may be 379 to 10,000,000 Daltons, preferably 1,000 to 4,000,000 Daltons, more preferably 1,000 to 1,500,000 Daltons. In addition, the salt of the hyaluronic acid may be in various salt forms, for example, inorganic salts such as cobalt hyaluronic acid, magnesium hyaluronic acid, zinc hyaluronic acid, calcium hyaluronic acid, potassium hyaluronate, sodium hyaluronate and tetra hyaluronic acid Organic salts such as butylammonium. Preferably, hyaluronic acid free base or sodium hyaluronate can be used. The surface of the nanoparticles may be combined by combining a salt of hyaluronic acid or a hyaluronic acid, respectively, or by mixing a salt of hyaluronic acid and a hyaluronic acid. The content of the hyaluronic acid or a salt thereof may be in the range of 0.01 to 1.0% by weight, preferably 0.1 to 0.5% by weight based on the total weight of the composition.

상기 나노 입자는 2가 또는 3가의 전이금속 이온 또는 알카리 토금속 이온을 포함한다. 상기 2가 또는 3가의 전이금속 이온 또는 알카리 토금속 이온은 Cu2+, Cu3+, Zn2+, Zn3+, Ni2+, Ni3+, Mg2+, Mg3+, Ca2+, Ca3+, Co2+, Co3+, Ba2+, Ba3+, Al2+, Al3+, Fe2+, 및 Fe3+로 이루어진 군으로부터 1 종 이상 선택될 수 있다. 상기 금속이온은 다양한 금속염으로부터 유래될 수 있으며, 예를 들어 질산구리, 황산구리, 염화구리, 아세트산아연, 황산아연, 질산아연, 염화아연, 황산니켈, 질산니켈, 염화니켈, 아세트산마그네슘, 황산마그네슘, 질산마그네슘, 염화마그네슘, 아세트산칼슘, 황산칼슘, 질산칼슘, 염화칼슘, 아세트산코발트, 황산코발트, 염화코발트, 아세트산바륨, 황산바륨, 질산바륨, 염화바륨, 황산알루미늄, 염화알루미늄, 아세트산철, 황산철, 질산철, 또는 염화철부터 유래될 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 금속이온 중 바람직하게는 Fe2+ 및/또는 Fe3+ 이온을 바람직하게 사용할 수 있으며, 상기 Fe2+ 및/또는 Fe3+ 이온은 아세트산철, 황산철, 질산철, 또는 염화철로부터 유래될 수 있다. 상기 금속이온은 히알루론산 내의 글루쿠론산이 가지는 카르복실기와 반응하여 킬레이트 결합을 형성한다. 또한, 부수적으로 히알루론산 당쇄 사이의 히드록시기와 반응하거나 N-아세틸글루코사민이 가지는 아민기와도 킬레이트 결합한다. 상기 히알루론산 또는 그의 염의 이당체 단위 당 상기 2가 또는 3가의 전이금속 이온 또는 알카리 토금속 이온의 몰비(molar ratio)는 0.001∼2.0 범위이며, 더욱 바람직하게는 0.001∼0.5의 범위일 수 있다.The nanoparticles comprise divalent or trivalent transition metal ions or alkaline earth metal ions. The divalent or trivalent transition metal ions or alkaline earth metal ions are Cu 2+ , Cu 3+ , Zn 2+ , Zn 3+ , Ni 2+ , Ni 3+ , Mg 2+ , Mg 3+ , Ca 2+ , At least one selected from the group consisting of Ca 3+ , Co 2+ , Co 3+ , Ba 2+ , Ba 3+ , Al 2+ , Al 3+ , Fe 2+ , and Fe 3+ . The metal ion may be derived from various metal salts, for example, copper nitrate, copper sulfate, copper chloride, zinc acetate, zinc sulfate, zinc nitrate, zinc chloride, nickel sulfate, nickel nitrate, nickel chloride, magnesium acetate, magnesium sulfate, Magnesium nitrate, magnesium chloride, calcium acetate, calcium sulfate, calcium nitrate, calcium chloride, cobalt acetate, cobalt sulfate, cobalt chloride, barium acetate, barium sulfate, barium nitrate, barium chloride, aluminum sulfate, aluminum chloride, iron acetate, iron sulfate, It may be derived from iron nitrate, or iron chloride, but is not limited thereto. In addition, preferably, among the metal ions, Fe 2+ and / or Fe 3+ ions may be preferably used, and the Fe 2+ and / or Fe 3+ ions may be formed from iron acetate, iron sulfate, iron nitrate, or iron chloride. Can be derived. The metal ion reacts with a carboxyl group of glucuronic acid in hyaluronic acid to form a chelate bond. Incidentally, it also reacts with the hydroxy group between the hyaluronic acid sugar chains or chelates with the amine group of N-acetylglucosamine. The molar ratio of the divalent or trivalent transition metal ions or alkaline earth metal ions per disaccharide unit of the hyaluronic acid or a salt thereof is in the range of 0.001 to 2.0, more preferably in the range of 0.001 to 0.5.

또한, 상기 나노 입자는 항암제를 용해시킬 수 있는 친유성 매질로서, 생체 적합성(biocompatible) 오일을 함유한다. 또한, 상기 오일은 상온에서 액상인 것과 고상인 것을 모두 포함할 수 있다.In addition, the nanoparticles contain a biocompatible oil as a lipophilic medium capable of dissolving the anticancer agent. In addition, the oil may include both liquid and solid at room temperature.

또한, 상기 약학 조성물이 나노-에멀젼 형태일 때, 상기 오일은 상온에서 액상인 모노-, 디-, 혹은 트리-글리세라이드(mono-, di-, or tri-glycerides)(예를 들어, 미바셋 9-45K(Myvacet 9-45K) 등); 글리세릴 모노- 혹은 트리-스테아레이트(glyceryl mono- or tri-stearate); 글리세릴 모노-, 디-, 혹은 트리-아세테이트(glyceryl mono-, di-, or tri-acetate)(예를 들어, 트리아세틴 등); 알파-토코페롤(d-알파-토코페롤 또는 dl-알파-토코페롤 형태를 포함한다) 또는 그의 염; 알파-토코페롤 아세트산 에스테르(d-알파-토코페롤 아세트산 에스테르 또는 dl-알파-토코페롤 아세트산 에스테르 형태를 포함); 알파-토코페롤 석시네이트(d-알파-토코페롤 석시네이트 또는 dl-알파-토코페롤 석시네이트 형태를 포함); C4:0∼C6:0의 트리글리세라이드(예를 들어, 트리부티린 등); C8:0∼C14:0의 트리글리세라이드(예를 들어, 트리카프로인, 또는 카프릴릭/카프릭 트리글리세라이드 등); 피마자 오일, 옥수수 오일, 올리브 오일, 목화씨 오일, 페퍼민트 오일, 참기름 및 대두유(정제 대두유를 포함)로 이루어진 군으로부터 1종 이상 선택될 수 있다.In addition, when the pharmaceutical composition is in the form of a nano-emulsion, the oil is mono-, di-, or tri-glycerides (e.g., Mivaset, which are liquid at room temperature). 9-45K (Myvacet 9-45K, etc.); Glyceryl mono- or tri-stearate; Glyceryl mono-, di-, or tri-acetate (eg, triacetin, etc.); Alpha-tocopherol (including d-alpha-tocopherol or dl-alpha-tocopherol forms) or salts thereof; Alpha-tocopherol acetic acid esters (including d-alpha-tocopherol acetic acid ester or dl-alpha-tocopherol acetic acid ester forms); Alpha-tocopherol succinate (including d-alpha-tocopherol succinate or dl-alpha-tocopherol succinate forms); C4: 0 to C6: 0 triglycerides (for example, tributyrin etc.); C8: 0 to C14: 0 triglycerides (for example, tricaproin or caprylic / capric triglyceride, etc.); It may be selected from the group consisting of castor oil, corn oil, olive oil, cottonseed oil, peppermint oil, sesame oil and soybean oil (including refined soybean oil).

또한, 상기 약학 조성물이 나노-현탁액 형태일 때, 상기 오일은 상온에서 고상인 대두경화유(hydrogenated soybean oil), 카카오 버터, 세틸 알콜, 스테아릴 알콜, 세틸팔미테이트, 카르나우바 왁스, 백랍(white bee wax), 트리카프린(예를 들어, 미그리올 812 등), 트리라우린, 트리미리스틴, 트리팔미틴, 트리스테아린, 및 트리베헤닌으로 이루어진 군으로부터 1종 이상 선택될 수 있다. In addition, when the pharmaceutical composition is in the form of a nano-suspension, the oil is a solid soybean oil (hydrogenated soybean oil), cacao butter, cetyl alcohol, stearyl alcohol, cetyl palmitate, carnauba wax, pewter (white) at room temperature bee wax), tricaprine (e.g., Migriol 812, etc.), trilaurin, trimyristin, tripalmitin, tristearin, and tribehenin.

더욱 바람직하게는, 상기 오일은 글리세릴 모노-, 디-, 혹은 트리-아세테이트(glyceryl mono-, di-, or tri-acetate); 알파-토코페롤 또는 그의 염; 알파-토코페롤 아세트산 에스테르(d-알파-토코페롤 아세트산 에스테르 또는 dl-알파-토코페롤 아세트산 에스테르 형태를 포함); 알파-토코페롤 석시네이트(d-알파-토코페롤 석시네이트 또는 dl-알파-토코페롤 석시네이트 형태를 포함); 트리부티린; 및 트리카프로인을 1종 이상 선택될 수 있다. More preferably, the oil is glyceryl mono-, di-, or tri-acetate (glyceryl mono-, di-, or tri-acetate); Alpha-tocopherol or salts thereof; Alpha-tocopherol acetic acid esters (including d-alpha-tocopherol acetic acid ester or dl-alpha-tocopherol acetic acid ester forms); Alpha-tocopherol succinate (including d-alpha-tocopherol succinate or dl-alpha-tocopherol succinate forms); Tributyrin; And tricaproin may be selected one or more.

상기 오일의 함량은, 상기 조성물 총 중량에 대하여 1∼50 중량%, 바람직하게는 1∼30 중량%의 범위일 수 있다. The content of the oil may be in the range of 1 to 50% by weight, preferably 1 to 30% by weight, based on the total weight of the composition.

상기 나노 입자는 또한 암세포의 성장, 전이 등을 억제하는 활성을 갖는 화학적 및/또는 생물학적 물질, 즉 항암제(항종양제)를 포함하며, 상기 항암제는 그 종류가 제한되지 않는다. 본 발명의 나노입자에 함유되는 항암제의 예는 파클리탁셀(Paclitaxel), 파클리탁셀 유도체, 우라실 (Uracil), 5-플루오로우라실 (5-Fluorouracil), 테가퍼(Tegafur), 메토트렉세이트(Methotrexate), 멜파란(Melphalan), 미톡산트론(Mitoxantrone), 캄토테신(Camptothecin), 토포테칸(Topotecan), 도세탁셀(Docetaxel), 카페시타빈(Capecitabine), 이마티닙 메실레이트(Imatinib mesylate), 리툭시맵 (Rituximab), 독시플루리딘(Doxifluridine), 토레미펜 시트레이트(Toremifene citrate), 독소루비신(Doxorubicin), 젬시타 빈(Gemcitabine), 이리노데칸(Irinotecan), 옥살리플라틴(Oxaliplatin), 또는 클로람부실(chlorambucil)을 포함한다. 바람직하게는, 상기 항암제는 파클리탁셀, 파클리탁셀 유도체, 도세탁셀, 우라실, 5-플루오로우라실, 테가퍼, 메토트렉세이트, 멜파란, 미톡산트론, 캄토테신, 또는 토포테칸을 포함한다. 상기 항암제의 치료학적 유효량(therapeutically effective amount)은 공지의 문헌으로부터 당업자에 의해 용이하게 결정될 수 있다.The nanoparticles also include chemical and / or biological substances having an activity of inhibiting growth, metastasis, etc. of cancer cells, that is, anticancer agents (antitumor agents), and the anticancer agents are not limited in kind. Examples of anticancer agents contained in the nanoparticles of the present invention include paclitaxel, paclitaxel derivatives, uracil, 5-fluorouracil, tegafur, methotrexate, and melparan. (Melphalan), Mitoxantrone, Camptothecin, Topotecan, Docetaxel, Capecitabine, Imatinib mesylate, Rituximab, Doxifluridine, toremifene citrate, doxorubicin, gemcitabine, irinotecan, oxaliplatin, or chlorambucil . Preferably, the anticancer agent includes paclitaxel, paclitaxel derivatives, docetaxel, uracil, 5-fluorouracil, tegaper, methotrexate, melfaran, mitoxantrone, camptothecin, or topotecan. The therapeutically effective amount of the anticancer agent can be easily determined by those skilled in the art from known literature.

또한 상기 나노-분산액 형태의 약학 조성물은 나노 입자의 안정적인 분산을 위하여 계면활성제를 추가적으로 포함할 수 있으며, 나노 입자 및/또는 수성 매질에 선택적으로 계면활성제를 추가할 수 있다. 상기 계면활성제의 종류는 나노 입자의 효과적인 분산 안정성을 위하여 적절히 선택될 수 있다. 예를 들어, 상기 계면활성제는 알파-토코페롤 폴리에틸렌 글리콜 숙시네이트(TPGS), 마크로골 15 하이드록시스테아레이트(macrogol 15 hydroxystearate)[예를 들어, 솔루톨 HS15 등], 카프릴로카프로일 마크로골글리세라이드(caprylocaproyl macrogolglycerides)[예를 들어, 라브라졸 등], 솔비탄 지방산 에스테르[예를 들어, 솔비탄 모노올리에이트(sorbitan monooleate)(즉, 스판 20(Span 20)) 등], 폴리 소르베이트류[예를 들어, 트윈 20, 트윈 80 등], 폴리옥시에틸렌-폴리옥시프로필렌 공중합체(polyoxyethylene-polyoxypropylene block copolymer)[예를 들어, 폴록사머 188, 폴록사머 407 등], 난황 레시틴(Egg lecithin), 및 대두 레시틴(soybean lecithin)으로 이루어진 군으로부터 1 종 이상 선택될 수 있으나, 이에 제한되는 것은 아니다. 상기 계면활성제의 함량 또한 사용되는 오일의 종류에 따라 적절히 선택될 수 있으며, 예를 들어 상기 조성물 총 중량에 대하여 1∼50 중량%의 범위일 수 있으나, 이에 제한되는 것은 아니다.In addition, the pharmaceutical composition in the form of nano-dispersion may further include a surfactant for stable dispersion of the nanoparticles, and may selectively add a surfactant to the nanoparticles and / or the aqueous medium. The type of surfactant may be appropriately selected for effective dispersion stability of the nanoparticles. For example, the surfactant may be alpha-tocopherol polyethylene glycol succinate (TPGS), macrogol 15 hydroxystearate (eg, solutol HS15, etc.), caprylocaproyl macrogolglycerides caprylocaproyl macrogolglycerides (e.g., labrazol, etc.), sorbitan fatty acid esters (e.g., sorbitan monooleate (e.g., Span 20), etc.), polysorbates [For example, tween 20, tween 80, etc.], polyoxyethylene-polyoxypropylene block copolymer (for example, poloxamer 188, poloxamer 407, etc.), egg yolk lecithin , And soybean lecithin may be selected from one or more species, but is not limited thereto. The amount of the surfactant may also be appropriately selected depending on the type of oil used, for example, but may be in the range of 1 to 50% by weight based on the total weight of the composition, but is not limited thereto.

본 발명의 약학 조성물에 함유되는 상기 수성 매질은 증류수, 주사용수, 생리식염수, 포도당액, 및 아미노산 액으로 이루어진 군으로부터 1 종 이상 선택될 수 있으나, 특별히 제한된 것은 아니다.The aqueous medium contained in the pharmaceutical composition of the present invention may be selected from one or more selected from the group consisting of distilled water, water for injection, saline solution, glucose solution, and amino acid solution, but is not particularly limited.

