KR20110022108A - The method of spacer height measurement with parallel plate and apparatus of spacer height measurement with parallel plate - Google Patents

The method of spacer height measurement with parallel plate and apparatus of spacer height measurement with parallel plate Download PDF

Info

Publication number
KR20110022108A
KR20110022108A KR1020090079510A KR20090079510A KR20110022108A KR 20110022108 A KR20110022108 A KR 20110022108A KR 1020090079510 A KR1020090079510 A KR 1020090079510A KR 20090079510 A KR20090079510 A KR 20090079510A KR 20110022108 A KR20110022108 A KR 20110022108A
Authority
KR
South Korea
Prior art keywords
height
gap agent
substrate
glass substrate
primitive
Prior art date
Application number
KR1020090079510A
Other languages
Korean (ko)
Inventor
노봉규
Original Assignee
세심광전자기술(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세심광전자기술(주) filed Critical 세심광전자기술(주)
Priority to KR1020090079510A priority Critical patent/KR20110022108A/en
Publication of KR20110022108A publication Critical patent/KR20110022108A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • G01B7/10Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness using magnetic means, e.g. by measuring change of reluctance
    • G01B7/102Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0608Height gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE: A spacer height measuring apparatus with a parallel plate and a spacer height measuring method using the same are provided to measure the deformation height of a spacer due to pushing power, thereby manufacturing a liquid crystal cell of accurate height. CONSTITUTION: A spacer height measuring apparatus with a parallel plate comprises a substrate portion(100) and a pressure portion(300). A spacer(101) is formed in the substrate portion. The pressure portion presses the substrate portion with fixed pressure. The height of the spacer is measured from physical properties between a parallel plate(302) of the pressure portion and a glass substrate(104) of the substrate portion.

Description

원기를 쓴 간극제 높이 검사방법 및 검사장치 {The Method of Spacer Height Measurement with Parallel Plate and Apparatus of Spacer Height Measurement with Parallel Plate}The Method of Spacer Height Measurement with Parallel Plate and Apparatus of Spacer Height Measurement with Parallel Plate}

본 발명은 유리기판에 부착된 간극제의 높이를 원기를 써서 일정한 압력으로 누르면서 검사하는 방법 및 장치에 관한 것이다.The present invention relates to a method and an apparatus for inspecting the height of the gap agent attached to a glass substrate while pressing it at a constant pressure by using the original air.

액정층의 두께(Cell Gap)는 간극제의 높이에 의하여 결정이 된다. 액정층의 두께가 달라지면 화면 색도와 응답특성 등이 달라지므로, 간극제의 높이를 일정하게 만들어야 한다. 또한 간극제의 높이에 따라서 액정 주입량을 달리해야 하므로, 간극제의 높이를 정밀하게 재야한다. The thickness (Cell Gap) of the liquid crystal layer is determined by the height of the gap agent. If the thickness of the liquid crystal layer is different, the chromaticity and response characteristics of the screen are different, so that the height of the gap agent must be made constant. In addition, since the amount of liquid crystal injection must be varied according to the height of the gap agent, the height of the gap agent must be precisely measured.

종래에는 광간섭법을 써서 간극제의 높이를 쟀다. 도 1은 종래의 측정 장치도이다. 기판부(100)에는 간극제가 형성되어 있다. 유리기판(104) 위에 빨강, 초록, 파란색의 칼라필터층(103)이 만들어져 있고, 인접 화소의 경계면에는 빛이 새어나지 않도록 빛을 흡수하는 블랙매트릭스(BM; Black Matrix, 102)가 칼라필터층 과 동일 평면에 형성되어 있다. 간극제 주변에는 간극제의 형상 때문에, 액정배향이 달라지어 빛이 누설될 수 있으므로, 간극제는 블랙매트릭스 위에 만든다. Conventionally, the height of the gap agent is measured by using the optical interference method. 1 is a diagram of a conventional measuring device. The gap agent is formed in the substrate portion 100. A red, green, and blue color filter layer 103 is formed on the glass substrate 104, and a black matrix (BM) 102 that absorbs light to prevent light leakage from the boundary of adjacent pixels is the same as the color filter layer. It is formed in the plane. Because of the shape of the gap agent around the gap agent, the liquid crystal alignment may vary and light may leak, and thus the gap agent is formed on the black matrix.

