KR20110054952A - Zebrafish model for inflammatory disease and screening method of anti-inflammatory agent using the same - Google Patents

Zebrafish model for inflammatory disease and screening method of anti-inflammatory agent using the same Download PDF

Info

Publication number
KR20110054952A
KR20110054952A KR1020090111784A KR20090111784A KR20110054952A KR 20110054952 A KR20110054952 A KR 20110054952A KR 1020090111784 A KR1020090111784 A KR 1020090111784A KR 20090111784 A KR20090111784 A KR 20090111784A KR 20110054952 A KR20110054952 A KR 20110054952A
Authority
KR
South Korea
Prior art keywords
inflammatory
zebrafish
disease
lps
oxldl
Prior art date
Application number
KR1020090111784A
Other languages
Korean (ko)
Other versions
KR101146821B1 (en
Inventor
조경현
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to KR1020090111784A priority Critical patent/KR101146821B1/en
Publication of KR20110054952A publication Critical patent/KR20110054952A/en
Application granted granted Critical
Publication of KR101146821B1 publication Critical patent/KR101146821B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5082Supracellular entities, e.g. tissue, organisms
    • G01N33/5088Supracellular entities, e.g. tissue, organisms of vertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/10Animals modified by protein administration, for non-therapeutic purpose
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/40Fish
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/775Apolipopeptides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Environmental Sciences (AREA)
  • Cell Biology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

PURPOSE: A zebra fish model for inflammatory diseases and a method for screening an anti-inflammatory agent using the same are provided to screen effective anti-inflammatory agent without side effects. CONSTITUTION: A method for screening an anti-inflammatory agent using zebra fish model comprises: a step of treating one selected from the group consisting of lipopolysaccharides, oxidized low-density lipoprotein, and saccharification apolipoprotein to the zebra fish; and a step of administering a candidate drug to the zebra fish and evaluating the development and apoptosis of an embryo. The inflammatory diseases are inflammatory dermatitis, glomerulus nephritis, inflammatory bowel disease, inflammatory collagen vascular disease, osteoarthritis, inflammatory eye disease, IgA nephropathy, rheumatoid arthritis, post-vaccinal encephalomyelitis, and diabetes.

Description

염증성 질환용 제브라피쉬 모델 및 이를 이용한 항염증제의 스크리닝 방법{Zebrafish model for inflammatory disease and screening method of anti-inflammatory agent using the same}Zebrafish model for inflammatory disease and screening method of anti-inflammatory agent using the same

본 발명은 염증성 질환을 예방하거나 치료할 수 있는 약물을 개발하는 데에 매우 유용한, 염증성 질환용 제브라피쉬 모델 및 이를 이용한 항염증제의 스크리닝 방법에 관한 것이다. The present invention relates to a zebrafish model for inflammatory diseases and a screening method of an anti-inflammatory agent using the same, which is very useful for developing a drug capable of preventing or treating an inflammatory disease.

염증은 거의 모든 만성 대사성 질환의 주요한 원인이며 심혈관계 질환에서 중요한 역할을 수행한다. 고밀도 지단백질(high-density lipoprotein; HDL)은 혈장에서 강력한 항산화 및 항염증 분자이며, HDL-콜레스테롤 수준은 심혈관계 질환의 위험도와 역의 상관관계를 나타낸다. 정상 apoA-I(native apoA-I, nA-I)는 마우스 및 인간에 주입할 경우 in vitroin vivo에서 LDL 지질과산화수소 제거를 통해 항산화 및 항염증 활성을 나타내는 HDL의 주요한 구성요소이다. 게다가, apoA-I을 함유하는 재구성 HDL(rHDL)은 엔도톡신 또는 지질다당류(LPS)의 독성을 중화시켜 염증을 감소시키는 것으로 알려져 있다.Inflammation is a major cause of almost all chronic metabolic diseases and plays an important role in cardiovascular disease. High-density lipoprotein (HDL) is a potent antioxidant and anti-inflammatory molecule in plasma, and HDL-cholesterol levels are inversely correlated with the risk of cardiovascular disease. Normal apoA-I (nA-I) is a major component of HDL that exhibits antioxidant and anti-inflammatory activity through the removal of LDL lipid peroxide in vitro and in vivo when injected into mice and humans. In addition, reconstituted HDL (rHDL) containing apoA-I is known to reduce inflammation by neutralizing the toxicity of endotoxin or lipopolysaccharide (LPS).

세포 또는 조직에서의 급성 염증 상태를 모방하기 위하여, LPS 처리가 폭넓 게 사용되어 왔다. 고용량의 LPS를 복강으로 주사하면 포유동물에서 독성을 나타내는 것으로 잘 알려져 있다. 그러나, apoA-I는 LPS를 중화시키거나 무독화 시킴으로써 보호 효과를 나타내는 것으로 제안되어 왔다. 인간 apoA-I의 발현이 마우스 모델에서 LPS-유도성 염증을 감소시키는 것으로 알려져 있다.In order to mimic acute inflammatory conditions in cells or tissues, LPS treatment has been widely used. Injection of high doses of LPS into the abdominal cavity is well known to be toxic in mammals. However, apoA-I has been proposed to show a protective effect by neutralizing or detoxifying LPS. Expression of human apoA-I is known to reduce LPS-induced inflammation in mouse models.

