KR20110046378A - Power Saving Method in Wireless Communication System - Google Patents

Power Saving Method in Wireless Communication System Download PDF

Info

Publication number
KR20110046378A
KR20110046378A KR1020100106255A KR20100106255A KR20110046378A KR 20110046378 A KR20110046378 A KR 20110046378A KR 1020100106255 A KR1020100106255 A KR 1020100106255A KR 20100106255 A KR20100106255 A KR 20100106255A KR 20110046378 A KR20110046378 A KR 20110046378A
Authority
KR
South Korea
Prior art keywords
frame
mode
information
data
carrier sensing
Prior art date
Application number
KR1020100106255A
Other languages
Korean (ko)
Other versions
KR101774366B1 (en
Inventor
이일구
이석규
정현규
김대식
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to KR1020100106255A priority Critical patent/KR101774366B1/en
Publication of KR20110046378A publication Critical patent/KR20110046378A/en
Application granted granted Critical
Publication of KR101774366B1 publication Critical patent/KR101774366B1/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

PURPOSE: A power saving method in a wireless communication system is provided to control the sampling ratio of a modem processor and to increase power consumption efficiency in a wireless communication system. CONSTITUTION: A network node sets up a network management data on a network(602). The network node or a network control device subscribes one theme(604). The network control device or the network node notices data(606). The network control device or the managed object network node receives network management data based on a data distribution service(608).

Description

무선 통신 시스템에서 파워 세이빙 방법{METHOD FOR SAVING POWER IN A WIRELESS COMMUNICATION SYSTEM}METHOD FOR SAVING POWER IN A WIRELESS COMMUNICATION SYSTEM}

본 발명은 고속 무선 통신 시스템의 자원 활용률을 높이고 전력 소비를 줄이기 위한 방법 및 제어 장치에 관한 것이다.
The present invention relates to a method and control apparatus for increasing resource utilization and reducing power consumption of a high speed wireless communication system.

무선 통신 시스템이 발전하고, 이동 중 이용 가능한 고용량 멀티미디어 콘텐츠에 대한 수요가 증가함에 따라 무선 통신 시스템은 전송 속도를 향상시키는 노력을 기울여왔다. 고속 이동 중 인터넷을 이용하기 위한 와이브로(Wibro)와 저속 이동 중 고화질 영상의 실시간 감상이 가능한 무선랜(Wireless LAN)이 대표적인 예이다. 무선랜을 예로 들어 설명하면, IEEE 802.11a/g 표준에서는 단일 안테나로 2.4GHz 혹은 5GHz 대역에서 20MHz 대역폭을 이용하여 54Mbps 물리 계층 전송 속도가 가능해졌으며, IEEE 802.11n 표준에서는 최대 4개의 안테나와 40MHz 대역폭까지 지원 가능하여 600Mbps 물리 계층(Physical Layer) 전송 속도(Data Rate)를 지원하고 있다.As wireless communication systems evolve and the demand for high-capacity multimedia content available on the move increases, wireless communication systems have made efforts to improve transmission speeds. Wibro for using the Internet during high-speed movement and Wireless LAN that enables real-time viewing of high-definition video during low-speed movement is a typical example. Using the WLAN as an example, the IEEE 802.11a / g standard enables a 54Mbps physical layer transmission rate using a 20 MHz bandwidth in the 2.4 GHz or 5 GHz band with a single antenna, and up to four antennas and a 40 MHz bandwidth in the IEEE 802.11n standard. It can support up to 600Mbps Physical Layer Data Rate.

현재 더 높은 전송 속도를 보장하기 위한 차세대 무선랜(Next Generation Wireless LAN)으로 802.11n 표준의 다음 버전에 대한 표준화가 논의되고 있다. 통상IEEE 802.11n 표준을 HT(High Throughput) 모드로 부르고, IEEE 802.11a/b/g 모드를 레거시(Legacy) 모드로 불러왔다. 반면에 IEEE 802.11ac/ad에서 새로 논의 중인 표준은 VHT(Very High Throughput) 모드라고 부른다.Currently, standardization of the next version of the 802.11n standard is being discussed as Next Generation Wireless LAN to ensure higher transmission rates. The IEEE 802.11n standard is commonly referred to as HT (High Throughput) mode and the IEEE 802.11a / b / g mode is called Legacy mode. On the other hand, a new standard under discussion in IEEE 802.11ac / ad is called Very High Throughput (VHT) mode.

고속의 데이터를 신뢰성 높게 처리하기 위해 최신 무선 통신 시스템은 과거의 기술에 비해 복잡해지고 있다. 전송 속도 향상 기술로서 여러 개의 채널을 묶어 전송하는 채널 본딩 기술이 적용되고, 보다 높은 고차원 변조 방식과 채널 코딩 방식이 도입되었고, 다중 안테나를 사용하여 전송 속도를 높이는 기술에서 더 나아가 다중 사용자에게 동시에 전송하는 기술이 연구 개발되고 있다. 이와 같은 복잡한 송수신 기술로 인해 무선 통신 시스템의 사이즈가 커지고 회로가 복잡해지고 있다. 뿐만 아니라 고속의 데이터 전송을 위해 종래보다 더 넓은 대역폭을 사용하여 데이터를 전송함으로써 디지털-아날로그 변환기(Digital-to-Analog Converter)와 아날로그-디지털 변환기(Analog-to-Digital Converter), 모뎀 프로세서의 요구 동작 주파수(Required Operating Frequency)가 증가되었다. 이와 같은 기술적인 배경으로 제한된 주파수 자원을 효율적으로 사용하고 노이즈를 줄이기 위한 수신기 최적화 기술로서 동적 채널 대역폭 활용 기술 및 고속 데이터 전송이 가능한 무선 통신 시스템 설계를 위한 저전력 설계(Low Power Design)가 중요한 이슈가 되었다.Modern wireless communication systems are becoming more complex than in the past to handle high-speed data reliably. As a transmission speed improvement technology, channel bonding technology that bundles and transmits multiple channels is applied, a higher high-order modulation method and a channel coding method are introduced, and a technology that increases transmission speed by using multiple antennas is transmitted simultaneously to multiple users. Technology is being researched and developed. Such complicated transmission and reception techniques are increasing the size of the wireless communication system and the complexity of the circuit. In addition, the transmission of data using a wider bandwidth than in the past for high speed data transmission requires the demand of digital-to-analog converters, analog-to-digital converters and modem processors. The Required Operating Frequency has been increased. With this technical background, as a receiver optimization technology to efficiently use limited frequency resources and reduce noise, low power design is important for designing a wireless communication system capable of using dynamic channel bandwidth and high-speed data transmission. It became.

또한, 무선랜은 제한된 주파수 대역에서 동작하게 되는데, 160MHz 대역폭(20MHz 대역 8개 본딩)은 상대적으로 매우 넓은 대역이며, 이로 인해 간섭 및 다양한 표준을 지원하는 단말 간의 공존(Coexistence) 문제가 발생할 것이다. 이러한 다중 전송 모드 프레임을 신뢰성 높게 검출하기 위해 데이터 프레임 전에 선행 정보를 제어 프레임을 통해 단말에 알려줌으로써 수신단을 최적화시키는 기술이 요구된다.
In addition, the WLAN is operated in a limited frequency band, the 160MHz bandwidth (8 bonds of 20MHz band) is a relatively wide band, which will cause interference and coexistence (Coexistence) problem between the terminals supporting various standards. In order to reliably detect such a multi-transmission mode frame, a technique for optimizing a receiver by informing a terminal through a control frame of preceding information before a data frame is required.

따라서 본 발명에서는 물리 계층과 MAC 계층에서 동시에 저전력 설계하는 기술과 저전력 기술의 효율성을 향상시키기 위한 전송 방법 및 그 제어 장치를 제공한다.Accordingly, the present invention provides a transmission method and a control device for improving the efficiency of the low-power technology and low-power design at the same time in the physical layer and MAC layer.

또한 차세대 무선 랜에서 사용하는 채널 대역폭에 따라 아날로그 디지털 변환 장치 또는 디지털 아날로그 변환 장치와 모뎀 프로세서의 샘플링 속도 및 모뎀 프로세서의 샘플링 속도를 제어하여 전력 소비 효율을 향상시키기 위한 방법 및 그 제어 장치를 제공한다.The present invention also provides a method and a control device for improving the power consumption efficiency by controlling the sampling rate of the analog-to-digital converter or the digital-to-analog converter and the modem processor and the sampling rate of the modem processor according to the channel bandwidth used in the next generation WLAN. .

또한, 본 발명에서는 노이즈를 절감하고 수신단의 구성을 수신할 프레임의 종류에 따라 최적화시키기 위한 선행 정보를 제어 프레임에 포함하여 전송하는 방법 및 장치를 제공한다.
In addition, the present invention provides a method and apparatus for transmitting the information including the preceding information in the control frame to reduce noise and optimize the configuration of the receiver according to the type of the frame to receive.

본 발명의 일 실시 예에 따른 방법은, 서로 다른 둘 이상의 대역폭 전송 모드를 갖는 무선 통신 시스템에서 프레임의 송신 방법으로, 요청 프레임 전송 시 채널 상태 정보 또는 송신할 데이터 프레임 모드 정보를 포함하여 전송하는 과정과, 수신 노드로부터 채널 상태 정보 또는 상기 수신 가능한 데이터 프레임 모드 정보를 포함하는 상기 요청 프레임에 대한 응답 프레임 수신 시 상기 응답 프레임 수신 시 포함된 채널 상태 정보 혹은 수신 가능한 데이터 프레임 모드 정보에 근거하여 상기 데이터 프레임을 생성하여 전송하는 과정을 포함한다.According to an embodiment of the present invention, a method of transmitting a frame in a wireless communication system having two or more different bandwidth transmission modes includes a process of transmitting channel state information or data frame mode information to be transmitted when a request frame is transmitted. And the data based on the channel state information included in the response frame or the receivable data frame mode information when receiving the response frame for the request frame including the channel state information or the receivable data frame mode information from the receiving node. Generating and transmitting a frame.

본 발명의 다른 실시 예에 따른 방법은, 서로 둘 이상의 대역폭 전송 모드를 갖는 무선 통신 시스템에서 파워 세이빙 방법으로, 제어 프레임 수신 시 상기 대역폭 모드 중 가장 낮은 샘플링 속도를 갖는 모드로 제어 프레임을 수신하도록 설정하여 상기 제어 프레임을 수신하는 과정과, 상기 제어 프레임 수신 후 데이터 패킷을 송/수신을 위해 가장 높은 샘플링 속도를 갖는 모드로 상기 데이터 패킷을 송/수신하도록 설정하여 상기 데이터 패킷을 송/ 수신하는 과정을 포함한다.The method according to another embodiment of the present invention is a power saving method in a wireless communication system having two or more bandwidth transmission modes, and when the control frame is received, the control frame is set to receive the mode having the lowest sampling rate among the bandwidth modes. Receiving the control frame and transmitting and receiving the data packet by setting the data packet to be transmitted / received in a mode having the highest sampling rate for transmitting / receiving the data packet after the control frame is received. It includes.

본 발명의 또 다른 실시 예에 따른 방법은, 캐리어 센싱을 통해 데이터의 송/수신을 수행하는 무선 통신 시스템에서 파워 세이빙 방법으로, 상기 캐리어 센싱이 필요하지 않은 더즈 모드(Doze Mode)에서 상기 더즈 모드 해제를 위한 타이머에만 전원을 투입하고, 물리 계층과 맥(MAC) 계층 전체에 전원을 차단하는 과정과, 상기 캐리어 센싱이 필요한 경우 상기 캐리어 센싱에 필요한 물리(PHY) 계층과 맥(MAC) 계층에만 전원을 투입하는 과정과, 상기 캐리어 센싱 후 데이터 송/수신이 필요한 경우 데이터 송/수신에 필요한 경로에만 전원을 투입하는 과정을 포함한다.The method according to another embodiment of the present invention is a power saving method in a wireless communication system that transmits / receives data through carrier sensing, and the doze mode in a doze mode in which the carrier sensing is not required. Powering only a timer for the release, powering off the entire physical layer and the MAC layer, and if the carrier sensing is necessary, only the physical (PHY) layer and the MAC layer required for the carrier sensing. And powering on only a path required for data transmission / reception when data transmission / reception is required after the carrier sensing.

본 발명의 또 다른 실시 예에 따른 방법은, 서로 다른 둘 이상의 전송 모드를 가지며, 캐리어 센싱을 통해 데이터의 송/수신을 수행하는 무선 통신 시스템에서 파워 세이빙 방법으로, 상기 캐리어 센싱이 필요하지 않은 더즈 모드(Doze Mode)에서 상기 더즈 모드 해제를 위한 타이머에만 전원을 투입하고, 물리 계층과 맥(MAC) 계층 전체에 전원을 차단하는 과정과, 상기 캐리어 센싱 필요시 상기 서로 다른 모드 중 가장 낮은 샘플링 속도를 갖는 모드로 캐리어 센싱하도록 설정하여 상기 캐리어 센싱을 수행하는 과정과, 상기 캐리어 센싱 후 데이터 패킷의 송/수신을 위해 가장 높은 전송률을 갖는 모드로 상기 데이터 패킷을 송/수신하도록 설정하여 상기 데이터 패킷을 송/ 수신하는 과정을 포함한다.
The method according to another embodiment of the present invention is a power saving method in a wireless communication system having two or more different transmission modes and performing data transmission / reception through carrier sensing, wherein the carrier sensing is not required. Powering only a timer for releasing the doze mode in a doze mode, powering off the entire physical layer and the MAC layer, and the lowest sampling rate among the different modes when the carrier sensing is required Performing the carrier sensing by setting to sense a carrier in a mode having a mode, and setting the data packet to transmit / receive the data packet in a mode having a highest transmission rate for transmitting / receiving a data packet after the carrier sensing. It includes the process of sending / receiving.

본 발명의 구성에 따르면, 고속 무선 통신 시스템의 동작 모드와 프레임 포맷에 따라 단말의 샘플링 속도와 전원 공급 블록을 선택적으로 변환함으로써 전력 소비 효율을 향상시킬 수 있다. 또한 본 발명을 사용함으로써 종래의 MAC 계층의 제어로 이루어진 저전력 모드의 단점을 보완할 수 있고, 더 넓은 대역폭을 사용함과 동시에 복잡해질 차세대 무선랜의 전력 소비 효율을 향상시킬 수 있게 된다.
According to the configuration of the present invention, the power consumption efficiency can be improved by selectively converting the sampling rate and the power supply block of the terminal according to the operation mode and the frame format of the high speed wireless communication system. In addition, by using the present invention it is possible to compensate for the shortcomings of the low power mode made of the control of the conventional MAC layer, it is possible to improve the power consumption efficiency of the next-generation WLAN to be complicated at the same time using a wider bandwidth.