필요에 따라, 상기 나노 입자는 입자 내부에서 발생되는 항암제의 침전 현상을 막기 위하여, 폴리에틸렌글리콜, 디미리스토일 포스파티딜 에탄올아민-폴리에틸렌글리콜(Dimiristoyl phosphatidyl ethanolamine-polyethylene glycol, DMPE-PEGs)(예를 들어, DMPE-PEG2000), 폴리프로필렌글리콜, 글리코퓨롤, 및 트리카프릴린으로 이루어진 군으로부터 1 종 이상 선택된 용해 보조제를 추가로 포함할 수 있다. 상기 용해 보조제의 함량은 상기 조성물 총 중량에 대하여 0.05∼10 중량%, 바람직하게는 0.05∼5 중량%의 범위일 수 있다.If necessary, the nanoparticles may be formed of polyethylene glycol, dimyristoyl phosphatidyl ethanolamine-polyethylene glycol (DMPE-PEGs) (eg , DMPE-PEG 2000 ), polypropylene glycol, glycofurol, and tricapryline may further comprise at least one dissolution aid selected from the group consisting of: The content of the dissolution aid may be in the range of 0.05 to 10% by weight, preferably 0.05 to 5% by weight, based on the total weight of the composition.

또한 상기 나노 입자는 히알루론산 또는 히알루론산의 염을 나노 입자 표면에 안정적으로 결합하기 위하여, 저분자 리간드로서 카르복실기를 갖는 아미노산을 추가로 포함할 수 있다. 상기 저분자 리간드는 글루탐산, 아스파르트산, 아스파라긴산, 히스티딘, 및 알라닌으로 이루어진 군으로부터 1 종 이상 선택될 수 있으며, 더욱 바람직하게는 글루탐산 및/또는 아스파르트산일 수 있다. 상기 저분자 리간드의 함량은 상기 조성물 총 중량에 대하여 0.005∼0.2 중량%의 범위일 수 있다.In addition, the nanoparticles may further include an amino acid having a carboxyl group as a low molecular ligand in order to stably bind hyaluronic acid or a salt of hyaluronic acid to the nanoparticle surface. The low molecular ligand may be at least one selected from the group consisting of glutamic acid, aspartic acid, aspartic acid, histidine, and alanine, and more preferably glutamic acid and / or aspartic acid. The content of the low molecular ligand may be in the range of 0.005 to 0.2% by weight based on the total weight of the composition.

또한 상기 나노-분산액 형태의 약학 조성물은 상기 항암제의 화학적 안정성 을 향상시키기 위하여, pH 조절제로서 유기산 또는 N-아세틸 아미노산을 첨가하여 조성물의 pH를 2.0 내지 6.0으로 조절할 수 있다. 상기 pH 조절제는 나노 입자 및/또는 수성 매질에 선택적으로 추가할 수 있다. 상기 pH 조절제는 유기산으로서 구연산, 아세트산, 인산, 젖산, 벤조산, 말레산, 숙신산, 주석산으로 이루어진 군으로부터 1종 이상 선택될 수 있으며, N-아세틸 아미노산으로서 N-아세틸 시스테인, N-아세틸 발린, N-아세틸 프롤린, N-아세틸 알라닌으로 이루어진 군으로부터 1종 이상 선택하여 사용할 수 있다.In addition, the pharmaceutical composition of the nano-dispersion form may be adjusted to the pH of the composition to 2.0 to 6.0 by adding an organic acid or N-acetyl amino acid as a pH adjusting agent to improve the chemical stability of the anticancer agent. The pH adjusting agent may optionally be added to the nanoparticles and / or the aqueous medium. The pH adjusting agent may be at least one selected from the group consisting of citric acid, acetic acid, phosphoric acid, lactic acid, benzoic acid, maleic acid, succinic acid and tartaric acid as organic acids, and N-acetyl cysteine, N-acetyl valine, N as N-acetyl amino acid. It can be used by selecting one or more from the group consisting of -acetyl proline and N-acetyl alanine.

필요에 따라, 본 발명에 따른 나노-분산액 형태의 약학 조성물은, 폴리비닐피롤리돈, 글리세린, 글루코오즈, 수크로오즈, 락토오즈, 소르비톨, 만니톨, 및 트레할로오즈로 이루어진 군으로부터 1 종 이상 선택된 분산 안정화제를 추가로 포함할 수 있다. 상기 분산 안정화제는 나노-분산액 형태의 약학 조성물의 분산성을 유지하는데 도움을 줄 뿐만 아니라, 상기 나노-분산액을 건조하여 얻어진 나노 입자가 분산매에 재분산이 용이하도록 하는 역할도 한다. 상기 분산 안정화제의 사용량은 크게 제한되는 것은 아니나, 상기 조성물 총 중량에 대하여 1∼20 중량%, 바람직하게는 3∼7 중량%로 사용할 수 있다.If necessary, the pharmaceutical composition in the form of a nano-dispersion according to the present invention is one from the group consisting of polyvinylpyrrolidone, glycerin, glucose, sucrose, lactose, sorbitol, mannitol, and trehalose. It may further comprise a dispersion stabilizer selected above. The dispersion stabilizer not only helps maintain the dispersibility of the pharmaceutical composition in the form of nano-dispersions, but also serves to facilitate the redispersion of the nanoparticles obtained by drying the nano-dispersions in the dispersion medium. The amount of the dispersion stabilizer is not particularly limited, but may be used in an amount of 1 to 20% by weight, preferably 3 to 7% by weight, based on the total weight of the composition.

본 발명은 또한 상기 나노-분산액 형태의 약학 조성물을 동결건조, 회전증발건조, 분무건조, 또는 유동층 건조에 의해 건조시켜 얻어진, 표적 지향을 위한 나노 입자를 제공한다. The invention also provides nanoparticles for target orientation, obtained by drying the pharmaceutical composition in the form of nano-dispersions by lyophilization, rotary evaporation, spray drying, or fluid bed drying.

본 발명은 또한, (a) 치료학적으로 유효한 양의 항암제, 2가 또는 3가의 전이금속 이온 또는 알카리 토금속 이온, 및 오일을 포함하는 유상(oil phase)을 제 조하는 단계; (b) 히알루론산 또는 그의 염을 수성 매질에 용해시켜 수상(aqueous phase)을 얻는 단계; 및 (c) 단계(a)에서 얻어진 유상과 단계(b)에서 얻어진 수상을 혼합하고 균질화하여 평균 입자경 10 ∼ 1,000 nm의 나노 입자로서 히알루론산 또는 그의 염이 표면 상에 결합된 나노 입자를 형성시키는 단계를 포함하는, 표적 지향을 위한 나노-분산액 형태의 약학 조성물의 제조방법을 제공한다.The present invention also includes the steps of (a) preparing an oil phase comprising a therapeutically effective amount of an anticancer agent, a divalent or trivalent transition metal ion or an alkaline earth metal ion, and an oil; (b) dissolving hyaluronic acid or a salt thereof in an aqueous medium to obtain an aqueous phase; And (c) mixing and homogenizing the oil phase obtained in step (a) and the water phase obtained in step (b) to form nanoparticles having hyaluronic acid or a salt thereof bound on the surface as nanoparticles having an average particle diameter of 10 to 1,000 nm. It provides a method of preparing a pharmaceutical composition in the form of nano-dispersion for the target orientation, comprising the step.

또한 상기 본 발명의 제조방법에 있어서, 유상 및/또는 수상에 선택적으로 계면활성제를 추가로 포함할 수 있다.In addition, in the above production method of the present invention, the oil phase and / or water phase may further include a surfactant.

본 발명의 제조방법에 있어서, 상기 항암제, 2가 또는 3가의 전이금속 이온 또는 알카리 토금속 이온, 오일, 계면활성제, 히알루론산 또는 그의 염은 상기에서 언급한 바와 같다.In the preparation method of the present invention, the anticancer agent, divalent or trivalent transition metal ion or alkaline earth metal ion, oil, surfactant, hyaluronic acid or salt thereof is as mentioned above.

상기 유상은 (i') 상기 항암제 및 선택적으로 계면활성제를 유기용매에 용해시키는 단계, (ii') 상기 2가 또는 3가의 전이금속 이온 또는 알카리 토금속 이온을 상기 오일에 용해시키는 단계, 및 (iii') 단계(i')에서 얻어진 용액과 단계(ii')에서 얻어진 용액과의 혼합물을 건조하여 상기 유기용매를 제거함으로써, 얻어질 수 있다. 상기 유기용매는 메탄올, 에탄올, 아세토나이트릴, 아세톤 등일 수 있으며, 바람직하게는 무수 에탄올이다.The oil phase is (i ') dissolving the anticancer agent and optionally a surfactant in an organic solvent, (ii') dissolving the divalent or trivalent transition metal ions or alkaline earth metal ions in the oil, and (iii ') Can be obtained by drying the mixture of the solution obtained in step (i') and the solution obtained in step (ii ') to remove the organic solvent. The organic solvent may be methanol, ethanol, acetonitrile, acetone, and the like, preferably anhydrous ethanol.

또한, 상기 유상은 폴리에틸렌글리콜, 디미리스토일 포스파티딜 에탄올아민-폴리에틸렌글리콜(Dimiristoyl phosphatidyl ethanolamine-polyethylene glycol, DMPE-PEGs), 폴리프로필렌글리콜, 글리코퓨롤, 및 트리카프릴린으로 이루어진 군으로부터 1 종 이상 선택된 용해 보조제를 추가로 포함할 수 있으며, 상기 용해 보조 제의 사용량은 상기한 바와 같다.In addition, the oil phase is one or more from the group consisting of polyethylene glycol, dimyristoyl phosphatidyl ethanolamine-polyethylene glycol (DMPE-PEGs), polypropylene glycol, glycofurol, and tricapryline It may further comprise a selected dissolution aid, the amount of the dissolution aid is as described above.

상기 수상은 저분자 리간드로서 카르복실기를 갖는 아미노산을 추가로 용해시켜 얻어질 수 있으며, 상기 저분자 리간드의 종류 및 사용량은 상기한 바와 같다. 또한, 상기 수상은 필요에 따라 폴리비닐피롤리돈, 글리세린, 글루코오즈, 수크로오즈, 락토오즈, 소르비톨, 만니톨, 및 트레할로오즈로 이루어진 군으로부터 1 종 이상 선택된 분산 안정화제를 추가로 용해시켜 얻어질 수 있으며, 상기 분산 안정화제의 사용량은 상기한 바와 같다.The aqueous phase may be obtained by further dissolving an amino acid having a carboxyl group as a low molecular ligand, and the type and amount of the low molecular ligand are as described above. In addition, the aqueous phase further dissolves a dispersion stabilizer selected from the group consisting of polyvinylpyrrolidone, glycerin, glucose, sucrose, lactose, sorbitol, mannitol, and trehalose as necessary. The dispersion stabilizer may be used as described above.

상기 균질화는 통상의 균질화 방법에 따라 수행할 수 있으며, 예를 들어 호모게나이져, 초음파 균질기, 고압균질화기 등을 이용하여 균질화시킴으로써, 10 ∼ 1,000 nm, 바람직하게는 20 ∼ 200 nm의 평균 입자경을 갖는 균일한 미세 액적을 형성할 수 있다. 상기와 같이 균질화된 미세 액적은 필요에 따라 0.22 ㎛의 공극을 갖는 무균필터를 통과시켜 무균 공정을 수행할 수도 있다.The homogenization can be carried out according to a conventional homogenization method, for example, homogenizer, by homogenizing using an ultrasonic homogenizer, high pressure homogenizer, etc., an average particle diameter of 10 to 1,000 nm, preferably 20 to 200 nm. It is possible to form a uniform fine droplet having a. As described above, the homogenized fine droplets may be subjected to a sterile process by passing through a sterile filter having a pore of 0.22 μm as necessary.

본 발명은 또한, 상기 제조방법에 의해 얻어진 나노-분산액 형태의 약학 조성물을 건조(예를 들어, 동결건조, 회전증발건조, 분무건조, 또는 유동층 건조)시키는 단계를 포함하는, 표적 지향을 위한 나노 입자의 제조방법을 제공한다. The invention also comprises the step of drying (eg, lyophilization, rotary evaporation drying, spray drying, or fluidized bed drying) of the pharmaceutical composition in the form of nano-dispersions obtained by the above method, nano for target orientation. Provided are methods for preparing the particles.

이하, 본 발명을 실시예를 통하여 더욱 상세히 설명한다. 그러나 이들 실시예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples are for illustrating the present invention, and the scope of the present invention is not limited to these examples.

실시예 1. 나노-에멀젼 및 나노 입자의 제조Example 1 Preparation of Nano-Emulsions and Nanoparticles

하기 표 1의 성분 및 함량에 따라, 나노-에멀젼을 제조하였다. 즉, 무수 에탄올에 10%(w/v)의 농도로 파클리탁셀을 넣은 후, 폴리소베이트 80과 혼합하여 완전히 용해될 때까지, 40 내지 45℃ 온도에서 저전단 교반하였다. 여기에, dl-알파-토코페릴 아세테이트와 정제 대두유의 혼합 오일에 염화철(Ⅲ)을 상온에서 완전히 용해하여 얻어진 용액을 가한 후, 저전단 교반하에 40 내지 45℃에서 진공 건조하여 에탄올을 완전히 제거하여 유상을 제조하였다. 주사용수에 히알루론산 나트륨(평균분자량: 1,067,000 달톤, Bioiberica, 스페인)을 상온에서 용해하여 수상을 제조하였다. 40 내지 45℃로 가온한 상기 수상을 상기 유상에 가하여 전체 질량을 100 g으로 맞춘 다음, 균질화하여 나노-에멀젼을 제조하였으며, 얻어진 나노-에멀젼을 무균여과 하였다. 상기 나노-에멀젼을 제조하는 전 과정의 온도를 약 40℃ 이상으로 유지하여 유상의 겔화를 방지하였으며, 상기 균질화는 고압균질화기(Microfluidizer M-110S, Microfluidics Inc, 미국)를 사용하여 약 15 kpsi 압력 조건에서 15∼18 ℃ 온도를 유지하면서 총 10회의 순환을 걸쳐 수행하였다. 또한, 상기 무균여과는 0.22 ㎛의 공극을 가진 필터(Acro 50 Vent Devices with Emflon Membrane Ⅱ, Pall Co. 미국)를 통하여 수행하였으며, 이때 상기 에멀젼 제조과정 중 일부 형성된 항암제 결정핵을 제거하였다. 얻어진 나노-에멀젼 중의 액적의 입자경을 Zetasizer NanoZS(Malvern Co. 미국) 분석장비를 이용하여 측정한 결과, 약 70∼80 nm의 평균 입자경을 나타내었다.According to the components and contents of Table 1 below, nano-emulsions were prepared. That is, paclitaxel was added to anhydrous ethanol at a concentration of 10% (w / v), followed by mixing with polysorbate 80 and low shear stirring at a temperature of 40 to 45 ° C. until completely dissolved. To the mixed oil of dl-alpha-tocopheryl acetate and refined soybean oil, a solution obtained by completely dissolving iron (III) chloride at room temperature was added thereto, followed by vacuum drying at 40 to 45 ° C. under low shear stirring to completely remove ethanol. An oil phase was prepared. An aqueous phase was prepared by dissolving sodium hyaluronate (average molecular weight: 1,067,000 Daltons, Bioiberica, Spain) in water for injection at room temperature. The aqueous phase warmed to 40-45 ° C. was added to the oil phase to adjust the total mass to 100 g and then homogenized to prepare a nano-emulsion, and the resulting nano-emulsion was sterile filtered. The temperature of the entire process of preparing the nano-emulsion was maintained at about 40 ° C. or more to prevent gelation of the oil phase, and the homogenization was performed using a high pressure homogenizer (Microfluidizer M-110S, Microfluidics Inc, USA) at a pressure of about 15 kpsi. A total of 10 cycles were carried out while maintaining a temperature of 15-18 ° C. under the conditions. In addition, the sterile filtration is a filter having an air gap of 0.22 ㎛ (Acro 50 Vent Devices with Emflon Membrane   II, Pall Co. USA), wherein some of the anticancer drug nuclei formed during the emulsion preparation were removed. The particle size of the droplets in the obtained nano-emulsion was measured using a Zetasizer NanoZS (Malvern Co. USA) analyzer, the average particle diameter of about 70 ~ 80 nm.