apoA-I는 항동맥경화 및 항염증성 단백질이며, HDL의 주요한 구성성분이다. 성숙한 인간 apoA-I는 243개의 아미노산의 단일 폴리펩타이드 사슬로 구성되며, 이는 11개 및 22개의 아미노산 상동성 반복을 지닌다. 21개의 라이신 및 16개의 아르기닌 잔기가 당화에 감수성이 있는 것으로 알려져 있고, 아르기닌, 라이신 및 트립신 잔기가 메틸글리옥살 처리에 의해 45-55% 변형되는 것으로 알려져 있다.apoA-I is an anti-arteriosclerosis and anti-inflammatory protein and a major component of HDL. Mature human apoA-I consists of a single polypeptide chain of 243 amino acids, which has 11 and 22 amino acid homology repeats. Twenty-one lysine and sixteen arginine residues are known to be susceptible to glycosylation, and arginine, lysine and trypsin residues are known to be 45-55% modified by methylglyoxal treatment.

그러나, apoA-I의 유익한 기능은 당화, 질화 및 염소화와 같은 화학적 변형에 의해 손상될 수 있다. apoA-I의 당화는 조절되지 않는 당뇨 및 노화를 지닌 환자의 중요한 특징 중 하나이다. 당화된 아포지단백질은 손상된 항염증활성 및 증가된 감염 감수성을 지닌 당뇨 환자의 혈장에서 자주 발견된다. However, the beneficial function of apoA-I may be impaired by chemical modifications such as glycosylation, nitrification and chlorination. Glycosylation of apoA-I is an important feature of patients with uncontrolled diabetes and aging. Glycosylated apolipoproteins are frequently found in the plasma of diabetic patients with impaired anti-inflammatory activity and increased susceptibility to infection.

제브라피쉬는 포유동물의 면역시스템과 매우 흡사한 선천성 및 후천성 면역 시스템이 잘 개발된 동물로써, 발생 시 제브라피쉬 배아는 외부로 발생되며 광학적으로 투명하다. 이러한 특징으로 인해 제브라피쉬는 다양한 연구를 위하여 유용한 동물 모델로서 사용되고 있다. Zebrafish are well-developed innate and acquired immune systems that are very similar to the mammalian immune system. When they occur, zebrafish embryos are externally generated and are optically transparent. These characteristics make zebrafish a useful animal model for a variety of studies.

한편, 다양한 염증성 질환의 치료제로는 프레드니솔론과 같은 스테로이드에 의한 염증 억제제, 나프록센과 같은 비스테로이드성 항염치료제(nonsteroidal anti-inflammatory drugs; NSAID) 및 사이클로스포린이나 FK506과 같이 칼슘 및 칼 모듈린 의존성 단백인산화 효소인 칼시뉴린(calcineurin)에 결합하여 그 작용을 억제하는 면역억제제가 가장 많이 사용되고 왔다.On the other hand, therapeutic agents for various inflammatory diseases include inflammatory inhibitors by steroids such as prednisolone, nonsteroidal anti-inflammatory drugs (NASAIDs) such as naproxen, and calcium and calmodine dependent protein kinase enzymes such as cyclosporin or FK506. Inhibitors that bind to and inhibit the action of phosphorus calcineurin (calcineurin) have been most used.

그러나 이러한 스테로이드를 비롯한 면역억제제들은 신독성, 감염, 임파종, 당뇨병, 진전(tremor), 두통, 설사, 고혈압, 오심, 신기능 장애 등의 부작용이 따르게 된다.However, these steroids and immunosuppressive agents are accompanied by side effects such as renal toxicity, infection, lymphoma, diabetes, tremor, headache, diarrhea, high blood pressure, nausea, renal dysfunction.

따라서, 효능이 좋으면서도 부작용이 적은 항염증제를 개발하기 위한 스크리닝 방법의 개발이 절실히 필요하다.Therefore, there is an urgent need for the development of screening methods for developing anti-inflammatory agents with good efficacy and low side effects.

상기 종래기술의 문제점을 해결하기 위하여, 본 발명자는 LPS 및 oxLDL에 의해 유도된 염증을 나타내는 제브라피쉬 배아를 이용하여 지질 결합 상태에서 정상 아포지단백(native ApoA-I, nA-I) 및 당화 아포지단백(glycated apoA-I, gA-I)의 항염증 활성을 비교 검토함으로써 본 발명을 완성하였다.In order to solve the problems of the prior art, the inventors of the present invention, using a zebrafish embryo showing inflammation induced by LPS and oxLDL, native ApoA-I (nA-I) and glycosylated apolipoprotein in lipid binding state The present invention was completed by comparing and examining the anti-inflammatory activity of (glycated apoA-I, gA-I).

이에, 본 발명의 목적은 제브라피쉬에 지질다당류(LPS), 산화된 저밀도지단백(oxLDL) 및 당화 아포지단백(gA-I)으로 이루어진 군에서 선택된 어느 하나의 물질을 처리하여 얻어진 새로운 염증성 질환용 제브라피쉬 모델을 제공하는 데에 있다.Accordingly, an object of the present invention is a zebra for a new inflammatory disease obtained by treating any one substance selected from the group consisting of lipopolysaccharide (LPS), oxidized low density lipoprotein (oxLDL) and glycated apolipoprotein (gA-I) in zebrafish To provide a fish model.