도 1a 및 도 1b는는 3개의 수신 경로를 갖는 무선 통신 단말의 블록 다이어그램,
도 2는 본 발명에 따른 저전력 모드 변환 천이에 따른 순서도,
도 3은 본 발명에 따른 4가지 수신 모드의 동작 원리의 이해를 돕기 위한 타이밍도,
도 4는 크로스 계층 저전력 모드2의 상태 천이도,
도 5는 본 발명에 따른 전력을 조정 단계의 이해를 돕기 위한 타이밍 다이어 그램,
도 6은 본 발명의 실시 예에 따른 다중 채널 저전력 모드 시의 천이 과정에 따른 흐름도,
도 7 및 도 8은 본 발명의 다른 실시 예에 따라 노이즈 절감 및 다중 모드 프레임의 공존을 위한 타이밍도를 도시한 도면,
도 9는 공존 기본 서비스 셋(OBSS, Overlapped Basic Service Set) 상황에서 본 발명의 동작을 설명하기 위한 도면.
1A and 1B are block diagrams of a wireless communication terminal having three receive paths;
2 is a flowchart of a low power mode conversion transition according to the present invention;
3 is a timing diagram to help understand the operating principle of the four reception modes according to the present invention;
4 is a state transition diagram of cross-layer low power mode 2;
5 is a timing diagram for aiding in understanding the step of adjusting power in accordance with the present invention;
6 is a flowchart illustrating a transition process in a multi-channel low power mode according to an embodiment of the present invention;
7 and 8 are timing diagrams for noise reduction and coexistence of a multi-mode frame according to another embodiment of the present invention;
9 is a diagram for explaining the operation of the present invention in the condition of an overlapped basic service set (OBSS).

이하 본 발명의 바람직한 실시 예들의 상세한 설명이 첨부된 도면들을 참조하여 설명될 것이다. 하기 설명에서 구체적인 특정 사항들이 나타나고 있는데, 이는 본 발명의 보다 전반적인 이해를 돕기 위해 제공된 것이다. 그리고 본 발명을 설명함에 있어, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a detailed description of preferred embodiments of the present invention will be given with reference to the accompanying drawings. Specific details are set forth in the following description, which is provided to provide a more thorough understanding of the present invention. In the following description of the present invention, detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

본 발명은 고속 무선 통신 시스템을 위한 전력 소비 효율 향상 방법 및 제어 기술에 관한 것이다. 본 발명은 크게 세 가지 구성 요소로 나뉘며, 각각의 구성 요소는 독립적으로 동작 가능하거나 연동되어 동작 가능하다. 첫째는 3가지 크로스 계층 저전력 모드이고, 둘째는 저전력 모드의 효율성 향상을 위한 전송 방법, 셋째는 다중 채널 저전력 모드(Multi Channel Power Save Mode, MC PS Mode)와 공간 다중화 저전력 모드(Spatial Multiplexing Power Save Mode, SM PS Mode)를 이용한 저전력 기술이다.The present invention relates to a method and a control technique for improving power consumption efficiency for a high speed wireless communication system. The present invention is largely divided into three components, each of which can be operated independently or in conjunction with each other. The first is three cross-layer low power modes, the second is a transmission method for improving the efficiency of the low power mode, and the third is a multi-channel low power mode (MC PS Mode) and a spatial multiplexing power save mode. Low power technology using SM PS Mode.

먼저 일반적인 CMOS 회로의 소비 전력(Power Consumption, P)에 대하여 살펴보기로 한다. CMOS 회로의 소비 전력(P)은 하기 <수학식 1>과 같이 모델링된다.
First, power consumption (P) of a general CMOS circuit will be described. The power consumption P of the CMOS circuit is modeled as in Equation 1 below.

Figure pat00001
Figure pat00001

<수학식 1>에서 Pdynamic은 동적 소비 전력량(Dynamic Power Consumption)을 의미하고, Pstatic은 정적 소비 전력량(Static Power Consumption)을 의미하며, C는 스위칭되는 총 전기 용량(Switched Total Capacitance)을 의미하고, VSig는 전압 스윙폭(Voltage Swing)을 의미하며, VDD는 공급 전력(Supply Power)을 의미하고, fo는 동작 주파수(Operating Frequency)를 의미하며, nt는 클럭 당 하나의 플립플롭(Flip-Flop)이 천이되는 횟수를 의미한다.In Equation 1, P dynamic stands for Dynamic Power Consumption, P static stands for Static Power Consumption, and C stands for Switched Total Capacitance. , V Sig means Voltage Swing, V DD means Supply Power, f o means Operating Frequency, and n t is one flip per clock. The number of times the flip-flop transitions.

위 <수학식 1>에 의하면 Pdynamic은 스위칭되는 총 전기 용량, 전압 스윙폭, 공급 전력, 동작 주파수, 클럭 당 하나의 플립 플롭이 천이되는 횟수에 비례한다. 또한 Pstatic은 접지 혹은 공급 전력의 잔여 전류(Residual Current)와 열잡음(Thermal Noise) 및 공정에 의한 전류에 의해 결정된다. 즉 소비 전력을 결정함에 있어 Pstatic도 중요한 요소이지만 Pstatic는 반도체 공정 및 산업 기반 기술에 의해 결정되는 값인 반면에 Pdynamic은 시스템 설계에 따라 달라지는 값이다. 시스템을 설계자의 입장에서는 동적 소비 전력량을 줄이는 것이 저전력 시스템 설계의 목표이다.According to Equation 1 above, P dynamic is proportional to the total capacitance switched, the voltage swing width, the power supply, the operating frequency, and the number of times one flip-flop transitions per clock. P static is also determined by the residual current of the ground or supply power, thermal noise, and current from the process. In other words, P static is an important factor in determining power consumption, but P static is a value determined by semiconductor process and industry-based technology, while P dynamic is a value that depends on system design. From the designer's point of view, reducing dynamic power consumption is the goal of low-power system design.

현재 논의 중인 VHT 모드는 8개 안테나 혹은 16개의 안테나까지 이용 가능하며, 80MHz 대역폭을 지원하게 될 가능성이 높다. 예를 들어 접속 중계점은 16개의 안테나를 사용하고, 단말들은 4개의 안테나를 사용하여 다중 사용자 다중 안테나(Multi-User Multiple Antenna) 기술을 적용할 수 있으며, 최대 160MHz 대역폭을 이용하여 다중 채널 전송 (Multi-Channel Transmission) 기술을 적용할 수 있게 될 예정이다.The VHT mode, currently under discussion, is available with 8 or 16 antennas and is likely to support 80 MHz bandwidth. For example, the access relay point uses 16 antennas, and the UEs can apply multi-user multiple antenna technology using 4 antennas. Multi-Channel Transmission technology will be available.

그러므로 VHT 표준 단말은 종래 표준 단말의 2배에서 8배의 안테나 개수와 대역폭을 갖게 된다. 안테나 증가에 따른 송신 경로의 증가는 회로 및 칩 사이즈의 증가를 의미하고, 이것은 곧 소비 전력의 증가를 초래한다. 또한 사용하는 대역폭의 증가는 요구 동작 주파수의 증가를 의미하며, 마찬가지로 소비 전력이 증가하게 된다.Therefore, the VHT standard terminal has two to eight times the number and bandwidth of the conventional standard terminal. An increase in transmission path with increasing antennas means an increase in circuit and chip size, which leads to an increase in power consumption. In addition, the increased bandwidth used means an increase in the required operating frequency, which in turn increases power consumption.

종래의 802.11a/b/g/n 무선랜 표준에서 사용된 저전력 기술은 802.11 레거시 PSM, 802.11e APSD(Automatic Power Save Delivery), 802.11n PSMP(Power Save Multi Poll), SM(Spatial Multiplexing) 저전력 모드 등을 사용해 왔다. 종래의 기술은 다음과 같은 문제점이 있다.The low power technologies used in the existing 802.11a / b / g / n WLAN standards include 802.11 legacy PSM, 802.11e Automatic Power Save Delivery (APSD), 802.11n Power Save Multi Poll (PSMP), and Spatial Multiplexing (SM) Low Power Mode. Etc. have been used. The prior art has the following problems.

첫째, 깨어 있는 모드(Awake Mode) 단말은 항상 수신 대기 상태에 있어야 한다. 둘째, PSM, APSD, PSMP 방식은 별도의 제어 신호와 큰 버퍼 사이즈를 요구한다. 셋째, MAC 레벨 저전력 기술은 응답 지연 시간이 소요된다. 넷째, IEEE 802.11n SM 저전력 모드 방식은 다중 안테나 시스템의 경우 효과적이지만, 여전히 단일 경로 회로들의 소비 전력 효율이 나쁘다. 다섯 번째, VHT 모드는 80MHz 대역폭을 사용할 가능성이 크며, 이 경우 아날로그 디지털 변환기와 디지털 아날로그 변환기의 샘플링 속도는 160MHz 이상이 필요하고, 이것은 종래의 11a/g와 비교했을 때 4배이다. 여섯 번째, 소비 전력은 동작 주파수와 회로 사이즈에 비례하므로 동작 주파수와 토글링 횟수 및 동작되는 회로 수를 최소화해야 하는데 종래 기술로는 한계가 있다.First, the Awake Mode terminal should always be in a waiting state for reception. Second, PSM, APSD, and PSMP methods require separate control signals and large buffer sizes. Third, MAC-level low power technology requires a response delay time. Fourth, the IEEE 802.11n SM low power mode scheme is effective for multi-antenna systems, but still has poor power consumption efficiency of single path circuits. Fifth, the VHT mode is likely to use 80 MHz bandwidth, in which case the sampling rate of the analog-to-digital converter and the digital-to-analog converter requires 160 MHz or more, which is four times that of the conventional 11a / g. Sixth, the power consumption is proportional to the operating frequency and the circuit size, so the operating frequency and the number of toggling and the number of circuits to be operated must be minimized.

이와 같은 종래의 저전력 기술은 MAC 계층에서 수행되었으나, 앞서 설명한 바와 같이 더 복잡해진 시스템의 전력 소비 효율을 향상시켜 이동 가능한 단말의 배터리 충전 주기를 연장하기 위해서는 물리 계층 기술을 사용하여 MAC 계층의 저전력 기술이 갖는 문제점을 보완하는 크로스 계층 저전력(Cross Layer Power Save) 기술이 요구된다.Although the conventional low power technology has been performed in the MAC layer, as described above, in order to improve the power consumption efficiency of a more complicated system and extend the battery charging cycle of the mobile terminal, the low power technology of the MAC layer is used. There is a need for a cross layer power save technique that compensates for this problem.

따라서 본 발명에서는 우선, 본 발명 첫 번째 구성 요소인 저전력 기술에 관해 살펴보기로 한다. 물리 계층과 MAC 계층의 저전력 모드 기술을 동시에 사용하여 전력 소비 효율을 향상시키기 위해 본 발명의 구성에서는 '크로스 계층 저전력 모드(Cross Layer Power Save Mode, CL PS Mode)'를 저전력 모드로 표현하여 서술하도록 한다.
Therefore, in the present invention, a low power technology, which is the first component of the present invention, will be described first. In order to improve the power consumption efficiency by using the low power mode technology of the physical layer and the MAC layer at the same time, in the configuration of the present invention, a cross layer power save mode (CL PS Mode) is described as a low power mode. do.

1.One. 크로스 계층 저전력 모드 1Cross Tier Low Power Mode 1

단말이 깨어 있는 구간의 수신 대기 상태에서 단말은 아날로그-디지털 변환기 혹은 디지털-아날로그 변환기 및 모뎀 프로세서의 동작 주파수를 최소화 하여 동적 소비 전력의 소비 효율을 향상시킨다. 레거시 모드는 20MHz 대역폭을 사용하고, HT 모드는 40MHz 대역폭까지 가능하며, VHT 모드는 80MHz 대역폭까지 지원 가능하다. 통상 RTS(Request to Send)와 CTS(Clear to Send) 프레임은 레거시 단말도 수신 가능하도록 레거시 모드로 송신하므로 RTS/CTS 송수신시에는 아날로그-디지털 변환기 및 디지털-아날로그 변환기를 40MHz 샘플링 속도로 동작 주파수를 사용하고, 데이터 프레임이 VHT 모드이면 80MHz 대역폭까지 지원하기 위해 160MHz 샘플링 속도를 사용하며, HT 모드이면 40MHz 대역폭까지 지원하기 위해 80MHz 샘플링 속도를 이용하며, 레거시 모드이면 그대로 40MHz 샘플링 속도의 동작 주파수를 전송하는 데이터 포맷에 따라 전환함으로써 전력 소비 효율을 향상시킬 수 있다.In a standby state in which the terminal wakes up, the terminal minimizes operating frequencies of the analog-to-digital converter, the digital-to-analog converter, and the modem processor, thereby improving the efficiency of dynamic power consumption. Legacy mode uses 20MHz bandwidth, HT mode supports up to 40MHz bandwidth, and VHT mode supports up to 80MHz bandwidth. In general, RTS (Request to Send) and CTS (Clear to Send) frames are transmitted in the legacy mode so that legacy terminals can also receive them. If the data frame is in VHT mode, 160MHz sampling rate is used to support up to 80MHz bandwidth.In HT mode, 80MHz sampling rate is used to support up to 40MHz bandwidth.In legacy mode, 40MHz sampling rate is transmitted as it is. The power consumption efficiency can be improved by switching according to the data format.

이때, 동시에 아날로그-디지털 변환기와 디지털-아날로그 변환기의 동작 주파수가 바뀌어도 기저대역 신호(Baseband Signal)가 디지털 모뎀에서 정상적으로 처리되기 위해 RF 대역 제한 필터폭(Filter Bandwidth)을 제어하고 인터폴레이터(Interpolator)와 데시메이터(Decimator)의 동작 주파수를 제어하는 과정을 포함한다. 본 발명에 따른 방법은 요청 프레임(Request Frame)과 응답 프레임(Response Frame) 예를 들어 RTS와 CTS 혹은 ACK 프레임 등의 제어 패킷에 의해 모드가 제어되는 방법 및 제어 장치를 포함한다. 즉, 본 발명에 따른 제1크로스 계층 저전력 모드를 사용함으로써 요청/응답 패킷 송수신 전의 수신 대기 상태에서 아날로그-디지털 변환기와 디지털-아날로그 변환기의 동작 주파수, 모뎀 프로세서의 동작 주파수를 최적화함으로써 동적 소비 전력 효율을 향상시킬 수 있다.At this time, even if the operating frequency of the analog-to-digital converter and the digital-to-analog converter changes, the baseband signal is controlled by the digital modem to control the RF bandwidth limiting filter width and the interpolator and the interpolator. And controlling the operating frequency of the decimator. The method according to the present invention includes a method and a control device in which a mode is controlled by a control packet such as a request frame and a response frame, for example, an RTS and a CTS or an ACK frame. In other words, by using the first cross-layer low power mode according to the present invention, the dynamic power consumption efficiency is optimized by optimizing the operating frequency of the analog-to-digital converter and the digital-to-analog converter and the operating frequency of the modem processor in the reception standby state before the request / response packet transmission and reception. Can improve.

그러면 이에 대한 방법을 구체적으로 살펴보기로 한다.This will be described in detail.

레거시/HT/VHT 혼합 모드 기본 서비스 셋에서는 요청/응답 프레임 등의 제어 신호를 송수신할 경우 호환성을 위해 통상 레거시 모드 포맷으로 전송한다. 따라서 이러한 경우 단말이 깨어 있는 모드에서 수신 대기 상태에 있는 단말은 아날로그-디지털 변환기의 샘플링 속도를 40MHz로 설정하여 소비 효율을 향상시킨다.In the legacy / HT / VHT mixed mode basic service set, when a control signal such as a request / response frame is transmitted or received, the legacy / HT / VHT mixed mode basic service set is transmitted in a legacy mode format for compatibility. Therefore, in this case, the terminal in the standby state in the terminal awake mode sets the sampling rate of the analog-to-digital converter to 40MHz to improve the consumption efficiency.

이때, RF의 중심 주파수와 아날로그 대역 제한 필터가 재구성 될 수 있다. 또한 디지털 필터의 대역 제한 필터가 재구성 될 수 있다. 또한 동시에 수신부의 데시메이터의 동작 주파수가 재구성된다.In this case, the center frequency of the RF and the analog band limiting filter may be reconfigured. Also, the band limiting filter of the digital filter can be reconstructed. At the same time, the operating frequency of the decimator of the receiver is reconfigured.

송신부의 경우 RTS/CTS를 전송할 때 디지털-아날로그 변환기의 샘플링 속도를 40MHz 대역폭으로 낮춰서 전송한다. 또한 수신부와 마찬가지로 송신부에서 RF 중심 주파수와 아날로그 대역 제한 필터, 디지털 대역 제한 필터가 재구성될 수 있다. 또한 동시에 송신부의 인터폴레이터의 동작 주파수가 재구성된다.When transmitting RTS / CTS, the transmitter lowers the sampling rate of the digital-to-analog converter to 40MHz bandwidth. In addition, as in the receiver, the RF center frequency, the analog band limiting filter, and the digital band limiting filter may be reconfigured at the transmitter. At the same time, the operating frequency of the interpolator of the transmitter is reconfigured.

이후 요청/응답 프레임을 송수신한 단말은 데이터 패킷을 송수신하기 위해 지원 가능한 최대의 동작 주파수로 전환된다. 이때, ACK를 성공적으로 수신한 단말은 전송 기회 구간이 끝나면, 다시 저전력 모드로 전환된다. 또한 ACK를 전송하고 재전송이 없음을 확인한 단말은 다시 저전력 모드로 전환된다. 이상에서 설명한 본 발명의 크로스 계층 저전력 모드 1은 종래의 기술과 함께 사용될 수 있다.
Thereafter, the terminal that transmits and receives the request / response frame is switched to the maximum operating frequency that can be supported to transmit and receive the data packet. At this time, upon successfully receiving the ACK, the terminal switches to the low power mode again after the transmission opportunity period ends. In addition, the terminal that transmits the ACK and confirms that there is no retransmission is switched back to the low power mode. The cross-layer low power mode 1 of the present invention described above may be used together with a conventional technique.

2.2. 크로스 계층 저전력 모드 2Cross Tier Low Power Mode 2

단말이 깨어 있는 구간(Awake Period)의 수신 대기 상태에서 캐리어 센싱 (Carrier Sensing) 전에는 캐리어 센싱 관련 블록에만 전력이 투입되고, 나머지 모든 블록은 전력을 차단하는 하는 기술이다. 종래의 SM 파워 세이브 기술은 다중 안테나 기술을 사용하는 무선 통신 시스템의 저전력 모드 동작을 위해 RTS와 CTS 패킷을 송수신 전에는 소수의 수신 경로만 켜고 나머지 경로는 끄는 방법을 사용했다. 이 방법은 사용하는 소수의 수신 경로 모두를 켜놓고 수신 대기 상태에 있어야 한다. 반면에 본 발명에 따른 크로스 계층 저전력 모드 2를 사용하는 경우 캐리어 센싱 이전에는 모뎀부 초단의 캐리어 센싱 관련 블록만 전력을 투입하고, 나머지는 전력을 차단하고 있다가 캐리어 센싱 이후에 나머지 부분에 전력을 투입하는 방법이다. 이를 통해 전력 소비 효율을 보다 향상시킬 수 있다. 또한 종래의 SM 파워 세이브 기술은 RTS와 CTS를 반드시 사용해야 적용 가능했지만, 본 발명에 따른 크로스 계층 저전력 모드2는 RTS와 CTS를 사용하지 않아도 적용 가능한 장점이 있다.In a standby state in which the UE wakes up, power is applied only to a carrier sensing-related block before carrier sensing, and all other blocks are cut off power before carrier sensing. In the conventional SM power save technology, only a few receive paths are turned on and the other paths are turned off before transmitting and receiving RTS and CTS packets for low power mode operation of a wireless communication system using a multi-antenna technology. This method requires that only a small number of receive paths are used and in a waiting state. On the other hand, in the case of using the cross-layer low power mode 2 according to the present invention, only the carrier sensing related block at the first stage of the modem unit is turned on before the carrier sensing, and the rest is cut off, and then power is supplied to the rest after the carrier sensing. It is a way to inject. This can further improve power consumption efficiency. In addition, although the conventional SM power save technology can be applied by using RTS and CTS, cross-layer low power mode 2 according to the present invention has an advantage that can be applied without using RTS and CTS.

그러면 본 발명에 따른 크로스 계층 저전력 모드2에 대하여 좀 더 상세히 살펴보기로 하자.Next, a cross layer low power mode 2 according to the present invention will be described in more detail.

크로스 계층 저전력 모드2는 대한민국 출원 10-2008-0127376호(US 출원번호 12/561076)의 이용 발명이다. 언급된 특허의 크로스 계층 저전력 모드2에서는 물리 계층 저전력 기술에 초점을 맞췄으나 본 발명에서는 크로스 계층 저전력 모드 기술로 개선하였으며, 크로스 계층 저전력 모드1과 연동하여 그 성능 개선의 효과가 뛰어남을 크로스 계층 저전력 모드3에서 설명할 것이다.Cross-layer low power mode 2 is the invention of the use of Korean application 10-2008-0127376 (US application No. 12/561076). The cross-layer low power mode 2 of the mentioned patent focused on the physical layer low power technology, but the present invention has been improved to the cross layer low power mode technology, and in conjunction with the cross layer low power mode 1, the effect of improving the performance is excellent. Will be explained in mode 3.

기본적으로 무선 통신 시스템의 수신단은 언제 신호가 입력될지 예측 불가능하므로 깨어있는 상태에서는 항상 수신 대기 상태로 있게 되는데, 이로 인해 수신단 회로의 동적 소비 효율이 저하된다. 본 발명은 캐리어 센싱 이전에는 캐리어 센싱 블록만 전력을 투입하고, 캐리어 센싱 이후에는 나머지 블록에 전력을 투입하는 선행 기술을 이용함과 동시에 MAC 레벨 저전력 모드인 더즈 모드(Doze Mode)일 경우에는 캐리어 센싱 블록도 전력을 차단하는(꺼져 있는) 방법을 사용하여 전력 소비 효율을 보다 향상시키는 방법을 포함한다.Basically, the receiving end of the wireless communication system is unpredictable when a signal is input, so that the receiving end is always in a waiting state in a waking state, which reduces the dynamic consumption efficiency of the receiving end circuit. According to the present invention, the carrier sensing block is used in the case of Doze mode, which is a MAC-level low power mode, while using the prior art of turning on only the carrier sensing block before the carrier sensing and powering the remaining blocks after the carrier sensing. Also included is a method of further improving power consumption efficiency using a method of shutting off (off) power.

도 1a 및 도 1b는 3개의 수신 경로를 갖는 무선 통신 단말의 블록 다이어그램이다.1A and 1B are block diagrams of a wireless communication terminal having three receive paths.

먼저 도 1a 및 도 1b에서는 다중 안테나 시스템을 예시한 도면이며, 각각의 안테나로부터 수신되는 신호를 처리하는 동일한 부분에 대하여는 참조부호를 생략하였다. 또한 참조부호가 부여되지 않은 부분은 동일한 다른 부분의 동작과 같은 동작을 수행하므로, 동일한 설명은 생략하기로 한다. 또한 도 1a 및 도 1b는 하나의 도면으로 서로 연결되는 관계를 가진다. 즉, 도 1a에서 출력된 신호는 도 1b로 입력되며, 이러한 입/출력 관계를 함께 도시하였다.First, FIG. 1A and FIG. 1B illustrate a multiple antenna system, and reference numerals are omitted for the same parts for processing signals received from each antenna. In addition, since parts to which reference numerals are not given perform the same operations as operations of the same other parts, the same description will be omitted. 1A and 1B also have a relationship connected to each other in one drawing. That is, the signal output from FIG. 1A is input to FIG. 1B, and this input / output relationship is also shown.

안테나들로부터 수신된 무선 신호를 처리하는 RF 블록(100)에서는 저잡음 증폭기(LNA)(101)와 전압제어 이득 증폭기(AGC)(102)만을 도시하였다. 안테나로부터 수신된 신호는 저잡음 증폭기(101)에서 노이즈를 억제하여 증폭하고, 이후 전압 제어 증폭기(102)에서 증폭 동작이 이루어진다. RF 블록(100)에서는 RF 주파수 대역의 신호를 원하는 대역의 신호로 변환한 후 아날로그-디지털 변환기(ADC)(111)를 통해 아날로그 신호를 디지털 신호로 변환한다. 이와 같이 변환된 디지털 신호는 직류 제어기(DC cancel)(112)와 에너지 검출기(Energy detect)(121)와 자동 이득 제어기(AGC)(131) 및 캐리어 검출 기반 포화 검출기(Saturation based carrier sense)(132)로 입력된다. 먼저 직류 제어기(112)는 디지털 신호에 포함된 직류 성분을 제거하여 출력한다. 이와 같이 직류 성분이 제거된 신호는 I/Q 채널 신호 비교기(I/Q comp.)(113)로 입력된다. I/Q 채널 신호 비교기(113)에서 출력된 신호는 버퍼(buffer)(115)와 채널 믹서(channel mixer)(141)로 입력된다. 버퍼(115)로 입력된 신호는 특정 주기 단위로 읽혀지며, 캐리어 주파수 옵셋(CFO : Carrier Frequency Offset) 조절기(116)로 입력된다. CFO 조절기(116)는 캐리어 주파수 옵셋을 검출하여 이를 조절한다.In the RF block 100 for processing radio signals received from the antennas, only a low noise amplifier (LNA) 101 and a voltage controlled gain amplifier (AGC) 102 are shown. The signal received from the antenna is amplified by suppressing noise in the low noise amplifier 101, and then an amplifying operation is performed in the voltage control amplifier 102. The RF block 100 converts a signal of an RF frequency band into a signal of a desired band and then converts an analog signal into a digital signal through an analog-to-digital converter (ADC) 111. The digital signals thus converted are DC cancel 112, energy detect 121, automatic gain controller AGC 131, and saturation based carrier sense 132. ) Is entered. First, the DC controller 112 removes and outputs a DC component included in a digital signal. The signal from which the DC component has been removed is input to the I / Q channel signal comparator (I / Q comp.) 113. The signal output from the I / Q channel signal comparator 113 is input to the buffer 115 and the channel mixer 141. The signal input to the buffer 115 is read in units of specific periods, and is input to a carrier frequency offset (CFO) controller 116. The CFO regulator 116 detects and adjusts the carrier frequency offset.

CFO 조절기(116)로부터 출력된 신호는 고속 퓨리에 변환기(117)에서 고속 퓨리에 변환된다. 즉, 시간 영역의 신호가 주파수 영역의 신호로 변환된다. 이후 위상 비교기(118)에서 위상 비교되고, MIMO 검출기(119)에서 각 안테나별 또는 각 밴드별 또는 각 스트림별 신호로 검출된다. 이와 같이 MIMO 검출기(119)에서 검출된 신호는 디맵퍼(Soft Demap)(120)에서 각 안테나별 또는 각 밴드별 또는 각 스트림별 신호를 디맵핑한다.The signal output from the CFO regulator 116 is fast Fourier transformed by the fast Fourier transformer 117. That is, the signal in the time domain is converted into the signal in the frequency domain. Then, the phase comparator 118 performs phase comparison, and the MIMO detector 119 detects each antenna, each band, or each stream. As described above, the signal detected by the MIMO detector 119 demaps the signal of each antenna, each band, or each stream in the demapper 120.

아날로그-디지털 변환기(111)에서 출력된 디지털 신호를 수신한 에너지 검출기(121)는 디지털 신호의 에너지를 검출하고, 이를 CCA(Clear Channel Assessment)(122)로 출력한다. CCA(112)는 채널에 신호가 존재하는지의 유무를 검출하여 MAC 계층으로 알린다. 그리고 아날로그-디지털 변환기(111)에서 출력된 디지털 신호를 수신하는 캐리어 센싱 기반 포화 검출기(132)는 캐리어 신호를 검출함으로써 포화 여부를 결정하고, 또한 자동 이득 제어기(131)로 제공하기 위한 신호 레벨 정보를 제공한다. 그러면 자동 이득 제어기(131)는 수신된 디지털 신호를 캐리어 센싱 기반 포화 검출기(132)로부터 수신된 신호 레벨 정보에 근거하여 저잡음 증폭기(101)와 전압제어 이득 증폭기(102)의 이득 값을 제어한다.The energy detector 121 which receives the digital signal output from the analog-to-digital converter 111 detects the energy of the digital signal and outputs it to the clear channel assessment (CCA) 122. The CCA 112 detects the presence or absence of a signal on the channel and informs the MAC layer. In addition, the carrier sensing based saturation detector 132 that receives the digital signal output from the analog-to-digital converter 111 determines the saturation by detecting the carrier signal, and also provides signal level information for providing to the automatic gain controller 131. To provide. The automatic gain controller 131 then controls the gain values of the low noise amplifier 101 and the voltage controlled gain amplifier 102 based on the received digital signal based on the signal level information received from the carrier sensing based saturation detector 132.

한편, I/Q 채널 비교기(113)에서 출력된 신호를 수신한 채널 믹서(141)는 수신된 신호를 혼합하여 출력한다. 그러면 저역 필터 및 평균기(LPF + deci/2)(142)는 수신된 신호를 저역 통과 필터링한 후 10진수의 값을 1/2로 나누어서 평균을 계산한다. 저역 필터 및 평균기(142)의 출력은 수신전계강도 측정기(W-RSSI)(123)와 캐리어 검출 기반 수신전계강도 측정부(RSSI based carrier sense)(143)와 자동 상관기(Auto correlation)(144) 및 교차 상관기(Cross correlation)(145)로 입력된다. 수신전계강도 측정기(123)는 수신된 신호의 수신전계강도를 측정하여, CCA(122)로 제공한다. 그리고 캐리어 센싱 기반 수신전계강도 측정기(143)는 캐리어가 검출되면, 검출된 캐리어 신호의 수신전계강도를 측정하여 출력한다. 그리고 자동 상관기(144)와 교차 상관기(145)는 각각 상관값을 계산하여 출력한다. CFO 추정기(146)는 CFO를 추정하고, 그 결과를 프레임 동기부(147)로 제공한다. 그러면 프레임 동기부는 캐리어 센싱 기반 수신전계강도 측정기(143)와 교차 상관기(145)와 캐리어 센싱 기반 포화 검출기(132) 및 CFO 추정기(146)로부터의 신호를 수신하여 프레임 동기를 검출한다. 또한 CFO 추정부(146)는 추정된 값을 각 안테나별로 구비되는 CRO correct(117)로 제공한다. 캐리어 센싱 기반 XCR 계산부(148)는 XCR을 계산한다.Meanwhile, the channel mixer 141 that receives the signal output from the I / Q channel comparator 113 mixes and outputs the received signal. The low pass filter and averager (LPF + deci / 2) 142 then low pass filters the received signal and divides the decimal value by one half to calculate the average. The output of the low pass filter and averager 142 is W-RSSI 123, RSSI based carrier sense 143 and auto correlation 144. ) And a cross correlation 145. The received field strength measuring instrument 123 measures the received field strength of the received signal and provides it to the CCA 122. When the carrier is detected, the carrier sensing-based received field strength measuring instrument 143 measures and outputs the received field strength of the detected carrier signal. The autocorrelator 144 and the cross correlator 145 calculate and output correlation values, respectively. The CFO estimator 146 estimates the CFO and provides the result to the frame synchronizer 147. Then, the frame synchronizer detects frame synchronization by receiving signals from the carrier sensing based receiving field strength meter 143, the cross correlator 145, the carrier sensing based saturation detector 132, and the CFO estimator 146. In addition, the CFO estimator 146 provides the estimated value to the CRO correct 117 provided for each antenna. The carrier sensing based XCR calculator 148 calculates an XCR.