구분division 성분ingredient 함량 (g)Content (g) 유상Paid 파클리탁셀Paclitaxel 0.3000.300 염화철(Ⅲ)Ferric chloride (Ⅲ) 0.0020.002 dl-알파-토코페릴 아세테이트dl-alpha-tocopheryl acetate 7.2007.200 정제 대두유Refined Soybean Oil 0.8000.800 폴리소베이트 80Polysorbate 80 8.0008.000 수상Awards 주사용수Water for injection 83.44783.447 히알루론산 나트륨Sodium hyaluronate 0.2510.251

또한, 상기에서 얻어진 나노-에멀젼에 만니톨을 5%(w/v)의 농도로 가한 다음, 동결건조하여 나노 입자를 얻었다.In addition, mannitol was added to the nano-emulsion obtained above at a concentration of 5% (w / v), and then lyophilized to obtain nanoparticles.

실시예 2. 나노-현탁액 및 나노 입자의 제조Example 2. Preparation of Nano-Suspensions and Nanoparticles

하기 표 2의 성분 및 함량에 따라, 나노-현탁액을 제조하였다. 무수 에탄올에 10%(w/v)의 농도로 파클리탁셀을 넣은 후, TPGS 및 폴록사머 407과 혼합하여 55 내지 60℃ 온도에서 저전단 교반하여 용해시켰다. 염화철(Ⅲ)을 대두경화유와 미그리올 812의 혼합 오일에 넣은 후, 55 내지 60℃에서 완전히 용해된 용액을 상기 파클리탁셀이 용해된 용액에 첨가한 후, 저전단 교반하에 55 내지 60℃에서 진공 건조하여 에탄올을 완전히 제거하여 유상을 제조하였다. 주사용수에 히알루론산 나트륨(평균분자량: 1,067,000 달톤, Bioiberica, 스페인)을 상온에서 용해하여 수상을 제조하였다. 이후 55 내지 65℃로 가온한 상기 수상을 상기 유상에 가하여 전체 질량을 100 g으로 맞춘 다음 균질화하여 나노-에멀젼을 생성시켰다. 생성된 나노-에멀젼을 1∼3℃의 냉수욕 상에 가하여 고형화된 지질 나노-현탁액을 제조하였다. 제조된 나노-현탁액은 무균여과를 통하여 주사용으로 사용이 가능하도록 하였다. 상기 균질화는 고압균질화기(Microfluidizer M-110S, Microfluidics Inc, 미국)를 사용하여 약 15 kpsi 압력 조건에서 55∼65℃ 온도를 유지하면서 총 5회의 순환을 걸쳐 수행하였다. 또한, 상기 무균여과는 0.22 ㎛의 공극을 가진 필터(Acro 50 Vent Devices with Emflon Membrane Ⅱ, Pall Co. 미국)를 통하여 수행하였으며, 이때 상기 현탁액 제조과정 중 일부 형성된 항암제 결정핵을 제거하였다. 얻어진 나노-현탁액의 입자경을 Zetasizer NanoZS(Malvern Co. 미국) 분석장비를 이용하여 측정한 결과, 약 100∼140 nm의 평균 입자경을 나타내었다.According to the components and contents of Table 2 below, nano-suspensions were prepared. Paclitaxel was added to anhydrous ethanol at a concentration of 10% (w / v), mixed with TPGS and poloxamer 407, and dissolved by low shear stirring at a temperature of 55 to 60 ° C. Iron (III) chloride was added to a mixed oil of soybean cured oil and Migriol 812, and then a solution completely dissolved at 55 to 60 ° C. was added to the solution containing paclitaxel, followed by vacuum at 55 to 60 ° C. under low shear agitation. Drying completely removed the ethanol to prepare an oil phase. An aqueous phase was prepared by dissolving sodium hyaluronate (average molecular weight: 1,067,000 Daltons, Bioiberica, Spain) in water for injection at room temperature. The water phase warmed to 55-65 ° C. was then added to the oil phase to bring the total mass to 100 g and then homogenized to produce nano-emulsions. The resulting nano-emulsion was added to a cold water bath at 1 to 3 ° C. to prepare a solidified lipid nano-suspension. The prepared nano-suspension was made available for injection through sterile filtration. The homogenization was carried out over a total of five cycles using a high pressure homogenizer (Microfluidizer M-110S, Microfluidics Inc, USA) maintaining a temperature of 55-65 ° C. at about 15 kpsi pressure. In addition, the sterile filtration is a filter having an air gap of 0.22 ㎛ (Acro 50 Vent Devices with Emflon Membrane   II, Pall Co. USA), wherein some of the anticancer drug nuclei formed during the suspension preparation process were removed. The particle diameter of the obtained nano-suspension was measured using a Zetasizer NanoZS (Malvern Co. USA) analyzer, the average particle diameter of about 100 to 140 nm.

구분division 성분ingredient 함량 (g)Content (g) 유상Paid 파클리탁셀Paclitaxel 0.3000.300 염화철(Ⅲ)Ferric chloride (Ⅲ) 0.0080.008 대두경화유 (Akosol)Soybean Cured Oil (Akosol) 19.00019.000 미그리올 812Migriol 812 0.9500.950 TPGSTPGS 4.7504.750 폴록사머 407Poloxamer 407 4.7504.750 수상Awards 주사용수Water for injection 70.03170.031 히알루론산 나트륨Sodium hyaluronate 0.2110.211

또한, 상기에서 얻어진 나노-현탁액에 만니톨을 5%(w/v)의 농도로 가한 다음, 동결건조하여 나노 입자를 얻었다.In addition, mannitol was added to the nano-suspension obtained above at a concentration of 5% (w / v), and then lyophilized to obtain nanoparticles.

실시예 3 내지 7. 나노-에멀젼 및 나노 입자의 제조Examples 3-7. Preparation of Nano-Emulsions and Nanoparticles

하기 표 3의 성분 및 함량에 따라, 실시예 1과 동일한 방법으로 나노-에멀젼을 제조하였다. 단, TPGS는, 표 3과 같이, 유상 및 수상에 분할하여 적용하였다. 또한, 얻어진 나노-에멀젼에 만니톨을 5%(w/v)의 농도로 가한 다음, 동결건조하여 나노 입자를 얻었다.According to the components and contents of Table 3 below, nano-emulsions were prepared in the same manner as in Example 1. However, TPGS was divided | segmented and applied to the oil phase and the water phase as shown in Table 3. In addition, mannitol was added to the obtained nano-emulsion at a concentration of 5% (w / v), and then lyophilized to obtain nanoparticles.

구분division 성분ingredient 함량 (g)Content (g) 실시예3Example 3 실시예4Example 4 실시예5Example 5 실시예6Example 6 실시예7Example 7 유상Paid 파클리탁셀Paclitaxel 0.6000.600 0.6000.600 0.6000.600 0.6000.600 0.6000.600 염화철(Ⅲ)Ferric chloride (Ⅲ) 0.0030.003 0.0030.003 0.0030.003 0.0040.004 0.0050.005 Myvacet 9-45KMyvacet 9-45K 12.00012.000 12.00012.000 12.00012.000 16.00016.000 20.00020.000 TPGSTPGS 3.0003.000 1.5001.500 2.0002.000 4.0004.000 4.7504.750 수상Awards 주사용수Water for injection 81.15381.153 81.15381.153 83.14783.147 75.17075.170 69.68569.685 TPGSTPGS 3.0003.000 4.5004.500 2.0002.000 4.0004.000 4.7504.750 히알루론산 나트륨Sodium hyaluronate 0.2440.244 0.2440.244 0.2500.250 0.2260.226 0.2100.210

실시예 8 내지 13. 나노-에멀젼 및 나노 입자의 제조Examples 8 to 13. Preparation of Nano-Emulsions and Nano Particles

하기 표 4의 성분 및 함량에 따라, 용해보조제 및 분산안정화제를 추가로 사용하여, 실시예 1과 동일한 방법으로 나노-에멀젼을 제조하였다. 또한, 얻어진 나노-에멀젼에 만니톨을 5%(w/v)의 농도로 가한 다음, 동결건조하여 나노 입자를 얻었다.According to the components and contents of Table 4 below, a dissolution aid and a dispersion stabilizer were further used to prepare a nano-emulsion in the same manner as in Example 1. In addition, mannitol was added to the obtained nano-emulsion at a concentration of 5% (w / v), and then lyophilized to obtain nanoparticles.

구분division 성분ingredient 함량 (g)Content (g) 실시예8Example 8 실시예9Example 9 실시예10Example 10 실시예11Example 11 실시예12Example 12 실시예13Example 13 유상Paid 파클리탁셀Paclitaxel 0.6000.600 0.6000.600 0.6000.600 0.6000.600 0.6000.600 0.6000.600 염화철(Ⅲ)Ferric chloride (Ⅲ) 0.0030.003 0.0030.003 0.0030.003 0.0030.003 0.0030.003 0.0030.003 Myvacet 9-45KMyvacet 9-45K 6.9006.900 9.6009.600 -- -- 11.88011.880 11.40011.400 dl-알파-토코페롤dl-alpha-tocopherol -- -- 6.9006.900 9.6009.600 -- -- 글리코퓨롤Glycofurol -- -- 5.1005.100 2.4002.400 -- -- 트리카프릴린Tricapryline -- -- -- -- 0.1200.120 0.6000.600 PEG 400PEG 400 5.1005.100 2.4002.400 -- -- -- -- TPGSTPGS 3.0003.000 3.0003.000 -- -- 3.0003.000 3.0003.000 폴리소르베이트 80Polysorbate 80 -- -- 8.0008.000 8.0008.000 -- -- 수상Awards 주사용수Water for injection 79.53079.530 79.53079.530 75.20175.201 75.20175.201 79.44479.444 79.44479.444 폴리비닐피롤리돈Polyvinylpyrrolidone 1.6281.628 1.6281.628 -- -- 1.6281.628 1.6281.628 글리세린glycerin -- -- 3.9703.970 3.9703.970 -- -- TPGSTPGS 3.0003.000 3.0003.000 -- -- 3.0003.000 3.0003.000 히알루론산 나트륨Sodium hyaluronate 0.2390.239 0.2390.239 0.2260.226 0.2260.226 0.2440.244 0.2440.244

실시예 14 내지 18. 나노-에멀젼 및 나노 입자의 제조Examples 14-18. Preparation of Nano-Emulsions and Nanoparticles

하기 표 5의 성분 및 함량에 따라, 계면활성제를 달리하여, 실시예 1과 동일한 방법으로 나노-에멀젼을 제조하였다. 또한, 얻어진 나노-에멀젼에 만니톨을 5%(w/v)의 농도로 가한 다음, 동결건조하여 나노 입자를 얻었다.According to the component and the content of Table 5 below, the surfactant was changed to prepare a nano-emulsion in the same manner as in Example 1. In addition, mannitol was added to the obtained nano-emulsion at a concentration of 5% (w / v), and then lyophilized to obtain nanoparticles.

구분division 성분ingredient 함량 (g)Content (g) 실시예14Example 14 실시예15Example 15 실시예16Example 16 실시예17Example 17 실시예18Example 18 유상Paid 파클리탁셀Paclitaxel 0.6000.600 0.6000.600 0.6000.600 0.6000.600 0.6000.600 염화철(Ⅲ)Ferric chloride (Ⅲ) 0.0020.002 0.0030.003 0.0030.003 0.0030.003 0.0020.002 Myvacet 9-45KMyvacet 9-45K 4.000 4.000 9.5009.500 12.00012.000 12.00012.000 8.0008.000 dl-알파-토코페롤dl-alpha-tocopherol 5.0005.000 2.5002.500 -- -- -- 난황레시틴Egg yolk lecithin 4.0004.000 4.8004.800 -- -- -- TPGSTPGS -- -- 2.2502.250 2.2502.250 3.5003.500 솔루톨 HS-15Solutol HS-15 -- -- 1.5001.500 -- -- 수상Awards 주사용수Water for injection 86.05386.053 82.26682.266 81.15381.153 81.15381.153 86.13986.139 아스파르트산Aspartic acid 0.0860.086 0.0830.083 -- -- -- TPGSTPGS -- -- 2.2502.250 2.2502.250 -- 솔루톨 HS-15Solutol HS-15 -- -- -- 1.5001.500 1.5001.500 히알루론산 나트륨Sodium hyaluronate 0.2590.259 0.2480.248 0.2440.244 0.2440.244 0.2590.259

실시예 19 내지 23. 나노-에멀젼 및 나노 입자의 제조Examples 19 to 23. Preparation of Nano-Emulsions and Nanoparticles

하기 표 6의 성분 및 함량에 따라, 실시예 1과 동일한 방법으로 나노-에멀젼을 제조하였다. 또한, 얻어진 나노-에멀젼에 만니톨을 5%(w/v)의 농도로 가한 다음, 동결건조하여 나노 입자를 얻었다.According to the components and contents of Table 6 below, nano-emulsions were prepared in the same manner as in Example 1. In addition, mannitol was added to the obtained nano-emulsion at a concentration of 5% (w / v), and then lyophilized to obtain nanoparticles.

구분division 성분ingredient 함량 (g)Content (g) 실시예19Example 19 실시예20Example 20 실시예21Example 21 실시예22Example 22 실시예23Example 23 유상Paid 파클리탁셀Paclitaxel 0.3000.300 0.3000.300 0.6000.600 0.6000.600 0.6000.600 염화철(Ⅲ)Ferric chloride (Ⅲ) 0.0020.002 0.0020.002 0.0030.003 0.0030.003 0.0030.003 Myvacet 9-45KMyvacet 9-45K -- -- 12.00012.000 12.00012.000 8.0008.000 dl-알파-토코페릴
아세테이트
dl-alpha-tocopheryl
acetate
7.2007.200 7.2007.200 -- -- --
정제 대두유Refined Soybean Oil 0.8000.800 0.8000.800 -- -- -- 폴리소르베이트 80Polysorbate 80 8.0008.000 8.0008.000 -- -- -- TPGSTPGS -- -- 2.2502.250 2.2502.250 3.5003.500 폴록사머 407Poloxamer 407 -- -- 1.5001.500 -- -- 수상Awards 주사용수Water for injection 81.95181.951 82.64982.649 81.15381.153 81.15381.153 폴록사머 188Poloxamer 188 1.5001.500 0.8000.800 -- -- -- 폴록사머 407Poloxamer 407 -- -- -- 1.5001.500 1.5001.500 TPGSTPGS -- -- 2.2502.250 2.2502.250 -- 히알루론산 나트륨Sodium hyaluronate 0.2470.247 0.2490.249 0.2440.244 0.2440.244 0.2590.259

실시예 24 및 25. 나노-에멀젼 및 나노 입자의 제조Examples 24 and 25. Preparation of Nano-Emulsions and Nanoparticles

하기 표 7의 성분 및 함량에 따라, 실시예 1과 동일한 방법으로 나노-에멀젼을 제조하였다. 또한, 얻어진 나노-에멀젼에 만니톨을 5%(w/v)의 농도로 가한 다음, 동결건조하여 나노 입자를 얻었다.According to the components and contents of the following Table 7, nano-emulsion was prepared in the same manner as in Example 1. In addition, mannitol was added to the obtained nano-emulsion at a concentration of 5% (w / v), and then lyophilized to obtain nanoparticles.

구분division 성분ingredient 함량 (g)Content (g) 실시예 24Example 24 실시예 25Example 25 유상Paid 파클리탁셀Paclitaxel 0.6000.600 0.6000.600 염화철(Ⅲ)Ferric chloride (Ⅲ) 0.0030.003 0.0030.003 Myvacet 9-45KMyvacet 9-45K 12.00012.000 12.00012.000 TPGSTPGS 1.8501.850 1.8501.850 대두레시틴Soybean Lecithin 1.5001.500 -- 수상Awards 주사용수Water for injection 81.95081.950 81.95081.950 대두레시틴Soybean Lecithin -- 1.5001.500 히알루론산 나트륨Sodium hyaluronate 0.2470.247 0.2470.247

실시예 26 내지 31. 나노-에멀젼 및 나노 입자의 제조Examples 26 to 31. Preparation of Nano-Emulsions and Nanoparticles

하기 표 8과 같이, 다양한 분자량을 가진 히알루론산 나트륨을 사용하여, 실시예 1과 동일한 조성 및 제조방법으로 나노-에멀젼을 제조하였다. 얻어진 나노-에멀젼 중의 액적의 입자경은 50 내지 250 nm 이었다. 또한, 얻어진 나노-에멀젼에 만니톨을 5%(w/v)의 농도로 가한 다음, 동결건조하여 나노 입자를 얻었다.As shown in Table 8, using the sodium hyaluronate having a variety of molecular weight, the nano-emulsion was prepared by the same composition and preparation method as in Example 1. The particle diameter of the droplets in the obtained nano-emulsion was 50 to 250 nm. In addition, mannitol was added to the obtained nano-emulsion at a concentration of 5% (w / v), and then lyophilized to obtain nanoparticles.

실시예26Example 26 실시예27Example 27 실시예28Example 28 실시예29Example 29 실시예30Example 30 실시예31Example 31 히알루론산평균 분자량 (달톤) Hyaluronic Acid Average Molecular Weight (Dalton) 3,642,0003,642,000 2,000,0002,000,000 1,490,0001,490,000 800,000800,000 15,00015,000 4,2804,280

실시예 32 내지 38. 나노-에멀젼 및 나노 입자의 제조Examples 32 to 38. Preparation of Nano-Emulsions and Nanoparticles

하기 표 9의 성분 및 함량에 따라, 질산철, 아세트산철, 황산구리, 염화니켈 및 염화코발트에서 유래된 금속이온을 약 0.018 mmol 사용하여, 실시예 1과 동일한 방법으로 나노-에멀젼을 제조하였다. 얻어진 나노-에멀젼 중의 액적의 입자경은 60 내지 140 nm 이었다. 또한, 얻어진 나노-에멀젼에 만니톨을 5%(w/v)의 농도로 가한 다음, 동결건조하여 나노 입자를 얻었다.According to the components and contents of Table 9 below, about 0.018 mmol of metal ions derived from iron nitrate, iron acetate, copper sulfate, nickel chloride, and cobalt chloride was used to prepare a nano-emulsion in the same manner as in Example 1. The particle diameter of the droplets in the obtained nano-emulsion was 60 to 140 nm. In addition, mannitol was added to the obtained nano-emulsion at a concentration of 5% (w / v), and then lyophilized to obtain nanoparticles.

금속이온Metal ion 금속염Metal salt 실시예 32Example 32 Fe3+ Fe 3+ 질산철(Ⅲ)Iron nitrate (Ⅲ) 실시예 33Example 33 Fe2+ Fe 2+ 질산철(Ⅱ)Iron nitrate (Ⅱ) 실시예 34Example 34 Fe2+ Fe 2+ 아세트산철(Ⅱ)Iron acetate (II) 실시예 35Example 35 Cu2+ Cu 2+ 황산구리(Ⅱ)Copper sulfate (Ⅱ) 실시예 36Example 36 Ni2+ Ni 2+ 염화니켈(Ⅱ)Nickel Chloride (II) 실시예 37Example 37 Co3+ Co 3+ 염화코발트(Ⅲ)Cobalt Chloride (III) 실시예 38Example 38 Co2+ Co 2+ 염화코발트(Ⅱ)Cobalt Chloride (II)

실시예 39 - 41. 나노-에멀젼 및 나노 입자의 제조Examples 39-41. Preparation of Nano-Emulsions and Nanoparticles

하기 표 10의 성분 및 함량에 따라, 다양한 함량의 히알루론산 나트륨을 사용하여, 실시예 1과 동일한 방법으로 나노-에멀젼을 제조하였다. 얻어진 나노-에멀젼 중의 액적의 입자경은 60∼80 nm이었다. 또한, 얻어진 나노-에멀젼에 만니톨을 5%(w/v)의 농도로 가한 다음, 동결건조하여 나노 입자를 얻었다.According to the components and contents of Table 10 below, nano-emulsions were prepared in the same manner as in Example 1 using various amounts of sodium hyaluronate. The particle diameter of the droplets in the obtained nano-emulsion was 60 to 80 nm. In addition, mannitol was added to the obtained nano-emulsion at a concentration of 5% (w / v), and then lyophilized to obtain nanoparticles.

실시예 39Example 39 실시예 40Example 40 실시예 41Example 41 히알루론산 나트륨 (g)Sodium hyaluronate (g) 0.0800.080 0.1600.160 0.3190.319

실시예 42 - 45. 나노-에멀젼 및 나노 입자의 제조Examples 42-45. Preparation of Nano-Emulsions and Nanoparticles

하기 표 11의 성분 및 함량에 따라, 다양한 함량의 염화철(Ⅲ)을 사용하여, 실시예 1과 동일한 방법으로 나노-에멀젼을 제조하였다. 얻어진 나노-에멀젼 중의 액적의 입자경은 60∼90 nm이었다. 또한, 얻어진 나노-에멀젼에 만니톨을 5%(w/v)의 농도로 가한 다음, 동결건조하여 나노 입자를 얻었다.According to the ingredients and contents of Table 11 below, using the various amounts of iron (III) chloride, nano-emulsion was prepared in the same manner as in Example 1. The particle diameter of the droplets in the obtained nano-emulsion was 60-90 nm. In addition, mannitol was added to the obtained nano-emulsion at a concentration of 5% (w / v), and then lyophilized to obtain nanoparticles.

실시예 42Example 42 실시예 43Example 43 실시예 44Example 44 실시예 45Example 45 염화철(Ⅲ) (g)Ferric chloride (III) (g) 0.0010.001 0.0060.006 0.0100.010 0.0160.016

실시예 46. 히알루론산 자유 염기를 사용한 나노-에멀젼 및 나노 입자의 제조Example 46. Preparation of Nano-Emulsions and Nanoparticles Using Hyaluronic Acid Free Base

실시예 1과와 동일한 조성 및 제조방법으로, 염이 제거된 히알루론산 자유 염기(free base)를 사용하여 나노-에멀젼을 제조하였으며, 얻어진 나노-에멀젼 중의 액적의 입자경은 60 내지 80 nm 이었다. 또한, 얻어진 나노-에멀젼에 만니톨을 5%(w/v)의 농도로 가한 다음, 동결건조하여 나노 입자를 얻었다. In the same composition and preparation method as in Example 1, the nano-emulsion was prepared using the salt-free hyaluronic acid free base, and the particle diameter of the droplets in the obtained nano-emulsion was 60 to 80 nm. In addition, mannitol was added to the obtained nano-emulsion at a concentration of 5% (w / v), and then lyophilized to obtain nanoparticles.

상기 염이 분리된 히알루론산은 다음과 같이 얻었다: 0.1M 염산과 무수에탄올이 3:7(v/v) 비율로 혼합된 용액에 0.5%(w/v) 히알루론산 나트륨을 용해시킨 다음, 상기 용액을 상온에서 24시간 동안 천천히 교반한 후, 200 내지 400 메쉬(mesh) 필터로 여과하여, 필터에 남아있는 침전물을 회수하여 히알루론산 자유 염기를 얻었다. 이를 무수 에탄올로 3회 세척한 후 상온에서 진공 건조하여, 순수한 히알루론산 자유 염기를 얻었다. 상기 히알루론산 자유 염기는 pH 측정(pH 2.65) 및 적외선 분광법을 통하여 염 제거 여부를 확인하였다.The hyaluronic acid from which the salt was separated was obtained as follows: 0.5% (w / v) sodium hyaluronate was dissolved in a solution in which 0.1 M hydrochloric acid and ethanol anhydride were mixed at a 3: 7 (v / v) ratio. The solution was slowly stirred at room temperature for 24 hours and then filtered through a 200 to 400 mesh filter to recover the precipitate remaining in the filter to obtain a hyaluronic acid free base. This was washed three times with anhydrous ethanol and dried in vacuo at room temperature to obtain pure hyaluronic acid free base. The hyaluronic acid free base was checked for salt removal by pH measurement (pH 2.65) and infrared spectroscopy.

실시예 47. 도세탁셀을 사용한 사용한 나노-에멀젼 및 나노 입자의 제조Example 47. Preparation of Nano-Emulsions and Nanoparticles Using Docetaxel

하기 표 12의 성분 및 함량에 따라, 항암제로서 도세탁셀을 사용하여, 실시예 1과 동일한 방법으로 나노-에멀젼을 제조하였다. 얻어진 나노-에멀젼 중의 액적의 입자경은 70∼80 nm이었다. 또한, 얻어진 나노-에멀젼에 만니톨을 5%(w/v)의 농도로 가한 다음, 동결건조하여 나노 입자를 얻었다.According to the ingredients and contents of Table 12 below, using docetaxel as an anticancer agent, a nano-emulsion was prepared in the same manner as in Example 1. The particle diameter of the droplets in the obtained nano-emulsion was 70 to 80 nm. In addition, mannitol was added to the obtained nano-emulsion at a concentration of 5% (w / v), and then lyophilized to obtain nanoparticles.

구분division 성분ingredient 함량 (g)Content (g) 유상Paid 도세탁셀Docetaxel 1.0001,000 염화철(Ⅲ)Ferric chloride (Ⅲ) 0.0030.003 dl-알파-토코페릴 아세테이트dl-alpha-tocopheryl acetate 11.88011.880 트리카프릴린Tricapryline 0.1200.120 폴리소르베이트 80Polysorbate 80 5.4005.400 수상Awards 주사용수Water for injection 75.55875.558 폴리비닐피롤리돈Polyvinylpyrrolidone 1.6321.632 글리세린glycerin 4.0804.080 글루탐산Glutamic acid 0.0820.082 히알루론산 나트륨Sodium hyaluronate 0.2450.245

실시예 48. 페길화된 인지질 및 5-플루오로우라실을 포함하는 나노-에멀젼 및 나노 입자의 제조Example 48. Preparation of Nano-Emulsions and Nanoparticles Comprising PEGylated Phospholipids and 5-Fluorouracil

하기 표 13의 성분 및 함량에 따라, 항암제로서 5-플루오로우라실(50mg/mL)을 사용하여, 실시예 1과 동일한 방법으로 나노-에멀젼을 제조하였다. 얻어진 나노-에멀젼 중의 액적의 입자경은 90∼130 nm이었다. 또한, 얻어진 나노-에멀젼에 만니톨을 5%(w/v)의 농도로 가한 다음, 동결건조하여 나노 입자를 얻었다.According to the ingredients and contents of Table 13 below, using the 5-fluorouracil (50 mg / mL) as an anticancer agent, a nano-emulsion was prepared in the same manner as in Example 1. The particle diameter of the droplets in the obtained nano-emulsion was 90 to 130 nm. In addition, mannitol was added to the obtained nano-emulsion at a concentration of 5% (w / v), and then lyophilized to obtain nanoparticles.

구분division 성분ingredient 함량 (g)Content (g) 유상Paid 5-플루오로우라실5-fluorouracil 5.0005.000 염화철(Ⅲ)Ferric chloride (Ⅲ) 0.0030.003 Myvacet 9-45KMyvacet 9-45K 11.88011.880 트리카프릴린Tricapryline 0.1200.120 TPGSTPGS 2.5002.500 DMPE-PEG2000 DMPE-PEG 2000 1.0001,000 수상Awards 주사용수Water for injection 75.14975.149 폴리비닐피롤리돈Polyvinylpyrrolidone 1.5401.540 TPGSTPGS 2.5002.500 글루탐산Glutamic acid 0.0770.077 히알루론산 나트륨Sodium hyaluronate 0.2310.231

실시예 49 및 50. 나노-에멀젼 및 나노 입자의 제조Examples 49 and 50. Preparation of Nano-Emulsions and Nanoparticles

하기 표 14의 성분 및 함량에 따라, pH 조절제로서 구연산과 N-아세틸 시스테인을 사용하여, 실시예 1과 동일한 방법으로 나노-에멀젼을 제조하였다. 얻어진 나노-에멀젼 중의 나노 입자의 입자경은 70∼80 nm이었다. 또한, 얻어진 나노-에멀젼에 만니톨을 5%(w/v)의 농도로 가한 다음, 동결건조하여 나노 입자를 얻었다.According to the components and contents shown in Table 14 below, nano-emulsions were prepared in the same manner as in Example 1, using citric acid and N-acetyl cysteine as pH adjusting agents. The particle diameter of the nanoparticles in the obtained nano-emulsion was 70 to 80 nm. In addition, mannitol was added to the obtained nano-emulsion at a concentration of 5% (w / v), and then lyophilized to obtain nanoparticles.

구분division 성분ingredient 함량 (g)Content (g) 실시예 49Example 49 실시예 50Example 50 유상Paid 파클리탁셀Paclitaxel 0.3000.300 0.3000.300 염화철(Ⅲ)Ferric chloride (Ⅲ) 0.0020.002 0.0020.002 dl-알파-토코페릴 아세테이트dl-alpha-tocopheryl acetate 7.2007.200 7.2007.200 정제 대두유Refined Soybean Oil 0.8000.800 0.8000.800 폴리소베이트 80Polysorbate 80 8.0008.000 8.0008.000 구연산Citric acid 0.0020.002 -- N-아세틸 시스테인N-acetyl cysteine -- 0.0010.001 수상Awards 주사용수Water for injection 83.44583.445 83.44683.446 히알루론산 나트륨Sodium hyaluronate 0.2510.251 0.2510.251

비교예 1 내지 3. 파클리탁셀을 함유한 에멀젼Comparative Examples 1 to 3 Emulsions Containing Paclitaxel

하기 표 15의 성분 및 함량에 따라, 실시예 1과 동일한 방법으로 나노-에멀젼을 제조하였다.According to the component and the content of Table 15 below, a nano-emulsion was prepared in the same manner as in Example 1.

구분division 성분ingredient 함량 (g)Content (g) 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 유상Paid 파클리탁셀Paclitaxel 0.3000.300 0.3000.300 0.3000.300 염화철(Ⅲ)Ferric chloride (Ⅲ) -- 0.0020.002 -- dl-알파-토코페릴 아세테이트dl-alpha-tocopheryl acetate 7.2007.200 7.2007.200 7.2007.200 정제 대두유Refined Soybean Oil 0.8000.800 0.8000.800 0.8000.800 폴리소베이트 80Polysorbate 80 8.0008.000 8.0008.000 8.0008.000 수상Awards 주사용수Water for injection 83.70083.700 83.69883.698 83.70083.700 히알루론산 나트륨Sodium hyaluronate -- -- 0.2510.251

시험예 1. 히알루론산의 코팅량 측정Test Example 1. Measurement of coating amount of hyaluronic acid

실시예 1에서 얻어진 나노 입자, 즉 나노-에멀젼을 20 ℃에서 2 시간 동안 초원심분리한 후, 침전물을 주사용수로 3회 세척하고, 상온에서 건조하여 히알루론산이 결합된 에멀젼 집합체(aggregate)를 얻었다. 히알루론산 결합량의 분석은 유럽약전(EP)에 고시된 히알루론산 정량법에 따라 수행하였으며, 구체적인 정량 방법은 다음과 같다.After ultracentrifugation of the nanoparticles, namely nano-emulsions, obtained in Example 1 at 20 ° C. for 2 hours, the precipitates were washed three times with water for injection and dried at room temperature to obtain an aggregate of hyaluronic acid-bound emulsions. . The analysis of hyaluronic acid binding amount was performed according to the hyaluronic acid quantitative method published in the European Pharmacopoeia (EP), the specific quantitative method is as follows.