광원(40)에서 나온 빛은 렌즈(43)를 지나 평행광이 되어 간섭체 (interferometric object ; 200)에 입사된다. 간섭체의 빔분할기(203)에서 빛은 나누어져서 일부는 표면이 매우 평탄한 기준면(202)에서 반사되고, 일부는 빔분할기를 지나 기판부(100)에 만들어진 간극제의 표면에서 반사되는데, 빔분할기(203)에서 나누어진 두 빛이 지나온 경로에 따라서 위상의 차이가 생기므로 간섭무늬를 띄게 된다. 이 간섭무늬를 CCD(41)로 촬영한다. 간섭체를 상하로 미세 조절하면, 빔분할기를 지나온 빛만이 위상이 달라져서 간섭무늬의 모양이 달라진다. 간섭체의 이동량에 따른 간섭무늬를 해석하여 간극제의 3차원 영상으로 전환하여 이로부터 간극제의 높이를 결정한다. 광원의 빛을 여러 파장이 섞여있는 백색광을 사용하면, 보다 정밀한 형상을 얻을 수 있다. 이러한 방법을 백색광 주사 간섭법(White Light Scanning Interfermetry)라고 한다. 에스앤유프리시전(주) 회사가 백색광 주사 간섭법을 써서 간극제 높이를 측정하는 장비를 현재 상용 판매하고 있다.Light emitted from the light source 40 becomes parallel light through the lens 43 and is incident on the interferometric object 200. In the beam splitter 203 of the interferer, light is divided and partly reflected at the reference plane 202 whose surface is very flat, and part is reflected at the surface of the gap agent made in the substrate portion 100 through the beam splitter. Since the phase difference occurs according to the path of the two lights divided at 203, the interference pattern is displayed. This interference fringe is imaged by the CCD 41. When the interference is finely adjusted up and down, only the light passing through the beam splitter is changed in phase so that the shape of the interference fringe is changed. The interference fringe according to the amount of movement of the interferer is analyzed and converted into a three-dimensional image of the gap agent to determine the height of the gap agent. When the light of a light source uses white light mixed with several wavelengths, a more precise shape can be obtained. This method is called White Light Scanning Interfermetry. S & You Precision Co., Ltd. is currently commercially selling equipment for measuring gap height by using white light scanning interference method.

간극제는 아크릴계 수지로 만드는데 모양은 원통형이고 높이는 보통 3㎛, 부착면인 아래 직경은 약 20 ~ 30㎛ 정도이고, 위 직경은 노광 특성상 아래 보다 3~8㎛ 정도 작다. BM(102) 부분에 접촉하는 쪽이 직경이 크다. 액정층의 두께를 정밀하게 유지하려면 간극제가 누르는 압력에 따라서 변형이 되는 탄성력이 있어야 한다. TFT LCD 공정에서는 액정을 원터치(One Touch. One Drop) 방식으로 액정셀의 유리기판을 합착한다. 이 방식에서는 액정주입과 두 유리기판 합착이 동시에 이루어진다. 진공에서 유리기판에 액정을 떨어뜨리고, 유리기판 두 장을 일정한 힘으로 가압하여 합착하는데, 이 합착 과정에서 간극제는 힘을 받으므로 변형된다. 따라서 액정셀의 전체 액정이 차지하는 부피는 합착하는 힘에 따라 달라지므로, 가압력에 따른 간극제 높이 변화는 중요한 검사 항목이다. 가압력을 결정하고, 이 가압력에서 간극제의 높이를 잰 다음, 간극제 높이에 대응되는 액정량을 토출한다. 그러나 도 1과 같은 비접촉 측정법을 쓰는 경우에는 간극제에 힘을 가할 수 없고, 또한 주위 진동에 예민하기 때문에 방진장치가 설치되어 가격이 높고, 진동이 없는 상태에서 측정해야 하므로 간섭체가 빠르게 이동할 수 없어, 1회 검사시간이 10초 이상이 소요된다. 7세대나 8세대 TFT LCD 생산공장처럼 큰 기판을 검사할 경우에는 광학계를 여러 대 달아서 전체 소요시간을 줄여야 하기 때문에 검사장치가 고가이다.The gap agent is made of acrylic resin, which is cylindrical in shape and usually has a height of 3 μm, and the bottom diameter of the attachment surface is about 20 to 30 μm, and the upper diameter is about 3 to 8 μm smaller than the bottom in terms of exposure characteristics. The one in contact with the BM 102 portion has a larger diameter. In order to maintain the thickness of the liquid crystal layer precisely, there must be an elastic force that deforms according to the pressure of the spacer. In the TFT LCD process, the liquid crystal cell is bonded to the glass substrate of the liquid crystal cell by one touch. In this method, the liquid crystal injection and the two glass substrates are bonded at the same time. In the vacuum, the liquid crystal is dropped on the glass substrate, and the two glass substrates are pressed together by a constant force, and the bonding agent is deformed because of the force. Therefore, since the volume occupied by the entire liquid crystal of the liquid crystal cell depends on the bonding force, the change in the gap height according to the pressing force is an important test item. The pressing force is determined, the height of the gap agent is measured at this pressing force, and the amount of liquid crystal corresponding to the gap height is discharged. However, in the case of using the non-contact measuring method as shown in FIG. 1, since the force cannot be applied to the gap agent and is sensitive to the surrounding vibration, the interference device cannot be moved quickly because the vibration is installed and the price is high and the measurement must be performed without the vibration. This test takes about 10 seconds or more. In the case of inspecting a large substrate, such as a 7th generation or 8th generation TFT LCD production plant, an inspection apparatus is expensive because it requires reducing the overall time required by attaching several optical systems.

고착형 간극제(Column Spacer)는 아크릴계 수지로 어느 정도 탄성력이 있어 누르는 압력에 따라서 높이가 달라진다. 액정셀을 합착하는 과정에서 유리기판에는 일정한 압력이 가해지므로, 누르는 압력에 따라서 고착형 간극제의 높이를 재는 것이 필요하다. 종래에는 광간섭법을 써서 비접촉 방법으로 간극제의 높이를 쟀으므로 가압하는 힘에 따른 변형을 잴 수 없었다. 본 발명에서는 유리기판 위에 원기를 일정한 압력으로 눌러주어, 원기와 유리기판이 간극제에 의하여 일정한 거리가 유지되도록 하고, 원기와 유리기판 사이의 간섭 및 다중간섭에 의한 광학적 특성 또는 정전용량과 같은 전기적 특성을 재서, 이로부터 간극제의 높이를 결정할 수 있게 하였다. The fixing spacer (Column Spacer) is an acrylic resin that has a certain elastic force, and the height varies depending on the pressing pressure. Since a certain pressure is applied to the glass substrate in the process of bonding the liquid crystal cell, it is necessary to measure the height of the fixing type gap agent according to the pressing pressure. Conventionally, since the height of the gap agent is measured by the non-contact method using the optical interference method, the deformation due to the pressing force cannot be detected. In the present invention, by pressing the pressure on the glass substrate at a constant pressure, the distance between the original substrate and the glass substrate by the gap agent, and the electrical characteristics such as optical characteristics or capacitance due to interference and multiple interference between the original substrate and the glass substrate It was then possible to determine the height of the gap agent.

본 발명을 구현한 검사방법은 누르는 힘에 따른 간극제의 변형 높이를 잴 수 있으므로 액정셀의 높이를 정밀하게 만들 수 있다. 또한 정전용량법과 다중간섭으로 재면 진동에 영향을 받지 않고, 또한 1초 미만으로 빠르게 잴 수 있으므로 장치 구성비를 낮출 수 있다.Since the inspection method embodying the present invention can measure the deformation height of the gap agent according to the pressing force, it is possible to precisely make the height of the liquid crystal cell. In addition, the capacitive method and multi-interference are not affected by the surface vibration, and can be quickly measured in less than 1 second, thereby reducing the device configuration ratio.

본 발명은 간극제(101)가 형성되어있는 기판부(100)를 일정한 압력으로 눌러주는 원기(302)를 도입하였다. 원기(302)와 기판부의 유리기판(104) 사이의 공기층 경계면에서의 광학(Optic)적 유전(Dielectric)적 특성을 재서 간극제의 높이를 알 아낸다. The present invention introduces a primitive 302 that presses the substrate portion 100 on which the gap agent 101 is formed at a constant pressure. The height of the gap agent is determined by measuring the optical dielectric properties at the air layer interface between the primitive 302 and the glass substrate 104 of the substrate portion.

원기의 정도는 1λ, λ/2, λ/4, λ/10, λ/20, λ/30가 있는데, 이는 25.4mm 거리에서 평탄도가 벗어나는 정도를 나타낸다. 파장의 기준은 550nm이다. 1λ급 원기는 0.5㎛, λ/2급 원기는 파장의 약 1.0㎛, λ/10급 원기는 25.4mm에서 파장의 10% 정도가 되는 0.05㎛만큼 평탄도가 벗어난다. 측정정도가 0.01㎛이고, 측정면적이 10× 10mm라면 λ/20급 이상의 정도가 되는 원기를 써야한다. The degree of primitive is 1λ, λ / 2, λ / 4, λ / 10, λ / 20, λ / 30, which indicates the degree of flatness deviation at a distance of 25.4 mm. The wavelength is 550 nm. The 1λ class is out of flatness by 0.5 μm, the λ / 2 class is about 1.0 μm in wavelength, and the λ / 10 class is 0.05 μm, which is about 10% of the wavelength at 25.4 mm. If the measurement accuracy is 0.01 µm and the measurement area is 10 × 10 mm, the base shall be used with a degree of λ / 20 or more.

도 2는 본 발명을 종래의 광간섭법에 적용한 것이다. 가압부(300)는 원기(302)와 가압기(301)가 결합된 구조이다. 가압기는 원기에 힘을 가하는 부분으로, 가장 간단한 구조는 두꺼운 유리로 된 구조이다. 유리의 비중은 2.4이므로 100mm 되는 크기라면 단위 ㎠당 24g의 힘을 받는다. 유압이나 공기압을 쓰면, 힘의 크기를 쉽게 조절할 수 있다. 광원(40)에서 나온 빛은 렌즈(43)를 지나 평행광이 되어 간섭체(interferometric object;200)에 입사된다. 간섭체의 빔분할기(203)에서 빛은 나누어져서 일부는 표면이 매우 평탄한 기준면(202)에서 반사되고, 일부는 빔분할기(203)와 가압부(300)를 지나 기판부(100)에 만들어진 간극제의 표면에서 반사되는데, 빔분할기(203)에서 나누어진 두 빛이 지나온 경로에 따라서 위상의 차이가 생기므로 간섭무늬를 띄게 된다. 도 2와 같은 구조에서는 간극제의 입체 모양을 알아낼 필요가 없이, 칼라필터면(103)와 원기면(302)이 이루는 간단한 판 구조가 되므로, 이 판의 높이가 간극제의 높이가 된다. 가압기에 무게를 올리거나 또는 공기압을 높이면 간극제의 높이 변화를 쉽게 검사할 수 있다.2 applies the present invention to a conventional optical interference method. The pressurizing unit 300 has a structure in which the cylinder 302 and the pressurizer 301 are combined. The pressurizer is a part that exerts force on the energy, the simplest of which is a thick glass structure. Since the specific gravity of glass is 2.4, if it is 100mm in size, it receives a force of 24g per cm2. Using hydraulic or pneumatic pressure, you can easily adjust the magnitude of the force. Light emitted from the light source 40 becomes parallel light through the lens 43 and is incident on the interferometric object 200. In the beam splitter 203 of the interferer, the light is divided and partly reflected by the reference plane 202 having a very flat surface, and part of the gap is formed in the substrate part 100 through the beam splitter 203 and the pressing part 300. Reflected from the surface of the agent, since the two light divided by the beam splitter 203 has a phase difference according to the path that passes through, the interference fringes. In the structure shown in FIG. 2, since the three-dimensional shape of a clearance agent does not need to be found out, since it becomes the simple plate structure which the color filter surface 103 and the primitive surface 302 make, the height of this plate becomes the height of a clearance agent. Weighing the pressurizer or increasing the air pressure makes it easier to check the height change of the gap agent.

평행한 축전기(Parallel Capacitor)를 모형으로, 정전용량(Capacitance)을 재서 간극제의 두께를 알 수 있다. 두 전극의 겹치는 영역의 면적이 A이고 거리가 d인 축전기의 정전용량 C는 아래 식과 같다. Using a parallel capacitor as a model, the thickness of the gap agent can be determined by measuring the capacitance. The capacitance C of a capacitor having an area A and a distance d of two electrodes is expressed by the following equation.

Figure 112009052499024-PAT00001
Figure 112009052499024-PAT00001

ε은 두 전극 사이의 매질의 유전율이다. 정전용량과 면적을 알고 있으면 전극과 전극 사이의 떨어진 거리(d)는 아래 식과 같다.ε is the permittivity of the medium between the two electrodes. If the capacitance and the area are known, the distance d between the electrode and the electrode is as follows.

Figure 112009052499024-PAT00002
Figure 112009052499024-PAT00002

도 3은 정전용량법을 적용한 본 발명의 장치도이다. 도 3에서는 가압부(300)의 원기(302)에 원기전극(303)을 형성하였다. 기판부(100)의 칼리필터층(103) 위에는 칼라필터전극(105)이 형성되어 있다. 칼라필터전극(105)은 TFT LCD에서는 공통전극이라고 부른다. 측정정밀도는 원기전극의 가장자리에서 생기는 가장자리 전기장(Fringe Field)이 중요 요소인데, 가장자리 전기장이 미치는 범위는 보통 두 전극의 이격거리(d)이다. 따라서 0.1% 정도의 정밀도를 얻으려면, 전극의 길이가 전극의 이격거리인 간극제의 두께(d)에 1000배 정도 커야한다. 현재 90도 TN형 TFT LCD의 간극제의 높이는 약 3㎛ 정도이다. 정전용량으로 간극제의 높이를 재는 경우 0.1% 분해능이라면 전극의 크기를 2~3mm로 만든다. 원기전극과 칼라필터전극을 엘씨알메터(50)에 연결하여 정전용량을 잰다.3 is an apparatus diagram of the present invention to which the capacitive method is applied. In FIG. 3, the primitive electrode 303 is formed in the primitive 302 of the pressing unit 300. The color filter electrode 105 is formed on the kali filter layer 103 of the substrate portion 100. The color filter electrode 105 is called a common electrode in the TFT LCD. The measurement accuracy is an important factor of the edge field generated at the edge of the primitive electrode. The range of the edge electric field is usually the separation distance (d) of the two electrodes. Therefore, in order to obtain an accuracy of about 0.1%, the length of the electrode must be about 1000 times larger than the thickness d of the gap agent, which is the distance between the electrodes. At present, the height of the gap agent of the 90-degree TN-type TFT LCD is about 3㎛. When measuring the height of the gap agent with capacitance, the electrode size is made 2 ~ 3mm with 0.1% resolution. The capacitance is measured by connecting the primary electrode and the color filter electrode to the LCD (50).

간극제가 차지하는 면적은 보통 0.2% 미만이면 무시하고, 그 이상이면 간극제가 차지하는 부분과 공기층이 차지하는 두 부분이 병렬연결된 것으로 보아 간극제의 높이를 결정한다. 간극제가 차지하는 면적의 비율이 x라면, 간극제의 두께(d)는 아래 식으로 구한다. 두 전극이 겹치는 부분의 면적이 A이고, ε1은 공기의 유전율이고 ε2는 간극제의 유전율이다.If the area occupied by the gap agent is usually less than 0.2%, it is ignored, and if it is larger than that, the height of the gap agent is determined by the parallel connection between the two parts of the gap agent and the air layer. If the ratio of the area occupied by the gap agent is x, the thickness d of the gap agent is obtained by the following equation. The area where the two electrodes overlap is A, ε 1 is the permittivity of air and ε 2 is the permittivity of the gap agent.

Figure 112009052499024-PAT00003
Figure 112009052499024-PAT00003

7세대나 8세대 TFT LCD의 경우 기판부의 크기가 보통 2m 이상이므로 칼라필터전극을 엘씨알메터에 연결하려면 기구물이 필요하다. 그러나 도 4에서와 같이 원기에 면적이 같은 두 개의 독립된 복수 전극(303,304)을 만들고, 두 전극을 엘씨알메터(50)로 정전용량을 재면, 칼라필터전극을 접촉할 필요가 없다. 도 5는 도 4의 등가회로도이다. 도 4는 칼라필터전극과 복수전극(304)의 정전용량 C1과 칼라필터전극과 복수전극(305)의 정전용량 C2가 직렬로 연결된 회로이다. 도 4와 같은 구조에서는 칼라필터전극(105)을 연결할 필요가 없다. 복수전극 각각의 면적이 A이고, 공기층의 유전율이 ε1이고, 복수전극에 측정되는 정전용량이 C라면 간극제의 높이(d)는 아래 식과 같다. In the case of the 7th or 8th generation TFT LCDs, the size of the substrate is usually 2 m or more, so a mechanism is required to connect the color filter electrode to the LCD. However, as shown in FIG. 4, if two independent plurality of electrodes 303 and 304 having the same area are formed in the original state, and the two electrodes are capacitively measured by the LC meter 50, there is no need to contact the color filter electrodes. 5 is an equivalent circuit diagram of FIG. 4. 4 is a circuit in which the capacitance C1 of the color filter electrode and the plurality of electrodes 304 and the capacitance C2 of the color filter electrode and the plurality of electrodes 305 are connected in series. In the structure as shown in FIG. 4, it is not necessary to connect the color filter electrode 105. If the area of each of the plurality of electrodes is A, the dielectric constant of the air layer is? 1, and the capacitance measured at the plurality of electrodes is C, the height d of the gap agent is as follows.

Figure 112009052499024-PAT00004
Figure 112009052499024-PAT00004

90도 TN형 TFT LCD의 간극제의 높이는 약 3㎛ 정도이다. 정전용량으로 간극제의 높이를 재는 경우 0.1% 분해능이라면 전극의 크기를 2~3mm로 만든다. The height of the gap agent of the 90 degree TN type TFT LCD is about 3 micrometers. When measuring the height of the gap agent with capacitance, the electrode size is made 2 ~ 3mm with 0.1% resolution.

정전용량법은 간극제가 전극이 위에 형성되어 있을 때 매우 정밀하게 간극제 높이를 잴 수 있지만, IPS(In Plane Switch) 모드의 TFT LCD처럼 칼라필터전극이 없는 경우에는 적용할 수 없다. 이 경우에는 다중반사되는 여러 파장의 빛의 간섭을 이용하여 경계면의 두께를 잴 수 있다. 도 6은 다중반사를 나타내는 설명도이다. 가압부의 가압기(301)와 원기를 지나온 빛은 굴절률 차이가 큰 경계면에서 다중반사가 효과가 크게 나타난다. 공기층과 접하는 원기에서 1차 반사가 생기고, 1차로 투과된 빛은 공기와 기판부의 칼라필터의 경계면에서 반사가 된다. 각각의 경계면에서 1차 반사된 빛은 투과와 반사를 여러 번 거치게 된다. 반사되는 빛의 강도는 파장(λ)의 함수이다. The capacitive method can measure the gap height very precisely when the gap is formed on the electrode, but cannot be applied when there is no color filter electrode, such as TFT LCD in IPS (In Plane Switch) mode. In this case, the thickness of the boundary surface can be measured by using the interference of light having multiple wavelengths reflected by multiple reflections. 6 is an explanatory diagram showing multiple reflections. The light passing through the pressurizer 301 of the pressurization unit and the air has a large effect of multi-reflection at the interface having a large difference in refractive index. The primary reflection occurs in the air in contact with the air layer, and the first transmitted light is reflected at the interface between the air and the color filter of the substrate. The primary reflected light at each interface passes through multiple transmissions and reflections. The intensity of the reflected light is a function of the wavelength λ.

Figure 112009052499024-PAT00005
Figure 112009052499024-PAT00005

Figure 112009052499024-PAT00006
Figure 112009052499024-PAT00006

1차 반사되는 빛과 2차 반사되는 빛의 거리의 차가 λ/2가 되면 소멸이 되고, λ만큼 차이가 있으면 보강이 된다. 다중반사되는 빛의 분광특성을 재서, 그 값을 이론식과 비교하여 간극제의 높이를 구할 수 있다. 도 7은 다중반사 되는 빛의 분광특성으로부터 간극제의 높이를 검사하는 장치도이다. 가시광선 전영역(380 ~ 800nm) 빛을 내는 광원을 쓴다. 광파이버다발(44)은 광파이버가 2개 이상인 복수 개로 구성되어 있다. 광파이버 일부는 광원에서 나오는 입사광의 통로로 쓰고, 일부는 분광기로 들어가는 통로로 쓴다. 도 7에서는 광파이버 번들 두 개 가운데 하나는 광원의 통로로, 나머지는 분광기로 들어가는 통로로 썼다. 광원으로부터 나온 빛은 광파이버를 통해 렌즈(45)에 입사되고, 이 빛은 가압부와 기판부의 경계면에서 다중반사되어 다시 렌즈를 거쳐 광파이버다발을 거쳐 분광기에 들어간다. 도 8은 간극제의 높이가 4.8㎛ 분광특성의 한 예이다. 파장의 범위가 클수록 측정 정밀도가 올라간다. 자외선과 가시광선 그리고 적외선까지 빛이 투과되는 물질로 원기를 만들어야한다. 쿼츠(quartz)로 원기를 만들면, 파장 범위가 넓다. 간극제가 높으면 도 8의 봉오리수가 많아지고, 반대로 낮으면 봉오리수가 줄어든다. 도 7과 같은 구조에서는 CCD분광기로 측정하므로 1회 측정시 수십 ms 정도 걸린다. 또한 1회 측정시간이 짧기 때문에 진동에 영향이 거의 없다.When the difference between the primary reflected light and the secondary reflected light is λ / 2, it is extinguished. If there is a difference by λ, it is reinforced. By measuring the spectral characteristics of the multi-reflected light, the value of the gap agent can be obtained by comparing the value with the theoretical formula. 7 is a device diagram for checking the height of the gap agent from the spectral characteristics of the multi-reflected light. Use a light source that emits all visible light (380 ~ 800nm). The optical fiber bundle 44 is composed of a plurality of optical fibers having two or more. Part of the optical fiber is used as the passage of incident light from the light source, and part is used as the passage into the spectrometer. In FIG. 7, one of the two optical fiber bundles was used as a passage of the light source and the other as a passage into the spectrometer. The light from the light source is incident on the lens 45 through the optical fiber, and the light is multi-reflected at the interface between the pressurizing portion and the substrate portion, and then passes through the lens to the spectrometer through the optical fiber bundle. 8 is an example of the 4.8 μm spectral characteristics of the height of the gap agent. The larger the wavelength range, the higher the measurement accuracy. It must be refreshed with materials that transmit light from ultraviolet rays, visible light and infrared light. When you make a quartz out of quartz, the wavelength range is wide. If the gap agent is high, the number of buds in FIG. 8 increases, and conversely, the number of buds decreases. In the structure shown in FIG. 7, the measurement is performed with a CCD spectrometer, which takes about several tens of ms. In addition, since the one-time measurement time is short, there is little effect on the vibration.

도 1은 종래의 측정 장치도이다.1 is a diagram of a conventional measuring device.

도 2는 위상법을 적용한 본 발명의 장치도이다.2 is an apparatus diagram of the present invention to which the phase method is applied.

도 3은 정전용량법을 적용한 본 발명의 장치도이다.3 is an apparatus diagram of the present invention to which the capacitive method is applied.

도 4는 기판부의 전극이 플로팅되는 정전용량법을 적용한 본 발명의 장치도이다.4 is an apparatus diagram of the present invention to which the capacitance method in which the electrode of the substrate portion is floated is applied.

도 5는 도4의 등가회로도이다.5 is an equivalent circuit diagram of FIG. 4.

도 6은 나란한 평면에서의 다중반사를 나타내는 설명도이다.6 is an explanatory diagram showing multiple reflections in parallel planes.

도 7은 분광법을 적용한 본 발명의 장치도이다.7 is an apparatus diagram of the present invention to which spectroscopy is applied.

도 8은 분광특성의 한 예이다.8 is an example of spectral characteristics.

<도면의 주요 부호에 대한 간단한 설명><Brief description of the major symbols in the drawings>

100 : 기판부 101 : 간극제 102 : 블랙매트릭스(Black Matrix)100: substrate portion 101: gap agent 102: Black Matrix

103 : 칼라필터층 104 : 유리기판 105 : 칼라필터전극103: color filter layer 104: glass substrate 105: color filter electrode

200 : 간섭체 201 : 렌즈 202 : 기준면200: interferer 201: lens 202: reference plane

203 : 빔분할기 300 : 가압부 301 : 가압기 302 : 원기203: beam splitter 300: pressurizing unit 301: pressurizer 302: primitive

303 : 원기전극 304, 305 : 복수 원기전극 40 : 광원303: primitive electrode 304, 305: plural primitive electrode 40: light source

41 : CCD 42 : 렌즈 43 : 렌즈 44 : 광파이버다발41 CCD 42 Lens 43 Lens 44 Optical fiber bundle

45 : 렌즈 46 : 반사판 50 : 엘씨알메터(LCR Meter)45 lens 46 reflector 50 LCR meter

Claims (12)

간극제(101)가 형성되어 있는 기판부(100) 그리고 기판부를 일정한 압력으로 눌러주는 가압부(300)를 갖추고, 가압부의 원기(302)와 기판부의 유리기판(104) 사이의 물리적 특성을 재서 간극제의 높이를 알아내는 검사방법.It is provided with the board | substrate part 100 in which the clearance agent 101 is formed, and the press part 300 which presses a board | substrate part by a constant pressure, and measures the physical characteristic between the base 302 of a press part and the glass substrate 104 of a board part. Test method to find the height of the gap agent. 제1항에 있어서, 간섭체(interferometric object)와 원기(302)의 경계면 사이와 간섭체(interferometric object)와 유리기판 사이의 공기층 경계면의 위상차로부터 간극제의 높이를 알아내는 검사방법.The inspection method according to claim 1, wherein the height of the gap agent is determined from the phase difference between the interface between the interferometric object and the primitive 302 and between the interface of the air layer between the interferometric object and the glass substrate. 제1항에 있어서 원기(302)와 유리기판(104) 사이의 정전용량을 재서 간극제의 높이를 알아내는 것을 특징으로 하는 검사방법.The inspection method according to claim 1, wherein the height of the gap agent is determined by measuring the capacitance between the primitive (302) and the glass substrate (104). 제1항에 있어서 원기(302)와 유리기판(104) 경계면에서 생기는 다중반사에 의한 분광특성으로부터 간극제의 높이를 알아내는 것을 특징으로 하는 검사방법.The inspection method according to claim 1, wherein the height of the gap agent is determined from spectral characteristics due to multiple reflections occurring at the interface between the primitive (302) and the glass substrate (104). 간극제(101)가 형성되어있는 기판부(100) 그리고 기판부를 일정한 압력으로 눌러주는 가압부(300)를 갖추고, 가압부의 원기(302)와 기판부의 유리기판(104) 사이의 물리적 특성을 재서 간극제의 높이를 알아내는 검사장치.It is provided with the substrate part 100 in which the clearance agent 101 is formed, and the press part 300 which presses a board | substrate part by a constant pressure, and measures the physical characteristic between the base 302 of a press part and the glass substrate 104 of a board part. Inspection device to find out the height of the gap agent. 제5항에 있어서, 간섭체(interferometric object)와 원기(302)와 유리기판 사이의 공기층 경계면의 위상차로부터 간극제의 높이를 알아내는 검사장치.6. The inspection apparatus according to claim 5, wherein the height of the gap agent is determined from the phase difference between the interferometric object and the air interface boundary between the primitive 302 and the glass substrate. 제5항에 있어서 원기(302)와 기판부의 유리기판(104) 사이의 정전용량을 재서 간극제의 높이를 알아내는 것을 특징으로 하는 검사장치.6. An inspection apparatus according to claim 5, wherein the height of the gap agent is determined by measuring the capacitance between the primitive 302 and the glass substrate 104 of the substrate portion. 제7항에 있어서 기판부의 전극을 플로팅 시키고 가압부의 두 전극 사이의 정전용량을 재서 간극제의 높이를 알아내는 것을 특징으로 하는 검사장치.8. The inspection apparatus according to claim 7, wherein the electrode of the substrate portion is floated and the height of the gap agent is determined by measuring the capacitance between the two electrodes of the pressing portion. 제8항에 있어서 전극의 길이가 2~3㎜ 사이에 있는 것을 특징으로 하는 검사장치.The inspection apparatus according to claim 8, wherein the length of the electrode is between 2 and 3 mm. 제5항에 있어서 원기(302)와 유리기판(104) 경계면에 생기는 다중반사에 의한 분광특성으로부터 간극제의 높이를 알아내는 것을 특징으로 하는 검사장치.6. The inspection apparatus according to claim 5, wherein the height of the gap agent is determined from the spectroscopic characteristics due to multiple reflections occurring at the interface between the primitive (302) and the glass substrate (104). 제10항에 있어서 원기가 쿼츠(quartz)인 것을 특징으로 하는 검사장치11. The inspection apparatus according to claim 10, wherein the primitive is quartz. 제10항에 있어서 광파이버가 2개 이상인 복수 개로 구성되어 있고, 광파이버 일부는 광원에서 나오는 입사광의 통로로 쓰고, 일부는 수광부의 통로로 쓰는 반사형 광학계를 특징으로 하는 검사장치.The inspection apparatus according to claim 10, comprising a plurality of optical fibers having two or more optical fibers, a portion of which is used as a passage of incident light from the light source and a portion of which is used as a passage of the light receiving portion.
KR1020090079510A 2009-08-27 2009-08-27 The method of spacer height measurement with parallel plate and apparatus of spacer height measurement with parallel plate KR20110022108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090079510A KR20110022108A (en) 2009-08-27 2009-08-27 The method of spacer height measurement with parallel plate and apparatus of spacer height measurement with parallel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090079510A KR20110022108A (en) 2009-08-27 2009-08-27 The method of spacer height measurement with parallel plate and apparatus of spacer height measurement with parallel plate

Publications (1)

Publication Number Publication Date
KR20110022108A true KR20110022108A (en) 2011-03-07

Family

ID=43930567

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090079510A KR20110022108A (en) 2009-08-27 2009-08-27 The method of spacer height measurement with parallel plate and apparatus of spacer height measurement with parallel plate

Country Status (1)

Country Link
KR (1) KR20110022108A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676244A (en) * 2013-12-20 2014-03-26 合肥京东方光电科技有限公司 Spacer detection method, system and device
WO2018233348A1 (en) * 2017-06-20 2018-12-27 京东方科技集团股份有限公司 Measuring device and measuring system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676244A (en) * 2013-12-20 2014-03-26 合肥京东方光电科技有限公司 Spacer detection method, system and device
CN103676244B (en) * 2013-12-20 2016-06-01 合肥京东方光电科技有限公司 A kind of method, system and device detecting chock insulator matter
WO2018233348A1 (en) * 2017-06-20 2018-12-27 京东方科技集团股份有限公司 Measuring device and measuring system
US10983376B2 (en) 2017-06-20 2021-04-20 Boe Technology Group Co., Ltd. Measuring device and a measuring system

Similar Documents

Publication Publication Date Title
US6724215B2 (en) Method of evaluating liquid crystal panel and evaluating device
WO2016131396A1 (en) Device for detecting surface stress of glass
CN101776572B (en) Liquid refractive index CCD real-time measuring device and measuring method
US7474404B2 (en) Voltage sensor capable of contactless voltage measurement
CN104677315B (en) Silicon chip surface irregularity degree measuring method
US11255790B2 (en) Fluid detection panel with filter structure and fluid detection device with filter structure
CN106247967A (en) The measurement apparatus of a kind of substrate warp amount and method
CN112747848B (en) Optical waveguide pressure measurement system based on pressure-sensitive optical waveguide directional coupler
CN105445491A (en) Hot-wire-type high sensitivity flow speed meter based on micro-resonant cavity
TWI458960B (en) White-light interference measuring device and interfere measuring method thereof
CN101776571B (en) Liquid refractive index real-time measuring device and on-line measuring method
KR20110022108A (en) The method of spacer height measurement with parallel plate and apparatus of spacer height measurement with parallel plate
US5585735A (en) E-O probe with FOP and voltage detecting apparatus using the E-O probe
CN103868854A (en) Optical system of multi-wavelength abbe refractometer
CN104321638A (en) SPR sensor cell and SPR sensor
US11175467B2 (en) Fluid detection panel
CN101799413B (en) Experimental apparatus for measuring refractive indexes of liquid and measuring method thereof
CN106483099A (en) Optical biosensor based on tunable filter and Michelson&#39;s interferometer cascade
CN113483676B (en) Displacement sensing device based on spectrum confocal chromaticity measurement and use method
CN102540514B (en) Method for measuring surface structure of display device
CN101782515B (en) Method for measuring liquid refractive rate based on total reflection diaphragm effect
CN102944532A (en) Method for measuring refractive index of photoresist
TWI424394B (en) A display device and method of sufacial structure measurement thereof
KR20100095048A (en) Liquid crystal modulator with metal mirror layer and thin film transistor substrate testing apparatus using the same
CN204964375U (en) Microspectrum transmissivity tester

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application