또한, 본 발명의 다른 목적은 상기 제브라피쉬 모델을 이용한 항염증제의 스크리닝 방법을 제공하는 데에 있다.Another object of the present invention is to provide a method for screening an anti-inflammatory agent using the zebrafish model.

상기 목적을 달성하기 위하여, 본 발명은 제브라피쉬에 지질다당류(LPS), 산화된 저밀도지단백(oxLDL) 및 당화 아포지단백(gA-I)으로 이루어진 군에서 선택된 어느 하나의 물질을 처리하여 얻어진 염증성 질환용 제브라피쉬 모델을 제공한다.In order to achieve the above object, the present invention is an inflammatory disease obtained by treating any one substance selected from the group consisting of lipopolysaccharide (LPS), oxidized low density lipoprotein (oxLDL) and glycated apolipoprotein (gA-I) in zebrafish Provides a zebrafish model for

상기 염증성 질환으로는, 예를들어 염증성 장질환, 염증성 콜라겐 혈관 질환, 사구체신염, 염증성 피부 질환, 골관절염, 결막염과 같은 염증성 안질환, IgA 신증, 류마티스 관절염, 뇌척수염, 제1형 당뇨, 당뇨성 신염 및 전신 홍반성 낭창으로 이루어진 군에서 선택된 어느 하나의 질환일 수 있고, 바람직하게는 급성 염 증성 질환일 수 있지만, 이에 한정되는 것은 아니다. The inflammatory diseases include, for example, inflammatory bowel disease, inflammatory collagen vascular disease, glomerulonephritis, inflammatory skin disease, osteoarthritis, inflammatory eye diseases such as conjunctivitis, IgA nephropathy, rheumatoid arthritis, encephalomyelitis, type 1 diabetes, diabetic nephritis And systemic lupus erythematosus can be any one selected from the group consisting of, preferably an acute inflammatory disease, but is not limited thereto.

또한, 본 발명은 제브라피쉬에 지질다당류(LPS), 산화된 저밀도지단백(oxLDL) 및 당화 아포지단백(gA-I)으로 이루어진 군에서 선택된 어느 하나의 물질을 처리하는 단계; 및 후보 약물을 투여한 후 배아의 발달과 사멸을 평가하는 단계를 포함하여 이루어지는 제브라피쉬를 이용한 항염증제의 스크리닝 방법을 제공한다.The present invention also provides a method of treating zebrafish with any one selected from the group consisting of lipopolysaccharide (LPS), oxidized low density lipoprotein (oxLDL) and glycated apolipoprotein (gA-I); And it provides a method for screening anti-inflammatory drugs using zebrafish comprising the step of evaluating the development and death of the embryo after administration of the candidate drug.

상기 배아의 발달과 사멸을 평가하는 단계는 현미경을 통한 형태 관찰과 각종 에세이 등을 포함하지만, 이에 한정되는 것은 아니다.Evaluating the development and death of the embryo includes, but is not limited to, morphological observation through a microscope and various assays.

또한, 본 발명은 제브라피쉬에 지질다당류(LPS), 산화된 저밀도지단백(oxLDL) 및 당화 아포지단백(gA-I)으로 이루어진 군에서 선택된 어느 하나의 물질을 처리하는 단계; 및 후보 약물을 투여한 후, 아포지단백의 당화 수준을 평가하는 단계를 포함하여 이루어지는 제브라피쉬를 이용한 항염증제의 스크리닝 방법을 제공한다.The present invention also provides a method of treating zebrafish with any one selected from the group consisting of lipopolysaccharide (LPS), oxidized low density lipoprotein (oxLDL) and glycated apolipoprotein (gA-I); And after the candidate drug is administered, evaluating the glycosylation level of the apolipoprotein.

상기 아포지단백의 당화 수준을 평가하는 단계는 형광 분석 또는 전기영동을 통해 평가할 수 있으며, 특히 형광 분석은 370nm (excitation) 및 440nm (emission)에서 형광 강도를 측정하여 평가할 수 있다. 또한, 전기영동과 단백질분석액체크로마토그래피(FPLC)를 통해 평가할 수 있으며, 당화 아포지단백(gA-I)은 단백질 가수분해성 분해에 감수성이 높다.Evaluating the glycosylation level of the apolipoprotein can be evaluated by fluorescence analysis or electrophoresis, in particular fluorescence analysis can be evaluated by measuring the fluorescence intensity at 370nm (excitation) and 440nm (emission). In addition, it can be evaluated by electrophoresis and protein analysis liquid chromatography (FPLC), glycosylated apolipoprotein (gA-I) is highly susceptible to proteolytic degradation.

본 발명에 따른 제브라피쉬 모델을 이용하면, 부작용이 적으면서도 효능이 좋은 항염증제를 효과적으로 스크리닝할 수 있다. 또한 모든 약물 후보 물질의 독성과 염증 유발 등 생체내 부작용 유발 유무를 쉽고 신속하게 테스트할 수 있다. Using the zebrafish model according to the present invention, it is possible to effectively screen an effective anti-inflammatory agent with less side effects. In addition, all drug candidates can be tested quickly and easily for in vivo side effects such as toxicity and inflammation.

이하, 하기 실시예를 통해 본 발명을 보다 상세하게 설명한다. 다만, 이러한 실시예에 의해 본 발명이 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the present invention is not limited by these examples.

<실시예 1> 아포지단백질 apoA-I의 정제 및 당화Example 1 Purification and Glycation of Apolipoprotein apoA-I

Brewer et al.에 의해 제안된 방법(Brewer HB, Ronan R, Meng M, Bishop C. Isolation and characterization of apolipoprotein A-I, A-II, and A-IV. Meth Enzymol 1986; 28: 223-246)에 따라 초원심분리, 컬럼 크로마토그래피 및 유기용매 추출을 통해 인간 혈장으로부터 apoA-I를 정제하였다. 이렇게 정제된 apoA-I은 사용 전까지 -80℃에서 동결건조하여 보관하였다.According to the method proposed by Brewer et al. (Brewer HB, Ronan R, Meng M, Bishop C. Isolation and characterization of apolipoprotein AI, A-II, and A-IV.Meth Enzymol 1986; 28: 223-246) ApoA-I was purified from human plasma by ultracentrifugation, column chromatography and organic solvent extraction. The purified apoA-I was stored by lyophilization at -80 ℃ until use.

apoA-I 당화는 과량의 과당을 처리하여 수행하였다. 즉, 정제된 지질 유리 apoA-I(10 mg/mL)를 37℃에서 5% CO2 함유 공기 하에서 7일 동안 5mM D-과당[in 200mM 포타슘 포스페이트/0.02% 소듐 아자이드 완충액(pH 7.4)]과 반응시켰다. 단백질의 최종 당화 반응의 정도는 본 발명자의 선행 특허(아포지단백질 A-I의 당화 억제제 스크리닝 방법 대한민국 출원번호 10-2009-0078207, 출원일 2009년 8월 24일)에 따라 370 nm(excitation) 및 440nm(emission)에서 형광강도를 분석하여 결정하였다.apoA-I glycosylation was performed by treating excess fructose. That is, purified lipid free apoA-I (10 mg / mL) was added to 5 mM D-fructose [in 200 mM potassium phosphate / 0.02% sodium azide buffer (pH 7.4) for 7 days at 37 ° C. under 5% CO 2 containing air. Reacted with The degree of final glycosylation of the protein was determined according to the inventor's prior patents (methods of screening glycosylation inhibitors of apolipoprotein AI, Republic of Korea Application No. 10-2009-0078207, filed Aug. 24, 2009). Was determined by analyzing the fluorescence intensity.

<실시예 2> nA-I 및 gA-I를 이용한 재구성 HDL(rHDL) 합성Example 2 Reconstituted HDL (rHDL) Synthesis Using nA-I and gA-I

Reconstituted HDL (rHDL)의 제조는 본 발명자의 선행 논문(Mol Cells., 27: 291-297, 2009)과 선행 특허(대한민국 출원번호 10-2008-0043537)에 기재된 방법에 따라 인지질(POPC)과 콜레스테롤과 apoA-I와 소듐 콜레이트를 사용하여, 95:5:1:150의 몰비율에서 소듐 콜레이트 투석을 통해 인지질이중막을 갖는 당화되지 않은 apoA-I(nA-I) 및 당화 apoA-I(gA-I)를 포함하는 재조합 HDL을 합성하였다. Preparation of Reconstituted HDL (rHDL) was carried out according to the method described in our prior art ( Mol Cells., 27: 291-297, 2009) and in the prior patent (Korean Application No. 10-2008-0043537). And unglycosylated apoA-I (nA-I) and glycosylated apoA-I (gA-) with phospholipid double membranes through sodium cholate dialysis at a molar ratio of 95: 5: 1: 150 with apoA-I and sodium cholate Recombinant HDL comprising I) was synthesized.

<실시예 3> 제브라피쉬 배아를 이용한 항염증 효과 검토Example 3 Examination of Anti-inflammatory Effects Using Zebrafish Embryo

1) 제브라피쉬 배아 준비1) Zebrafish Embryo Preparation

제브라피쉬 및 배아를 표준법(Nusslein-Volhard, C., Dahm, R. Zebrafish: A Practical Approach. Oxford University Press, 2002)에 따라 관리하였다. 제브라피쉬 및 배아는 10:14 시간 명암주기 하에서 28℃에서 시스템 케이지 및 6웰 플레이트에서 사육되었다.Zebrafish and embryos were administered according to standard methods (Nusslein-Volhard, C., Dahm, R. Zebrafish: A Practical Approach. Oxford University Press, 2002). Zebrafish and embryos were bred in system cages and 6-well plates at 28 ° C. under 10:14 hour light cycles.

2) LPS 또는 oxLDL 처리2) LPS or oxLDL treatment

수정 후 4-5시간된 배아의 내부로 자성 조종기[MM33; Kantee, Bensenville, IL, USA; with a pulled microcapillary pipette-using device(PC-10)]을 구비한 pneumatic picopump(PV820; World Precision Instruments, Sarasota, FL, USA)를 이용하여 LPS 또는 oxLDL을 미세주입하였다. 실험오차를 최소화 하기 위하여, 난황의 동일 부위에 미세주입을 수행하였다. 이때, nA-I-rHDL 또는 gA-I-rHDL를 제브라피쉬 배아에 함께 주입하거나 주입하지 않았다.Magnetic controller into the embryo 4-5 hours after fertilization [MM33; Kantee, Bensenville, IL, USA; LPS or oxLDL were microinjected using a pneumatic picopump (PV820; World Precision Instruments, Sarasota, FL, USA) equipped with a pulled microcapillary pipette-using device (PC-10). In order to minimize the experimental error, microinjection was performed at the same site of egg yolk. At this time, nA-I-rHDL or gA-I-rHDL were injected or not injected into zebrafish embryos.

LPS(L4130, Escherichia coli 0111:B4, Sigma, St. Louis, MO, USA)의 필터 멸균 용액을 배아의 플라스크에 200ng까지(최종양, 50nL) 주입한 후, 살아있는 배 아를 입체현미경(Motic SMZ 168) 하에서 관찰하였고, Motic cam2300 CCD 카메라를 이용하여 촬영하였다.After injecting the filter sterilization solution of LPS (L4130, Escherichia coli 0111: B4, Sigma, St. Louis, MO, USA) up to 200 ng (final, 50 nL) into the flask of the embryo, live embryos were subjected to stereomicroscopy (Motic SMZ 168). ), And photographed using a Motic cam2300 CCD camera.

또한, 상기 oxLDL을 다음과 같이 준비하였다. 즉, LDL(1.019<d<1.063)을 표준법(J Clin Invest, 34: 1345-53, 1955)에 따라 초원심분리에 의해 인간 혈장으로부터 정제하였다. 이때, LDL의 밀도는 NaCl의 첨가로 조정하며, Himac CP-90α(Hitachi)를 이용하여 100,000g, 10℃에서 22시간 동안 원심분리하였다. 산화 LDL(oxLDL)은 LDL(1.019<d<1.063) 분획을 CuSO4(최종농도, 10μM)와 37℃에서 4시간 동안 반응시켜 제조하였다. LDL은 영남대학교 의료원의 혈액은행으로부터 제공받은 정상인의 혈청으로부터 정제하였다. 그후, oxLDL을 여과하고, 티오바비츄릭산 반응성 기질(TBARS) 분석을 통해 산화 정도를 결정하였다. In addition, the oxLDL was prepared as follows. That is, LDL (1.019 <d <1.063) was purified from human plasma by ultracentrifugation according to the standard method (J Clin Invest, 34: 1345-53, 1955). At this time, the density of the LDL was adjusted by the addition of NaCl, was centrifuged for 22 hours at 100,000g, 10 ℃ using Himac CP-90α (Hitachi). Oxidized LDL (oxLDL) was prepared by reacting an LDL (1.019 <d <1.063) fraction with CuSO 4 (final concentration, 10 μM) at 37 ° C. for 4 hours. LDL was purified from the serum of normal persons received from the blood bank of Yeungnam University Medical Center. The oxLDL was then filtered and the degree of oxidation was determined via thiobarbic acid reactive substrate (TBARS) analysis.

또한, 제브라피쉬 배아에 nA-I-rHDL 또는 gA-I-rHDL을 처리한 후, 28℃에서 6웰 플레이트에서 LPS을 함유한 물(최종농도 100㎍/mL)에 담구었다.The zebrafish embryos were also treated with nA-I-rHDL or gA-I-rHDL and then immersed in water containing LPS (final concentration 100 μg / mL) in 6-well plates at 28 ° C.

3) 결과3) results

도 1a와 같이, LPS 처리가 제브라피쉬 배아의 죽음을 초래하였다. 200ng의 LPS 처리에 의해 대략 85%의 배아가 죽었다. 그러나, LPS(200ng) 및 nA-I-rHDL(50ng)을 함께 처리한 경우에는 제브라피쉬 배아의 생존율이 크게 향상되어, 48시간 동안 45%만 죽었으며 반면, LPS와 gA-I-rHDL을 함께 처리한 경우에는 배아의 78%까지 죽었다. As in FIG. 1A, LPS treatment resulted in the death of zebrafish embryos. Approximately 85% of embryos were killed by 200ng of LPS treatment. However, treatment with LPS (200 ng) and nA-I-rHDL (50 ng) significantly improved the survival rate of zebrafish embryos, resulting in only 45% of deaths for 48 hours, while LPS and gA-I-rHDL were combined. If treated, up to 78% of embryos died.

도 1b는 정해진 시간에 따른 발생 단계를 나타낸 것으로, LPS와 gA-I-rHDL 동시 처리군을 제외하고는 처리 후 6시간까지 모든 배아는 건강하였다. 처리 후 50시간에서, LPS 처리군 및 LPS와 gA-I-rHDL 동시 처리군은 각각 85% 및 78% 배아가 죽었다.Figure 1b shows the developmental stage over time, all embryos were healthy up to 6 hours after treatment, except for LPS and gA-I-rHDL simultaneous treatment group. At 50 hours post-treatment, 85% and 78% embryos died in the LPS and LPS and gA-I-rHDL co-treated groups, respectively.

도 2a와 같이, LPS 함유 물(100 ㎍/mL)에 제브라피쉬 배아를 담근 경우에는 유의성있는 치사율을 유도하지 않았다. nA-I-rHDL 주입 배아는 비슷한 생존율을 나타낸 반면, gA-I-rHDL 주입 배아는 20% 정도의 낮은 생존율을 나타내었다. 처리 후 11시간 및 28시간에 광학현미경으로 관찰한 바와 같이(도 2b), gA-I-rHDL은 LPS 존재 하에서 제브라피쉬 배아의 발달에 해로운 효과를 나타냄을 알 수 있다. 또한, gA-I-rHDL을 처리한 배아는 nA-I-rHDL 및 완충액 주입 배아와 비교하여 49시간 후 발달 속도가 훨씬 늦었다.As shown in FIG. 2A, zebrafish embryos in LPS-containing water (100 μg / mL) did not induce significant mortality. nA-I-rHDL injected embryos showed similar survival, while gA-I-rHDL injected embryos had a low survival rate of 20%. As observed by light microscopy at 11 and 28 hours after treatment (FIG. 2B), gA-I-rHDL showed a detrimental effect on the development of zebrafish embryos in the presence of LPS. In addition, embryos treated with gA-I-rHDL developed much slower after 49 hours compared to nA-I-rHDL and buffer injected embryos.

또한, 도 3a와 같이 배아에 50 nl의 oxLDL(1mg/ml 단백질, 250nM MDA/mg 단백질)을 주입하면 치사율을 증가시켰다(처리 후 48시간 시 30% 생존율). 정상 LDL(60nM MDA/mg 단백질)을 배아에 주입하면 50% 이상의 생존율을 나타내므로, oxLDL은 배아에서 보다 세포독성이 있는 것을 알 수 있다.In addition, injection of 50 nl of oxLDL (1 mg / ml protein, 250 nM MDA / mg protein) into the embryo increased mortality as shown in FIG. 3A (30% survival rate at 48 hours after treatment). Injecting normal LDL (60 nM MDA / mg protein) into the embryo shows a survival rate of 50% or higher, indicating that oxLDL is more cytotoxic in embryos.

그러나, 동시에 oxLDL 및 nA-I-rHDL 처리 시에는 대략 70%로 생존율이 증가한 반면, oxLDL 및 gA-I-rHDL 혼합물 처리 시에는 18% 생존율을 나타내었다. 따라서, nA-I-rHDL 처리는 oxLDL 주입에 의한 세포독성을 예방하는 반면, gA-I-rHDL 처리는 oxLDL에 의한 배아 발달 지연 및 죽음을 조장하였다.However, at the same time, the survival rate was increased to approximately 70% when treated with oxLDL and nA-I-rHDL, while the survival rate was 18% when treated with oxLDL and gA-I-rHDL mixtures. Thus, nA-I-rHDL treatment prevented cytotoxicity by oxLDL injection, whereas gA-I-rHDL treatment promoted embryonic development delay and death by oxLDL.

도 1a는 아포지단백(apoA-I)의 당화되기 전과 후의 전기영동 패턴으로서, 레인 1은 당화처리 이전의 순수한 apoA-I(nA-I)이며, 레인 2는 당화 반응된 apoA-I(gA-I)이며, 레인 M은 분자량 표준 물질이고(BioRad, low-range standard),Figure 1a is an electrophoretic pattern before and after glycosylation of apolipoprotein (apoA-I), lane 1 is pure apoA-I (nA-I) before glycosylation, lane 2 is glycosylated apoA-I (gA- I), lane M is the molecular weight standard (BioRad, low-range standard),

도 1b는 수정 후 1일째에 LPS와 함께 nA-I-rHDL 또는 gA-I-rHDL을 처리한 제브라피쉬 배아의 생존능을 나타낸 것이고,1B shows the viability of zebrafish embryos treated with nA-I-rHDL or gA-I-rHDL with LPS at 1 day post fertilization,

도 1c는 LPS와 함께 nA-I-rHDL 또는 gA-I-rHDL을 처리한 제브라피쉬 배아의 시간 의존적 변화를 나타낸 것이고,FIG. 1C shows time dependent changes of zebrafish embryos treated with nA-I-rHDL or gA-I-rHDL with LPS,

도 2a는 nA-I-rHDL 또는 gA-I-rHDL을 처리한 후, LPS를 함유하는 물에 노출된 제브라피쉬 배아의 생존능을 나타낸 것이고,2A shows the viability of zebrafish embryos exposed to water containing LPS after treatment with nA-I-rHDL or gA-I-rHDL,

도 2b는 nA-I-rHDL 또는 gA-I-rHDL을 처리한 후, LPS를 함유하는 물에 노출된 제브라피쉬 배아의 시간 의존적 변화를 나타낸 것이고,2B shows the time dependent change of zebrafish embryos exposed to water containing LPS after treatment with nA-I-rHDL or gA-I-rHDL,

도 3a는 oxLDL과 함께 nA-I-rHDL 또는 gA-I-rHDL을 처리한 제브라피쉬 배아의 생존능을 나타낸 것이고,Figure 3a shows the viability of zebrafish embryos treated with nA-I-rHDL or gA-I-rHDL with oxLDL,

도 3b는 oxLDL과 함께 nA-I-rHDL 또는 gA-I-rHDL을 처리한 후 49시간 째의 제브라피쉬 배아의 변화를 나타낸 것이다.Figure 3b shows the change in zebrafish embryos 49 hours after treatment with nA-I-rHDL or gA-I-rHDL with oxLDL.

Claims (5)

제브라피쉬에 지질다당류(LPS), 산화된 저밀도지단백(oxLDL) 및 당화 아포지단백(gA-I)으로 이루어진 군에서 선택된 어느 하나의 물질을 처리하여 얻어진 염증성 질환용 제브라피쉬 모델.A zebrafish model for inflammatory diseases obtained by treating zebrafish with any one selected from the group consisting of lipopolysaccharide (LPS), oxidized low density lipoprotein (oxLDL), and glycated apolipoprotein (gA-I). 청구항 1에 있어서, 상기 염증성 질환은 염증성 장질환, 염증성 콜라겐 혈관 질환, 사구체신염, 염증성 피부 질환, 골관절염, 염증성 안질환, IgA 신증, 류마티스 관절염, 뇌척수염, 제1형 당뇨, 당뇨성 신염 및 전신 홍반성 낭창으로 이루어진 군에서 선택된 어느 하나의 질환인 염증성 질환용 제브라피쉬 모델.The method of claim 1, wherein the inflammatory disease is inflammatory bowel disease, inflammatory collagen vascular disease, glomerulonephritis, inflammatory skin disease, osteoarthritis, inflammatory eye disease, IgA nephropathy, rheumatoid arthritis, encephalomyelitis, type 1 diabetes, diabetic nephritis and systemic redness Zebrafish model for inflammatory diseases, which is any one disease selected from the group consisting of seminal lupus. 제브라피쉬에 지질다당류(LPS), 산화 저밀도지단백(oxLDL) 및 당화 아포지단백(gA-I)으로 이루어진 군에서 선택된 어느 하나의 물질을 처리하는 단계; 및Treating zebrafish with any one material selected from the group consisting of lipopolysaccharide (LPS), oxidized low density lipoprotein (oxLDL), and glycated apolipoprotein (gA-I); And 후보 약물을 투여한 후 배아의 발달과 사멸을 평가하는 단계Evaluating embryo development and death after administration of candidate drug 를 포함하여 이루어지는 제브라피쉬를 이용한 항염증제의 스크리닝 방법.Screening method of anti-inflammatory agent using zebrafish comprising a. 제브라피쉬에 지질다당류(LPS), 산화 저밀도지단백(oxLDL) 및 당화 아포지단백(gA-I)으로 이루어진 군에서 선택된 어느 하나의 물질을 처리하는 단계; 및Treating zebrafish with any one material selected from the group consisting of lipopolysaccharide (LPS), oxidized low density lipoprotein (oxLDL), and glycated apolipoprotein (gA-I); And 후보 약물을 투여한 후 당화 수준을 평가하는 단계Assessing glycation levels after administration of the candidate drug 를 포함하여 이루어지는 제브라피쉬를 이용한 항염증제의 스크리닝 방법.Screening method of anti-inflammatory agent using zebrafish comprising a. 청구항 4에 있어서, 상기 아포지단백의 당화 수준을 평가하는 단계는 형광 분석 또는 전기영동을 통해 평가하는 제브라피쉬를 이용한 항염증제의 스크리닝 방법.The method of claim 4, wherein the evaluating the glycosylation level of the apolipoprotein is evaluated by fluorescence analysis or electrophoresis.
KR1020090111784A 2009-11-19 2009-11-19 Zebrafish model for inflammatory disease and screening method of anti-inflammatory agent using the same KR101146821B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090111784A KR101146821B1 (en) 2009-11-19 2009-11-19 Zebrafish model for inflammatory disease and screening method of anti-inflammatory agent using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090111784A KR101146821B1 (en) 2009-11-19 2009-11-19 Zebrafish model for inflammatory disease and screening method of anti-inflammatory agent using the same

Publications (2)

Publication Number Publication Date
KR20110054952A true KR20110054952A (en) 2011-05-25
KR101146821B1 KR101146821B1 (en) 2012-05-21

Family

ID=44364054

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090111784A KR101146821B1 (en) 2009-11-19 2009-11-19 Zebrafish model for inflammatory disease and screening method of anti-inflammatory agent using the same

Country Status (1)

Country Link
KR (1) KR101146821B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105044317A (en) * 2015-08-26 2015-11-11 广东省微生物研究所 Method for predicating embryotoxicity of non-steroidal anti-inflammatory drug type novel pollutants on early-phase life stage of zebra fish
CN108982826A (en) * 2018-09-28 2018-12-11 广东工业大学 Test device and test method of a kind of zebra fish detection nano particle to embryotoxicity
CN112075388A (en) * 2020-10-20 2020-12-15 中国水产科学研究院淡水渔业研究中心 Method for constructing lipopolysaccharide-induced fish multi-organ injury model
CN112245596A (en) * 2020-11-09 2021-01-22 浙江大学 Method for screening drug effect substances based on zebra fish inflammatory bowel disease model
CN112997926A (en) * 2020-12-17 2021-06-22 中国科学院水生生物研究所 Method for evaluating components for relieving food-borne enteritis based on zebra fish juvenile fish imaging model
CN113491255A (en) * 2021-06-16 2021-10-12 温州大学 Construction method and application of obese type II diabetic zebra fish model
WO2022169302A1 (en) * 2021-02-05 2022-08-11 서울대학교산학협력단 Infection-related disease model, preparation method thereof, and screening method for immunoactive substances
CN116369249A (en) * 2023-01-13 2023-07-04 四川轻化工大学 Construction method of zebra fish enteritis model
WO2024005358A1 (en) * 2022-06-30 2024-01-04 (주)레이델코리아 Zebrafish animal model for inflammatory diseases and method for screening anti-inflammatory agents using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102066109B1 (en) 2017-11-17 2020-01-15 (주)아모레퍼시픽 A method for screening materials for suppressing immunocyte migration using exosomes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0301972D0 (en) * 2003-01-28 2003-02-26 Daniolabs Ltd Method for identifying novel treatments
JP5250810B2 (en) * 2006-05-31 2013-07-31 公益財団法人ヒューマンサイエンス振興財団 Screening for substances that enhance utrophin gene expression

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105044317A (en) * 2015-08-26 2015-11-11 广东省微生物研究所 Method for predicating embryotoxicity of non-steroidal anti-inflammatory drug type novel pollutants on early-phase life stage of zebra fish
CN108982826A (en) * 2018-09-28 2018-12-11 广东工业大学 Test device and test method of a kind of zebra fish detection nano particle to embryotoxicity
CN108982826B (en) * 2018-09-28 2024-03-26 广东工业大学 Test device and test method for detecting embryotoxicity of nano particles by zebra fish
CN112075388A (en) * 2020-10-20 2020-12-15 中国水产科学研究院淡水渔业研究中心 Method for constructing lipopolysaccharide-induced fish multi-organ injury model
CN112075388B (en) * 2020-10-20 2022-08-23 中国水产科学研究院淡水渔业研究中心 Method for constructing lipopolysaccharide-induced fish multi-organ injury model
CN112245596B (en) * 2020-11-09 2022-01-18 浙江大学 Method for screening drug effect substances based on zebra fish inflammatory bowel disease model
CN112245596A (en) * 2020-11-09 2021-01-22 浙江大学 Method for screening drug effect substances based on zebra fish inflammatory bowel disease model
CN112997926B (en) * 2020-12-17 2021-12-28 中国科学院水生生物研究所 Method for evaluating components for relieving food-borne enteritis based on zebra fish juvenile fish imaging model
CN112997926A (en) * 2020-12-17 2021-06-22 中国科学院水生生物研究所 Method for evaluating components for relieving food-borne enteritis based on zebra fish juvenile fish imaging model
WO2022169302A1 (en) * 2021-02-05 2022-08-11 서울대학교산학협력단 Infection-related disease model, preparation method thereof, and screening method for immunoactive substances
CN113491255B (en) * 2021-06-16 2022-07-15 温州大学 Construction method and application of obese type II diabetic zebra fish model
CN113491255A (en) * 2021-06-16 2021-10-12 温州大学 Construction method and application of obese type II diabetic zebra fish model
WO2024005358A1 (en) * 2022-06-30 2024-01-04 (주)레이델코리아 Zebrafish animal model for inflammatory diseases and method for screening anti-inflammatory agents using same
CN116369249A (en) * 2023-01-13 2023-07-04 四川轻化工大学 Construction method of zebra fish enteritis model
CN116369249B (en) * 2023-01-13 2024-05-17 四川轻化工大学 Construction method of zebra fish enteritis model

Also Published As

Publication number Publication date
KR101146821B1 (en) 2012-05-21

Similar Documents

Publication Publication Date Title
KR101146821B1 (en) Zebrafish model for inflammatory disease and screening method of anti-inflammatory agent using the same
Asthana et al. IAPP in type II diabetes: Basic research on structure, molecular interactions, and disease mechanisms suggests potential intervention strategies
Abderrazak et al. NLRP3 inflammasome: from a danger signal sensor to a regulatory node of oxidative stress and inflammatory diseases
ES2831329T3 (en) Peptide that has antidiabetic and antiobesity effects, and its use
Leman et al. Molecules that mimic apolipoprotein AI: potential agents for treating atherosclerosis
Goldsmith et al. Think small: zebrafish as a model system of human pathology
Luisa Mangoni et al. Naturally occurring peptides from Rana temporaria: antimicrobial properties and more
Carty et al. SARM: From immune regulator to cell executioner
DE69231062T3 (en) Morphogen-induced modulation of inflammatory responses
JP2006518375A (en) Use of cathelicidin LL-37 and their derivatives for wound healing
WO2013116482A1 (en) Process of afod and afcc and manufacturing and purification processes of proteins
Pirillo et al. Treating high density lipoprotein cholesterol (HDL-C): quantity versus quality
Takayama et al. Development of potent myostatin inhibitory peptides through hydrophobic residue-directed structural modification
Zlotkin et al. On the membranal action of pardaxin
Gou et al. A novel apoA‐I mimetic peptide suppresses atherosclerosis by promoting physiological HDL function in apoE−/− mice
Calabresi et al. Recombinant apolipoprotein A-IMilano for the treatment of cardiovascular diseases
Zhang et al. Thioredoxin‐Interacting Protein (TXNIP) Knockdown Protects against Sepsis‐Induced Brain Injury and Cognitive Decline in Mice by Suppressing Oxidative Stress and Neuroinflammation
KR101736280B1 (en) Pharmaceutical composition for preventing and treating arthritis
Spinelli et al. Non-existence of shunts between afferent and efferent arterioles of juxtamedullary glomeruli in dog and rat kidneys
RU2306617C1 (en) Method for modeling experimental amyloidosis in animals
Schenk et al. Annelid coelomic fluid proteins
Moran et al. Safety assessment of Apoaequorin, a protein preparation: Subchronic toxicity study in rats
Okubo et al. Precision engineered peptide targeting leukocyte extracellular traps mitigate acute kidney injury in Crush syndrome
CN1218405A (en) Treatment of cystic disease with TNF-&#39;alpha&#39;
Tiron et al. Thyroid gland parenchyma morphological abnormalities in rats on the third day after skin thermal burning

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150601

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160509

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180509

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190502

Year of fee payment: 8