상기 초원심분리 후 얻어진 에멀젼 집합체 0.170 g에 증류수를 첨가하여 100 g으로 맞춘 후, 다시 40배로 희석하여 검액을 제조하였다. D-글루쿠론산 0.1 g에 증류수를 가하여 100 g으로 맞춘 후, 1 g 당 6.5∼65 ㎍의 D-글루쿠론산을 함유하는 표준용액 5종을 제조하였다. 상기 제조된 검액 및 표준액 1.0 mL에 0.95 w/v% 붕사의 황산용액 5 mL을 넣어 혼합한 후, 수조(water bath)에서 15분간 방치한 다음, 얼음물에서 냉각하였다. 상기 냉각된 용액에 0.125 w/v% 카르바졸 함유 에탄올 용액을 0.2 mL 넣고 혼합한 후, 15분간 수조에 방치하고 실온으로 냉각하였다. 상기 용액을 자외가시부 흡광도 측정법에 따라 530 nm에서 흡광도를 측정하였다. 이를 3회 실시하였으며, 표준액으로부터 작성된 검량선을 이용하여, 검액 중 D-글루쿠론산의 평균농도를 산출하였다. 그 결과는 표 16와 같다.Distilled water was added to 0.170 g of the emulsion aggregate obtained after ultracentrifugation to adjust to 100 g, and then diluted 40 times to prepare a sample solution. Distilled water was added to 0.1 g of D-glucuronic acid and adjusted to 100 g. Five standard solutions containing 6.5 to 65 µg of D-glucuronic acid were prepared per 1 g. 5 mL of a sulfuric acid solution of 0.95 w / v% borax was added to 1.0 mL of the prepared sample solution and the standard solution, and the mixture was allowed to stand in a water bath for 15 minutes and then cooled in ice water. 0.2 mL of 0.125 w / v% carbazole-containing ethanol solution was added to the cooled solution, followed by mixing in a water bath for 15 minutes and cooling to room temperature. The solution was measured for absorbance at 530 nm according to the ultraviolet visible absorbance method. This was performed three times, and the average concentration of D-glucuronic acid in the sample solution was calculated using the calibration curve prepared from the standard solution. The results are shown in Table 16.

히알루론산 나트륨의 양 (%) = (Cg/Cs)×Z×[100/(100-h)]×(401.3/194.1)Amount of sodium hyaluronate (%) = (Cg / Cs) × Z × [100 / (100-h)] × (401.3 / 194.1)

- Cg: 검액들 중 D-글루쿠론산의 평균농도 (mg/g)Cg: average concentration of D-glucuronic acid in the samples (mg / g)

- Cs: 검액들 중 이 약의 평균농도 (mg/g)-Cs: the average concentration of Fernoxib in mg (mg / g)

- Z: D-글루쿠론산의 함량 (%)-Z: content of D-glucuronic acid (%)

- h: 건조감량 (%)h: loss on drying (%)

- 401.3: 이당류의 상대분자량401.3: Relative molecular weight of disaccharides

- 194.1: 글루쿠론산의 상대분자량194.1: Relative molecular weight of glucuronic acid

결합된 히알루론산 함량Bound hyaluronic acid content 나노-에멀젼의 평균 입자경Average particle size of nano-emulsion 0.8±0.1 wt%0.8 ± 0.1 wt% 74±3 nm74 ± 3 nm

시험예 2. CD44에 대한 시험관 내(in vitro) 친화도 시험Test Example 2 In vitro Affinity Test for CD44

CD44 친화도를 측정하기 위하여 난소암 세포인 SK-OV-3 세포(ATCC : HTB-77, Rockville, MD)와 OVCAR-3 세포(한국세포주은행, KCLB-00000287)를 사용하였다. SK-OV-3은 세포 표면에 CD44가 발현되며, OVCAR-3은 세포 표면에 CD44가 발현되지 않는다. 상기 세포들을 100U/mL 페니실린, 0.1 mg/mL 스트렙토마이신 및 10% 소태아혈청(Fetal Bovine Serum, FBS)이 들어있는 RPMI 1640 배지(HA free 배지, Gibco, Carlsbad, USA)에서 5% CO2, 37℃에서 배양하였다. 1 x 106개로 배양된 상기 세포에, FITC로 라벨링(labeling)된 나노-에멀젼(실시예 1, 비교예 1 내지 3)을 넣은 후, 37℃에서 4시간 동안 반응시켰다. 상기 라벨링된 나노-에멀젼은 FITC 0.2 mg을 나노 액적 내에 용해하여 얻었으며, 일부 라벨링되지 않은 형광물질은 투석막(Pierce, MWCO 2,000)을 사용하여 제거하였다.To measure CD44 affinity, SK-OV-3 cells (ATCC: HTB-77, Rockville, MD) and OVCAR-3 cells (Korea Cell Line Bank, KCLB-00000287) were used. SK-OV-3 expresses CD44 on the cell surface and OVCAR-3 does not express CD44 on the cell surface. The cells were treated with 5% CO 2 , in RPMI 1640 medium (HA free medium, Gibco, Carlsbad, USA) containing 100 U / mL penicillin, 0.1 mg / mL streptomycin and 10% fetal bovine serum (FBS). Incubated at 37 ° C. The cells incubated in 1 × 10 6 cells were charged with FITC-labeled nano-emulsions (Example 1, Comparative Examples 1 to 3), and then reacted at 37 ° C. for 4 hours. The labeled nano-emulsions were obtained by dissolving 0.2 mg of FITC in nanodroplets, and some unlabeled fluorescent material was removed using a dialysis membrane (Pierce, MWCO 2,000).

반응 후, 세포들을 인산 완충액(phosphate buffered saline, PBS)로 2회 세척하고, 약 1분간 0.1%의 트립신(trypsin)을 처리하였고, 0.2% 소태아혈청(FBS)와 0.02% 소듐 아자이드(Sodium Azide)가 들어있는 PBS 용액으로 3회 세척하였다. 회수된 세포-시료를 4% 파라포름알데히드 400 uL에 재 분산하여 FACS(Fluorescence-activated cell sorter)와 epi-fluorescent microscopy를 사용하여 CD44 친화력을 측정하였다. 유방암 세포에 히알루론산 나노캡슐의 결합 여부를 FACScalibur (Beckton-Dickinson, Mansfield, MA) 스캐너로 488 nm 파장을 형광스캔하여 측정하였다. 그 결과는 도 3과 같다. After the reaction, the cells were washed twice with phosphate buffered saline (PBS), treated with 0.1% trypsin for about 1 minute, 0.2% fetal bovine serum (FBS) and 0.02% sodium azide (Sodium) Azide) was washed three times with PBS solution. The recovered cell-sample was redispersed in 400 uL of 4% paraformaldehyde and the CD44 affinity was measured using a Fluorescence-activated cell sorter (FACS) and epi-fluorescent microscopy. Whether hyaluronic acid nanocapsules were bound to breast cancer cells was measured by fluorescence scanning at 488 nm with a FACScalibur (Beckton-Dickinson, Mansfield, MA) scanner. The result is shown in FIG. 3.

도 3의 A 및 C는 OVCAR-3 세포주, 도 3의 B 및 D는 SK-OV-3 세포주에 대한 결합력 및 친화력을 측정한 결과이다. 측정결과, 상기의 모든 검체는 비특이적 결합이 거의 나타나지 않았고, 히알루론산을 포함하지 않은 검체의 경우에는 세포주 표면의 CD44와 특이적 결합이 거의 나타나지 않았으며, 히알루론산을 포함한 조성물의 경우에는 그 결합정도의 차이는 있었지만 CD44와의 특이적 결합이 나타났다. 구체적으로 에멀젼(비교예 1)과 금속이온을 함유한 에멀젼(비교예 2)은 CD44와 특이적 결합 현상이 나타나지 않았으며, 히알루론산만이 단순 혼합된 에멀젼(비교예 3)인 경우 작지만 어느 정도 CD44와의 친화력을 나타냈고, 히알루론산 코팅층을 갖는 나노 액적을 함유한 본 발명의 나노-에멀젼(실시예 1)의 경우 CD44와의 친화력이 가장 우수하게 나타났다. 따라서, 본 발명의 나노-에멀젼은 능동표적지향을 위한 우수한 약물전달체임을 알 수 있다.A and C of Figure 3 is an OVCAR-3 cell line, B and D of Figure 3 is the result of measuring the binding and affinity to SK-OV-3 cell line. As a result of the measurement, all of the above samples showed little non-specific binding, and the samples containing no hyaluronic acid showed little specific binding with CD44 on the surface of the cell line, and the composition of the hyaluronic acid-containing composition There was a difference of, but specific binding with CD44 appeared. Specifically, the emulsion (Comparative Example 1) and the emulsion containing the metal ion (Comparative Example 2) did not show a specific binding phenomenon with CD44, and in the case of an emulsion in which only hyaluronic acid was simply mixed (Comparative Example 3), to some extent, The affinity with CD44 was shown, and the affinity with CD44 was most excellent for the nano-emulsion of the present invention (Example 1) containing nanodroplets having a hyaluronic acid coating layer. Thus, it can be seen that the nano-emulsions of the present invention are excellent drug carriers for active target orientation.

시험예 3. 생체내(in vivo) 효능 시험Test Example 3 In vivo Efficacy Test

능동 및 수동표적지향에 의한 항암효능을 평가하기 위하여 세포표면에 CD44가 과발현된 난소암 세포인 SK-OV-3 세포(ATCC : HTB-77, Rockville, MD)와 세포표면에 CD44가 발현되어 있지 않은 OVCAR-3 세포(한국세포주은행, KCLB-00000287)를 사용하였다. In order to evaluate the anticancer efficacy by active and passive target-oriented, SK-OV-3 cells (ATCC: HTB-77, Rockville, MD), which are overexpressed CD44 on the cell surface, and CD44 are not expressed on the cell surface. OVCAR-3 cells (Korea Cell Line Bank, KCLB-00000287) were used.

SK-OV-3 세포와 OVCAR-3 세포를 각각 10% FBS가 함유된 RPMI 1640 배지를 사용하여 37℃, 5% CO2 조건의 배양기에서 시험동물에 이식할 수 있을 정도의 세포수, 즉 SK-OV-3 세포는 7×108개 이상, OVCAR-3 세포는 4×108개 이상의 세포수에 도달할 때까지 배양하였다. 여기서 RPMI 1640 배지는 0.1 mM의 비-필수 아미노산(non-essential amino acid), 1 mM의 소듐 피루베이트(sodium pyruvate), 1.5 g/L의 중탄산나트륨, 일정량의 항생물질(antibiotic/mycotic agent)를 함유하도록 조제하여 여과 후 냉장보관 하다가, 사용할 때마다 37 ℃로 가온하여 사용하였다.SK-OV-3 cells and OVCAR-3 cells, each using a RPMI 1640 medium containing 10% FBS, were transplanted into test animals in an incubator at 37 ° C. and 5% CO 2 , ie, SK. -OV-3 cells were cultured until 7 × 10 8 or more and OVCAR-3 cells reached 4 × 10 8 or more. The RPMI 1640 medium contains 0.1 mM non-essential amino acid, 1 mM sodium pyruvate, 1.5 g / L sodium bicarbonate, and an amount of antibiotic (antibiotic / mycotic agent). It was prepared to contain, stored in the refrigerator after filtration, and warmed to 37 ℃ each time used.

일정 수에 도달한 SK-OV-3 세포와 OVCAR-3 세포는 트립신/EDTA 용액으로 처리한 후, 배양 플라스크로부터 분리한 다음, 1×107개의 세포를 RPMI 1640 0.3 mL에 현탁하였다. 그리고 현탁된 암세포 용액을 23G의 1 mL 주사기를 이용하여 누드마우스(BALB/cAnNCrjBgi-nu/nu, Female)의 옆구리 피하에 0.3 mL씩 주사하여 암세포를 이식하였다. 암세포 이식 후, 종양의 크기가 약 100 ㎣이상에 도달하면 종양크기에 대한 평균값이 유사하도록 5개의 군(G1-G5)으로 나누어 시험물질을 투여(n=7)하였다. G2 시험군에는 양성 대조물질인 Taxol을 미정맥 내에 투여하였고, G3 시험군에는 실시예 1의 나노-에멀젼을 투여하였고, G4 시험군에는 실시예 2의 나노-현탁액을 투여하였으며, G5 시험군에는 비교예 1의 나노-에멀젼을 투여하였다. G2-G5의 시험군에 대하여 주성분인 파클리탁셀의 투여량은 모두 20 mg/kg으로 일정하게 하였으며, G1 시험군(control)은 암세포의 성장유형을 관찰하기 위하여 주성분 및 부형제를 투여하지 않고 단지 생리식염수(Hypertonic saline)만을 투여하여 시험을 수행하였다. 항암 활성을 평가하기 위하여 암성장이 어느 정도 관찰되는 시점부터 약 3일 간격으로 일주일에 2-3회씩 시험동물의 종양 크기 변화를 측정하였다. 종양크기는 버어니어 캘리퍼스(Vernier calipers)를 이용하여 종양의 길이(length)와 폭(width)을 측정하여 다음과 같은 식을 통하여 종양의 크기를 산출하였고, 각 시험군별로 시간경과에 따른 종양 크기의 변화를 비교평가하였다. 그 결과는 도 4a 및 도 4b와 같다.After reaching a certain number of SK-OV-3 cells and OVCAR-3 cells were treated with trypsin / EDTA solution, separated from the culture flasks, and then 1 × 10 7 cells were suspended in 0.3 mL of RPMI 1640. In addition, the cancer cells were transplanted by injecting the suspended cancer cell solution 0.3 mL at the subcutaneous side of nude mice (BALB / cAnNCrjBgi-nu / nu, Female) using a 1 mL syringe of 23G. After cancer cell transplantation, when the tumor size reached about 100 mm 3 or more, test substances were administered (n = 7) by dividing into five groups (G1-G5) so that the mean value of the tumor size was similar. In the G2 test group, Taxol, a positive control, was administered intravenously, the G3 test group was administered the nano-emulsion of Example 1, the G4 test group was administered the nano-suspension of Example 2, and the G5 test group. The nano-emulsion of Comparative Example 1 was administered. The dose of paclitaxel, the main component of the G2-G5 test group, was constant at 20 mg / kg, and the G1 control group did not administer the main component and the excipient to observe the growth type of cancer cells. The test was performed with only (Hypertonic saline). In order to evaluate anticancer activity, tumor size changes of test animals were measured 2-3 times a week at intervals of about 3 days from when cancer growth was observed to some extent. Tumor size was measured using the Vernier calipers and the tumor size and length were calculated by the following equation. The change of was evaluated. The results are the same as in Figs. 4a and 4b.

종양 크기(Tumor Volume)(㎣) = 길이(㎜) X [폭(㎜)]2 / 2Tumor (Tumor Volume) (㎣) = length (㎜) X [width (㎜)] 2/2

도 4a는 CD44가 과발현된 SK-OV-3 암이식 모델에서, 시험약 및 대조약을 각각 투여한 후 경시적인 종양 크기 변화를 나타낸 결과이다. 실시예 1과 2의 나노-에멀젼 및 나노-현탁액 투여군은 Taxol 투여군 및 비교예 1의 나노-에멀젼 투여군에 비해 우수한 암성장 억제작용을 나타내었다. 실시예 1과 2는 히알루론산이 결합된 나노 입자로서 히알루론산과 CD44의 특이적 결합에 의해서 약물의 능동표적지향 효과가 있는 것으로 나타난다. 반면, 비교예 1의 조성물은 히알루론산이 코팅되지 않은 에멀젼 제형으로 암성장 억제작용이 크게 떨어지는 것을 확인할 수 있으며, 이는 비교예 1의 조성물이 EPR 효과에 의한 약물의 수동표적지향 효과만을 나타낼 뿐 CD44의 특이적 결합에 의한 능동표적지향 효과를 나타내지 않는 현상으로 판단된다.Figure 4a is a result of tumor size change over time after administration of the test drug and the control drug in SK-OV-3 cancer transplantation model overexpressed CD44. Examples of the nano-emulsion and nano-suspension administration groups of Examples 1 and 2 were Taxol   Compared with the administration group and the nano-emulsion administration group of Comparative Example 1 showed an excellent cancer growth inhibitory effect. Examples 1 and 2 are nanoparticles to which hyaluronic acid is bound, and it is shown that the specific target of hyaluronic acid and CD44 has an active target-directing effect of the drug. On the other hand, the composition of Comparative Example 1 can be seen that the anti-hyaluronic acid-coated emulsion formulation is significantly reduced cancer growth inhibitory effect, which indicates that the composition of Comparative Example 1 shows only the passive target-oriented effect of the drug by the EPR effect CD44 It is considered to be a phenomenon that does not exhibit an active target orientation effect by specific binding of.

도 4b는 CD44가 발현되지 않은 OVCAR-3 암이식 모델에서, 시험약 및 대조약을 각각 투여한 후 경시적인 종양 크기 변화를 나타낸 결과이다. 실시예 1의 나노-에멀젼 투여군, 실시예 2의 나노-현탁액 투여군 및 비교예 1의 에멀젼 투여군은, 음성대조군(control) 및 Taxol 투여군에 비해 높은 암성장 억제작용을 나타냈다. OVCAR-3 암이식 모델은 CD44가 발현되지 않기 때문에 실시예 1의 나노-에멀젼을 투여해도 능동표적지향 효과가 나타나지 않으며, EPR 효과에 의한 수동표적지향 효과만 나타난다.Figure 4b shows the change in tumor size over time after administration of the test drug and the control drug in OVCAR-3 cancer transplantation model that does not express CD44. The nano-emulsion administration group of Example 1, the nano-suspension administration group of Example 2, and the emulsion administration group of Comparative Example 1 showed higher cancer growth inhibitory effect than the negative control group and the Taxol administration group. In the OVCAR-3 cancer transplantation model, since CD44 is not expressed, the active-targeting effect of the nano-emulsion of Example 1 does not appear, but only the passive-targeting effect by the EPR effect.

시험예 4. 생체내(in vivo) 독성 평가Test Example 4 Evaluation of In Vivo Toxicity

적응사육을 거쳐 반복투여 독성평가에 적합하다고 인정되는 건강한 시험동물만을 선발한 후, 단계별 연속무작위화법을 이용하여 사육상자당 5마리씩 배치하고, 시험물질을 투여직전 잘 흔들어 준 다음, 일회용 멸균 주사기를 이용하여 해당 시험동물의 미정맥에 투여하였다. 투여 당일 측정한 체중에 따라 각 시험물질을 3일 간격으로 총 3회 간헐적으로 반복투여하면서 시험물질투여에 따른 폐사여부 및 증상을 관찰하였다. 증상은 투여 후 4시간 까지는 상황에 따라 간헐적으로 관찰하고, 이후부터 관찰 종료일까지는 1일 1회 관찰하며, 체중은 투여 개시일로부터 관찰 종료일까지 1일 1회 측정하였다. 관찰기간 종료 후 필요시 생존개체에 대한 부검 및 검사를 수행하여 해당 시험물질의 안전성을 평가하였다. 그 결과는 도 5와 같다.Only healthy test animals that are recognized as suitable for repeated dose toxicity evaluation through adaptive breeding are selected, and then 5 dogs are placed per breeding box using the stepless randomization method, shake the test substance just before administration, and then a disposable sterile syringe is used. It was administered to the vein of the test animal. According to the body weight measured on the day of administration, each test substance was repeatedly administered three times at intervals of 3 days, and mortality and symptoms according to test substance administration were observed. Symptoms were observed intermittently depending on the situation up to 4 hours after administration, and observed once a day from thereafter until the end of observation, body weight was measured once a day from the start of administration to the end of observation. After the observation period, autopsies and examinations of surviving subjects were performed to evaluate the safety of the test substance, if necessary. The result is shown in FIG.

대조약 Taxol을 30 mpk 농도로 누드마우스에 3회 반복 투여한 경우, 약 20% 가량의 급격한 체중 감량을 나타내었으며, 투여 과정 혹은 투여 완료 후에 3마리의 누드마우스가 폐사하는 심각한 독성을 나타내었다. 또한 모든 Taxol 투여군은 파클리탁셀 투여 농도에 관계없이 호흡곤란, 무기력, 운동실조 등과 같은 증상을 나타내었다. 반면, 실시예 1의 조성물을 20∼50 mpk 농도로 3회 반복 투여한 경우에는 모든 투여군에서 10% 이내의 체중 변화를 나타내어 대조약 대비 비교적 안전한 독성 수치를 나타내었으며, 이는 실시예 1의 나노-에멀젼이 누드마우스에서 약물의 최대내성용량이 50 mpk 이상임을 의미한다. 또한 모든 실시예 1의 나노-에멀젼 투여군에서는 폐사하거나 특별한 임상증상을 나타내는 개체가 없었다.When the reference drug Taxol was repeatedly administered to nude mice three times at a concentration of 30 mpk, a sudden weight loss of about 20% was observed, and three nude mice died of serious toxicity after the administration or completion of the administration. Also all Taxol   The administration group showed symptoms such as dyspnea, lethargy, and ataxia regardless of paclitaxel concentration. On the other hand, when the composition of Example 1 was repeatedly administered at a concentration of 20 to 50 mpk three times, all the administration groups showed a change in body weight within 10%, indicating a relatively safe toxicity level compared to the reference drug, which is nano- Emulsion means that the maximum tolerated dose of drug in nude mice is 50 mpk or more. In addition, none of the nano-emulsion groups in Example 1 died or exhibited any particular clinical symptoms.

시험예 5. 약물 방출 시험Test Example 5 Drug Release Test

본 발명에 따라 제조한 나노 입자에 대하여, 대한약전 제 2 법에 따라 다음과 같이 용출시험을 실시하였다.For the nanoparticles prepared according to the present invention, the dissolution test was carried out as follows according to the method of the Korean Pharmacopoeia.

실시예 1에서 얻어진 나노-에멀젼, 실시예 2에서 얻어진 나노-현탁액 및 브리스톨마이어스 스퀴브(BMS)의 탁솔(Taxol) 주사제를 차단분자량(molecular weight cutoff, MWCO)이 12,000 내지 14,000인 투석막(Spectra/Por  dialysis membrane)에 넣어 1,000 mL의 용출액(0.1% 폴리소베이트 80-인산염 완충액, pH 7.08)에 가하였다. 투석막은 사용전에 약 30분간 용출액에 침지하여 안정화시켰으며, 지지대에 고정시켜 충분한 용적의 용출액과 패들의 회전(100 rpm)으로서 싱크 상태(sink condition)를 조성하였으며, 온도는 37℃를 유지하였다. 시간에 따라 투석막 밖으로 여과된 용출액을 1 mL씩 취한 후, 고성능 액체크로마토그래피를 이용하여 파클리탁셀의 용출률을 산출하였다. 용출액은 항상 1,000 mL가 유지되도록 지속적으로 용출액을 보충하였다. 그 결과는 도 6과 같다. 도 6으로부터, 6일간의 용출률을 측정한 결과, 탁솔(Taxol) 주사제 제형과 비교하여, 본 발명의 나노 입자가 오랜 시간에 걸쳐 지속적으로 파클리탁셀을 방출하는 것을 확인할 수 있다. 또한 나노-현탁액은 나노-에멀젼보다 조금 더 지속적인 약물 방출 양상을 나타내는 것을 확인 할 수 있다. 인체에 주입된 나노 입자가 목표하는 암세포까지 도달하는데에 소요되는 경과되는 시간이 있기 때문에, 약물이 급속히 방출되는 것 보다는 암세포의 목표지점까지 도착하여 약물이 서서히 방출되는 것이 치료효과에 있어서 유리하다. 따라서 본원발명에 따른 상기 나노 입자는 약물의 효과적인 전달에 매우 유용하다.The nano-emulsion obtained in Example 1, the nano-suspension obtained in Example 2 and the Taxol injection of Bristol Myers Squib (BMS) were dialyzed with a molecular weight cutoff (MWCO) of 12,000 to 14,000 (Spectra / It was added to 1,000 mL eluate (0.1% polysorbate 80-phosphate buffer, pH 7.08) in a Por dialysis membrane. The dialysis membrane was immersed in the eluent for about 30 minutes before use to stabilize it. The dialysis membrane was fixed to the support to form a sink condition with sufficient volume of the eluent and the rotation of the paddle (100 rpm), and the temperature was maintained at 37 ° C. After taking 1 mL of the eluate filtered out of the dialysis membrane with time, the elution rate of paclitaxel was calculated using high performance liquid chromatography. The eluate was constantly replenished with the eluent to maintain 1,000 mL. The result is shown in FIG. 6, the dissolution rate was measured for 6 days, and compared with the Taxol injection formulation, it can be seen that the nanoparticles of the present invention continuously release paclitaxel over a long time. It can also be seen that the nano-suspension shows a slightly more sustained release pattern than the nano-emulsion. Since there is an elapsed time for the nanoparticles injected into the human body to reach a target cancer cell, it is advantageous for the therapeutic effect that the drug arrives at the target point of the cancer cell and is released slowly, rather than being released rapidly. Therefore, the nanoparticles according to the present invention are very useful for effective delivery of drugs.

시험예 6. 나노입자의 봉입효율 및 재분산성 평가Test Example 6. Evaluation of Encapsulation Efficiency and Redispersibility of Nanoparticles

실시예 1에서 동결건조에 의하여 얻어진 나노 입자에 대하여 봉입효율 및 재분산성을 평가하였다. 또한, 대조 제제로서, 본 발명자들의 선행 연구결과에 따른 나노 입자 즉, 대한민국 특허등록 제774,925호(대조예 1) 및 특허공개 제10-2009-0040979호에 따른 나노 입자(실시예 93에 따라 제조, 대조예 2)에 대해서도 동일하게 평가하였다. 상기 대조예 1의 나노 입자는 다음과 같이 제조하였다: 파클리탁셀 0.135 g 및 히알루론산 0.045 g을 0.02 M 글루탐산이 함유된 70% 에탄올 용액 45 mL에 가하여 수용액을 얻었다. 얻어진 용액을 300 rpm으로 교반하면서, 0.05 M 질산철(Ⅲ) 수용액 0.84 mL 가하고 2시간 동안 교반 후 동결건조하여 약 120 nm의 입도를 가진 나노입자를 얻었다.The encapsulation efficiency and redispersibility of the nanoparticles obtained by lyophilization in Example 1 were evaluated. In addition, as a control formulation, nanoparticles according to the inventors' previous results, that is, nanoparticles according to the Republic of Korea Patent Registration No. 774,925 (Control Example 1) and Patent Publication No. 10-2009-0040979 (Prepared according to Example 93) And Comparative Example 2) were also evaluated in the same manner. The nanoparticles of Comparative Example 1 were prepared as follows: 0.135 g of paclitaxel and 0.045 g of hyaluronic acid were added to 45 mL of a 70% ethanol solution containing 0.02 M glutamic acid to obtain an aqueous solution. While stirring the obtained solution at 300 rpm, 0.84 mL of 0.05 M iron (III) nitrate aqueous solution was added thereto, stirred for 2 hours, and lyophilized to obtain nanoparticles having a particle size of about 120 nm.

봉입효율은 일정 농도로 물에 분산 된 제제(실시예1, 대조예 1, 2)를 0.22 ㎛의 공극을 가진 필터(Acro 50 Vent Devices with Emflon Membrane Ⅱ, Pall Co. 미국)에 의해 여과한 후, 초원심분리하여 상등액을 취하고, 유럽약전(EP)에 기재된 파클리탁셀 함량분석법에 따라 비교분석하여 평가하였다. 이후, 동결건조된 제제를 주사용수에 재분산하여 얻은 파클리탁셀의 봉입함량과 입자크기를 동결건조 전 제제의 파클리탁셀 봉입함량 및 입자크기와 비교분석하여 제제의 재분산성 평가를 수행하였다. 그 결과는 다음 표 17과 같다.The encapsulation efficiency was measured by filtering a dispersion (Example 1, Comparative Examples 1 and 2) dispersed in water at a constant concentration by a filter having a porosity of 0.22 μm (Acro 50 Vent Devices with Emflon Membrane® II, Pall Co. USA). The supernatant was taken by ultracentrifugation, and compared and evaluated according to the paclitaxel content analysis described in the European Pharmacopoeia (EP). Subsequently, the redispersibility of the formulation was evaluated by comparing the encapsulated content and particle size of the paclitaxel obtained by re-dispersing the lyophilized formulation into water for injection and comparing with the paclitaxel content and particle size of the preparation before lyophilization. The results are shown in Table 17 below.

동결건조 전Before lyophilization 재분산Redistribution 봉입 함량
(mg/mL)
Inclusion content
(mg / mL)
봉입효율
(%)
Encapsulation efficiency
(%)
입자 크기
(nm)
Particle size
(nm)
봉입 함량
(mg/mL)
Inclusion content
(mg / mL)
봉입효율
(%)
Encapsulation efficiency
(%)
입자 크기
(nm)
Particle size
(nm)
실시예 1Example 1 3.00±0.043.00 ± 0.04 100.3±0.1100.3 ± 0.1 70±170 ± 1 3.01±0.033.01 ± 0.03 100.3±0.1100.3 ± 0.1 71±271 ± 2 대조예 1Comparative Example 1 0.41±0.110.41 ± 0.11 13.7±3.713.7 ± 3.7 127±9127 ± 9 0.18±0.080.18 ± 0.08 6.0±2.76.0 ± 2.7 862±98862 ± 98 대조예 2Comparative Example 2 0.22±0.050.22 ± 0.05 36.7±8.336.7 ± 8.3 104±13104 ± 13 0.13±0.030.13 ± 0.03 21.7±5.021.7 ± 5.0 128±34*128 ± 34 *

*일부 덩어리진 입자를 제거한 후 입자 크기 측정* Determine particle size after removing some clumped particles

표 17로부터 알 수 있는 바와 같이, 본 발명에 따른 나노 입자는 약물인 파클리탁셀의 봉입 함량이 가장 높았으며, 봉입 효율도 매우 우수하였다. 또한 분산매(주사용수)에 재분산한 경우에도 약물의 봉입 함량 및 입자크기가 그대로 유지되었다. As can be seen from Table 17, the nanoparticles according to the present invention had the highest encapsulation content of the drug, paclitaxel, and the encapsulation efficiency was also excellent. In addition, even when redispersed in the dispersion medium (injection water), the content and particle size of the drug were maintained as it is.

시험예 7. 물리화학적 안정성 평가Test Example 7 Evaluation of Physical and Chemical Stability

실시예 1에서 얻어진 동결건조된 나노 입자를 6 개월간 실온(25±2℃, 60±5 %RH) 및 가속(40±2℃, 75±5 %RH) 조건에서 물리화학적인 안정성을 평가하였다. 파클리탁셀의 봉입 함량 변화와 나노 입자의 크기 변화를 시험예 6과 동일한 방법으로 각각 3회씩 측정하였으며, 그 평균값을 계산하였다. 그 결과는 표 18과 같다.The lyophilized nanoparticles obtained in Example 1 were evaluated for physicochemical stability at room temperature (25 ± 2 ° C., 60 ± 5% RH) and accelerated (40 ± 2 ° C., 75 ± 5% RH) for 6 months. The change in the inclusion content of paclitaxel and the change in the size of the nanoparticles were measured three times in the same manner as in Test Example 6, and the average value was calculated. The results are shown in Table 18.