또한 고속 퓨리에 변환기(117)는 고속 퓨리에 변환된 정보를 CFO 및 위상 추정기(CFO & phase est. with pilot)(151)로 제공하여 파일럿과 함께 CFO 및 위상을 추정한다. 이와 같이 추정된 위상 정보는 위상 비교기(118)로 제공된다. 뿐만 아니라 고속 퓨리에 변환기(117)는 채널 추정기(CH Est.)(152)로 정보를 제공하여 채널 추정이 이루어지도록 한다. 이와 같이 채널 추정기(152)에서 이루어진 채널 추정 정보를 이용하여 MIMO 검출기(119)는 각 스트림별 신호를 출력하게 된다.The fast Fourier transformer 117 also provides fast Fourier transformed information to the CFO & phase estimator with pilot 151 to estimate the CFO and phase with the pilot. The estimated phase information is provided to the phase comparator 118. In addition, the fast Fourier transformer 117 provides information to the channel estimator (CH Est.) 152 for channel estimation. As described above, the MIMO detector 119 outputs a signal for each stream by using the channel estimation information made by the channel estimator 152.

소프트 디맵퍼들은 각 스트림별로 디매핑을 수행하고, 디인터리버는 해당하는 디매퍼의 출력을 디인터리빙한다. 이와 같이 디인터리빙된 정보들은 역파서(Deparser)에서 필요한 정보를 삽입하고, 디코더에서 디코딩된다. 이후 디스크램블러에서 디스크램블링되어 MAC 계층으로 전송된다.The soft demappers perform demapping for each stream, and the deinterleaver deinterleaves the output of the corresponding demapper. The deinterleaved information is inserted into the information required by the deparser, and decoded by the decoder. It is then descrambled by the descrambler and transmitted to the MAC layer.

이상에서 설명한 도 1a 및 도 1b의 구성에서 전원부와 이들을 제어하기 위한 구성은 도시하지 않았다. 이들의 제어에 관한 부분은 후술되는 설명에 근거하여 동작한다. 또한 도 1a의 점선으로 표시된 부분(150)은 캐리어 센싱과 관련된 부분으로서 깨어있는 모드에서 이 부분만 전력이 투입되고 있으며(켜져 있으며), 캐리어 센싱이 되면 그 이후 블록들로도 전원이 투입된다. 또한 도 1a 및 도 1b에서 마지막의 MAC 계층을 제외한 나머지 부분은 물리 계층부에 해당한다.In the configuration of FIGS. 1A and 1B described above, a power supply unit and a configuration for controlling them are not illustrated. The part regarding these controls operates based on description mentioned later. In addition, the portion 150 indicated by a dotted line of FIG. 1A is a portion related to carrier sensing, and only this portion is turned on (turned on) in awake mode, and when the carrier is sensed, power is also supplied to subsequent blocks. In addition, except for the last MAC layer in FIGS. 1A and 1B, the remaining parts correspond to the physical layer unit.

이때, 선행 기술과의 차이점은 다음과 같다. At this time, the difference from the prior art is as follows.

1) 4 단계 크로스 계층 저전력 모드 무선 통신 시스템은 크게 더즈 모드, 깨어있는 모드의 RTS/CTS 수신 전 상태, 깨어있는 모드의 RTS/CTS 수신 후 데이터 수신 전, 데이터 수신 중 상태의 4가지 상태이다. 본 발명은 이와 같은 4가지 수신 상태에 따라 저전력 모드를 최적화하는 방법이다. 즉, 더즈 모드일 경우는 MAC의 타이머(Timer)를 제외한 모든 블록을 끄고, 깨어있는 모드가 되면, 소수 경로(하나 혹은 둘 이상)의 캐리어 센싱 블록만 켜고, RTS/CTS 수신 후에는 해당 소수 경로의 나머지 블록을 켜고, 데이터 수신시에는 모든 경로의 모든 블록을 켜는 방법이다.1) The four-level cross-layer low power mode wireless communication system is divided into four states: dust mode, state before RTS / CTS reception in waking mode, data reception after RTS / CTS reception in waking mode, and data receiving state. The present invention is a method of optimizing a low power mode according to these four reception states. That is, in the duds mode, all blocks except the timer of the MAC are turned off, and in the awake mode, only the minority path (one or more) carrier sensing blocks are turned on and after receiving the RTS / CTS, the minority path Turn on the rest of the block, and turn on all blocks of all paths when receiving data.

2) 본 발명은 물리 계층의 저전력 기술과 MAC 계층의 저전력 기술을 함께 사용하는 크로스 계층 저전력 기술로서 종래의 단일 계층 저전력 기술에 비해 전력 소비 효율을 향상 시킬 수 있다.
2) The present invention is a cross-layer low power technology using a low power technology of the physical layer and a low power technology of the MAC layer can improve the power consumption efficiency compared to the conventional single layer low power technology.

도 2는 본 발명에 따른 저전력 모드 변환 천이에 따른 순서도이다.2 is a flowchart illustrating a low power mode conversion transition according to the present invention.

무선 랜 기기는 최초 200단계에서 스스로 깨어있는 상태(Awake State)인가를 검사한다. 만일 깨어 있는 상태라면 206단계로 진행하고 그렇지 않은 경우 202단계로 진행한다. 202단계로 진행하면, 무선 랜 기기는 타이머가 만료되었는가를 검사한다. 만일 타이머가 만료된 경우라면 206단계로 진행하고 그렇지 않은 경우 204단계에서 모든 블록의 전원을 오프한 후 200단계를 수행하게 된다.In the first 200 steps, the WLAN device checks whether it is in an awake state. If it is awake, go to step 206; otherwise, go to step 202. In step 202, the wireless LAN device checks whether the timer has expired. If the timer has expired, the process proceeds to step 206. Otherwise, in step 204, the power is turned off for all blocks, and then step 200 is performed.

만일 200단계 도는 202단계에서 206단계로 진행하는 경우는 하나 또는 두 개의 수신 파트 캐리어 센싱 블록에만 전원을 투입한다. 타이머의 만료에 의해 깨어나거나 또는 깨어있는 모드인 경우 모두 캐리어 센싱 이전이므로, 앞에서 언급한 두 번째 수신 상태가 즉, RTS/CTS 수신 전 상태가 된다.If proceeding from step 200 or step 202 to step 206, power is supplied only to one or two receiving part carrier sensing blocks. Since the wake-up or wake-up mode by the expiration of the timer is all before the carrier sensing, the second reception state mentioned above becomes a state before the RTS / CTS reception.

이와 같이 캐리어 센싱 블록에만 전원을 투입한 이후 무선 랜 기기는 208단계로 진행하여 미리 결정된 시간 내에 캐리어 센싱이 이루어지는가를 검사한다. 만일 캐리어 센싱이 이루어지면, 무선 랜 기기는 210단계로 진행하고 그렇지 않은 경우 206단계로 진행한다.After the power is supplied only to the carrier sensing block, the wireless LAN device proceeds to step 208 to check whether the carrier sensing is performed within a predetermined time. If the carrier sensing is performed, the wireless LAN device proceeds to step 210, otherwise proceeds to step 206.

다음으로 캐리어 센싱이 이루어진 경우 무선 랜 기기는 210단계로 진행하여 수신 경로의 남은 블록들에 전원을 투입한다. 그리고 무선 랜 기기는 212단계로 진행하여 패킷 카테고리를 사용할 수 있는지 검사한다. 패킷의 종류 정보를 이용 가능한 경우인가를 검사하는 것이다. 만일 패킷의 카테고리 즉, RTS/CTS 등과 같은 패킷의 카테고리를 이용할 수 있는 경우라면 214단계로 진행하고, 그렇지 않은 경우 216단계로 진행한다.Next, if carrier sensing is performed, the wireless LAN device proceeds to step 210 and supplies power to the remaining blocks of the reception path. In step 212, the WLAN device checks whether a packet category is available. It is to check if the packet type information is available. If the category of the packet, that is, the category of the packet such as RTS / CTS is available, the process proceeds to step 214; otherwise, the process proceeds to step 216.

먼저 무선 랜 기기는 214단계로 진행하면 수신된 패킷의 카테고리가 RTS/CTS 패킷인가를 검사한다. RTS/CTS 카테고리의 패킷인 경우 무선 랜 기기는 218단계로 진행하여 스트림 수에 따라 수신 경로의 해당 블록들에 전원을 투입한다.First, in step 214, the WLAN device checks whether a received packet category is an RTS / CTS packet. In case of a packet of the RTS / CTS category, the WLAN device proceeds to step 218 and supplies power to the corresponding blocks of the reception path according to the number of streams.

반면에 214단계에서 RTS/CTS 카테고리의 패킷이 아니거나 또는 212단계의 검사결과 패킷의 카테고리를 이용할 수 없는 경우 216단계로 진행하여 모든 수신 경로의 블록들에 전원을 투입해야만 한다.On the other hand, if it is not a packet of the RTS / CTS category in step 214 or if the category of the packet is not available in step 212, the process proceeds to step 216 and powers up the blocks of all receiving paths.

이상에서 설명한 내용을 다시 정리하면, 더즈 모드이면 타이머가 소진될 때까지 모든 블록에 전원을 차단하고(끄고), 타이머가 소진되면 캐리어 센싱에 필요한 경로와 해당 캐리어 센싱 블록만 투입한다(켠다). 깨어있는 상태에서 캐리어 센싱이 되면 캐리어 센싱을 위한 해당 경로의 나머지 블록을 켜고, 패킷 종류 정보가 이용 가능할 경우, 수신 패킷이 RTS/CTS일 때는 데이터 패킷의 캐리어 센싱 결과를 향상시키기 위해 더 많은 경로를 켤 수 있으며, 만약 패킷 종류 정보가 이용 가능하지 않거나 데이터 패킷인 경우에는 모든 경로를 켠다.
In summary, when the timer is used up, all blocks are powered off (turned off) until the timer runs out, and when the timer runs out, only the path required for carrier sensing and the corresponding carrier sensing block are turned on (turned on). Carrier sensing in the waking state turns on the remaining blocks of the corresponding path for carrier sensing.If packet type information is available, more paths are used to improve the carrier sensing results of data packets when the received packet is RTS / CTS. If packet type information is not available or is a data packet, all paths are turned on.

도 3은 본 발명에 따른 4가지 수신 모드의 동작 원리의 이해를 돕기 위한 타이밍도이다.3 is a timing diagram to help understand the operating principle of the four reception modes according to the present invention.

먼저 더즈 모드(300)인 경우 수신기는 모든 블록의 전원이 오프(301)된 상태이다. 그리고 깨어있는 모드(310)의 경우는 3가지로 구분된다. 첫째, 캐리어 센싱을 위해 하나 또는 2개의 수신 경로에 해당하는 캐리어 센싱 블록만 전원이 투입된 상태(311)가 있다. 이러한 경우 수신되는 패킷의 카테고리 또는 패킷의 수신 여부를 검출하여 하나 또는 2개의 수신 경로에 해당하는 블록들에 전원을 투입하는 상태(312)이다. 즉, RTS(321) 프레임이 수신되는 경우 이들을 수신하기 위한 블록들에만 전원을 투입하게 된다. 그리고 데이터 프레임(323)이 수신되면 수신 경로에 해당하는 모든 블록들에 다시 전원이 투입되는 상태(313)가 된다. 이후 데이터 프레임이 모두 수신되고 나면 캐리어 센싱을 위한 블록들만 전원이 투입되는 상태(314)로 천이한다. 이때 응답(ACK) 프레임(324)과 같은 프레임들을 수신할 수 있는 상태이다. 응답 프레임을 수신하고, 이후 일정 시간동안 즉, 미리 설정된 타이머가 만료될 때까지 신호의 수신이 검출되지 않는 경우 다시 더즈 모드(300)로 진입하여 모든 블록을 끄게 된다.First, in the dust mode 300, the receiver is in a state in which power of all blocks is turned off 301. The waking mode 310 is divided into three types. First, there is a state 311 in which only a carrier sensing block corresponding to one or two reception paths is turned on for carrier sensing. In this case, it is a state 312 in which power is supplied to blocks corresponding to one or two reception paths by detecting a category of a received packet or whether a packet is received. That is, when the RTS 321 frame is received, power is supplied only to blocks for receiving the RTS 321 frame. When the data frame 323 is received, power is again supplied to all the blocks corresponding to the reception path 313. After all data frames are received, only the blocks for carrier sensing transition to a state where power is turned on (314). At this time, it is a state capable of receiving frames such as an acknowledgment (ACK) frame 324. After receiving the response frame, if the reception of the signal is not detected for a predetermined time, i.e., until the preset timer expires, it enters the dust mode 300 again and turns off all the blocks.

즉, 도 3에서 설명한 바와 같이 RTS, CTS, 데이터, ACK 프레임을 순차적으로 주고받는 상황에서 해당 단말은 더즈 모드 혹은 깨어 있는 모드로 동작할 수 있으며, 깨어 있는 동안 캐리어 센싱 여부와 프레임 종류에 따라 수신 내부 블록들에 전원 혹은 클럭의 공급 여부를 결정할 수 있다.
That is, as described in FIG. 3, the UE may operate in a doze mode or in a waking mode in a situation of sequentially transmitting and receiving RTS, CTS, data, and ACK frames, and may be received according to carrier sensing or frame type while waking up. It is possible to determine whether to supply power or a clock to the internal blocks.

도 4는 크로스 계층 저전력 모드2의 상태 천이도(Finite State Machine)이다.FIG. 4 is a finite state machine of the cross layer low power mode 2. FIG.

도 4에서 아이들(IDLE) 상태(210)는 초기 상태 또는/및 대기상태 또는/및 전원 오프 상태 등 중 하나이거나 전체를 총칭하는 상태이다. 아이들 상태(210)에서 전원이 제공되면(power on) 수행되는 시작 상태(START)(411)를 거치게 된다. 이후 캐리어를 센싱하는 CS 상태(Carrier Sensing)(412)에서 캐리어가 검출되면, 가능한 부가적인 라디오들을 검출하는 상태(Enable Additional Radios)(413)로 진입한다. 이후 카운터 값에 의해 수신 신호의 이득을 제어하는 자동 이득 조절 상태(AGC)(414)로 천이한다. AGC 상태(414)에서는 수신 신호의 이득을 조절한다. 이와 같이 수신 신호의 이득이 조절되면, 짧은 프리엠블을 이용하여 CFO를 추정하는 상태(CFO Est. using Short Preamble)(415)로 천이한다. 여기서 대략적인 CFO의 추정이 완료되면, 시스템에서 제공하는 신호 즉, 프레임의 동기를 맞추기 위한 동기 상태(Synchronization)(416)로 천이한다. 이와 같이 동기가 맞춰지면, 긴 프리엠블을 이용하여 CFO 추정 상태(CFO Est. using Long Preamble)(417)로 천이한다. 즉, CFO를 추정하는 상태(415) 및 동기 상태(416)에서 캐리어 주파수 옵셋을 보상하고 시간적인 동기를 맞추게 된다.In FIG. 4, the idle state 210 is one of the initial state and / or the standby state and / or the power off state, or the like. When the power is supplied in the idle state 210, it goes through a start state START 411 that is performed. Then, when the carrier is detected in the CS sensing (Carrier Sensing) (412) for sensing the carrier, enters the state (Enable Additional Radios) 413 to detect possible additional radios. Thereafter, a transition is made to the automatic gain control state (AGC) 414 which controls the gain of the received signal by the counter value. In AGC state 414, the gain of the received signal is adjusted. When the gain of the received signal is adjusted in this way, the state transitions to the CFO Est. Using Short Preamble 415 using the short preamble. When the estimation of the approximate CFO is completed, the system transitions to a synchronization signal 416 for synchronizing a signal provided by the system, that is, a frame. When synchronization is achieved in this manner, a transition to the CFO Est. Using Long Preamble 417 is performed using the long preamble. That is, the carrier frequency offset is compensated for in the state 415 and the synchronization state 416 of estimating the CFO and time synchronization is performed.

긴 프리엠블을 이용하여 CFO의 추정이 양호하게 완료되면, 시그널 필드의 복호 상태(Signal Field Deconding)(418)로 천이한다. 이를 통해 시그널의 복호를 수행한다. 시그널의 복호가 유효하게 완료되면, 데이터를 복호하는 데이터 복호 상태(Data Decoding)(419)로 천이한다. 여기서 데이터의 복호가 완료되면, 종료 상태(END)(420)로 천이하였다가, 다시 아이들 상태(210)로 천이한다.When the estimation of the CFO is successfully completed using the long preamble, it transitions to the signal field decoded state 418. This decodes the signal. When the decoding of the signal is validly completed, the state transitions to a data decoding state 419 for decoding data. When the decoding of the data is completed, the state transitions to the end state (END) 420, and then transitions back to the idle state 210.

캐리어를 센싱하는 CS 상태(412)에서 캐리어가 검출되지 않는 경우 계속하여 캐리어를 검출하는 상태를 유지하게 된다. 그리고 자동 이득 제어를 수행하는 AGC 상태(414)에서 자동 이득의 조절에 실패하면, 아이들 상태(210)로 천이한다. 아이들 상태로 천이하는 다른 경우로 다음과 같은 경우들이 존재한다. 첫째로, 짧은 프리엠블을 이용한 CFO의 추정 상태(415)에서 대략적인 CFO의 추정이 불가능한 경우이다. 둘째로, 동기 상태(416)에서 동기를 맞출 수 없는 경우이다. 셋째로, 긴 프리엠블을 이용하여 CFO를 추정하는 상태(417)에서 CFO를 정확한 CFO의 추정이 불가능한 경우이다. 넷째로, 신호 필드의 복호 상태(418)에서 신호 필드의 복호에 실패한 경우이다.If the carrier is not detected in the CS state 412 of sensing the carrier, the carrier continues to be detected. If the automatic gain control fails in the AGC state 414 which performs the automatic gain control, the state transitions to the idle state 210. Other cases of transition to the idle state include the following cases. First, in the estimation state 415 of the CFO using the short preamble, it is impossible to estimate the approximate CFO. Second, there is a case where synchronization is not possible in the synchronization state 416. Third, in the state 417 of estimating the CFO using the long preamble, it is impossible to accurately estimate the CFO. Fourth, the decoding of the signal field fails in the decoding state 418 of the signal field.

본 발명은 도 2의 상태 천이도에서 CS 상태에 머무는 동안에는 그 이후의 모든 상태에 해당하는 서브 블록들에 전원 및 클럭 공급을 차단하는 방식을 사용함으로써 전력 소비를 최소화 하도록 했다. 또한 위와 같은 상태 천이를 이용함으로써 본 발명에 따른 캐리어 센싱 방법과 비-캐리어 센싱 방법을 모두 적용할 수 있게 된다.In the state transition diagram of FIG. 2, the power consumption and the clock supply to the sub blocks corresponding to all subsequent states are cut off while staying in the CS state. In addition, by using the above state transition, it is possible to apply both the carrier sensing method and the non-carrier sensing method according to the present invention.

한편, 아이들 상태(410)는 더즈(Doze) 모드 상태이거나 또는 슬립 모드(Sleep mode)인 경우에도 계속 유지된다. 이와 같이 더즈 모드일 경우에는 캐리어 센싱 블록도 꺼져있고 아이들 상태에 있다가 MAC 계층의 타이머 값이 소진되어 깨어있는 모드로 변환되는 경우 앞에서 언급한 시작(START) 상태(411)를 거쳐 캐리어 센싱(Carrier Sensing) 상태(412)에서 캐리어 센싱이 될 때까지 기다리게 된다. 이 때 단말의 수신단 중 캐리어 센싱 블록만 켜져 있게 되므로 전력 소비 효율을 향상 시킬 수 있다. 캐리어 센싱된 이후에는 해당 경로의 모든 블록이 켜져서 신호를 처리하게 된다.
On the other hand, the idle state 410 is maintained even in the Doze mode or the sleep mode (Sleep mode). In this case, when the carrier sensing block is turned off and in the idle state, and the timer value of the MAC layer is exhausted and converted to the awake mode, the carrier sensing is carried out through the START state 411 described above. In the sensing state 412, the terminal waits for carrier sensing. In this case, only the carrier sensing block of the receiving end of the terminal is turned on, thereby improving power consumption efficiency. After carrier sensing, all blocks in the path are turned on to process signals.

도 5는 본 발명에 따른 전력을 조정 단계의 이해를 돕기 위한 타이밍 다이어 그램이다.5 is a timing diagram to assist in understanding the step of adjusting power in accordance with the present invention.

도 5에 도시한 바와 같이 본 발명에 따른 수신기는 깨어 있는 모드(500)와 더즈 모드(510)가 공존하게 된다. 깨어 있는 모드(500)에서는 물리계층 파워 세이빙 타이밍(PHY PS timing)에서는 캐리어 센싱 구간(CP)과 캐리어 비 센싱 구간(Non-CP)으로 구분된다. 캐리어 센싱 구간(CP)은 캐리어 센싱이 이루어지는 시점(501)에서 종료되고, 캐리어가 센싱된 이후 패킷1(521)을 수신하는 동안 캐리어 비 센싱 구간(Non-CP)이 된다. 그리고 더즈 모드인 경우 모든 블록에 전원이 차단되는 상태이며, 이를 더즈 구간(DP)라 한다.As shown in FIG. 5, in the receiver according to the present invention, the waking mode 500 and the dust mode 510 coexist. In the waking mode 500, the physical layer power saving timing (PHY PS timing) is divided into a carrier sensing period (CP) and a carrier non-sensing period (Non-CP). The carrier sensing period CP ends at a time point 501 at which carrier sensing is performed, and becomes a carrier non-sensing period Non-CP while receiving the packet 1 521 after the carrier is sensed. In the doze mode, power is cut off in all blocks, which is called a doze period DP.

이와 같이 물리계층에서는 캐리에 센싱 구간(CP)에 전력 소모를 줄이기 위하여 전원이 투입되지 않는 물리계층 블록들로 클럭을 제공하지 않는다. 이는 도 5에 도시되어 있는 물리계층 파워 세이빙 클럭(PHY PS clock)과 물리계층 캐리어 센싱 유효(PHY CS valid) 정보로 확인할 수 있다.As such, the physical layer does not provide a clock to physical layer blocks that are not powered in order to reduce power consumption in the carry sensing period CP. This can be confirmed with the PHY PS clock and PHY CS valid information of the PHY PS clock shown in FIG. 5.

한편, MAC 계층에서는 파워 세이빙 클럭(MAC PS clock)을 캐리어 센싱을 위해 필요한 캐리어 센싱 구간(CP)에서부터만 투입하도록 한다. 그리고 캐리어 센싱을 검출하기 위해 MAC 캐리어 센싱 유효(MAC CS valid) 정보로부터 확인할 수 있다. 이러한 구간들은 더즈 모드가 시작되는 시점까지 이루어진다.In the meantime, in the MAC layer, a power saving clock (MAC PS clock) is input only from a carrier sensing period CP necessary for carrier sensing. In order to detect carrier sensing, it may be checked from MAC carrier valid information. These intervals are made until the start of the doze mode.

이상에서 살핀 바와 같이 MAC 계층과 물리계층의 저전력 모드가 연동되어 MAC 계층 혹은 물리 계층 단독 모드로 사용될 경우보다 효율적인 전력 소비 효율을 보장할 수 있게 된다.
As described above, the low power mode of the MAC layer and the physical layer are interlocked to ensure more efficient power consumption efficiency when the MAC layer or the physical layer is used alone.

3.3. 크로스 계층 저전력 모드 3Cross Tier Low Power Mode 3

본 발명에 따른 크로스 계층 저전력 모드3은 크로스 계층 저전력 모드1과 크로스 계층 저전력 모드2의 혼합 모드이다. 크로스 계층 모드1에서 요청/응답 프레임 및 ACK 프레임 등의 제어 패킷의 도움 없이 크로스 계층 모드2의 캐리어 센싱 결과로 크로스 계층 모드1을 제어한다. 이로 인해 크로스 계층 모드1에 비해 크로스 계층 모드2에 의해 패킷 간 간격(Interframe Space, IFS) 시간(16us)과 캐리어 센싱 시간(약 2us) 동안 동적 소비 전력을 줄여서 전력 소비 효율을 향상시킬 수 있다. 크로스 계층 저전력 모드3은 크로스 계층 저전력 모드1에서 RTS/CTS를 사용한 것과 다르게 RTS/CTS 없이 캐리어 센싱 결과로 저전력 모드 전환이 가능하다.Cross layer low power mode 3 according to the present invention is a mixed mode of cross layer low power mode 1 and cross layer low power mode 2. In the cross layer mode 1, the cross layer mode 1 is controlled as a result of carrier sensing of the cross layer mode 2 without the help of control packets such as a request / response frame and an ACK frame. Accordingly, the power consumption efficiency can be improved by reducing the dynamic power consumption during the interframe space (IFS) time (16 us) and the carrier sensing time (about 2 us) by the cross layer mode 2 compared to the cross layer mode 1. Cross-layer low power mode 3 is capable of switching to low power mode as a result of carrier sensing without RTS / CTS, unlike using RTS / CTS in cross layer low power mode 1.

앞에서 설명한 크로스 계층 저전력 모드1 방식에 의해 무선(RF)부에서 20MHz 대역 제한 필터를 통과한 신호는 40MHz의 샘플링 속도로 디지털 변환되어 캐리어 센싱된다.According to the cross-layer low power mode 1 method described above, the signal passing through the 20 MHz band limiting filter in the radio part is digitally converted to a 40 MHz sampling rate and carrier sensed.

또한 크로스 계층 저전력 모드2 방식에 의해 캐리어 센싱된 후 캐리어 센싱 이외의 블록들이 동작한다.In addition, after carrier sensing is performed by the cross-layer low power mode 2 scheme, blocks other than carrier sensing are operated.

위와 같은 방법으로 패킷이 수신되면, 무선 랜 시스템의 수신기가 지원하는 최대 샘플링 속도를 사용하여 동작한다.When a packet is received in the above manner, the packet is operated using the maximum sampling rate supported by the receiver of the WLAN system.

이때, 요청/응답 패킷에 의해 수신할 데이터 패킷의 종류를 사전에 알 수 있는 경우, 최대 샘플링 속도가 아니라 수신 패킷의 모드에 따라 샘플링 속도를 결정할 수 있다.In this case, when the type of data packet to be received by the request / response packet is known in advance, the sampling rate may be determined according to the mode of the received packet rather than the maximum sampling rate.

또한 상기 과정에서는 동시에 인터폴레이터와 데시메이터의 동작 주파수 변환과 RF의 아날로그 대역 제한 필터와 디지털 대역 제한 필터의 재구성 과정을 포함한다.In addition, the process includes converting the operating frequency of the interpolator and the decimator and reconstructing the analog band limiting filter and the digital band limiting filter of RF.

이러한 본 발명의 제3실시 예에 따른 방법은 기저대역 신호 처리를 위한 모뎀부의 샘플링 속도가 해당 모드에 최적화되어 동작할 수 있다.In the method according to the third exemplary embodiment of the present invention, the sampling rate of the modem unit for the baseband signal processing may be optimized for the corresponding mode.

여기까지는 본 발명의 크로스 계층 저전력 모드의 구성과 동작에 대해 서술했다. 앞으로는 지금까지 설명한 크로스 계층 저전력 모드의 효율성 향상을 위한 전송 방법을 두 번째 발명의 구성 요소로서 설명하고자 한다.So far, the configuration and operation of the cross-layer low power mode of the present invention have been described. The transmission method for improving the efficiency of the cross-layer low power mode described so far will be described as a component of the second invention.

수신단에서 수신될 프레임의 정보를 요청 프레임 혹은 응답 프레임에 포함시켜 전송함으로써 수신단은 해당 대역폭에 맞는 최적의 상태로 대기할 수 있다. 즉, 요청/응답 프레임 예를 들어 RTS/CTS 등의 프레임 다음에 보내게 될 데이터 프레임의 다음의 전송 모드 정보를 함께 알려줌으로써 아날로그/디지털 필터 설정 혹은 RF 중심 주파수 설정 혹은 동작 주파수 샘플링 속도 등의 수신 모드를 상기 수신할 프레임의 종류에 맞춰 최적화하여 스루풋을 향상시키고, 소비 전력 효율을 향상시킬 수 있다.By receiving the information of the frame to be received at the receiving end in the request frame or the response frame, the receiving end can wait in the optimal state for the corresponding bandwidth. In other words, by receiving the information of the next transmission mode of the data frame to be sent after the request / response frame, for example, RTS / CTS, etc., receiving the analog / digital filter setting or the RF center frequency setting or the operating frequency sampling rate, etc. Modes may be optimized according to the type of frames to be received to improve throughput and power consumption efficiency.

1) 이러한 경우 요구되는 성능 지표 값과 송신 스트림 수는 다음과 같다.1) In this case, the required performance index values and the number of transmission streams are as follows.

- 송신 신호의 스트림 수가 수신 안테나 수 보다 작을 경우 반드시 모든 다중 안테나를 사용할 필요가 없으므로 요구되는 성능 지표 값에 따라 사용할 안테나 수를 선택할 수 있다. 요구되는 성능 지표로는 컨텐츠 카테고리(Contents Category) 혹은 링크 성능 값 예를 들어 신호대 잡음비, 채널 변화 등이 될 수 있다.-If the number of streams of the transmitted signal is smaller than the number of receiving antennas, it is not necessary to use all the multiple antennas, so the number of antennas to be used can be selected according to the required performance index value. The required performance indicator may be a content category or a link performance value, such as a signal-to-noise ratio and a channel change.

2) 송신 패킷 모드 및 사용할 채널 대역폭과 프레임 전송 방법은 아래와 같다.2) Transmission packet mode, channel bandwidth to be used and frame transmission method are as follows.

- 수신기는 요청/응답 패킷 수신 후 수신기에서 지원 가능한 최대 동작 주파수로 변환될 필요없이 해당 패킷 모드를 위한 최적의 동작 주파수를 사용할 수 있다. The receiver can use the optimal operating frequency for the packet mode without receiving the request / response packet and converting it to the maximum operating frequency supported by the receiver.

- 또한 수신 신호를 위한 최적의 필터를 적용할 수 있으므로 수신단 검출 신뢰도를 향상 시킬 수 있다. -In addition, it is possible to apply the optimal filter for the received signal, thereby improving the receiver detection reliability.

- 또한 전송 기회 구간 동안 데이터 프레임의 그린 필드 모드 동작이 가능하다. It is also possible to operate the green field mode of the data frame during the transmission opportunity period.

결과적으로 스루풋과 전력 소비 효율을 향상 시킬 수 있다.As a result, throughput and power consumption efficiency can be improved.

여기서 미리 전송을 위한 정보를 알려주기 위한 방법을 살펴보자. 제 1 노드와 제 2 노드간 통신이 이루어진다고 가정하자. 그러면, 상기 제 1 노드 혹은 제 2 노드는 요청 프레임 혹은 응답 프레임의 동적 채널 대역폭 할당 지원 가능 비트 예를 들어 1비트 값에 근거하여, 상대 노드가 상기 채널 상태 정보 혹은 데이터 프레임 모드 정보를 포함하는지 여부를 판별하도록 할 수 있다.Here, let's look at how to inform the information in advance. Assume that communication occurs between a first node and a second node. Then, whether the first node or the second node includes the channel state information or the data frame mode information based on a dynamic channel bandwidth allocation supportable bit, for example, a 1-bit value, of the request frame or the response frame. Can be determined.

상기 요청/응답 프레임의 전송 모드 정보는 요청/응답 프레임에 다음과 같은 실시 예로 포함되어 전송되어질 수 있다. 하지만, 아래 기술된 실시 예에 국한되지 않고 요청/응답 프레임에 남아 있는 예약 비트를 활용하여 종래의 표준과 호환성을 유지하며 상기 발명을 실현 시킬 수 있음에 유의해야 한다.The transmission mode information of the request / response frame may be included in the request / response frame in the following embodiments and transmitted. However, it should be noted that the present invention can be realized while maintaining compatibility with the conventional standard by utilizing the reserved bits remaining in the request / response frame without being limited to the embodiments described below.

1) 물리 계층의 서비스 필드(Service field)1) Service field of physical layer

2) MAC 헤더의 듀레이션 필드(Duration field)2) Duration field of MAC header

3) MAC 헤더의 프레임 컨트롤 필드(Frame control field)3) Frame control field of MAC header

예를 들어, 상기 서비스 필드 혹은 듀레이션 필드에 두 비트를 사용하여 네 가지 대역폭 지원 모드를 설정할 수 있다. 이를 예를 들어 살펴보면, 아래와 같이 구분할 수 있다.For example, four bandwidth support modes may be set using two bits in the service field or the duration field. Looking at this example, it can be classified as follows.

00: 20MHz, 00: 20 MHz,

01: 40MHz, 01: 40 MHz,

10: 80MHz, 10: 80 MHz,

11: 160MHz
11: 160 MHz

상기 요청/응답 프레임에 포함된 상기 요청/응답 프레임 다음에 올 프레임의 정보는 저전력 모드 용도가 아닌 노이즈 절감 및 다중 모드 프레임의 공존 (20/40/80/160MHz 대역폭 혹은 레거시/HT/VHT 모드)을 위해 사용될 수 있다.
The information of the next frame following the request / response frame included in the request / response frame is not for low power mode but for coexistence of noise reduction and multi-mode frames (20/40/80/160 MHz bandwidth or legacy / HT / VHT mode). Can be used for

도 7과 도 8은 본 발명의 다른 실시 예에 따라 노이즈 절감 및 다중 모드 프레임의 공존을 위한 타이밍도를 도시하였다.7 and 8 illustrate timing diagrams for noise reduction and coexistence of a multi-mode frame according to another embodiment of the present invention.

먼저 도 7을 참조하여 살펴보기로 한다. 도 7은 노드1에서 노드 2로 20MHz 대역폭 데이터 프레임을 전송하기 위해, 데이터 프레임 전송 전에 20MHz 대역폭 RTS 4개를 본딩한 프레임(711)을 80MHz 대역 전체로 전송한다. 이를 통해 노드1은 자신의 프레임이 아닌 주변의 20/40/80MHz 대역폭을 지원하는 다양한 모드의 노드들의 NAV(Network Allocation Vector) 값을 설정하여 대기 상태에 있게 한다. 반면 자신의 프레임으로 인식한 노드 2는 RTS 4개를 본딩한 프레임(711)에 설정된 대역폭 값에 기반하여 수신단의 중심 주파수 및 필터를 변경하고, CTS 프레임(712)을 20MHz 대역으로 전송한다. CTS 프레임(712)을 수신한 노드1은 20MHz 대역폭 데이터 프레임(713)을 전송한다. 그러면 데이터 프레임(713) 수신에 적합하게 재구성된 노드2는 데이터 프레임(713)을 수신한 후 올바르게 복원되었을 경우 ACK 프레임(714)을 전송한다.First, it will be described with reference to FIG. 7. FIG. 7 transmits a 20 MHz bandwidth data frame from node 1 to node 2, and transmits a frame 711 in which four 20 MHz bandwidth RTSs are bonded to the entire 80 MHz band before data frame transmission. Through this, Node1 sets NAV (Network Allocation Vector) values of nodes in various modes that support the 20/40/80 MHz bandwidth of its own frame, rather than its own frame, to be in a standby state. On the other hand, the node 2 recognized as its own frame changes the center frequency and filter of the receiver based on the bandwidth value set in the frame 711 in which the four RTSs are bonded, and transmits the CTS frame 712 in the 20 MHz band. Node 1 receiving the CTS frame 712 transmits a 20 MHz bandwidth data frame 713. Then, the node 2 reconfigured to receive the data frame 713 receives the data frame 713 and transmits an ACK frame 714 when it is correctly restored.

도 8은 앞서 설명한 도 7의 일 실시 예를 채널 대역폭 별로 나눠 도시한 도면이다. 즉, RTS 프레임들(811, 812, 813, 814)은 80MHz 대역폭으로 전송된다. RTS 프레임들(811, 812, 813, 814)에 설정된 대역폭 정보 값을 활용하여 20MHz 대역폭 모드인 CTS 프레임(821)과 데이터 프레임(831) 및 ACK 프레임(841)의 송신 혹은 수신할 때 노이즈를 절감할 수 있으며, 파워 소비를 줄일 수 있다.FIG. 8 is a diagram illustrating the aforementioned embodiment of FIG. 7 divided for each channel bandwidth. That is, the RTS frames 811, 812, 813, 814 are transmitted with an 80 MHz bandwidth. Noise is reduced when transmitting or receiving the CTS frame 821 and the data frame 831 and the ACK frame 841 in the 20 MHz bandwidth mode by using the bandwidth information values set in the RTS frames 811, 812, 813, and 814. Can reduce power consumption.

도 9는 공존 기본 서비스 셋(OBSS, Overlapped Basic Service Set) 상황에서 본 발명의 동작을 설명하기 위한 그림이다. BSS1에서 중계접속점1(AP1)이 데이터를 단말(STA)에게 데이터를 전송하기 위해 RTS 프레임을 전송함에 있어서, BSS1은 80MHz 대역까지 지원 가능한 단말이 포함되어 있다고 알려져 있다고 가정하면, 20MHz 대역 RTS 네 개를 동시에 전송한다. 이때 BSS2에서 40MHz 대역의 신호를 전송하고 있는 경우 AP1은 상기 간섭 신호의 존재 여부를 모른다.FIG. 9 is a diagram for describing an operation of the present invention in an overlapped basic service set (OBSS) situation. In BSS1, when RS 1 transmits an RTS frame to transmit data to a STA, BSS1 is known to include a terminal capable of supporting up to 80 MHz band, and thus, four 20 MHz band RTSs. Send simultaneously. At this time, when the BSS2 is transmitting a signal in the 40MHz band, AP1 does not know whether the interference signal exists.

이때, 단말(STA)은 상기 간섭 신호가 영향을 미치는 대역을 제외한 나머지 40MHz 대역을 통해 CTS를 보냄으로써 AP1은 CTS를 수신한 40MHz 대역을 통해 데이터 프레임을 전송한다. 여기에서 STA의 경우 간섭 신호와 수신해야 할 신호를 구분할 수 있어야 하는데, AP마다 고유한 BSSID(BSS Identification)가 다르므로, MAC 헤더에 포함된 BSSID에 근거하여 수신한 패킷이 STA이 포함된 BSS에 있는 노드에서 온 것인지 외부 BSS의 것인지를 판별할 수 있다. 상기 판단에 근거하여 간섭 신호를 구분하고 RTS로 확인한 대역에서 간섭 신호 영역을 제외한 나머지 대역으로 CTS를 보낸다. AP1은 CTS를 받은 대역을 통해 데이터를 전송할 수 있게 된다. 더불어서 상기 과정을 통해 점유하는 대역폭을 최소화할 수 있으며, 주파수 자원을 효율적으로 활용함과 동시에 전력 소비 효율을 향상시킬 수 있다.At this time, the STA STA sends the CTS through the remaining 40MHz band except for the band to which the interference signal affects, so that the AP1 transmits a data frame through the 40MHz band receiving the CTS. Here, in the case of the STA, the interference signal and the signal to be received must be distinguished, and since the unique BSSID (BSSID) is different for each AP, the received packet is transmitted to the BSS including the STA. It can be determined whether the node is from an external BSS or a node. Based on the determination, the interference signal is classified and the CTS is sent to the remaining bands excluding the interference signal region in the band identified by the RTS. AP1 can transmit data through the band receiving the CTS. In addition, the bandwidth occupied by the above process can be minimized, and the power consumption efficiency can be improved while utilizing frequency resources efficiently.

마지막으로 본 발명은 차세대 무선랜 기술로 사용될 다중 채널 전송 방법의 저전력 모드를 포함한다. 차세대 무선랜 기술은 종래의 20MHz 혹은 40MHz 대역폭 보다 4배 혹은 2배 넓은 80MHz 대역폭을 사용하여 전송함으로써 스루풋을 2배에서 4배 높일 수 있게 되었다. 하지만, 이로 인해 아날로그-디지털 변환기와 디지털-아날로그 변환기의 샘플링 속도도 증가하여 소비 전력이 증가하게 되었다. 뿐만 아니라 모뎀 프로세서(Modem Processor)도 높은 동작 주파수를 사용하게 되어 동적 소비 효율이 저하되는 문제가 발생하게 되었다. 하지만 항상 단말 장치는 높은 샘플링 주파수를 사용할 필요가 없으며, 사용되는 모드와 패킷 종류에 따라 적절한 샘플링 속도를 사용하여 소비 전력 효율을 향상시킬 수 있다.Finally, the present invention includes a low power mode of a multi-channel transmission method to be used as a next generation WLAN technology. Next-generation wireless LAN technology can increase the throughput by 2 to 4 times by using 80 MHz bandwidth which is 4 times or 2 times wider than the conventional 20 MHz or 40 MHz bandwidth. However, this also increases the sampling rates of analog-to-digital converters and digital-to-analog converters, resulting in higher power consumption. In addition, the modem processor uses a high operating frequency, causing a problem of degrading dynamic consumption efficiency. However, the terminal device does not always need to use a high sampling frequency, and according to the mode and packet type used, an appropriate sampling rate may be used to improve power consumption efficiency.

종래의 공간 다중화 방식을 위한 저전력 모드는 RTS/CTS를 수신하기 전에는 소수의 수신 경로만 켜고 나머지는 꺼 둠으로써 전력 소비 효율을 향상시킬 수 있었으나, 본 발명의 다중 채널 방식을 위한 저전력 모드는 RTS/CTS를 수신하기 전에는 레거시 모드 패킷 수신이 가능할 정도의 샘플링 속도를 사용하고 RTS/CTS를 수신한 후에는 해당 모드 패킷 혹은 사용되는 모드에 따라 샘플링 속도를 제어하는 방식이다. RTS/CTS 패킷에 다음에 수신할 데이터 패킷의 종류 혹은 사용될 모드 정보가 실려 전송될 수 있는 경우에는 해당 모드로 전환될 수 있으며, 만약 패킷 종류 혹은 사용될 모드 정보를 실어 전달 할 수 없다면 해당 단말이 지원하는 모드를 위한 최대 샘플링 속도로 변환되도록 하는 제어 장치를 포함한다.In the conventional low power mode for spatial multiplexing, the power consumption efficiency can be improved by turning on only a few reception paths and turning off the rest before receiving the RTS / CTS, but the low power mode for the multi-channel method of the present invention is RTS / Before receiving a CTS, a sampling rate that is capable of receiving legacy mode packets is used, and after receiving an RTS / CTS, the sampling rate is controlled according to a corresponding mode packet or a used mode. If the RTS / CTS packet can be transmitted with the type of data packet to be received next or the mode information to be used, it can be switched to the corresponding mode.If the packet type or mode information to be used cannot be delivered, the corresponding terminal supports it. And a control unit to convert to the maximum sampling rate for the mode.

본 발명은 다중 채널 전송 방식이 연속적이거나 불연속적일 경우 모두 지원 가능하다. 즉, 다중 채널이 연속적일 경우에는 단순한 샘플링 속도의 증감으로 동작되지만, 비연속적일 경우에는 비연속적인 경로의 사용 여부를 결정함으로써 전력 소비 효율을 향상시킬 수 있게 된다.
The present invention can be supported when the multi-channel transmission scheme is continuous or discontinuous. In other words, when the multiple channels are continuous, the operation is performed with a simple sampling rate. However, when the multiple channels are not continuous, power consumption efficiency can be improved by determining whether to use a non-continuous path.

도 6은 본 발명의 실시 예에 따른 다중 채널 저전력 모드 시의 천이 과정에 따른 흐름도이다.6 is a flowchart illustrating a transition process in a multi-channel low power mode according to an embodiment of the present invention.

무선 랜 수신기는 최초 600단계에서 스스로 깨어있는 상태(Awake State)인가를 검사한다. 만일 깨어 있는 상태라면 606단계로 진행하고 그렇지 않은 경우 602단계로 진행한다. 602단계로 진행하면, 무선 랜 기기는 타이머가 만료되었는가를 검사한다. 만일 타이머가 만료된 경우라면 606단계로 진행하고 그렇지 않은 경우 604단계에서 모든 블록의 전원을 오프한 후 600단계를 수행하게 된다.In the first 600 steps, the WLAN receiver checks whether it is in an awake state. If it is awake, go to step 606; otherwise, go to step 602. In step 602, the WLAN device checks whether the timer has expired. If the timer has expired, the process proceeds to step 606. Otherwise, in step 604, the power is turned off for all blocks, and then step 600 is performed.

만일 600단계 도는 602단계에서 606단계로 진행하는 경우는 하나 또는 두 개의 수신 파트 캐리어 센싱 블록에만 전원을 투입한다. 이때, 투입되는 무선 랜 수신기는 레거시 모드(Legacy Mode) 샘플링 율(sampling rate)로 동작하도록 한다. 타이머의 만료에 의해 깨어나거나 또는 깨어있는 모드인 경우 모두 캐리어 센싱 이전이므로, 앞에서 언급한 두 번째 수신 상태가 즉, RTS/CTS 수신 전 상태가 된다.If the process proceeds from step 600 or step 602 to step 606, power is supplied only to one or two receiving part carrier sensing blocks. In this case, the injected WLAN receiver operates in a legacy mode sampling rate. Since the wake-up or wake-up mode by the expiration of the timer is all before the carrier sensing, the second reception state mentioned above becomes a state before the RTS / CTS reception.

이와 같이 캐리어 센싱 블록에만 전원을 투입한 이후 무선 랜 기기는 608단계로 진행하여 미리 결정된 시간 내에 캐리어 센싱이 이루어지는가를 검사한다. 만일 캐리어 센싱이 이루어지면, 무선 랜 기기는 610단계로 진행하고 그렇지 않은 경우 606단계로 진행한다.After the power is supplied only to the carrier sensing block, the wireless LAN device proceeds to step 608 to check whether carrier sensing is performed within a predetermined time. If carrier sensing is performed, the wireless LAN device proceeds to step 610, and if not, proceeds to step 606.

다음으로 캐리어 센싱이 이루어진 경우 무선 랜 기기는 610단계로 진행하여 수신 경로의 남은 블록들에 전원을 투입한다. 이때, 샘플링 율은 레거시 모드의 샘플링 율을 이용할 수 있다. 이를 통해 샘플링 율을 줄임으로써 소모 전력을 줄일 수 있게 된다. 그리고 무선 랜 수신기는 612단계로 진행하여 패킷 카테고리를 사용할 수 있는지 검사한다. 패킷의 종류 정보를 이용 가능한 경우인가를 검사하는 것이다. 만일 패킷의 카테고리 즉, RTS/CTS 등과 같은 패킷의 카테고리를 이용할 수 있는 경우라면 614단계로 진행하고, 그렇지 않은 경우 216단계로 진행한다.Next, when the carrier sensing is performed, the wireless LAN device proceeds to step 610 to supply power to the remaining blocks of the reception path. In this case, the sampling rate may use the sampling rate of the legacy mode. This reduces power consumption by reducing the sampling rate. In operation 612, the WLAN receiver checks whether a packet category is available. It is to check if the packet type information is available. If the category of the packet, that is, the category of the packet such as RTS / CTS is available, the process proceeds to step 614; otherwise, the process proceeds to step 216.

무선 랜 수신기는 614단계로 진행하면 수신된 패킷의 카테고리가 RTS/CTS 패킷인가를 검사한다. RTS/CTS 카테고리의 패킷인 경우 무선 랜 수신기는 618단계로 진행하여 스트림 수에 따라 수신 경로의 해당 블록들에 전원을 투입한다.In step 614, the WLAN receiver checks whether a received packet category is an RTS / CTS packet. In case of a packet of the RTS / CTS category, the WLAN receiver proceeds to step 618 and supplies power to the corresponding blocks of the reception path according to the number of streams.

반면에 614단계에서 RTS/CTS 카테고리의 패킷이 아니거나 또는 612단계의 검사결과 패킷의 카테고리를 이용할 수 없는 경우 416단계로 진행하여 모든 수신 경로의 블록들에 전원을 투입해야만 한다.On the other hand, if it is not a packet of the RTS / CTS category in step 614 or if the category of the packet is not available in step 612, the process proceeds to step 416 and powers up the blocks of all receiving paths.

이후, 무선 랜 수신기는 620단계로 진행하여 모드 정보를 사용 가능한가를 검사한다. 이러한 모드 정보는 앞에서 설명한 바와 같은 방법으로 전송되는 모드 정보이다. 만일 모드 정보의 사용이 가능하지 않은 경우 무선 랜 수신기는 622단계로 진행하여 수신기에서 최대 지원 가능한 데이터 율로 동작하게 된다.In step 620, the WLAN receiver determines whether mode information is available. Such mode information is mode information transmitted in the manner described above. If the mode information is not available, the WLAN receiver proceeds to step 622 to operate at the maximum data rate supported by the receiver.

반면에 모드 정보를 사용할 수 있는 경우 무선 랜 수신기는 우선 624단계로 진행하여 현재 모드가 레거시 모드인가를 검사한다. 만일 624단계의 검사결과 레거시 모드인 경우 무선 랜 수신기는 626단계로 진행하여 레거시 모드의 샘플링 율로 동작한다. 그러나 624단계의 검사결과 레거시 모드가 아닌 경우 무선 랜 수신기는 628단계로 진행하여 HT 모드인가를 검사한다. 만일 HT 모드인 경우 무선 랜 수신기는 630단계로 진행하여 HT 모드에 해당하는 샘플링 율로 동작한다.On the other hand, if mode information is available, the WLAN receiver first proceeds to step 624 to check whether the current mode is the legacy mode. If the test result of step 624 is the legacy mode, the wireless LAN receiver proceeds to step 626 to operate at the sampling rate of the legacy mode. However, if the test result of step 624 is not the legacy mode, the wireless LAN receiver proceeds to step 628 to check whether the HT mode. If the HT mode, the wireless LAN receiver proceeds to step 630 to operate at a sampling rate corresponding to the HT mode.

그러나, 624단계 및 628단계의 검사결과 레거시 모드도 아니고 HT 모드도 아닌 경우 VHT 모드가 된다. 따라서 무선 랜 수신기는 632단계로 진행하여 데이터 스트림이 연속하여(contiguous) 수신되는가를 검사한다. 상기 검사결과 연속하여 데이터 프레임이 전송되는 경우 무선 랜 수신기는 634단계로 진행하여 VHT 모드의 샘플링 율로 동작한다. 그러나 연속하여 수신되지 않는 경우라면 무선 랜 수신기는 636단계로 진행하여 다중 채널 파워 세이빙 동작을 수행하게 된다.However, if the test result of the step 624 and step 628 is not the legacy mode and the HT mode, the VHT mode is. Therefore, the WLAN receiver proceeds to step 632 to check whether the data stream is continuously received (contiguous). If the data frame is continuously transmitted as a result of the check, the WLAN receiver proceeds to step 634 to operate at the sampling rate of the VHT mode. However, if not received continuously, the WLAN receiver proceeds to step 636 to perform a multi-channel power saving operation.

이상에서 설명한 도 6에는 위에서 설명한 4가지 수신 상태에 따른 본 발명의 저전력 모드 변환 순서이다. 즉, 더즈 모드이면 타이머가 소진될 때까지 모든 블록을 끄고 타이머가 소진되면 캐리어 센싱에 필요한 경로와 해당 캐리어 센싱 블록만 켠다. 이때 RTS/CTS는 레거시 모드로 전송되므로 레거시 모드를 위한 동작 주파수로 설정된다. 또한 깨어있는 상태에서 캐리어 센싱이 되면 캐리어 센싱을 위한 해당 경로의 나머지 블록을 켠다. 이후 패킷 종류 정보가 이용 가능할 경우, 수신 패킷이 RTS/CTS일 때는 데이터 패킷의 캐리어 센싱 결과를 향상시키기 위해 더 많은 경로를 켤 수 있다. 그러나 만약 패킷 종류 정보가 이용 가능하지 않거나 데이터 패킷인 경우에는 모든 경로를 켠다. 이때, 해당 단말이 지원 가능한 최대 동작 주파수로 변환하여 어떤 종류의 패킷이 입력되어도 처리 가능하도록 한다. 패킷 종류 정보가 이용 가능하여 RTS/CTS 패킷임을 확인했을 경우, 모드 정보가 이용 가능하다면 해당 모드에 맞는 샘플링 속도로 전환된다. 이때 모드 정보가 이용 불가능하면, 해당 단말이 지원 가능한 최대 샘플링 속도로 변환되어 어떠한 모드의 패킷이 입력되어도 처리 가능하도록 한다. 그리고 모드가 VHT 모드의 패킷일 경우에는 앞서 설명한 다중 채널 전송을 위한 저전력 모드로서 사용하지 않는 비연속적인 채널을 위한 경로에는 전원과 클럭을 공급하지 않을 수 있다.
6 described above is a low power mode conversion procedure of the present invention according to the four reception states described above. That is, in the dust mode, all blocks are turned off until the timer runs out, and when the timer runs out, only the path required for carrier sensing and the corresponding carrier sensing block are turned on. At this time, since the RTS / CTS is transmitted in the legacy mode, the RTS / CTS is set to an operating frequency for the legacy mode. In addition, when the carrier sensing in the awake state, the remaining blocks of the corresponding path for the carrier sensing is turned on. After the packet type information is available, more paths can be turned on to improve the carrier sensing result of the data packet when the received packet is RTS / CTS. However, if packet type information is not available or is a data packet, all paths are turned on. At this time, the corresponding terminal converts to the maximum operating frequency that can be supported so that any kind of packet can be processed. When it is confirmed that the packet type information is available and is an RTS / CTS packet, if the mode information is available, it is switched to the sampling rate for the corresponding mode. At this time, if the mode information is not available, the corresponding terminal is converted to the maximum sampling rate that can be supported so that any mode packet can be processed. When the mode is a packet of the VHT mode, power and a clock may not be supplied to a path for a discontinuous channel that is not used as the low power mode for the multi-channel transmission described above.

100 : RF 블록 101 : 저잡음 증폭기(LNA)
102 : 전압제어 이득 증폭기(AGC)
111 : 아날로그-디지털 변환기(ADC)
112 : 직류 제어기 113 : I/Q 채널 신호 비교기
115 : 버퍼
116 : 캐리어 주파수 옵셋(CFO : Carrier Frequency Offset) 조절기
117 : 고속 퓨리에 변환기 118 : 위상 비교기
119 : MIMO 검출기 120 : 디맵퍼(Soft Demap)
121 : 에너지 검출기(Energy detect)
122 : CCA(Clear Channel Assessment)
123 : 수신전계강도 측정기(W-RSSI)
131 : 자동 이득 제어기(AGC)
132 : 캐리어 검출 기반 포화 검출기(Saturation based carrier sense)
141 : 채널 믹서(channel mixer)
142 : 저역 필터 및 평균기(LPF + deci/2)
143 : 캐리어 검출 기반 수신전계강도 측정부(RSSI based carrier sense)
144 : 자동 상관기(Auto correlation)
145 : 교차 상관기(Cross correlation)
146 : CFO 추정기 147 : 프레임 동기부
148 : 캐리어 센싱 기반 XCR 계산부
100: RF block 101: low noise amplifier (LNA)
102: voltage controlled gain amplifier (AGC)
111: analog-to-digital converter (ADC)
112: DC controller 113: I / Q channel signal comparator
115: buffer
116: Carrier Frequency Offset (CFO)
117: Fast Fourier Converter 118: Phase Comparator
119: MIMO detector 120: Demapper (Soft Demap)
121: energy detect
122: clear channel assessment (CCA)
123: field strength measuring instrument (W-RSSI)
131: automatic gain controller (AGC)
132: Saturation based carrier sense
141: channel mixer
142 low pass filter and averager (LPF + deci / 2)
143: carrier detection based receiving field strength measurement unit (RSSI based carrier sense)
144: auto correlation
145 cross correlation
146: CFO estimator 147: frame synchronizer
148: XCR calculation unit based on carrier sensing

Claims (20)

서로 다른 둘 이상의 대역폭 전송 모드를 갖는 무선 통신 시스템에서 프레임의 송신 방법에 있어서,
요청 프레임 전송 시 채널 상태 정보 또는 송신할 데이터 프레임 모드 정보를 포함하여 전송하는 과정과,
수신 노드로부터 채널 상태 정보 또는 상기 수신 가능한 데이터 프레임 모드 정보를 포함하는 상기 요청 프레임에 대한 응답 프레임 수신 시 상기 응답 프레임 수신 시 포함된 채널 상태 정보 혹은 수신 가능한 데이터 프레임 모드 정보에 근거하여 상기 데이터 프레임을 생성하여 전송하는 과정을 포함하는, 무선 통신 시스템에서 프레임 전송 방법.
A method of transmitting a frame in a wireless communication system having two or more different bandwidth transmission modes,
Transmitting the request information including channel state information or data frame mode information to be transmitted;
When receiving a response frame for the request frame including the channel state information or the receivable data frame mode information from the receiving node, the data frame is determined based on the channel state information included in the response frame or the receivable data frame mode information. A frame transmission method in a wireless communication system comprising the step of generating and transmitting.
제 1 항에 있어서,
상기 채널 상태 정보는 이용 가능한 채널 대역폭 정보를 포함하는, 무선 통신 시스템에서 프레임 전송 방법.
The method of claim 1,
The channel state information includes available channel bandwidth information.
제 1 항에 있어서,
상기 데이터 프레임 모드 정보는 다음에 전송하고자 하는 프레임의 대역폭 정보를 포함하는, 무선 통신 시스템에서 프레임 전송 방법.
The method of claim 1,
The data frame mode information includes bandwidth information of a frame to be transmitted next.
제 1 항에 있어서,
상기 데이터 프레임 모드 정보는 상기 데이터 프레임의 요구되는 성능 지표 또는 송신 스트림 수 중 하나를 포함하는, 무선 통신 시스템에서 프레임 전송 방법.
The method of claim 1,
Wherein the data frame mode information comprises one of a required performance indicator of the data frame or the number of transmission streams.
제 1 항에 있어서,
상기 수신 노드는 수신한 프레임에 포함된 MAC 해더의 BSSID에 근거하여, 상기 수신한 프레임이 상기 수신 노드가 속한 기본 서비스 셋(BSS)에서 수신한 요청 프레임인지 또는 인접한 공존 기본 서비스 셋(OBSS)에서 수신한 간섭 프레임인지 판별하는 과정과,
상기 판별 결과에 근거하여 상기 요청 프레임에 포함된 대역폭에서 간섭 신호가 차지하는 대역폭을 제외한 나머지 대역의 크기 정보를 상기 채널 상태 정보로 사용하여 상기 응답 프레임을 전송하는 과정을 포함하는, 무선 통신 시스템에서 프레임 전송 방법.

The method of claim 1,
The receiving node determines whether the received frame is a request frame received from a basic service set (BSS) to which the receiving node belongs or based on an adjacent coexistence basic service set (OBSS) based on the BSSID of the MAC header included in the received frame. Determining whether the received interference frame;
And transmitting the response frame using the size information of the remaining bands except the bandwidth occupied by the interference signal in the bandwidth included in the request frame as the channel state information based on the determination result. Transmission method.

제 1 항에 있어서,
상기 요청 프레임 또는 상기 응답 프레임은 아이들(idle) 채널을 이용해 전송하며,
상기 각 프레임들은 아이들 채널 대역폭 정보를 포함하는, 무선 통신 시스템에서 프레임 전송 방법.
The method of claim 1,
The request frame or the response frame is transmitted using an idle channel,
Wherein each of the frames includes idle channel bandwidth information.
제 1 항에 있어서,
상기 수신한 응답 프레임에 포함된 상기 채널 상태 정보 혹은 데이터 프레임 정보에 근거하여, 상기 송신할 데이터 프레임 전송을 위한 필터 및 RF 중심 주파수를 재구성하는 과정을 더 포함하는, 무선 통신 시스템에서 프레임 전송 방법.
The method of claim 1,
And reconfiguring a filter and an RF center frequency for transmitting the data frame to be transmitted, based on the channel state information or the data frame information included in the received response frame.
제 1 항에 있어서,
상기 수신 노드는 송신한 응답 프레임 또는 수신한 요청 프레임에 포함된 상기 채널 상태 정보 또는 상기 데이터 프레임 정보에 근거하여, 상기 데이터 프레임 수신을 위한 필터 및 RF 중심 주파수를 재구성하는, 무선 통신 시스템에서 프레임 수신 방법.
The method of claim 1,
The receiving node reconfigures a filter and an RF center frequency for receiving the data frame based on the channel state information or the data frame information included in the transmitted response frame or the received request frame. Way.
제 1 항에 있어서,
상기 수신 노드는, 상기 응답 프레임 또는 상기 요청 프레임에 포함된 상기 채널 정보 또는 데이터 프레임 정보에 근거하여, 요구되는 대역폭을 만족하는 최소의 샘플링 동작 주파수로 상기 데이터 프레임을 수신하는 무선 통신 시스템에서 프레임 수신 방법.
The method of claim 1,
The receiving node receives a frame in a wireless communication system that receives the data frame at a minimum sampling operation frequency that satisfies a required bandwidth, based on the channel information or data frame information included in the response frame or the request frame. Way.
제 1 항에 있어서,
상기 요청 프레임 또는 상기 응답 프레임의 동적 채널 대역폭 할당 지원 가능 정보에 근거하여, 상대 노드가 상기 채널 상태 정보 혹은 데이터 프레임 모드 정보를 포함하는지 여부를 판별하는 과정을 더 포함하는, 무선 통신 시스템에서 프레임 전송 방법.
The method of claim 1,
And determining whether a counterpart node includes the channel state information or the data frame mode information based on the dynamic channel bandwidth allocation supportable information of the request frame or the response frame. Way.
제 1 항에 있어서,
상기 미리 제공되는 채널 상태 정보 혹은 데이터 프레임 정보는,
물리 계층의 서비스 필드 또는 맥(MAC) 헤더의 듀레이션 필드 또는 MAC 헤더의 프레임 컨트롤 필드 중 사용되지 않는 적어도 필드 값을 이용하여 제공하는, 무선 통신 시스템에서 프레임 전송 방법.
The method of claim 1,
The channel state information or data frame information provided in advance,
A method of transmitting a frame in a wireless communication system, using at least one of an unused field value among a service field of a physical layer, a duration field of a MAC header, or a frame control field of a MAC header.
서로 둘 이상의 대역폭 전송 모드를 갖는 무선 통신 시스템에서 파워 세이빙 방법에 있어서,
제어 프레임 수신 시 상기 대역폭 모드 중 가장 낮은 샘플링 속도를 갖는 모드로 제어 프레임을 수신하도록 설정하여 상기 제어 프레임을 수신하는 과정과,
상기 제어 프레임 수신 후 데이터 패킷을 송/수신을 위해 가장 높은 샘플링 속도를 갖는 모드로 상기 데이터 패킷을 송/수신하도록 설정하여 상기 데이터 패킷을 송/ 수신하는 과정을 포함하는, 무선 통신 시스템에서 파워 세이빙 방법.
In the power saving method in a wireless communication system having two or more bandwidth transmission mode with each other,
Receiving the control frame by setting to receive the control frame in a mode having the lowest sampling rate among the bandwidth modes when the control frame is received;
And transmitting / receiving the data packet by setting the data packet to be transmitted / received in a mode having the highest sampling rate for transmitting / receiving the data packet after receiving the control frame. Way.
제 12 항에 있어서,
상기 데이터 패킷에 대하여 미리 대역폭 모드들 중 해당 모드 정보가 제공되는 경우 상기 데이터 패킷을 송/수신하기 위해 미리 제공된 정보에 해당하는 모드로 상기 데이터 패킷을 송/수신하도록 설정하는 과정을 더 포함하는, 무선 통신 시스템에서 파워 세이빙 방법.
The method of claim 12,
And setting the data packet to be transmitted / received in a mode corresponding to the information provided in advance for transmitting / receiving the data packet when the corresponding mode information among the bandwidth modes is previously provided for the data packet. Power saving method in wireless communication system.
제 12 항에 있어서,
상기 데이터 패킷 송/수신 후 재전송이 필요 없는 경우 상기 가장 낮은 샘플링 속도를 갖는 모드로 전환하는 과정을 더 포함하는, 무선 통신 시스템에서 파워 세이빙 방법.
The method of claim 12,
Switching to a mode having the lowest sampling rate when retransmission is not required after the data packet transmission / reception.
제 12 항에 있어서, 상기 제어 프레임은,
전송 요청(RTS, Request to Send) 또는 요청 응답(CTS, Clear to Send) 또는 응답(ACK) 프레임 중 적어도 하나인, 무선 통신 시스템에서 파워 세이빙 방법.
The method of claim 12, wherein the control frame,
At least one of a Request to Send (RTS) or a Request to Send (CTS) or Response (ACK) frame.
캐리어 센싱을 통해 데이터의 송/수신을 수행하는 무선 통신 시스템에서 파워 세이빙 방법에 있어서,
상기 캐리어 센싱이 필요하지 않은 더즈 모드(Doze Mode)에서 상기 더즈 모드 해제를 위한 타이머에만 전원을 투입하고, 물리 계층과 맥(MAC) 계층 전체에 전원을 차단하는 과정과,
상기 캐리어 센싱이 필요한 경우 상기 캐리어 센싱에 필요한 물리(PHY) 계층과 맥(MAC) 계층에만 전원을 투입하는 과정과,
상기 캐리어 센싱 후 데이터 송/수신이 필요한 경우 데이터 송/수신에 필요한 경로에만 전원을 투입하는 과정을 포함하는, 무선 통신 시스템에서 파워 세이빙 방법.
In the power saving method in a wireless communication system for transmitting and receiving data through carrier sensing,
Turning on power only to a timer for releasing the doze mode in a doze mode that does not require the carrier sensing, and cutting off power to the entire physical layer and the MAC layer;
Supplying power only to the physical (PHY) layer and the MAC (MAC) layer required for the carrier sensing when the carrier sensing is necessary;
And powering only a path necessary for data transmission / reception if data transmission / reception is required after the carrier sensing.
제 16 항에 있어서,
상기 데이터 패킷 송/수신 후 재전송이 필요 없고, 상기 더즈 모드로 복귀 시 상기 더즈 모드 해제를 위한 타이머에만 전원을 투입하고, 물리 계층과 맥(MAC) 계층 전체에 전원을 차단하는 과정을 더 포함하는, 무선 통신 시스템에서 파워 세이빙 방법.
17. The method of claim 16,
Retransmission is not required after the data packet is transmitted / received, and upon returning to the doze mode, turning on only the timer for the release of the doze mode, and further comprising shutting off power to the physical layer and the entire MAC layer. , Power saving method in wireless communication system.
서로 다른 둘 이상의 전송 모드를 가지며, 캐리어 센싱을 통해 데이터의 송/수신을 수행하는 무선 통신 시스템에서 파워 세이빙 방법에 있어서,
상기 캐리어 센싱이 필요하지 않은 더즈 모드(Doze Mode)에서 상기 더즈 모드 해제를 위한 타이머에만 전원을 투입하고, 물리 계층과 맥(MAC) 계층 전체에 전원을 차단하는 과정과,
상기 캐리어 센싱 필요시 상기 서로 다른 모드 중 가장 낮은 샘플링 속도를 갖는 모드로 캐리어 센싱하도록 설정하여 상기 캐리어 센싱을 수행하는 과정과,
상기 캐리어 센싱 후 데이터 패킷의 송/수신을 위해 가장 높은 전송률을 갖는 모드로 상기 데이터 패킷을 송/수신하도록 설정하여 상기 데이터 패킷을 송/ 수신하는 과정을 포함하는, 무선 통신 시스템에서 파워 세이빙 방법.
A power saving method in a wireless communication system having two or more different transmission modes and performing data transmission / reception through carrier sensing,
Turning on power only to a timer for releasing the doze mode in a doze mode that does not require the carrier sensing, and cutting off power to the entire physical layer and the MAC layer;
Performing the carrier sensing by setting the carrier sensing to a mode having the lowest sampling rate among the different modes when the carrier sensing is required;
And transmitting / receiving the data packet by setting the data packet to be transmitted / received in a mode having the highest transmission rate for transmission / reception of the data packet after the carrier sensing.
제 18 항에 있어서,
상기 데이터 패킷에 대하여 상기 대역폭 모드들 중 해당 모드 정보가 미리 제공되는 경우 상기 데이터 패킷을 송/수신하기 위해 미리 제공된 정보에 해당하는 모드로 상기 데이터 패킷을 송/수신하도록 설정하는 과정을 더 포함하는, 무선 통신 시스템에서 파워 세이빙 방법.
The method of claim 18,
And setting the data packet to be transmitted / received in a mode corresponding to information provided in advance for transmitting / receiving the data packet when the corresponding mode information among the bandwidth modes is provided in advance. , Power saving method in wireless communication system.
제 18 항에 있어서,
상기 데이터 패킷 송/수신 후 재전송이 필요 없고, 상기 더즈 모드로 복귀 시 상기 더즈 모드 해제를 위한 타이머에만 전원을 투입하고, 물리 계층과 맥(MAC) 계층 전체에 전원을 차단하는 과정을 더 포함하는, 무선 통신 시스템에서 파워 세이빙 방법.
The method of claim 18,
Retransmission is not required after the data packet is transmitted / received, and upon returning to the doze mode, turning on only the timer for the release of the doze mode, and further comprising shutting off power to the physical layer and the entire MAC layer. , Power saving method in wireless communication system.
KR1020100106255A 2009-10-28 2010-10-28 Method for saving power in a wireless communication system KR101774366B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100106255A KR101774366B1 (en) 2009-10-28 2010-10-28 Method for saving power in a wireless communication system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20090103008 2009-10-28
KR1020090103008 2009-10-28
KR1020100106255A KR101774366B1 (en) 2009-10-28 2010-10-28 Method for saving power in a wireless communication system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020170109289A Division KR101928475B1 (en) 2009-10-28 2017-08-29 Method for saving power in a wireless communication system

Publications (2)

Publication Number Publication Date
KR20110046378A true KR20110046378A (en) 2011-05-04
KR101774366B1 KR101774366B1 (en) 2017-09-04

Family

ID=44241290

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100106255A KR101774366B1 (en) 2009-10-28 2010-10-28 Method for saving power in a wireless communication system

Country Status (1)

Country Link
KR (1) KR101774366B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281595A (en) * 2011-06-24 2011-12-14 华为技术有限公司 Method, transmitting equipment and receiving equipment for controlling sub-channel CCA (Clear Channel Assessment)
WO2013069918A1 (en) * 2011-11-11 2013-05-16 엘지전자 주식회사 Method and device for indicating plcp header transmission mode
CN103379657A (en) * 2012-04-16 2013-10-30 华为技术有限公司 Site access method and site
WO2015050311A1 (en) * 2013-10-05 2015-04-09 엘지전자 주식회사 Operation method and apparatus using sectorized transmission opportunity in wireless lan system
KR20150118887A (en) * 2014-04-15 2015-10-23 뉴라컴 인코포레이티드 Method for low power communication in wireless local area network and apparatus for the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030086437A1 (en) 2001-11-07 2003-05-08 Mathilde Benveniste Overcoming neighborhood capture in wireless LANs
US20060120979A1 (en) 2004-12-02 2006-06-08 Joel Rubin Skin care composition comprising hydroquinone and a substantially anhydrous base
US20070230378A1 (en) 2006-03-31 2007-10-04 Clifford Tavares Traffic prediction in wireless communication networks
JP2009171506A (en) 2008-01-21 2009-07-30 Toshiba Corp Radio communication device, control program of radio communication device, and radio communication system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281595A (en) * 2011-06-24 2011-12-14 华为技术有限公司 Method, transmitting equipment and receiving equipment for controlling sub-channel CCA (Clear Channel Assessment)
CN102281595B (en) * 2011-06-24 2014-08-06 华为技术有限公司 Method, transmitting equipment and receiving equipment for controlling sub-channel CCA (Clear Channel Assessment)
WO2013069918A1 (en) * 2011-11-11 2013-05-16 엘지전자 주식회사 Method and device for indicating plcp header transmission mode
US9648149B2 (en) 2011-11-11 2017-05-09 Lg Electronics Inc. Method and device for indicating PLCP header transmission mode
CN103379657A (en) * 2012-04-16 2013-10-30 华为技术有限公司 Site access method and site
CN103379657B (en) * 2012-04-16 2016-08-17 华为技术有限公司 Website cut-in method and website
WO2015050311A1 (en) * 2013-10-05 2015-04-09 엘지전자 주식회사 Operation method and apparatus using sectorized transmission opportunity in wireless lan system
US10098150B2 (en) 2013-10-05 2018-10-09 Lg Electronics Inc. Operation method and apparatus using sectorized transmission opportunity in wireless LAN system
KR20150118887A (en) * 2014-04-15 2015-10-23 뉴라컴 인코포레이티드 Method for low power communication in wireless local area network and apparatus for the same

Also Published As

Publication number Publication date
KR101774366B1 (en) 2017-09-04

Similar Documents

Publication Publication Date Title
KR102058129B1 (en) Method for saving power in a wireless communication system
CN107360619B (en) Wireless communication method, wireless controller device and wireless communication device
CN101828340B (en) Power management method for mobile station in multi-carrier wireless network, mobile station and operation method thereof
JP4288368B2 (en) Reception control method and wireless LAN apparatus
US8953510B2 (en) Method for power saving in wireless local area network and apparatus for the same
CN110574442A (en) Low power wake-up in wireless networks
KR20160096642A (en) Method and apparatus for operating based on power save mode in wireless lan
KR101774366B1 (en) Method for saving power in a wireless communication system
KR20170017918A (en) Method and apparatus for transmitting and receiving periodic data on basis of power save mode in wireless lan
KR20150118887A (en) Method for low power communication in wireless local area network and apparatus for the same
KR20230137353A (en) Adaptive Neighbor Aware Networking (NAN) data interface
KR20230141900A (en) Reduction in listen mode power consumption of wireless local area network (WLAN) devices

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant