KR20110044099A - Method of controlling loop bandwidth for optimal signal tracking of dgps reference receivers - Google Patents

Method of controlling loop bandwidth for optimal signal tracking of dgps reference receivers Download PDF

Info

Publication number
KR20110044099A
KR20110044099A KR1020090100931A KR20090100931A KR20110044099A KR 20110044099 A KR20110044099 A KR 20110044099A KR 1020090100931 A KR1020090100931 A KR 1020090100931A KR 20090100931 A KR20090100931 A KR 20090100931A KR 20110044099 A KR20110044099 A KR 20110044099A
Authority
KR
South Korea
Prior art keywords
signal
bandwidth
loop
reference station
tracking
Prior art date
Application number
KR1020090100931A
Other languages
Korean (ko)
Other versions
KR101105442B1 (en
Inventor
박상현
조득재
서기열
Original Assignee
한국해양연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양연구원 filed Critical 한국해양연구원
Priority to KR1020090100931A priority Critical patent/KR101105442B1/en
Publication of KR20110044099A publication Critical patent/KR20110044099A/en
Application granted granted Critical
Publication of KR101105442B1 publication Critical patent/KR101105442B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/14Determining absolute distances from a plurality of spaced points of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/071DGPS corrections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/30Acquisition or tracking or demodulation of signals transmitted by the system code related

Abstract

PURPOSE: A method of controlling loop bandwidth for optimal signal tracking of DGPS reference receivers is provided to reduce signal acquirement consumption time. CONSTITUTION: An interrelating unit(10) generates correlation value by multiplying and integrating an early code signal and late code signal generated from a code generating unit(50). A phase discriminator(20) calculates phase error using the correlation value of the interrelating unit. A loop filter(40) eliminates a noise component of the phase error according to a control signal of a band width adjustment part(30). The code generating unit generates the early code signal and late code signal. The band width adjustment part controls the band width of the loop filter.

Description

DGPS 기준국용 수신기의 신호추적을 위한 루프 대역폭 조정 방법{method of controlling Loop Bandwidth for optimal signal tracking of DGPS Reference Receivers}Method of controlling loop bandwidth for optimal signal tracking of DGPS reference receivers

본 발명은 DGPS 기준국용 수신기의 신호추적을 위한 루프 대역폭 조정방법에 관한 것이다.The present invention relates to a loop bandwidth adjustment method for signal tracking of a receiver for a DGPS reference station.

전세계 어디에서나 위치와 시각정보를 제공하는 위성전파항법시스템은 로란-C와 같은 지상전파항법시스템 보다 높은 정확도의 측위 서비스를 제공한다는 점에서 해상항법 분야를 포함하여 그 활용 범의가 급속히 넓어지고 있다. 그러나, 위성전파항법체계 만을 단독으로 사용하는 단독 측위법(standalone positioning)은 항만과 같이 교통량이 많고, 선박간 충돌 위험도가 높은 지역에서 요구되는 측위 정확도를 만족시키지 못하는 문제가 있다. 이를 해결하기 위한 대표적 방법이 위성전파항법 보강시스템(GNSS augmentation system)의 일종인 DGPS(Differential Global positioning System) 측위법이다. DGPS 측위법은 보강시스템에 설치된 기준국용 수신기를 이용하여 위성신호의 오차성분을 추출하고, 추출된 오차성분을 주변 위성전파항법 이용자들에게 전송하여 위성신호 오차를 제거함으로써 측위 정확도를 향상 시키는 방법이다. 특히 연근해 해상항법 분야에서 이용하고 있는 의사거리(pseudorange) 기반의 DGPS 측위법은 보정정보의 양이 적어서 정보 전송에 대한 부담이 없고, 이용자가 수신된 의사거리 오차 보정정보를 이용하여 간단한 산술처리 만으로 측위 정확도를 높일 수 있다는 장점이 있다. 우리나라에서는 1995년 5월 서해권 DGPS 보정정보 전송 서비스를 시작으로 2001년 동해, 남해권을 포함한 MDGPS (Maritime Differential GPS) 기준국망 구축을 완료하고, 선박의 안전한 항행을 위해 1-2미터 수준의 측위 정확도를 얻을 수 있는 실시간 DGPS 보정정보를 국내연안과 도서지역에 송신하고 있다.Satellite radio navigation systems that provide location and visual information anywhere in the world are rapidly expanding their range of applications, including maritime navigation, in that they provide more accurate positioning services than terrestrial navigation systems such as Loran-C. However, standalone positioning using only the satellite propagation system alone does not satisfy the positioning accuracy required in areas with high traffic volume and high risk of collision between ships. A representative method to solve this problem is DGPS (Differential Global Positioning System) positioning method, which is a kind of GNSS augmentation system. DGPS positioning method improves the positioning accuracy by extracting the error component of the satellite signal by using the receiver of the reference station installed in the reinforcement system and transmitting the extracted error component to the neighboring satellite radio navigation users. . In particular, the pseudorange-based DGPS positioning method used in the offshore maritime navigation field has a small amount of correction information, so there is no burden on information transmission, and a user simply uses arithmetic processing using the received pseudo distance error correction information. This has the advantage of increasing the positioning accuracy. In May 1995, Korea completed the construction of the MDGPS (Maritime Differential GPS) reference station network including the East Sea and the South Sea in 2001. Real-time DGPS correction information is transmitted to domestic coast and island area for accuracy.

DGPS 측위 정확도는 위성전파항법 보강시스템에 설치된 기준국 수신기가 생성한 의사거리 오차 보정정보의 정확도에 영향을 받으며, 의사거리 오차 보정정보의 정확도는 기준국 수신기가 측정한 원시정보의 측정잡음 크기에 영향을 받는다. 그 이유는 기준국 수신기가 생성한 의사거리 오차 보정정보가 사용자 GPS 수신기와의 공통 오차인 이온층/대류권 지연 오차, 위성시계 오차, 위성궤도 오차 뿐만 아니라 비공통 오차로서 DGPS 측위법으로 제거할 수 없는 원시정보 측정잡음을 포함하고 있기 때문이다. 이런 이유로 국제기구에서는 위성전파항법 보강시스템용 기준국 수신기가 제공하는 원시정보의 측정잡음 한계를 규정하고 있으며, 해상항법 분야에서 사용되는 기준국 수신기의 원시정보 측정잡음 성능은 RTCM(RTCM Technical Commission for Maritime Services)에 의해 표 1과 같이 규정되고 있다.The accuracy of DGPS positioning is affected by the accuracy of pseudorange error correction information generated by the reference station receiver installed in the satellite radiocommunication reinforcement system.The accuracy of the pseudorange error correction information is based on the measured noise level of the raw information measured by the reference station receiver. get affected. The reason is that the pseudorange error correction information generated by the reference station receiver cannot be removed by DGPS positioning as a non-common error as well as ion layer / tropospheric delay error, satellite clock error, and satellite orbit error, which are common errors with the user's GPS receiver. This is because it contains the original information measurement noise. For this reason, international organizations have specified limits on the measurement noise of raw information provided by reference station receivers for satellite navigation system.The performance of measurement noise on reference station receivers used in the maritime navigation field is RTCM Maritime Services) is defined as shown in Table 1.

기준국 수신기의 원시정보 측정잡음 성능 규정Performance Measurement of Raw Noise of Reference Station Receivers 항목Item 성능 규정Performance regulations 비고Remarks 의사거리 측정 정확도Pseudorange measurement accuracy 30 센티미터 이하 (rms)30 centimeters or less (rms) 기준국 수신기 클록 오차 시각 오프셋 배제Reference station receiver clock error time offset exclusion 도플러 측정 정확도Doppler measurement accuracy 초당 4센티미터 이하 (rms)4 centimeters per second or less (rms) 기준국 수신기 클록 오차
주파수 오프셋 배제
Reference station receiver clock error
Frequency Offset Exclusion

DGPS 기준국용 수신기는 원시정보 측정잡음을 효율적으로 줄이는 기능을 갖고 있어야 한다. 이를 위해 기준국 수신기는 열잡음과 입력신호세기에 민감한 측정잡음을 최적화하기 위해 고정형 협대역 신호추적루프 기법을 일반적으로 이용하고 있다. 여기서 고정형 협대역 신호추적루프 기법은 원시정보의 측정잡음을 줄이기 위해 허용된 입력신호세기의 하한치를 기준으로 신호추적루프의 대역폭을 가능한 최소값으로 줄이는 방법이며, 측정잡음을 가장 손쉽게 저감시키는 방법으로 알려져 있다.Receivers for DGPS reference stations shall have the capability to efficiently reduce the noise of the source information measurement. For this purpose, the reference station receiver generally uses a fixed narrowband signal tracking loop technique to optimize measurement noise sensitive to thermal noise and input signal strength. Here, the fixed narrowband signal tracking loop technique reduces the bandwidth of the signal tracking loop to the minimum possible value based on the lower limit of the input signal strength allowed to reduce the measurement noise of the raw information. have.

그러나 고정형 협대역 신호추적루프 기법은 초기동기(initial synchronization) 단계에서 신호취득에 소요되는 시간을 증가시키는 문제를 일으킬 뿐만 아니라 모든 입력신호에 대해 최적의 신호추적을 불가능하게 문제가 있다.However, the fixed narrowband signal tracking loop technique not only increases the time required for signal acquisition in the initial synchronization stage, but also makes it impossible to achieve optimal signal tracking for all input signals.

즉, 신호추적루프의 잡음 대역폭을 줄이면, 추적루프의 좁은 인입영역(pull-in range)을 요구하게 되고, 좁은 인입영역은 초기동기 과정에서 검색 격자의 크기를 축소시켜서 검색해야 할 셀의 개수를 증가시키는 문제를 일으킨다. In other words, if the noise bandwidth of the signal tracking loop is reduced, it requires a narrow pull-in range of the tracking loop, which narrows the size of the search grid in the initial synchronization process to reduce the number of cells to be searched. Causes increasing problems.

도 1은 입력신호세기에 따른 의사거리 측정잡음과 신호추적루프 대역폭 사이에 관계를 도시한 것으로 신호추적루프의 대역폭을 줄이는 것만으로 최적의 측정잡음을 얻을 수 없다는 것을 보여준다. 또한 신호의 세기(신호대잡음비)에 따라 측정잡음을 최적화 시키는 루프 대역폭이 서로 다름을 확인시켜 준다. 즉 DGPS 기준국용 수신기의 입력신호는 위성별로 신호세기가 서로 다르고, 시변 특성을 지니므로 종래의 고정형 협대역 추적루프 기법으로는 원시정보 측정잡음을 최소화시킬 수 없는 것이다.Figure 1 shows the relationship between the pseudo-range measurement noise and the signal tracking loop bandwidth according to the input signal strength, and shows that the optimum measurement noise cannot be obtained only by reducing the bandwidth of the signal tracking loop. It also confirms that the loop bandwidths for optimizing measurement noise vary according to the signal strength (signal-to-noise ratio). That is, since the input signal of the DGPS reference station receiver has different signal strengths and has time varying characteristics for each satellite, the conventional fixed narrowband tracking loop technique cannot minimize the original information measurement noise.

본 발명은 상기와 같은 문제점을 개선하기 위하여 창안된 것으로서, 초기동기 단계에서의 신호 취득 소요 시간을 감축시키고, 입력신호에 대한 신호 추적능력을 높일 수 있는 DGPS 기준국용 수신기의 신호추적을 위한 루프 대역폭 조정 방법을 제공하는데 그 목적이 있다.The present invention was devised to improve the above problems, and it is possible to reduce the signal acquisition time in the initial synchronization stage and to increase the signal tracking capability of the input signal, and thus the loop bandwidth for signal tracking of the receiver for the DGPS reference station. The purpose is to provide a coordination method.

상기의 목적을 달성하기 위하여 본 발명에 따른 신호추적을 위한 루프 대역폭 조정 방법은 DGPS 기준국용 수신기의 루프 대역폭 조정방법에 있어서, 의사거리 추적루프의 대역폭(

Figure 112009064866812-PAT00001
)을
Figure 112009064866812-PAT00002
에 의해 결정하고, 반송파 추적루프의 대역폭(
Figure 112009064866812-PAT00003
)을
Figure 112009064866812-PAT00004
에 의해 결정하며, 여기서, k1=0.01613, h1=(0.0817×10-3)2이고,In order to achieve the above object, a loop bandwidth adjustment method for signal tracking according to the present invention is a loop bandwidth adjustment method of a receiver for a DGPS reference station, and the bandwidth of the pseudo distance tracking loop (
Figure 112009064866812-PAT00001
)of
Figure 112009064866812-PAT00002
The bandwidth of the carrier tracking loop (
Figure 112009064866812-PAT00003
)of
Figure 112009064866812-PAT00004
, Where k1 = 0.0161 3 , h1 = (0.0817 × 10 -3 ) 2 ,

Figure 112009064866812-PAT00005
이며,
Figure 112009064866812-PAT00005
Is,

Figure 112009064866812-PAT00007
Figure 112009064866812-PAT00007

Figure 112009064866812-PAT00008
Figure 112009064866812-PAT00008

Tc는 의사잡음코드의 칩주기, Rc =1/Tc, C/No는 신호대잡음세기, BRF는 DGPS 기준국용 수신기의 RF 대역폭, T는 선검출 적분시간, D는 상관기의 빠른 코드신호와 느린코드 신호 사이의 칩간격, F는 입력신호 상태계수로서 문턱값 근처의 세기인 경우는 2, 그렇지 않은 경우는 1인 것을 특징으로 한다.Tc is the chip period of the pseudo-noise code, Rc = 1 / Tc, C / No is the signal-to-noise strength, B RF is the RF bandwidth of the receiver for the DGPS reference station, T is the pre-detection integral time, D is the fast code signal of the correlator and slow The chip spacing between the code signals, F, is an input signal state coefficient, which is 2 for strength near a threshold value and 1 for no value.

본 발명에 따른 DGPS 기준국용 수신기의 신호추적을 위한 루프 대역폭 조정 방법에 의하면, 기준국 수신기의 원시정보 측정잡음을 저감할 수 있고 초기동기 단계에서 신호취득 소요시간을 줄일 수 있는 장점을 제공한다. According to the loop bandwidth adjustment method for signal tracking of the DGPS reference station receiver according to the present invention, it is possible to reduce the raw information measurement noise of the reference station receiver and to reduce the signal acquisition time in the initial synchronization stage.

이하, 첨부된 도면을 참조하면서 본 발명의 바람직한 실시 예에 따른 DGPS 기준국용 수신기의 신호추적을 위한 루프 대역폭 조정 방법을 더욱 상세하게 설명한다.Hereinafter, a loop bandwidth adjustment method for signal tracking of a receiver for a DGPS reference station according to an exemplary embodiment of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명에 따른 DGPS 기준국용 수신기의 신호 추적장치를 나타내 보인 도면이다.2 is a view showing a signal tracking device of the receiver for the DGPS reference station according to the present invention.

도 2를 참조하면, 신호 추적장치는 상관기(10), 위상 판별기(20), 대역폭 조정기(30), 루프 필터(40) 및 코드 생성부(50)를 구비한다.Referring to FIG. 2, the signal tracking device includes a correlator 10, a phase discriminator 20, a bandwidth adjuster 30, a loop filter 40, and a code generator 50.

상관기(10)는 신호 추적을 위해 수신기의 입력신호와 코드 생성부(50)에서 생성되는 빠른신호(early 코드신호)와 느린 코드신호(late 코드신호)를 각각 곱하고 적분하여 각각의 상관값을 발생시킨다.The correlator 10 multiplies and integrates the input signal of the receiver and the fast code signal (early code signal) and the slow code signal (late code signal) generated by the code generator 50 for signal tracking to generate respective correlation values. Let's do it.

위상 판별기(20)는 상관기(10)에서 발생된 상관값을 이용하여 위상 오차를 계산한다.The phase discriminator 20 calculates a phase error using the correlation value generated by the correlator 10.

루프 필터(40)는 대역폭 조정기(35)의 제어신호에 따라 지시된 대역폭에 대해 위상오차의 잡음 성분을 제거한다.The loop filter 40 removes noise components of the phase error for the indicated bandwidth according to the control signal of the bandwidth adjuster 35.

코드 생성부(50)는 루프 필터(40)에서 발생된 잡음이 제거된 위상 오차를 이용하여 위상 오차를 보상하기 위한 빠른(early)코드 신호 및 느린(late) 코드신호를 생성한다.The code generator 50 generates an early code signal and a late code signal to compensate for the phase error by using the phase error from which the noise generated by the loop filter 40 is removed.

대역폭 조정부(30)는 상관기(10)의 출력시호와 위상 판별기(20)의 출력신호를 이용하여 루프 필터(40)의 밴드폭을 제어한다.The bandwidth adjusting unit 30 controls the bandwidth of the loop filter 40 by using the output time of the correlator 10 and the output signal of the phase discriminator 20.

대역폭 조정부(30)는 입력신호 세기 추정기(31), GPS신호 동특성 추정기(33) 및 밴드폭 조정부(35)를 구비한다.The bandwidth adjuster 30 includes an input signal strength estimator 31, a GPS signal dynamic estimator 33, and a bandwidth adjuster 35.

입력신호 세기 추정기(31)는 상관기(30)의 출력신호로부터 신호대잡음세기(C/No)를 산출하여 출력한다.The input signal strength estimator 31 calculates and outputs the signal-to-noise strength C / No from the output signal of the correlator 30.

GPS신호 동특성 추정기(33)는 의사거리 변화량을 산출한다.The GPS signal dynamics estimator 33 calculates the pseudo distance change amount.

밴드폭 조정부(35)는 입력신호 세기 추정기(31)에서 제공되는 신호대 잡음세기와 GPS동특성 추정기에서 제공되는 의사거리 변화량 데이터를 이용하여 루프필터(40)의 대역폭을 조정한다.The bandwidth adjusting unit 35 adjusts the bandwidth of the loop filter 40 by using the signal-to-noise strength provided by the input signal strength estimator 31 and the pseudo distance change amount data provided by the GPS dynamic estimator.

이러한 대역폭 조정부(30)의 대역폭 조정과정을 이하에서 상세하게 설명한 다.The bandwidth adjustment process of the bandwidth adjustment unit 30 will be described in detail below.

DGPS 기준국용 수신기와 GPS 위성간에 LOS(Line-of-Sight) 동특성을 반영하여 기준국 수신기 원시정보의 의사거리, 반송파 측정잡음 크기를 표현하면, 아래의 수학식 1 및 2와 같다.Expressing the pseudo-range and carrier measurement noise of the reference station receiver raw information by reflecting the line-of-ight dynamic characteristics between the DGPS reference station receiver and the GPS satellites, Equations 1 and 2 below.

Figure 112009064866812-PAT00009
Figure 112009064866812-PAT00009

Figure 112009064866812-PAT00010
Figure 112009064866812-PAT00010

여기서, σDLL은 의사거리 측정잡음(chip), Tc는 의사잡음코드의 칩주기(second), Bn-DLL은 의사거리 추적루프의 대역폭, BRF는 DGPS 기준국용 수신기의 RF 대역폭(Hz), C/No는 신호대잡음세기(Hz), Ss(f)는 신호의 전력밀도, T는 선검출 적분시간(pre-detection integration time; seconds), D는 상관기의 Early와 Late 사이의 칩간격(chip),σFLL은 반송파 측정잡음(Hz), Bn-FLL은 반송파 추적루프의 대역폭, F는 입력신호 상태계수로서 문턱값 근처의 세기인 경우는 2, 그렇지 않은 경우는 1이다.Where σ DLL is the pseudorange measurement noise (chip), Tc is the chip cycle of the pseudonoise code (second), B n-DLL is the bandwidth of the pseudorange tracking loop, and B RF is the RF bandwidth (Hz) of the receiver for the DGPS reference station. Where C / No is the signal-to-noise strength (Hz), Ss (f) is the power density of the signal, T is the pre-detection integration time (seconds), and D is the chip spacing between Early and Late chip), σ FLL is the carrier measurement noise (Hz), B n-FLL is the bandwidth of the carrier tracking loop, F is the input signal state coefficient, which is 2 for strength near threshold, 1 otherwise.

위 수학식 1 및 2로부터 측정잡음을 최소화시키는 신호추적루프의 최적 대역폭을 아래의 수학식 3 및 4와 같이 구한다.  From Equations 1 and 2 above, the optimal bandwidth of the signal tracking loop that minimizes measurement noise is calculated as Equations 3 and 4 below.

Figure 112009064866812-PAT00011
Figure 112009064866812-PAT00011

Figure 112009064866812-PAT00012
Figure 112009064866812-PAT00012

여기서, k1=0.01613, h1=(0.0817×10-3)2, Rc =1/Tc 이고,Where k1 = 0.0161 3 , h1 = (0.0817 × 10 −3 ) 2 , Rc = 1 / Tc,

Figure 112009064866812-PAT00013
이다.
Figure 112009064866812-PAT00013
to be.

Figure 112009064866812-PAT00014
Figure 112009064866812-PAT00014

Figure 112009064866812-PAT00015
Figure 112009064866812-PAT00015

Figure 112009064866812-PAT00016
Figure 112009064866812-PAT00016

이러한 루프 대역폭 조정방법은 기준국용 수신기에 요구되는 측정잡음 최대치(ηB)를 만족시키는 신호추적루프 대역폭을 수학식 1 및 2로부터 구하고, 해당 입력신호 세기에서 측정잡음을 최소화시키는 루프대역폭을 수학식 3과 4를 이용하여 구하면 된다.This loop bandwidth adjustment method obtains a signal tracking loop bandwidth satisfying the maximum measured noise value (η B ) required for a reference station receiver from Equations 1 and 2, and calculates a loop bandwidth that minimizes measured noise at the corresponding input signal strength. You can do this using 3 and 4.

도 3은 입력신호세기에 따른 의사거리 측정잡음과 최적 대역폭의 관계를 보 여준다.Figure 3 shows the relationship between the pseudorange measurement noise and the optimum bandwidth according to the input signal strength.

한편, 본 발명에 의한 루프 대역폭 조정방법을 종래의 고정형 협대역 신호추적루프 방법과의 특성 차이를 비교한 결과가 도 4, 5 및 표 2, 3에 기재하였다.Meanwhile, the results of comparing the loop bandwidth adjustment method according to the present invention with the conventional fixed narrowband signal tracking loop method are shown in FIGS. 4 and 5 and Tables 2 and 3.

비교 결과를 통해 확인할 수 있는 바와 같이 종래 기술인 고정형 협대역 신호추적루프 기법이 입력신호세기 30dB-Hz에 맞춰 설계된 경우에 본원에서 제안한 방법이 종래 기술보다 초기동기 측면에서 검색해야 할 셀의 개수가 얼마나 더 적어지는지와 측정잡음이 얼마나 더 저감되는지 확인시켜 준다.As can be seen from the comparison results, when the conventional fixed narrowband signal tracking loop scheme is designed for an input signal strength of 30 dB-Hz, the proposed method of the present invention shows how many cells should be searched in terms of initial synchronization than the prior art. Confirm that there are less and how much more the measurement noise is reduced.

본 발명의 조정방법과 종래 기술의 초기동기 검색 셀 개수 비교Comparison of the Adjustment Method of the Invention and the Initial Synchronous Search Cell Count of the Prior Art 추적루프 대역폭(Hz)Tracking loop bandwidth (Hz) GPS 입력신호세기GPS input signal strength 30
dB-Hz
30
dB-Hz
35
dB-Hz
35
dB-Hz
40
dB-Hz
40
dB-Hz
50
dB-Hz
50
dB-Hz
고정형 협대역 신호추적루프 기법Fixed Narrowband Signal Tracking Loop Technique 0.03170.0317 0.03170.0317 0.03170.0317 0.03170.0317 본 발명의
루프대역폭 조정방법
Of the present invention
Loop Bandwidth Adjustment Method
1단계Stage 1 0.05(①)0.05 (①) 0.27(②)0.27 (②) 1.05(③)1.05 (③) >2(④)> 2 (④)
2단계Step 2 0.03170.0317 0.04070.0407 0.05020.0502 0.07050.0705 초기동기 검색 셀의 개수 비 (종래:본 발명)Ratio of initial synchronous search cells (prior to the present invention) 1.6 : 11.6: 1 8.5 : 18.5: 1 33.1 : 133.1: 1 > 63.1 : 1> 63.1: 1

본원 발명의 조정방법과 종래 기술의 측정잡음 크기 비교Comparison of measurement noise magnitudes between the adjustment method of the present invention and the prior art 의사거리 측정잡음 (cm)Pseudo-range measurement noise (cm) GPS 입력신호세기GPS input signal strength 30
dB-Hz
30
dB-Hz
35
dB-Hz
35
dB-Hz
40
dB-Hz
40
dB-Hz
50
dB-Hz
50
dB-Hz
고정형 협대역 신호 추적루프 기법(A)Fixed-Narrow Signal Tracking Loop Technique (A) 77.6177.61 42.54(⑤)42.54 (⑤) 29.60(⑥)29.60 (⑥) 18.15(⑦)18.15 (⑦) 본발명의 루프대역폭
조정방법 (B)
Loop Bandwidth of the Invention
How to adjust (B)
77.6177.61 38.0838.08 21.9321.93 7.857.85
본 발명의 조정방법의 향상정도
((A-B)/A) [%]
Improvement degree of the adjusting method of the present invention
((AB) / A) [%]
-- 8.18.1 25.925.9 56.756.7

특히 본원 발명의 루프 대역폭 조정 방법은 GPS 입력신호의 세기가 커질수록 종래 기법보다 의사거리 측정잡음 크기 면에서 최대 2배 이상 측정잡음을 저감시키며, 초기동기 측면에서 최대 63배 이상 빨리 초기동기 과정을 마치는 효과가 있다. In particular, the loop bandwidth adjustment method of the present invention reduces the measurement noise by up to two times or more in terms of pseudorange measurement noise size as the strength of the GPS input signal increases, and performs the initial synchronization process by up to 63 times or more in terms of initial synchronization. It has the effect of finishing.

도 1은 일반적인 의사거리 측정잡음과 신호추적루프 대역폭 사이의 관계를 나타내 보인 그래프이고,1 is a graph illustrating a relationship between a typical pseudorange measurement noise and a signal tracking loop bandwidth.

도 2는 본 발명에 따른 DGPS 기준국용 수신기의 신호추적 장치의 블록도이고,2 is a block diagram of a signal tracking device of a receiver for a DGPS reference station according to the present invention;

도 3은 최적 신호 추적을 위한 루프 대역폭 조정방법의 적용 예를 나타내 보인 그래프이고,3 is a graph illustrating an application example of a loop bandwidth adjustment method for optimal signal tracking;

도 4는 고정형 협대역 신호추적 방법과 본 발명에 의한 루프 대역폭 조정방법에 의한 루프 대역폭 및 측정잡음 크기를 비교한 결과를 나타내 보인 그래프이고,4 is a graph showing a result of comparing the loop bandwidth and the measured noise amplitude by the fixed narrowband signal tracking method and the loop bandwidth adjustment method according to the present invention;

도 5는 도 4의 일부를 확대도한 그래프이다.5 is an enlarged view of a portion of FIG. 4.

Claims (1)

DGPS 기준국용 수신기의 신호 추적을 위한 루프 대역폭 조정방법에 있어서,In the loop bandwidth adjustment method for signal tracking of a receiver for a DGPS reference station, 의사거리 추적루프의 대역폭(
Figure 112009064866812-PAT00017
)을
Bandwidth of the pseudorange tracking loop
Figure 112009064866812-PAT00017
)of
Figure 112009064866812-PAT00018
에 의해 결정하고,
Figure 112009064866812-PAT00018
Determined by
반송파 추적루프의 대역폭(
Figure 112009064866812-PAT00019
)을
Bandwidth of the carrier tracking loop (
Figure 112009064866812-PAT00019
)of
Figure 112009064866812-PAT00020
에 의해 결정하며,
Figure 112009064866812-PAT00020
Determined by
여기서, k1=0.01613, h1=(0.0817×10-3)2이고,Where k1 = 0.0161 3 , h1 = (0.0817 × 10 -3 ) 2 ,
Figure 112009064866812-PAT00021
이며,
Figure 112009064866812-PAT00021
Is,
Figure 112009064866812-PAT00022
Figure 112009064866812-PAT00022
Figure 112009064866812-PAT00023
Figure 112009064866812-PAT00023
Figure 112009064866812-PAT00024
Figure 112009064866812-PAT00024
Tc는 의사잡음코드의 칩주기, Rc =1/Tc, C/No는 신호대잡음세기, BRF는 DGPS 기준국용 수신기의 RF 대역폭, T는 선검출 적분시간, D는 상관기의 빠른코드신호와 느린 코드신호 사이의 칩 간격, F는 입력신호 상태계수로서 문턱값 근처의 세기인 경우는 2, 그렇지 않은 경우는 1인 것을 특징으로 하는 DGPS 기준국용 수신기의 신호 추적을 위한 루프 대역폭 조정방법.Tc is the chip period of the pseudo-noise code, Rc = 1 / Tc, C / No is the signal-to-noise strength, B RF is the RF bandwidth of the receiver for the DGPS reference station, T is the pre-detection integral time, D is the fast code signal of the correlator and slow The chip spacing between the code signals, F is an input signal state coefficient, which is 2 for strength near a threshold value, and 1 for otherwise, 1 for a signal tracking of a receiver for a DGPS reference station.
KR1020090100931A 2009-10-22 2009-10-22 method of controlling Loop Bandwidth for optimal signal tracking of DGPS Reference Receivers KR101105442B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090100931A KR101105442B1 (en) 2009-10-22 2009-10-22 method of controlling Loop Bandwidth for optimal signal tracking of DGPS Reference Receivers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090100931A KR101105442B1 (en) 2009-10-22 2009-10-22 method of controlling Loop Bandwidth for optimal signal tracking of DGPS Reference Receivers

Publications (2)

Publication Number Publication Date
KR20110044099A true KR20110044099A (en) 2011-04-28
KR101105442B1 KR101105442B1 (en) 2012-01-17

Family

ID=44049017

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090100931A KR101105442B1 (en) 2009-10-22 2009-10-22 method of controlling Loop Bandwidth for optimal signal tracking of DGPS Reference Receivers

Country Status (1)

Country Link
KR (1) KR101105442B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456390B (en) * 2019-07-24 2021-04-13 北京空间飞行器总体设计部 Device and method for monitoring on-orbit integrity risk of navigation satellite

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070073535A (en) * 2006-01-05 2007-07-10 삼성전자주식회사 Apparatus and method for time tracking in a mobile terminal
KR100687243B1 (en) 2006-01-25 2007-02-26 주식회사 네비콤 Code tracking loop and method for multipath error mitigation
US7613258B2 (en) 2006-02-28 2009-11-03 O2Micro International Ltd. Apparatus and method for determining GPS tracking loop parameter based on SNR estimation
KR100964003B1 (en) 2008-04-11 2010-06-15 한국해양연구원 Apparatus and Method of Gauging the Measurement Noise of the Raw Data observed by GNSS Receivers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456390B (en) * 2019-07-24 2021-04-13 北京空间飞行器总体设计部 Device and method for monitoring on-orbit integrity risk of navigation satellite

Also Published As

Publication number Publication date
KR101105442B1 (en) 2012-01-17

Similar Documents

Publication Publication Date Title
US6731672B1 (en) GPS receiver having improved signal acquisition at a low signal to noise ratio
US8456353B2 (en) Method and system for determining clock corrections
US5903654A (en) Method and apparatus for eliminating ionospheric delay error in global positioning system signals
US7917156B2 (en) Position determination for a wireless terminal in a hybrid position determination system
US5808582A (en) Global positioning system receiver with improved multipath signal rejection
US9515697B2 (en) Scanning correlator for global navigation satellite system signal tracking
US11506794B2 (en) Systems and methods for GNSS carrier phase multipath mitigation using a blanked correlator in conjunction with a full correlator
US20060133461A1 (en) Method and apparatus for processing signals for ranging applications
Ferre et al. Comparison of MEO, LEO, and terrestrial IoT configurations in terms of GDOP and achievable positioning accuracies
US8547950B2 (en) Squaring loss inhibition for low signal levels in positioning systems
Li et al. Design and implementation of an open-source BDS-3 B1C/B2a SDR receiver
Guo et al. Integrated navigation and communication service for LEO satellites based on BDS-3 global short message communication
CN201130246Y (en) Code tracking loop for multi-path resistance GPS spread spectrum receiver
Shanmugam New enhanced sensitivity detection techniques for GPS L 1 C/A and modernized signal acquisition
CN104798307A (en) Gnss system and method using unbiased code phase tracking with interleaved pseudo-random code
CN109633697B (en) Multipath inhibition method based on multi-carrier signal
KR101105442B1 (en) method of controlling Loop Bandwidth for optimal signal tracking of DGPS Reference Receivers
JP2011117830A (en) Gnss receiver and positioning method
US8736489B2 (en) GNSS receiver
Muthuraman et al. Coarse time navigation: Equivalence of algorithms and reliability of time estimates
WO2011109278A1 (en) Methods and apparatus for stabilizing reference oscillators
US20240134056A1 (en) Method for performing a correction of an ionospheric error affecting pseudo-range measurements in a gnss receiver, corresponding receiver apparatus and computer program product
Morales Ferre et al. Comparison of MEO, LEO, and terrestrial IoT configurations in terms of GDOP and achievable positioning accuracies
CN107182262B (en) CAPS navigation message generation methods
Xie et al. Satellite Navigation Uplink and Reception Technology

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151228

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170103

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190102

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 9