저장 기간
(월)
storage duration
(month)
실온 조건
(25±2 ℃, 60±5 %RH)
Room temperature conditions
(25 ± 2 ℃, 60 ± 5% RH)
가속 조건
(40±2 ℃, 75±5 %RH)
Acceleration condition
(40 ± 2 ℃, 75 ± 5% RH)
봉입 함량(mg/ml)Encapsulation Content (mg / ml) 입자 크기(nm)Particle size (nm) 봉입 함량(mg/ml)Encapsulation Content (mg / ml) 입자 크기(nm)Particle size (nm) 초기Early 3.01±0.033.01 ± 0.03 71±271 ± 2 3.01±0.033.01 ± 0.03 71±271 ± 2 1One 2.94±0.022.94 ± 0.02 69±369 ± 3 2.97±0.032.97 ± 0.03 73±273 ± 2 22 3.01±0.043.01 ± 0.04 68±168 ± 1 2.98±0.022.98 ± 0.02 71±371 ± 3 33 2.93±0.062.93 ± 0.06 73±273 ± 2 2.96±0.012.96 ± 0.01 75±275 ± 2 44 2.92±0.072.92 ± 0.07 70±270 ± 2 2.99±0.042.99 ± 0.04 72±172 ± 1 55 2.91±0.052.91 ± 0.05 68±368 ± 3 2.93±0.032.93 ± 0.03 74±174 ± 1 66 2.96±0.032.96 ± 0.03 71±171 ± 1 2.94±0.042.94 ± 0.04 75±375 ± 3

표 18로부터 알 수 있는 바와 같이, 주사용수로 재분산한 동결건조제제의 입자 크기 및 함량은 동결건조 전의 나노-에멀젼과 동일하였으며, 6개월간 물리화학적인 안정성이 유지되는 것을 확인할 수 있다.As can be seen from Table 18, the particle size and content of the lyophilized formulation redispersed with water for injection was the same as the nano-emulsion before lyophilization, it can be seen that the physicochemical stability is maintained for 6 months.

도 1은 본 발명에 따른 나노 입자의 모식도를 나타낸다.1 shows a schematic diagram of nanoparticles according to the present invention.

도 2는 본 발명에 따른 나노 입자의 Cyro-TEM 이미지를 나타낸다.Figure 2 shows a Cyro-TEM image of the nanoparticles according to the present invention.

도 3은 본 발명에 따른 나노 입자의 CD44 친화도를 측정한 결과이다. 도 3에서, A 및 C는 OVCAR-3 세포주, B 및 D는 SK-OV-3 세포주에 대한 결합력 및 친화력을 측정한 결과이다. 3 is a result of measuring the CD44 affinity of the nanoparticles according to the present invention. In Figure 3, A and C are OVCAR-3 cell line, B and D is the result of measuring the affinity and affinity for SK-OV-3 cell line.

도 4a 및 도 4b는 본 발명에 따른 나노 입자의 능동 및 수동표적지향에 의한 항암효능을 평가한 결과를 나타낸다. 도 4a는 및 도 4b는 각각 CD44가 과발현된 SK-OV-3 암이식 모델 및 CD44가 발현되지 않은 OVCAR-3 암이식 모델에서, 시험약 및 대조약을 각각 투여한 후 경시적인 종양 크기 변화를 나타낸 결과이다. 4a and 4b shows the results of evaluating the anticancer efficacy of the active and passive target orientation of the nanoparticles according to the present invention. 4A and 4B show changes in tumor size over time after administration of the test and control agents, respectively, in the SK-OV-3 cancer transplantation model overexpressing CD44 and the OVCAR-3 cancer transplantation model without CD44 expression, respectively. The results shown.

도 5는 본 발명에 따른 나노 입자의 안전성 평가 결과로서, 시험 물질 투여후 2 주 동안 체중 변화를 측정한 결과이다.5 is a result of the safety evaluation of the nanoparticles according to the present invention, which is the result of measuring the weight change for 2 weeks after administration of the test substance.

도 6은 본 발명에 따른 나노 입자의 용출시험 결과를 나타낸다.Figure 6 shows the dissolution test results of the nanoparticles according to the present invention.

Claims (29)

수성 매질 중에 10 ∼ 1,000 nm의 평균 입자경을 갖는 나노 입자를 포함하는 나노-분산액 형태의 표적 지향을 위한 약학 조성물로서, 상기 나노 입자가 치료학적으로 유효한 양의 항암제; 2가 또는 3가의 전이금속 이온 또는 알카리 토금속 이온; 및 오일을 포함하고, 상기 나노 입자의 표면 상에 히알루론산 또는 그의 염이 결합된 것을 특징으로 하는 약학 조성물.A pharmaceutical composition for target orientation in the form of nano-dispersions comprising nanoparticles having an average particle diameter of 10 to 1,000 nm in an aqueous medium, the pharmaceutical composition comprising a therapeutically effective amount of an anticancer agent; Divalent or trivalent transition metal ions or alkaline earth metal ions; And an oil, wherein a hyaluronic acid or a salt thereof is bound to a surface of the nanoparticle. 제1항에 있어서, 상기 히알루론산의 평균분자량이 379 ∼ 10,000,000 달톤인 것을 특징으로 하는 약학 조성물.The pharmaceutical composition according to claim 1, wherein the average molecular weight of hyaluronic acid is 379 to 10,000,000 Daltons. 제1항에 있어서, 상기 히알루론산 염이 히알루론산 코발트, 히알루론산 마그네슘, 히알루론산 아연, 히알루론산 칼슘, 히알루론산 칼륨, 히알루론산 나트륨, 또는 히알루론산 테트라부틸암모늄인 것을 특징으로 하는 약학 조성물.The pharmaceutical composition according to claim 1, wherein the hyaluronic acid salt is cobalt hyaluronic acid, magnesium hyaluronate, zinc hyaluronate, calcium hyaluronate, potassium hyaluronate, sodium hyaluronate, or tetrabutylammonium hyaluronate. 제1항에 있어서, 상기 히알루론산 또는 그의 염의 함량이, 조성물 총 중량에 대하여 0.01∼1.0 중량%인 것을 특징으로 하는 약학 조성물.The pharmaceutical composition according to claim 1, wherein the content of hyaluronic acid or a salt thereof is 0.01 to 1.0% by weight based on the total weight of the composition. 제1항에 있어서, 상기 2가 또는 3가의 전이금속 이온 또는 알카리 토금속 이 온이 Cu2+, Cu3+, Zn2+, Zn3+, Ni2+, Ni3+, Mg2+, Mg3+, Ca2+, Ca3+, Co2+, Co3+, Ba2+, Ba3+, Al2+, Al3+, Fe2+, 및 Fe3+로 이루어진 군으로부터 1 종 이상 선택되는 것을 특징으로 하는 약학 조성물. The method of claim 1, wherein the divalent or trivalent transition metal ions or alkaline earth metal ions are Cu 2+ , Cu 3+ , Zn 2+ , Zn 3+ , Ni 2+ , Ni 3+ , Mg 2+ , Mg One or more from the group consisting of 3+ , Ca 2+ , Ca 3+ , Co 2+ , Co 3+ , Ba 2+ , Ba 3+ , Al 2+ , Al 3+ , Fe 2+ , and Fe 3+ Pharmaceutical composition, characterized in that selected. 제1항에 있어서, 상기 2가 또는 3가의 전이금속 이온 또는 알카리 토금속 이온이 질산구리, 황산구리, 염화구리, 아세트산아연, 황산아연, 질산아연, 염화아연, 황산니켈, 질산니켈, 염화니켈, 아세트산마그네슘, 황산마그네슘, 질산마그네슘, 염화마그네슘, 아세트산칼슘, 황산칼슘, 질산칼슘, 염화칼슘, 아세트산코발트, 황산코발트, 염화코발트, 아세트산바륨, 황산바륨, 질산바륨, 염화바륨, 황산알루미늄, 염화알루미늄, 아세트산철, 황산철, 질산철, 또는 염화철로부터 유래되는 것을 특징으로 하는 약학 조성물. The method of claim 1, wherein the divalent or trivalent transition metal ions or alkaline earth metal ions are selected from the group consisting of copper nitrate, copper sulfate, copper chloride, zinc acetate, zinc sulfate, zinc nitrate, zinc chloride, nickel sulfate, nickel nitrate, nickel chloride and acetic acid. Magnesium, magnesium sulfate, magnesium nitrate, magnesium chloride, calcium acetate, calcium sulfate, calcium nitrate, calcium chloride, cobalt acetate, cobalt sulfate, cobalt chloride, barium acetate, barium sulfate, barium nitrate, barium chloride, aluminum sulfate, aluminum chloride, acetic acid A pharmaceutical composition, characterized in that it is derived from iron, iron sulfate, iron nitrate, or iron chloride. 제1항에 있어서, 상기 히알루론산 또는 그의 염의 이당체 단위 당 상기 2가 또는 3가의 전이금속 이온 또는 알카리 토금속 이온의 몰비(molar ratio)가 0.001∼2.0 인 것을 특징으로 하는 약학 조성물. The pharmaceutical composition according to claim 1, wherein a molar ratio of the divalent or trivalent transition metal ions or alkaline earth metal ions per disaccharide unit of hyaluronic acid or a salt thereof is 0.001 to 2.0. 제1항에 있어서, 상기 약학 조성물이 나노-에멀젼 형태이고, 상기 오일이 모노-, 디-, 혹은 트리-글리세라이드(mono-, di-, or tri-glycerides); 글리세릴 모노- 혹은 트리-스테아레이트(glyceryl mono- or tri-stearate); 글리세릴 모노-, 디-, 혹은 트리-아세테이트(glyceryl mono-, di-, or tri-acetate); 알파-토코페롤 또는 그의 염; 알파-토코페롤 아세트산 에스테르; 알파-토코페롤 석시네이트; C4:0∼C6:0의 트리글리세라이드; C8:0∼C14:0의 트리글리세라이드; 피마자 오일, 옥수수 오일, 올리브 오일, 목화씨 오일, 페퍼민트 오일, 참기름, 및 대두유로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 약학 조성물.The method of claim 1, wherein the pharmaceutical composition is in the form of a nano-emulsion, the oil is mono-, di-, or tri-glycerides (mono-, di-, or tri-glycerides); Glyceryl mono- or tri-stearate; Glyceryl mono-, di-, or tri-acetate; Alpha-tocopherol or salts thereof; Alpha-tocopherol acetic acid ester; Alpha-tocopherol succinate; C4: 0 to C6: 0 triglycerides; C8: 0 to C14: 0 triglycerides; Pharmaceutical composition, characterized in that at least one selected from the group consisting of castor oil, corn oil, olive oil, cottonseed oil, peppermint oil, sesame oil, and soybean oil. 제1항에 있어서, 상기 약학 조성물이 나노-현탁액 형태이고, 상기 오일이 대두경화유(hydrogenated soybean oil), 카카오 버터, 세틸 알코올, 스테아릴 알코올, 세틸 팔미테이트, 카르나우바 왁스, 백랍(white bee wax), 트리카프린, 트리라우린, 트리미리스틴, 트리팔미틴, 트리스테아린, 및 트리베헤닌으로 이루어진 군으로부터 1종 이상 선택되는 것을 특징으로 하는 약학 조성물.The pharmaceutical composition of claim 1, wherein the pharmaceutical composition is in the form of a nano-suspension and the oil is hydrogenated soybean oil, cacao butter, cetyl alcohol, stearyl alcohol, cetyl palmitate, carnauba wax, white bee wax), tricaprine, trilaurin, trimyristin, tripalmitin, tristearin, and tribehenin. 제1항에 있어서, 상기 오일의 함량이, 상기 조성물 총 중량에 대하여 1∼50 중량%의 범위인 것을 특징으로 하는 약학 조성물.The pharmaceutical composition according to claim 1, wherein the oil content is in the range of 1 to 50% by weight, based on the total weight of the composition. 제1항에 있어서, 상기 항암제가 파클리탁셀(Paclitaxel), 파클리탁셀 유도체, 우라실 (Uracil), 5-플루오로우라실 (5-Fluorouracil), 테가퍼(Tegafur), 메토트렉세이트(Methotrexate), 멜파란(Melphalan), 마이토잔트론(Mitoxantrone), 캄토테신(Camptothecin), 토포테칸(Topotecan), 도세탁셀(Docetaxel), 카페시타빈(Capecitabine), 이마티닙 메실레이트(Imatinib mesylate), 리툭시맵 (Rituximab), 독시플루리딘(Doxifluridine), 토레미펜 시트레이트(Toremifene citrate), 독소루비신(Doxorubicin), 젬시타빈(Gemcitabine), 이리노데칸(Irinotecan), 옥살리플라틴(Oxaliplatin), 또는 클로람부실(chlorambucil)인 것을 특징으로 하는 약학 조성물.According to claim 1, wherein the anticancer agent Paclitaxel (Paclitaxel), Paclitaxel derivatives, Uracil (Uracil), 5-Fluorouracil (Tegafur), Methotrexate (Methotrexate), Melphalan (Melphalan) , Mitoxantrone, camptothecin, topotecan, topotecan, docetaxel, capecitabine, imatinib mesylate, rituximab, doxifluriri Pharmaceutical composition characterized in that it is doxifluridine, toremifene citrate, doxorubicin, gemcitabine, irinotecan, oxaliplatin, or chlorambucil . 제1항에 있어서, 상기 약학 조성물이 알파-토코페롤 폴리에틸렌 글리콜 숙시네이트, 마크로골 15 하이드록시스테아레이트(macrogol 15 hydroxystearate), 카프릴로카프로일 마크로골글리세라이드(caprylocaproyl macrogolglycerides), 솔비탄 모노올리에이트(sorbitan monooleate), 폴리 소르베이트류, 폴리옥시에틸렌-폴리옥시프로필렌 공중합체(polyoxyethylene-polyoxypropylene block copolymer), 난황 레시틴(Egg lecithin), 및 대두 레시틴(soybean lecithin)으로 이루어진 군으로부터 1 종 이상 선택된 계면활성제를 추가로 포함하는 것을 특징으로 하는 약학 조성물. The method of claim 1, wherein the pharmaceutical composition is alpha-tocopherol polyethylene glycol succinate, macrogol 15 hydroxystearate, caprylocaproyl macrogolglycerides, sorbitan monooleate ( Surfactant selected from the group consisting of sorbitan monooleate, polysorbates, polyoxyethylene-polyoxypropylene block copolymer, egg lecithin, and soybean lecithin Pharmaceutical composition, characterized in that it further comprises. 제12항에 있어서, 상기 계면활성제의 함량이 조성물 총 중량에 대하여 1∼50 중량%인 것을 특징으로 하는 약학 조성물.13. The pharmaceutical composition of claim 12, wherein the amount of the surfactant is 1-50% by weight based on the total weight of the composition. 제1항에 있어서, 상기 수성 매질이 증류수, 주사용수, 생리식염수, 포도당액, 및 아미노산 액으로 이루어진 군으로부터 1 종 이상 선택되는 것을 특징으로 하는 약학 조성물.The pharmaceutical composition according to claim 1, wherein the aqueous medium is selected from the group consisting of distilled water, water for injection, saline solution, glucose solution, and amino acid solution. 제1항에 있어서, 상기 나노 입자의 내부에 폴리에틸렌글리콜, 디미리스토일 포스파티딜 에탄올아민-폴리에틸렌글리콜, 콜레스테롤, 폴리프로필렌글리콜, 글리코퓨롤, 및 트리카프릴린으로 이루어진 군으로부터 1 종 이상 선택된 용해 보조제를 추가로 포함하는 것을 특징으로 하는 약학 조성물.The dissolution aid according to claim 1, wherein the nanoparticles are at least one selected from the group consisting of polyethylene glycol, dimyristoyl phosphatidyl ethanolamine-polyethylene glycol, cholesterol, polypropylene glycol, glycofurol, and tricapryline. Pharmaceutical composition, characterized in that it further comprises. 제15항에 있어서, 상기 용해 보조제의 함량이 조성물 총 중량에 대하여 0.05∼10 중량%인 것을 특징으로 하는 약학 조성물. The pharmaceutical composition according to claim 15, wherein the content of the dissolution aid is 0.05 to 10% by weight based on the total weight of the composition. 제1항에 있어서, 상기 나노 입자의 표면이 저분자 리간드로서 글루탐산, 아스파르트산, 아스파라긴산, 히스티딘, 및 알라닌으로 이루어진 군으로부터 1 종 이상 선택된 카르복실기를 갖는 아미노산을 추가로 포함하는 것을 특징으로 하는 약학 조성물.The pharmaceutical composition according to claim 1, wherein the surface of the nanoparticle further comprises an amino acid having at least one carboxyl group selected from the group consisting of glutamic acid, aspartic acid, aspartic acid, histidine, and alanine as a low molecular ligand. 제17항에 있어서, 상기 저분자 리간드의 함량이 조성물 총 중량에 대하여 0.005∼0.2 중량%인 것을 특징으로 하는 약학 조성물.18. The pharmaceutical composition of claim 17, wherein the content of the low molecular ligand is 0.005 to 0.2 wt% based on the total weight of the composition. 제1항에 있어서, 상기 약학 조성물이 구연산, 아세트산, 인산, 젖산, 벤조산, 말레산, 숙신산, 주석산, N-아세틸 시스테인, N-아세틸 발린, N-아세틸 프롤린, N-아세틸 알라닌으로 이루어진 군으로부터 1종 이상 선택된 pH 조절제를 추가 로 포함하는 것을 특징으로 하는 약학 조성물.The pharmaceutical composition of claim 1, wherein the pharmaceutical composition is selected from the group consisting of citric acid, acetic acid, phosphoric acid, lactic acid, benzoic acid, maleic acid, succinic acid, tartaric acid, N-acetyl cysteine, N-acetyl valine, N-acetyl proline, N-acetyl alanine Pharmaceutical composition, characterized in that it further comprises one or more selected pH adjusting agent. 제19항에 있어서, 상기 약학 조성물의 pH가 2.0∼6.0인 것을 특징으로 하는 약학 조성물.The pharmaceutical composition of claim 19, wherein the pH of the pharmaceutical composition is 2.0 to 6.0. 제1항에 있어서, 폴리비닐피롤리돈, 글리세린, 글루코오즈, 수크로오즈, 락토오즈, 소르비톨, 만니톨, 및 트레할로오즈로 이루어진 군으로부터 1 종 이상 선택된 분산 안정화제를 추가로 포함하는 약학 조성물.The pharmaceutical composition of claim 1 further comprising at least one dispersion stabilizer selected from the group consisting of polyvinylpyrrolidone, glycerin, glucose, sucrose, lactose, sorbitol, mannitol, and trehalose. Composition. 제1항 내지 제21항 중 어느 한 항에 따른 나노-분산액 형태의 약학 조성물을 동결건조, 회전증발건조(rotary evaporation drying), 분무건조(spray drying), 또는 유동층 건조(fluidized-bed drying)에 의해 건조시켜 얻어진, 표적 지향을 위한 나노 입자.A pharmaceutical composition in the form of a nano-dispersion according to any one of claims 1 to 21 is subjected to lyophilization, rotary evaporation drying, spray drying, or fluidized-bed drying. Nanoparticles for target orientation, obtained by drying. (a) 치료학적으로 유효한 양의 항암제, 2가 또는 3가의 전이금속 이온 또는 알카리 토금속 이온, 및 오일을 포함하는 유상(oil phase)을 제조하는 단계;(a) preparing an oil phase comprising a therapeutically effective amount of an anticancer agent, a divalent or trivalent transition metal ion or an alkaline earth metal ion, and an oil; (b) 히알루론산 또는 그의 염을 수성 매질에 용해시켜 수상(aqueous phase)을 얻는 단계; 및(b) dissolving hyaluronic acid or a salt thereof in an aqueous medium to obtain an aqueous phase; And (c) 단계(a)에서 얻어진 유상과 단계(b)에서 얻어진 수상을 혼합하고 균질화하여 평균 입자경 10 ∼ 1,000 nm의 나노 입자로서 히알루론산 또는 그의 염이 표 면 상에 결합된 나노 입자를 형성시키는 단계(c) mixing and homogenizing the oil phase obtained in step (a) and the water phase obtained in step (b) to form nanoparticles having hyaluronic acid or a salt thereof bound to the surface as nanoparticles having an average particle diameter of 10 to 1,000 nm. step 를 포함하는, 표적 지향을 위한 나노-분산액 형태의 약학 조성물의 제조방법.Including a method for producing a pharmaceutical composition in the form of nano-dispersion for the target orientation. 제23항에 있어서, 상기 약학 조성물이 계면활성제를 추가로 포함하는 것을 특징으로 하는 제조방법.The method of claim 23, wherein the pharmaceutical composition further comprises a surfactant. 제23항에 있어서, 상기 유상이 폴리에틸렌글리콜, 디미리스토일 포스파티딜 에탄올아민-폴리에틸렌글리콜, 폴리프로필렌글리콜, 글리코퓨롤, 및 트리카프릴린으로 이루어진 군으로부터 1 종 이상 선택된 용해 보조제를 추가로 포함하는 것을 특징으로 하는 제조방법.The method of claim 23, wherein the oil phase further comprises a dissolution aid selected from the group consisting of polyethylene glycol, dimyristoyl phosphatidyl ethanolamine-polyethylene glycol, polypropylene glycol, glycofurol, and tricapryline. Manufacturing method characterized in that. 제23항에 있어서, 상기 수상이 저분자 리간드로서 카르복실기를 갖는 아미노산을 추가로 용해시켜 얻어지는 것을 특징으로 하는 제조방법.The production method according to claim 23, wherein the aqueous phase is obtained by further dissolving an amino acid having a carboxyl group as a low molecular ligand. 제23항 내지 제26항 중 어느 한 항에 있어서, 상기 수상이 폴리비닐피롤리돈, 글리세린, 글루코오즈, 수크로오즈, 락토오즈, 소르비톨, 만니톨, 및 트레할로오즈로 이루어진 군으로부터 1 종 이상 선택된 분산 안정화제를 추가로 용해시켜 얻어지는 것을 특징으로 하는 제조방법.27. The composition of any one of claims 23 to 26, wherein the aqueous phase is selected from the group consisting of polyvinylpyrrolidone, glycerin, glucose, sucrose, lactose, sorbitol, mannitol, and trehalose. A method of producing the above-mentioned dispersion stabilizer by further dissolving. 제23항 내지 제27항 중 어느 한 항에 따른 제조방법에 의해 얻어진 나노-분산액 형태의 약학 조성물을 건조시키는 단계를 포함하는, 표적 지향을 위한 나노 입자의 제조방법.28. A method for preparing nanoparticles for target orientation, comprising the step of drying the pharmaceutical composition in nano-dispersion form obtained by the process according to any one of claims 23 to 27. 제28항에 있어서, 상기 건조가 동결건조, 회전증발건조, 분무건조, 또는 유동층 건조에 의해 수행되는 것을 특징으로 하는 제조방법.29. The method of claim 28, wherein said drying is performed by lyophilization, rotary evaporation drying, spray drying, or fluid bed drying.
KR1020090112718A 2009-11-20 2009-11-20 Nano particles for tumor-targeting and processes for the preparation thereof KR20110056042A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020090112718A KR20110056042A (en) 2009-11-20 2009-11-20 Nano particles for tumor-targeting and processes for the preparation thereof
PCT/KR2010/008149 WO2011062420A2 (en) 2009-11-20 2010-11-18 Nanoparticles for tumor-targeting and processes for the preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090112718A KR20110056042A (en) 2009-11-20 2009-11-20 Nano particles for tumor-targeting and processes for the preparation thereof

Publications (1)

Publication Number Publication Date
KR20110056042A true KR20110056042A (en) 2011-05-26

Family

ID=44060189

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090112718A KR20110056042A (en) 2009-11-20 2009-11-20 Nano particles for tumor-targeting and processes for the preparation thereof

Country Status (2)

Country Link
KR (1) KR20110056042A (en)
WO (1) WO2011062420A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104788A1 (en) * 2012-12-28 2014-07-03 Chong Kun Dang Pharmaceutical Corp. Sustained-release lipid pre-concentrate of anionic pharmacologically active substances and pharmaceutical composition comprising the same
WO2014165672A1 (en) * 2013-04-06 2014-10-09 Igdrasol, Inc. Nanoparticle therapeutic agents, their formulations, and methods of their use
KR102067490B1 (en) * 2019-05-21 2020-01-20 주식회사 티젤바이오 Hydrogel/nanoparticle composite with temperature sol-gel transition for sustained drug release

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101494594B1 (en) 2011-08-30 2015-02-23 주식회사 종근당 Sustained-release lipid pre-concentrate of pharmacologically active substance and pharmaceutical composition comprising the same
CN102871963A (en) * 2012-10-19 2013-01-16 浙江大学 Paclitaxel lipid nanoparticle injection liquid with anti-tumor activity
EP3291838A4 (en) * 2015-05-05 2019-01-02 B.G. Negev Technologies and Applications Ltd. Anionic nanoparticles for use in the delivery of anionic small molecule drugs
CN105534957B (en) * 2016-02-26 2018-05-08 暨南大学 A kind of core-shell structure nanometer particle of reduction/enzyme/pH multiple responses drug release
CN105663083B (en) * 2016-02-26 2018-12-14 暨南大学 Chitosan-based high medicine-carried nano particles of one kind and the preparation method and application thereof
CN105902496B (en) * 2016-04-18 2019-10-25 沈阳药科大学 A kind of processing method of nanosuspension solidification process
CN109937046A (en) * 2016-09-09 2019-06-25 艾利西斯股份有限公司 Liposome anti-cancer composition
CN106539798B (en) * 2016-11-03 2019-10-18 同济大学 A kind of preparation method and medicinal application of magnesium (II) -5 FU 5 fluorouracil nanosizing particle
CN110917360B (en) * 2019-11-27 2021-04-27 武汉理工大学 Preparation method and application of adriamycin-methotrexate combined drug delivery nano delivery system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1302534B1 (en) * 1998-12-21 2000-09-05 Fidia Advanced Biopolymers Srl INJECTABLE, BIOCOMPATIBLE AND BIODEGRADABLE COMPOSITIONS INCLUDING AT LEAST A DERIVATIVE OF HYALURONIC ACID, CHONDROGENIC CELLS, FOR
JP4790911B2 (en) * 1999-01-13 2011-10-12 アルケミア オンコロジー ピーティワイ リミテッド Compositions and methods for enhancing the efficacy of drugs
DE19932157A1 (en) * 1999-07-13 2001-01-18 Pharmasol Gmbh Process for the gentle production of ultra-fine microparticles and nanoparticles
US6593308B2 (en) * 1999-12-03 2003-07-15 The Regents Of The University Of California Targeted drug delivery with a hyaluronan ligand
KR20090040979A (en) * 2007-10-23 2009-04-28 주식회사유한양행 Nano-particles for targeting comprising hyaluronic acid or its salt, metal ion, and water-insoluble biodegradable polymer and processes for the preparation thereof
US8586062B2 (en) * 2007-12-24 2013-11-19 Sun Pharma Advanced Research Company Ltd. Nanodispersion
EP2271314A4 (en) * 2008-03-28 2013-12-25 Univ Massachusetts Compositions and methods for the preparation of nanoemulsions
AU2008354007A1 (en) * 2008-04-04 2009-10-08 Robert Rodriguez Lipid-oil-water nanoemulsion delivery system for microtubule-interacting agents

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104788A1 (en) * 2012-12-28 2014-07-03 Chong Kun Dang Pharmaceutical Corp. Sustained-release lipid pre-concentrate of anionic pharmacologically active substances and pharmaceutical composition comprising the same
WO2014165672A1 (en) * 2013-04-06 2014-10-09 Igdrasol, Inc. Nanoparticle therapeutic agents, their formulations, and methods of their use
KR102067490B1 (en) * 2019-05-21 2020-01-20 주식회사 티젤바이오 Hydrogel/nanoparticle composite with temperature sol-gel transition for sustained drug release

Also Published As

Publication number Publication date
WO2011062420A2 (en) 2011-05-26
WO2011062420A3 (en) 2011-10-27

Similar Documents

Publication Publication Date Title
KR20110056042A (en) Nano particles for tumor-targeting and processes for the preparation thereof
Zhang et al. Convection enhanced delivery of cisplatin-loaded brain penetrating nanoparticles cures malignant glioma in rats
Trushina et al. Calcium carbonate vaterite particles for drug delivery: Advances and challenges
Choi et al. Emerging nanomaterials with advanced drug delivery functions; focused on methotrexate delivery
Lin et al. GSH-responsive SN38 dimer-loaded shape-transformable nanoparticles with iRGD for enhancing chemo-photodynamic therapy
Choi et al. Inhalable self-assembled albumin nanoparticles for treating drug-resistant lung cancer
Jia et al. A novel dexamethasone-loaded liposome alleviates rheumatoid arthritis in rats
Paroha et al. Recent advances and prospects in gemcitabine drug delivery systems
Wang et al. RGD peptide conjugated liposomal drug delivery system for enhance therapeutic efficacy in treating bone metastasis from prostate cancer
Hou et al. Low molecular weight heparin-all-trans-retinoid acid conjugate as a drug carrier for combination cancer chemotherapy of paclitaxel and all-trans-retinoid acid
JP6595463B2 (en) Formulations useful for the treatment of proliferative diseases affecting the respiratory tract
EP2664324B1 (en) Nanocapsules with a polymer shell
Xiao et al. Structure-based design of charge-conversional drug self-delivery systems for better targeted cancer therapy
Zhang et al. Doxorubicin-loaded star-shaped copolymer PLGA-vitamin E TPGS nanoparticles for lung cancer therapy
US20140294967A1 (en) Stable nanocomposition comprising paclitaxel, process for the preparation thereof, its use and pharmaceutical compositions containing it
CN109771663B (en) Preparation and application of acid-responsive anticancer nano-drug
WO2014155142A1 (en) Stable nanocomposition comprising doxorubicin, process for the preparation thereof, its use and pharmaceutical compositions containing it
Zhang et al. The anticancer efficacy of paclitaxel liposomes modified with low-toxicity hydrophobic cell-penetrating peptides in breast cancer: an in vitro and in vivo evaluation
JP2018521068A (en) Improved nanoparticle delivery system
Vanza et al. Nanocarrier centered therapeutic approaches: Recent developments with insight towards the future in the management of lung cancer
Ao et al. Low density lipoprotein modified silica nanoparticles loaded with docetaxel and thalidomide for effective chemotherapy of liver cancer
US20140296173A1 (en) Stable nanocomposition comprising epirubicin, process for the preparation thereof, its use and pharmaceutical compositions containing it
US9283285B2 (en) Stable nanocomposition comprising docetaxel, process for the preparation thereof, its use and pharmaceutical compositions containing it
Zhang et al. Tumor-targeted delivery of honokiol via polysialic acid modified zein nanoparticles prevents breast cancer progression and metastasis
Gaafar et al. Pegylated liquisomes: A novel combined passive targeting nanoplatform of L-carnosine for breast cancer

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination