KR20110019603A - Preparation of silver nano-powder from agcl by slurry reduction methods and silver nano-powder thereof - Google Patents

Preparation of silver nano-powder from agcl by slurry reduction methods and silver nano-powder thereof Download PDF

Info

Publication number
KR20110019603A
KR20110019603A KR1020090077209A KR20090077209A KR20110019603A KR 20110019603 A KR20110019603 A KR 20110019603A KR 1020090077209 A KR1020090077209 A KR 1020090077209A KR 20090077209 A KR20090077209 A KR 20090077209A KR 20110019603 A KR20110019603 A KR 20110019603A
Authority
KR
South Korea
Prior art keywords
silver
particles
nano
silver chloride
solution
Prior art date
Application number
KR1020090077209A
Other languages
Korean (ko)
Inventor
안종관
김동진
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to KR1020090077209A priority Critical patent/KR20110019603A/en
Publication of KR20110019603A publication Critical patent/KR20110019603A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G5/00Compounds of silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • B22F2304/054Particle size between 1 and 100 nm

Abstract

PURPOSE: A producing method of nano-silver particles from silver chloride using a slurry reduction method, and the nano-silver particles are provided to reduce processes for producing the nano-silver particles with the high added value. CONSTITUTION: A producing method of nano-silver particles comprises the following: inserting silver chloride powder into a reactor containing an ammonia solution and a polyvinyl-pyrrolidone solution, and stirring the mixture for obtaining ammonia complex silver; inserting a hydrazine solution as a reductant to the mixture, for reducing the ammonia complex silver by being reacted with hydrazine; and collecting solid particles from the mixture by solid-liquid separating, and drying the solid particles.

Description

슬러리환원법에 의해 염화은으로부터 나노 은 입자를 제조하는 방법 및 그 나노 은입자{Preparation of silver nano-powder from AgCl by slurry reduction methods and silver nano-powder thereof}Preparation of nano silver particles from silver chloride by slurry reduction method and nano silver particles thereof {Preparation of silver nano-powder from AgCl by slurry reduction methods and silver nano-powder

본 발명은 슬러리환원법에 의해 염화은으로부터 나노 은 입자를 제조하는 방법 및 그 나노 은입자에 관한 것으로서, 더욱 상세하게는 금속 은을 제조시 중간생성물 또는 수용액 중에 포함되어 있는 은 회수 시의 염화은을 직접 슬러리상태로 하이드라진(N2H2)으로 환원시켜 나노크기의 은 입자를 제조하는 방법과 그 나노 은입자에 관한 것이다. The present invention relates to a method for producing nano-silver particles from silver chloride by the slurry reduction method, and more particularly to the nano-silver particles, and more specifically, to a silver slurry in the recovery of silver contained in an intermediate or an aqueous solution during the production of metal silver The present invention relates to a method for producing nano-sized silver particles by reduction to hydrazine (N 2 H 2 ) in a state, and to nano silver particles thereof.

나노 은 분말은 항균 및 살균효과, 우수한 열 및 전기 전도성을 나타내어 산업분야 널리 응용되고 있다. 특히 전자부품의 전도성 코팅에 사용되거나 촉매제 및 합금제조시 소결재료로 사용된다. 또한 수십 나노 크기의 은 분말은 항균타일, 화상치료제, 정수기 시스템 등 실생활에 직접 응용되는 원료로 사용된다. Nano silver powder has antibacterial and bactericidal effect, excellent thermal and electrical conductivity and is widely used in industrial fields. In particular, it is used for the conductive coating of electronic components or as a sintering material in the manufacture of catalysts and alloys. In addition, dozens of nano-sized silver powders are used as raw materials for direct application in real life such as antibacterial tiles, burn treatments, and water purifier systems.

이러한 나노 분말은 넓은 표면적을 갖기 때문에 벌크상태의 은보다 반응성이 우수하여 다양한 특성을 보유하고 있다. 그러므로 은 입자를 나노화하면 벌크상태의 은 보다 적은 재료로 더 많은 효과를 나타낼 수 있다는 장점이 있다. Since these nano powders have a large surface area, they are more reactive than bulk silver and have various properties. Therefore, nanoparticles of silver have the advantage of being more effective with less material than bulk silver.

최근에 전자산업은 소형화, 다기능화 되고 있다. 기존의 전자산업에 사용되는 은 분말은 미크론 단위로 나노단위의 전자회로구성에 한계점이 있다. 조대한 분말은 전자제품 제조시 소형화하기 어렵고 표면조도에 문제점이 있으며, 소성온도가 700 ℃ 이상으로 유리 및 플라스틱 기판에는 적용하기 어렵다는 단점이 있다. Recently, the electronics industry has become smaller and more versatile. Silver powder used in the existing electronics industry has a limitation in the composition of electronic circuits in nano units in microns. Coarse powder is difficult to miniaturize when manufacturing electronic products and has a problem in surface roughness, and has a disadvantage that it is difficult to apply to glass and plastic substrates with a firing temperature of 700 ° C. or more.

그러므로 나노 크기를 가지며 분산성이 우수한 은 분말을 제조시 극소형 전자제품 및 플라스틱기판을 가진 전자종이 등에 응용될 수 있다. Therefore, when manufacturing silver powder having nano size and excellent dispersibility, it can be applied to electronic paper with micro electronics and plastic substrate.

상기와 같이 나노크기의 은입자를 제조하는 기술은 액상법과 기상법으로 대별할 수 있다. 액상법은 은이온이 용해된 수용액에서 환원제와 반응시켜 은 입자를 제조하는 액상환원법이 대표적이며, 기상법은 액상의 은 이온이 함유된 용액을 H2 가스와 같이 증발 응축시켜 제조하는 증발응축법, 금속화합물을 기체 환원제를 사용하여 열분해하여 은 분말을 제조하는 열분해법이 등이 있다. As described above, a technique for preparing nano-sized silver particles can be roughly classified into a liquid phase method and a gas phase method. The liquid phase method is a liquid phase reduction method for producing silver particles by reacting with a reducing agent in an aqueous solution in which silver ions are dissolved. The vapor phase method is an evaporative condensation method prepared by evaporating and condensing a liquid containing silver ions with H 2 gas. The pyrolysis method of pyrolyzing a compound using a gas reducing agent to produce silver powder, etc. are mentioned.

상기 액상환원법은 용액 중에서 전 공정이 진행되기 때문에 수회의 여과 및 세척공정이 반복되어 제조시간이 많이 소요되며, 액상 중에서 고상과 액상간의 계면효과 때문에 응집이 쉽게 발생하여 균일한 입자를 제조하기 어렵고, 수용액을 사 용하기 때문에 폐수발생량이 많아 환경오염을 초래한다. 또한 낮은 생산성으로 생산규모 증가시키기 어렵다는 단점이 있다. 또한 공정시간의 오랜 지속으로 은 분말의 응집이 초래되고 균일성이 나빠진다. 그러므로 액상환원법으로 나노크기의 은 입자를 제조하기에는 매우 어렵다고 알려져 있다. The liquid phase reduction method takes a lot of manufacturing time because the filtration and washing process is repeated several times in the solution, it is difficult to produce uniform particles due to the aggregation easily occurs due to the interface effect between the solid phase and the liquid phase, Because of the use of aqueous solutions, the amount of wastewater generated is large, resulting in environmental pollution. In addition, there is a disadvantage that it is difficult to increase the production scale with low productivity. In addition, the prolonged processing time leads to aggregation of silver powder and poor uniformity. Therefore, it is known that it is very difficult to produce nano-sized silver particles by liquid phase reduction method.

또한 기상법중 증발응축법은 진공상태에서 액상의 금속염에 환원제와 열을 가해 증발 응축시키는 공정으로 장치비가 많이 소요되며, 단분산된 나노분말을 얻기 어렵다. 열분해법은 금속염을 고온에서 환원제와 같이 분사하여 나노 크기의 금속 입자를 제조하는 공정이다. 상기 공정 역시 수소와 같은 고가의 환원제를 사용하므로 제조비가 고가이며 장치비도 많이 소요된다. 또한 입자의 분산이 어려우며 제조된 입자의 회수율이 떨어진다는 단점이 있다.In addition, evaporative condensation is a process of evaporative condensation by applying a reducing agent and heat to a liquid metal salt in a vacuum state, which requires a lot of equipment costs, and it is difficult to obtain monodisperse nanopowders. Pyrolysis is a process for producing nano-sized metal particles by spraying a metal salt together with a reducing agent at a high temperature. Since the process also uses an expensive reducing agent such as hydrogen, manufacturing costs are expensive and equipment costs are also high. In addition, there is a disadvantage that the dispersion of the particles is difficult and the recovery rate of the produced particles is poor.

구체적으로 기존 은 나노 제조공정 중 많이 사용되는 액상법을 설명하자면, 은 이온이 불순물과 혼재된 용액으로부터 은을 회수하기 위해 염소이온을 첨가하여 얻어진 염화은을 환원하여 금속 은을 제조 후, 다시 질산으로 용해하여 은 이온이 함유된 용액을 만들고 이를 환원하여 나노의 은 입자를 제조하는 공정이다. 기존 액상에서 나노 은 제조공정은 전술한 바와 같이 수용액 중에서 전 공정이 진행되기 때문에 수회의 여과 및 세척공정이 반복되어 제조시간이 많이 소요되며, 액상 중에서 고상과 액상간의 계면효과 때문에 응집이 쉽게 발생하여 균일한 입자를 제조하기 어렵고, 수용액을 사용하기 때문에 폐수발생량이 많아 환경오염을 초래한다는 문제점이 있다.Specifically, the liquid phase method that is widely used in the existing silver nano-manufacturing process, to reduce the silver chloride obtained by the addition of chlorine ions to recover the silver from a solution mixed with impurities, to produce metal silver, and then dissolved in nitric acid To make a solution containing silver ions and to reduce the silver particles of the nanoparticles. In the existing liquid phase, the nano silver manufacturing process takes a lot of time because the entire filtration and washing process is repeated in the aqueous solution as described above, it takes a lot of manufacturing time, and due to the interfacial effect between the solid phase and the liquid phase in the liquid phase, It is difficult to produce uniform particles, and there is a problem in that the amount of waste water generated due to the use of aqueous solution causes environmental pollution.

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 금속 은을 제조시 중간생성물 또는 수용액 중에 포함되어 있는 은 회수 시에 얻어지는 용해도가 극히 낮은 염화은을 암모니아용액으로 슬러리화하고, 환원공정을 통한 간단한 방법으로 고부가가치의 나노 은 입자를 제조함으로써 공정단축, 불순물 혼입 방지, 폐수 발생 저감 및 생산비용을 절감토록 한 나노 은의 제조 방법 및 그로부터 제조된 나노 은을 제공하는 데 있다. An object of the present invention for solving the problems described above is a simple method of slurrying silver chloride having a very low solubility obtained during recovery of silver contained in an intermediate product or an aqueous solution during the production of metal silver into an ammonia solution, and through a reduction process. By providing high value-added nano silver particles to provide a method of producing nano silver and nano silver produced therefrom to reduce the process, prevent impurity mixing, reduce waste water generation and production costs.

상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명은 나노 은 입자의 제조방법에 있어서, In the present invention to achieve the object as described above and to perform the problem for removing the conventional drawbacks,

염화은 분말로부터 암모니아 은 착물을 형성하기 위하여 염화 은 분말을 착물형성제인 암모니아(NH4OH)용액과 분산제인 PVP(polyvinylpyrrolidone, PVPk-30)용액이 장입된 반응조에 첨가한 후 교반시키며 가열하는 착물 형성 단계와;In order to form ammonia silver complex from silver chloride powder, the complex is heated by adding silver chloride powder to a reaction tank loaded with ammonia (NH 4 OH) solution and a dispersant polyvinylpyrrolidone (PVP k-30 ) solution. Forming step;

이후 환원제인 하이드라진(N2H2) 용액을 연속으로 첨가하여 암모니아 은 착물이 하이드라진과 반응하여 환원되는 단계; 및Thereafter, a solution of hydrazine (N 2 H 2 ), which is a reducing agent, is continuously added to reduce the ammonia silver complex by reacting with the hydrazine; And

환원반응된 고체입자를 증류수와 함께 원심분리기에서 고액분리하여 고체입자를 회수하고, 회수한 고체입자를 건조하는 단계:를 거쳐 제조되는 것을 특징으로 하는 슬러리환원법에 의해 염화은으로부터 나노 은 입자를 제조하는 방법을 제공함으로써 달성된다.To recover the solid particles by solid-liquid separation of the reduced reaction solid particles in a centrifuge with distilled water, and drying the recovered solid particles: to prepare nano silver particles from silver chloride by a slurry reduction method characterized in that By providing a method.

상기 염화은 분말의 양은 전체 혼합용액 1000 ㎖ 당 10 ~ 100 g을 첨가하는 것을 특징으로 한다.The amount of the silver chloride powder is characterized by adding 10 to 100 g per 1000 ml of the total mixed solution.

상기 착물형성 용액을 이루는 PVP 및 NH4OH의 혼합비율은 전체 혼합용액 1000 ㎖ 기준으로 PVP 10-30g 그리고 NH4OH는 40-160 ㎖를 혼합하는 것을 특징으로 한다.PVP constituting the complexing solution And the mixing ratio of NH 4 OH is the total mixed solution 1000 ㎖ reference PVP 10-30g and NH 4 OH is characterized by mixing a 40-160 ㎖.

상기 연속식으로 첨가되는 하이드라진은 전체 혼합용액 1000 ㎖ 기준으로 분당 1-4 ㎖/mim 속도로 첨가되며, 첨가량은 10-40 ㎖ 인 것을 특징으로 한다.The hydrazine continuously added is added at a rate of 1-4 ml / mim per minute based on 1000 ml of the total mixed solution, and the amount is 10-40 ml.

상기 반응조는 환원제 주입속도를 조절할 수 있는 반회분식 항온반응조를 사용하는 것을 특징으로 한다.The reactor is characterized in that to use a semi-batch constant temperature reaction tank that can adjust the reducing agent injection rate.

상기 반회분식 항온반응조는 20 ~60 ℃의 반응온도에서 200-800rpm의 속도로 교반하는 것을 특징으로 한다.The semi-batch constant temperature reactor is characterized in that the stirring at a speed of 200-800rpm at a reaction temperature of 20 ~ 60 ℃.

상기 염화은(AgCl) 분말 입자 크기는 50 - 200 ㎛인 것을 사용하는 것을 특징으로 한다.The silver chloride (AgCl) powder particle size is characterized by using 50 to 200 ㎛.

상기 고체입자를 건조하는 단계는 진공오븐에서 40 ~ 60℃의 온도로 24시간 건조하는 것을 특징으로 하는 한다.The drying of the solid particles is characterized by drying for 24 hours at a temperature of 40 ~ 60 ℃ in a vacuum oven.

또한 본 발명은 다른 실시형태로 상기 방법으로 제조된 입자의 크기가 30-50 나노미터이고, 입자가 응집되지 않고 균일하게 분산된 둥근 모양의 형태를 갖는 것을 특징으로 하는 슬러리환원법에 의해 염화은으로부터 제조된 나노 은 입자를 제공함으로써 달성된다.In another embodiment, the present invention is prepared from the silver chloride by the slurry reduction method characterized in that the particles produced by the above method has a size of 30-50 nanometers, and the particles do not aggregate and have a uniformly dispersed round shape. By providing nano silver particles.

본 발명에 따른 나노 은 제조방법은 반회분식 공정에 의해 조작이 간단하며 나노 은입자 제조와 응집방지를 동시에 적용하여 간단하고, 경제적으로 제조비용이 저렴하게 나노 은 입자 제조가 가능하여 공업적인 이용이 용이하다. 또한 은 금속 제조공정중 발생하는 중간생성물인 염화은으로부터 직접 나노크기이며 기존의 나노 은보다 분산된 나노 입자 은을 제조할 수 있는 공정으로 산업상 그 이용이 크게 기대되는 발명인 것이다. Nano silver manufacturing method according to the present invention is simple to operate by a semi-batch process and by applying both nano silver particle production and anti-aggregation at the same time, it is possible to manufacture nano silver particles in a simple, economical low production cost and industrial use It is easy. In addition, it is an invention that is expected to be greatly used in the industry as a process for producing nano-particle silver, which is directly nano-sized from the silver chloride, an intermediate product generated during the silver metal manufacturing process, and dispersed than conventional nano silver.

이하 본 발명의 실시 예인 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다. 또한 본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.Hereinafter, the configuration and the operation of the embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

도 1은 본 발명에 따른 나노 은 입자의 제조 공정도이다.1 is a manufacturing process chart of nano silver particles according to the present invention.

도시된 바와 같이 본 발명에서는 염화은(AgCl) 분말 입자를 나노 은 입자 제조 출발물질로 사용하며 이 출발물질을 암모니아 용액에서 슬러리화하여 반응시킨다. 착물형성제는 암모니아(NH4OH)용액을, 환원제는 하이드라진(N2H2) 용액을, 분산제는 PVP(polyvinylpyrrolidone, PVPk-30)을, 실험장치로는 환원제 주입속도를 조절할 수 있는 반회분식 항온반응조(Semi-batch reaction bath)를 사용한 슬러리 환원방법이다.As shown in the present invention, silver chloride (AgCl) powder particles are used as a starting material for producing nano silver particles, and the starting materials are reacted by slurrying them in an ammonia solution. Complex forming agent is ammonia (NH 4 OH) solution, reducing agent is hydrazine (N 2 H 2 ) solution, dispersing agent is PVP (polyvinylpyrrolidone, PVP k-30 ), the experimental device can control the reducing agent injection rate It is a slurry reduction method using a batch semi-batch reaction bath.

상기에서 착물형성제로 암모니아(NH4OH)용액을 사용한 이유는 암모니아는 은과 반응하여 은-암모늄 착물을 형성하여 자유 은 이온의 생성을 방해하여 단분산된 입자를 제조할 수 있으며, 하이드라진의 환원반응시 반응계에 염기도를 제공하여 환원반응이 가능한 pH를 유지하기 때문이다. The reason why the ammonia (NH 4 OH) solution is used as the complexing agent in the above is that ammonia reacts with silver to form a silver-ammonium complex to prevent the formation of free silver ions, thereby producing monodisperse particles, and reducing hydrazine. This is because the basicity is provided to the reaction system during the reaction to maintain the pH at which the reduction reaction is possible.

상기에서 환원제로 하이드라진(N2H2) 용액을 사용한 이유는 은에 대한 환원 속도가 빠르며 암모니아-은 착물의 환원전위보다 높으며 유기환원제에 비하여 부산물에 의한 환경오염이 적기 때문이다.The reason why the hydrazine (N 2 H 2 ) solution is used as a reducing agent is that the reduction rate for silver is higher, higher than the reduction potential of the ammonia-silver complex, and the environmental pollution by the by-products is less than that of the organic reducing agent.

상기에서 분산제로 PVP를 사용한 이유는 은 금속의 핵생성을 촉진하고 금속입자의 응집과 성장을 억제하여 미립 금속입자의 크기와 입도분포 제어에 효과적이기 때문이다.The reason why PVP is used as a dispersant is because it promotes nucleation of silver metal and inhibits aggregation and growth of metal particles, which is effective for controlling the size and particle size distribution of fine metal particles.

상기에서 염화은(AgCl) 분말 입자크기는 50 - 200 ㎛인 것을 사용하였다.Silver chloride (AgCl) powder particle size was used in the 50-200 ㎛.

구체적인 본 발명의 나노 은 입자 제조방법은 염화은(AgCl) 분말을 착물형성제인 NH4OH 용액이 장입된 반회분식 항온반응조에 첨가한 후 교반시키며 PVP를 첨가하여 암모니아 은 착물을 형성시키는 단계(착물형성단계), Specifically, the method for preparing nano-silver particles of the present invention comprises adding silver chloride (AgCl) powder to a semi-batch incubator containing NH 4 OH solution as a complexing agent, followed by stirring and adding PVP to form ammonia silver complex (complex formation. step),

상기 착물형성된 암모니아 은 용액에 하이드라진을 연속적으로 일정하게 첨가하여 암모니아 은 착물과 하이드라진이 반응하여 환원되는 단계를 거쳐 나노크기의 은 입자를 제조하는 방법이다. The complexed ammonia is a method of producing nano-sized silver particles through the step of continuously and constantly adding hydrazine to the solution to reduce the ammonia silver complex and hydrazine.

이하에서 기술되는 용액(ℓ또는 1000 ㎖)은 증류수에 투입되어 혼합된 성분원소를 포함한 전체 혼합용액을 말한다.The solution (l or 1000 ml) described below refers to the total mixed solution including the component elements mixed in distilled water.

상기 암모니아 은 착물의 형성단계에서 PVP와 8 %(무게분율 80 ㎖/ℓ) NH4OH 가 혼합된 착물형성용액으로 착물을 형성한다.The ammonia is complexed with a complex formation solution in which PVP and 8% (weight fraction 80 mL / L) NH 4 OH are mixed in the formation step of the complex.

상기 전처리 단계에서 착물형성된 암모니아 은 용액에 하이드라진이 함유된 용액으로 환원반응 처리한다.The ammonia complex formed in the pretreatment step is subjected to a reduction reaction with a solution containing hydrazine in the solution.

상기 첨가되는 염화은 분말의 양은 1000 ㎖ 당 10-100 g(바람직하게는 50 g)이다. 이때 10g 보다 적으면 생성되는 나노 입자에 비해 여과하는 용액의 양이 증가하여 여과시 비효율적이며, 100g 보다 많으면 생성된 나노입자의 응집이 심해진다. The amount of silver chloride powder added is 10-100 g (preferably 50 g) per 1000 ml. At this time, less than 10g the amount of the filtering solution compared to the nanoparticles produced is inefficient at the time of filtration, if more than 100g agglomeration of the produced nanoparticles is severe.

상기 착물형성 용액을 이루는 PVP 및 NH4OH의 혼합비율은 1000 ㎖ 기준으로 PVP 10-30 g(바람직하게는 30 g) 그리고 NH4OH는 40-160 ㎖(바람직하게는 160 ㎖) 이다.PVP constituting the complexing solution And the mixing ratio of NH 4 OH is 10-30 g (preferably 30 g) of PVP on the basis of 1000 ml and 40-160 ml (preferably 160 ml) of NH 4 OH.

상기 환원용액은 하이드라진이며 연속식으로 첨가된다. 1000 ㎖ 기준으로 분당 1-4 ㎖/mim 속도로 첨가되며, 첨가량은 10-40 ㎖(바람직하게는 40 ㎖) 이다.The reducing solution is hydrazine and is added continuously. It is added at a rate of 1-4 ml / mim per minute on a 1000 ml basis and the amount is 10-40 ml (preferably 40 ml).

상기와 같이 수치를 한정한 이유는 PVP의 경우, 10 g보다 적으면 은 입자의 응집이 심해지고, 30g 보다 많으면 환원제의 반응을 저해한다. The reason for limiting the numerical value as described above is that in the case of PVP, the aggregation of silver particles is severe when less than 10 g, and when more than 30 g, the reaction of the reducing agent is inhibited.

NH4OH의 경우, 40 ㎖보다 적으면 착물형성이 어렵고, 160㎖보다 많으면 환원제와 반응을 저해하고 응집이 심해진다. In the case of NH 4 OH, when it is less than 40 ml, complex formation is difficult. If it is more than 160 ml, the reaction with the reducing agent is inhibited and the aggregation becomes severe.

환원제인 하이드라진의 경우, 연속식으로 첨가되며 10 ㎖보다 적으면 환원이 되지 않으며, 또한 40 ㎖ 이상 첨가하면 환원제 소모량이 크고 응집이 심해진다. In the case of hydrazine as a reducing agent, it is added continuously and less than 10 ml does not reduce, and when it is added more than 40 ml, the reducing agent consumption is large and the aggregation becomes severe.

상기 염화은 분말을 파이렉스(pyrex) 반회분식 항온반응조에 첨가한 후 200-800rpm의 속도로 바람직하게는 200rpm으로 교반하는데 200rpm 미만의 경우에는 염회은 분말이 응집되어 반응이 되지 않으며 800rpm 초과의 경우에는 염화은 분말이 부유하여 반응성이 떨어진다. 이때 반응온도는 20-60 ℃(바람직하게는 40 ℃)까지 가열한다. The silver chloride powder is added to a pyrex semi-batch incubator and then stirred at a speed of 200-800 rpm, preferably at 200 rpm. When the salt is less than 200 rpm, the salt is agglomerated and the reaction does not occur. The powder is suspended and its reactivity is poor. At this time, the reaction temperature is heated to 20-60 ℃ (preferably 40 ℃).

반응온도의 경우, 20 ℃보다 낮으면 환원반응이 일어나지 않으며, 60 ℃보다 높으면 핵성장이 증가하여 나노입자가 생성되지 않는다. In the case of the reaction temperature, the reduction reaction does not occur if it is lower than 20 ℃, the nuclear growth increases if it is higher than 60 ℃ does not produce nanoparticles.

상기 착물형성 반응시 착물형성용액을 이루는 조성은 PVP 및 NH4OH의 혼합비율은 1000 ㎖ 기준으로 PVP 10-30 g(바람직하게는 30 g) 그리고 NH4OH는 40-160 ㎖(바람직하게는 160 ㎖) 이다(단, 기준용액의 양이 많거나 적을시 동일하게 변동된다). The composition forming the complex forming solution during the complex forming reaction is PVP And the mixing ratio of NH 4 OH is 10-30 g (preferably 30 g) of PVP on the basis of 1000 ml and 40-160 ml (preferably 160 ml) of NH 4 OH. Or less, the same fluctuations).

상기 환원반응은 상기 착물형성 반응 후 하이드라진(N2H2)을 분당 1-4 ㎖의 속도로 반회분식 항온반응조 내에 주입하여 환원실험을 진행한다.In the reduction reaction, the complex formation reaction is performed by injecting hydrazine (N 2 H 2 ) into a semi-batch incubator at a rate of 1-4 ml per minute to proceed with a reduction experiment.

하이드라진(N2H2)을 분당 1-4 ㎖의 속도로 첨가하는 이유는 1 ㎖ 보다 낮을경우에는 환원제의 양이 불충분하여 환원반응이 일어나지 않으며, 4 ㎖ 보다 클 경우에는 환원되는 은이 증가하여 응집이 심해진다. The reason why hydrazine (N 2 H 2 ) is added at a rate of 1-4 ml per minute is lower than 1 ml, so that the amount of reducing agent is insufficient, so that the reduction reaction does not occur. This gets worse.

상기 반회분식 항온반응조 내에서 질소가스의 발생이 정지하면 반회분식 항 온반응조를 해체한 다음, 반응물을 원심분리기에서 10000 rpm으로 회전시켜 고액분리에 의한 고체입자를 회수한다. 회수한 고체입자를 진공오븐에서 40-60 ℃의 온도로 건조시킨 후 무게측정, 화학분석, XRD 및 SEM 관찰을 하였다.When the generation of nitrogen gas in the semi-batch incubator is stopped, the semi-batch incubator is dismantled, and then the reactants are rotated at 10000 rpm in a centrifuge to recover solid particles by solid-liquid separation. The recovered solid particles were dried in a vacuum oven at a temperature of 40-60 ° C. and then weighed, chemically analyzed, XRD and SEM were observed.

상기에서 건조온도가 40 ℃보다 낮으면 건조가 않되며, 60 ℃보다 높으면 입자의 응집이 심해진다. If the drying temperature is lower than 40 ℃ in the above it does not dry, if higher than 60 ℃ the aggregation of the particles is severe.

이하 본 발명에 따른 바람직한 실시예를 설명하겠다.Hereinafter will be described a preferred embodiment according to the present invention.

실시예 1Example 1

증류수에 NH4OH 160 ㎖와 PVP 30 g(단, 기준용액의 양이 많거나 적을시 동일하게 변동된다)이 혼합된 용액 1리터를 반회분식 항온반응조에 장입하고 염화은 분말 50 g을 첨가한다. 1 liter of a mixture of 160 ml of NH 4 OH and 30 g of PVP (which varies equally when the amount of reference solution is large or small) is added to the distilled water in a semi-batch incubator and 50 g of silver chloride powder is added.

상기 반응용액을 200rpm으로 교반하면서 반응온도 40℃까지 가열한다.The reaction solution is heated to a reaction temperature of 40 ℃ while stirring at 200 rpm.

반응온도에 도달하면 실험조건에 필요한 하이드라진(N2H2) 용액을 분당 1 ㎖의 속도로 용액주입장치를 이용하여 10분간 주입하고 환원반응을 진행한다.When the reaction temperature is reached, the hydrazine (N 2 H 2 ) solution required for the experimental conditions is injected for 10 minutes using a solution injection device at a rate of 1 ml per minute, and then a reduction reaction is performed.

상기 환원반응이 종료하면, 반응산물을 원심분리기에서 1000rpm으로 원심분리한다. 원심분리 후 용액을 버리고 증류수를 장입하여 재원심분리를 3회 실시한다. When the reduction reaction is complete, the reaction product is centrifuged at 1000 rpm in a centrifuge. After centrifugation, the solution is discarded, distilled water is charged and re-centrifugation is performed three times.

상기 방법에 따라 진공오븐에서 40 ℃로 24시간 이상 건조하고, 건조된 은 분말은 XRD를 이용하여 은 분말의 결정상을 확인하였다.According to the above method, the dried silver powder was dried at 40 ° C. for 24 hours or more in a vacuum oven, and the crystal phase of the silver powder was confirmed using XRD.

상기와 같은 본 발명의 방법으로 나노 은 입자를 제조시 은 입자의 크기는 약 30-50 나노미터이다. 따라서 본 발명을 이용한 나노 은입자 제조방법이 매우 효과적임을 알 수 있다. When preparing nano silver particles by the method of the present invention as described above, the size of the silver particles is about 30-50 nanometers. Therefore, it can be seen that the nano-silver particle production method using the present invention is very effective.

도 2는 상기 실시예 1 및 하기 실시예 2에 사용된 염화은의 SEM 사진인데, 도시된 바와 같이 염화은은 약 20-30 ㎛의 길쭉한 모양을 가진 입자들이 응집되어 약 100 ㎛ 이상의 크기를 갖는 것을 알 수 있다. Figure 2 is a SEM photograph of the silver chloride used in Example 1 and Example 2, as shown, the silver chloride is shown that the particles having an elongated shape of about 20-30 ㎛ are agglomerated to have a size of about 100 ㎛ or more Can be.

도 3은 상기 실시예 1에 따라 제조된 나노 은입자의 X선 회절분석 결과인데,도시된 바와 같이 전형적인 금속 은의 X선 회절 모양을 갖고 있음을 보여주고 있다. 이 사실은 본 제조공정에서 제조된 나노 은 입자가 순수한 은 금속임을 나타내어주고 있다. 3 is an X-ray diffraction analysis result of the nano-silver particles prepared according to Example 1, it shows that it has an X-ray diffraction shape of typical metal silver as shown. This fact indicates that the nano silver particles produced in this manufacturing process are pure silver metals.

도 4는 상기 실시예 1에 따라 제조된 나노 은입자를 투과전자현미경으로 본 확대사진인데, 나노 은 입자가 입자별로 분산되어 있으며 크기는 30-50 nm를 나타내고 있다. 4 is an enlarged photograph of the nano silver particles prepared according to Example 1 by a transmission electron microscope, in which nano silver particles are dispersed by particles and have a size of 30-50 nm.

실시예 2Example 2

증류수에 NH4OH 160 ㎖와 PVP 30 g(단, 기준용액의 양이 많거나 적을시 동일하게 변동된다)이 혼합된 용액 1리터를 반회분식 항온반응조에 장입하고 염화은 분말 50 g을 첨가한다. 1 liter of a mixture of 160 ml of NH 4 OH and 30 g of PVP (which varies equally when the amount of reference solution is large or small) is added to the distilled water in a semi-batch incubator and 50 g of silver chloride powder is added.

상기 반응용액을 200rpm으로 교반하면서 반응온도 40℃까지 가열한다.The reaction solution is heated to a reaction temperature of 40 ℃ while stirring at 200 rpm.

반응온도에 도달하면 실험조건에 필요한 하이드라진(N2H2) 용액을 분당 4 ㎖의 속도로 용액주입장치를 이용하여 10분간 주입하고 환원실험을 진행한다.When the reaction temperature is reached, the hydrazine (N 2 H 2 ) solution required for the experimental conditions is injected at a rate of 4 ml per minute using a solution injector for 10 minutes and then subjected to a reduction experiment.

상기 환원반응이 종료하면, 반응산물을 원심분리기에서 1000rpm으로 원심분리한다. 원심분리 후 용액을 버리고 증류수를 장입하여 재원심분리를 3회 실시한다. When the reduction reaction is complete, the reaction product is centrifuged at 1000 rpm in a centrifuge. After centrifugation, the solution is discarded, distilled water is charged and re-centrifugation is performed three times.

진공오븐에서 40 ℃로 24시간 이상 건조하고, 건조된 은 분말은 XRD를 이용하여 은 분말의 결정상을 확인하였다.It dried at 40 degreeC by vacuum oven for 24 hours or more, and the dried silver powder confirmed the crystal phase of silver powder using XRD.

도 5는 본 발명에 사용된 실시예 2의 결과물을 투과전자현미경으로 본 확대사진이다. 도시된 바와 같이 나노 은 입자가 실시예 1보다 응집되어 있으며 크기는 30-50 nm를 나타내고 있다. 5 is an enlarged photograph of the resultant of Example 2 used in the present invention as seen through a transmission electron microscope. As shown, the nano silver particles are more aggregated than in Example 1 and have a size of 30-50 nm.

본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 분야에 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다. The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by those skilled in the art without departing from the gist of the invention as claimed in the claims. Of course, such changes are within the scope of the claims.

도 1은 본 발명에 따른 나노 은 입자의 제조 공정도이고, 1 is a manufacturing process chart of nano silver particles according to the present invention,

도 2는 본 발명의 실시예 1과 2에 사용된 염화은의 전자현미경사진으로 본 확대사진이고,2 is an enlarged photograph of an electron micrograph of silver chloride used in Examples 1 and 2 of the present invention,

도 3는 본 발명 실시예 1에 따라 제조된 나노 은 입자의 X선 회절분석 결과이고, 3 is an X-ray diffraction analysis of nano silver particles prepared according to Example 1 of the present invention.

도 4은 본 발명의 실시예 1에 따라 제조된 나노 은입자의 투과전자현미경 확대사진이고, 4 is a magnified photograph of a transmission electron microscope of nano silver particles prepared according to Example 1 of the present invention.

도 5는 본 발명의 실시예 2에 따라 제조된 나노 은입자의 투과전자현미경 확대사진이다. 5 is a magnified photograph of a transmission electron microscope of nano silver particles prepared according to Example 2 of the present invention.

Claims (9)

나노 은 입자의 제조방법에 있어서, In the method for producing nano silver particles, 염화은 분말로부터 암모니아 은 착물을 형성하기 위하여 염화 은 분말을 착물형성제인 암모니아(NH4OH)용액과 분산제인 PVP(polyvinylpyrrolidone, PVPk-30)용액이 장입된 반응조에 첨가한 후 교반시키며 가열하는 착물 형성 단계와;In order to form ammonia silver complex from silver chloride powder, the complex is heated by adding silver chloride powder to a reaction tank loaded with ammonia (NH 4 OH) solution and a dispersant polyvinylpyrrolidone (PVP k-30 ) solution. Forming step; 이후 환원제인 하이드라진(N2H2) 용액을 연속으로 첨가하여 암모니아 은 착물이 하이드라진과 반응하여 환원되는 단계; 및Thereafter, a solution of hydrazine (N 2 H 2 ), which is a reducing agent, is continuously added to reduce the ammonia silver complex by reacting with the hydrazine; And 환원반응된 고체입자를 증류수와 함께 원심분리기에서 고액분리하여 고체입자를 회수하고, 회수한 고체입자를 건조하는 단계:를 거쳐 제조되는 것을 특징으로 하는 슬러리환원법에 의해 염화은으로부터 나노 은 입자를 제조하는 방법.To recover the solid particles by solid-liquid separation of the reduced reaction solid particles in a centrifuge with distilled water, and drying the recovered solid particles: to prepare nano silver particles from silver chloride by a slurry reduction method characterized in that Way. 청구항 1에 있어서,The method according to claim 1, 상기 염화은 분말의 양은 전체 혼합용액 1000 ㎖ 당 10~100 g을 첨가하는 것을 특징으로 하는 슬러리환원법에 의해 염화은으로부터 나노 은 입자를 제조하는 방법.The method for producing nano-silver particles from silver chloride by the slurry reduction method characterized in that the amount of the silver chloride powder is added per 1000 ml of the total mixed solution. 청구항 1에 있어서,The method according to claim 1, 상기 착물형성 용액을 이루는 PVP 및 NH4OH의 혼합비율은 전체 혼합용액 1000 ㎖ 기준으로 PVP 10-30g 그리고 NH4OH는 40-160 ㎖를 혼합하는 것을 특징으로 하는 슬러리환원법에 의해 염화은으로부터 나노 은 입자를 제조하는 방법.PVP constituting the complexing solution And a method for the mixing ratio of NH 4 OH is the total mixed solution 1000 ㎖ reference PVP 10-30g and NH 4 OH is by slurry reduction method comprising a step of mixing a 40-160 ㎖ producing a nano-silver particles from silver chloride. 청구항 1에 있어서,The method according to claim 1, 상기 연속식으로 첨가되는 하이드라진은 전체 혼합용액 1000 ㎖ 기준으로 분당 1-4 ㎖/mim 속도로 첨가되며, 첨가량은 10-40 ㎖ 인 것을 특징으로 하는 슬러리환원법에 의해 염화은으로부터 나노 은 입자를 제조하는 방법.The continuously added hydrazine is added at a rate of 1-4 ml / mim per minute based on 1000 ml of the total mixed solution, the addition amount is 10-40 ml to prepare nano silver particles from silver chloride by the slurry reduction method Way. 청구항 1에 있어서,The method according to claim 1, 상기 반응조는 환원제 주입속도를 조절할 수 있는 반회분식 항온반응조를 사용하는 것을 특징으로 하는 슬러리환원법에 의해 염화은으로부터 나노 은 입자를 제조하는 방법.The reactor is a method for producing nano-silver particles from silver chloride by the slurry reduction method, characterized in that using a semi-batch constant temperature reaction tank that can adjust the reducing agent injection rate. 청구항 5에 있어서,The method according to claim 5, 상기 반회분식 항온반응조는 20 ~ 60℃의 반응온도에서 200-800rpm의 속도로 교반하는 것을 특징으로 하는 슬러리환원법에 의해 염화은으로부터 나노 은 입자를 제조하는 방법.The semi-batch constant temperature reactor is a method for producing nano-silver particles from silver chloride by the slurry reduction method characterized in that the stirring at a rate of 200-800rpm at a reaction temperature of 20 ~ 60 ℃. 청구항 1에 있어서,The method according to claim 1, 상기 염화은(AgCl) 분말 입자 크기는 50 ~ 200 ㎛인 것을 사용하는 것을 특징으로 하는 슬러리환원법에 의해 염화은으로부터 나노 은 입자를 제조하는 방법.The silver chloride (AgCl) powder particle size is 50 ~ 200 ㎛ method for producing nano-silver particles from silver chloride by the slurry reduction method characterized in that used. 청구항 1에 있어서,The method according to claim 1, 상기 고체입자를 건조하는 단계는 진공오븐에서 40 ~ 60℃의 온도로 24시간 건조하는 것을 특징으로 하는 슬러리환원법에 의해 염화은으로부터 나노 은 입자를 제조하는 방법.Drying the solid particles is a method for producing nano-silver particles from silver chloride by a slurry reduction method characterized in that the drying for 24 hours at a temperature of 40 ~ 60 ℃ in a vacuum oven. 청구항 1 내지 8중 어느 한 항의 방법으로 제조된 입자의 크기가 30-50 나노미터이고, 입자가 응집되지 않고 균일하게 분산된 둥근 모양의 형태를 갖는 것을 특징으로 하는 슬러리환원법에 의해 염화은으로부터 제조된 나노 은 입자.The particles prepared by the method of any one of claims 1 to 8 are 30-50 nanometers in size, and the particles are prepared from silver chloride by the slurry reduction method, characterized in that they have a rounded shape in which the particles are uniformly dispersed. Nano silver particles.
KR1020090077209A 2009-08-20 2009-08-20 Preparation of silver nano-powder from agcl by slurry reduction methods and silver nano-powder thereof KR20110019603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090077209A KR20110019603A (en) 2009-08-20 2009-08-20 Preparation of silver nano-powder from agcl by slurry reduction methods and silver nano-powder thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090077209A KR20110019603A (en) 2009-08-20 2009-08-20 Preparation of silver nano-powder from agcl by slurry reduction methods and silver nano-powder thereof

Publications (1)

Publication Number Publication Date
KR20110019603A true KR20110019603A (en) 2011-02-28

Family

ID=43776876

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090077209A KR20110019603A (en) 2009-08-20 2009-08-20 Preparation of silver nano-powder from agcl by slurry reduction methods and silver nano-powder thereof

Country Status (1)

Country Link
KR (1) KR20110019603A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102698776A (en) * 2012-05-28 2012-10-03 华北电力大学 Method for preparing silver chloride particles with flower-shaped micrometer structures
US9221044B2 (en) 2012-06-13 2015-12-29 Uniwersytet Warszawski Flow system method for preparing substantially pure nanoparticles, nanoparticles obtained by this method and use thereof
CN109128211A (en) * 2018-08-16 2019-01-04 山东大学 The method of micro-nano silver particle is prepared in water solution system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102698776A (en) * 2012-05-28 2012-10-03 华北电力大学 Method for preparing silver chloride particles with flower-shaped micrometer structures
US9221044B2 (en) 2012-06-13 2015-12-29 Uniwersytet Warszawski Flow system method for preparing substantially pure nanoparticles, nanoparticles obtained by this method and use thereof
CN109128211A (en) * 2018-08-16 2019-01-04 山东大学 The method of micro-nano silver particle is prepared in water solution system
CN109128211B (en) * 2018-08-16 2021-10-26 山东大学 Method for preparing micro-nano silver particles in aqueous solution system

Similar Documents

Publication Publication Date Title
EP3159078B1 (en) Method of preparing a silver-coated copper nanowire
CN103317141B (en) Method for preparing metal nanoparticles
CN102728852B (en) Preparation method of oxide or meta-coated nickel ultrafine powder
KR20110059946A (en) Preparation of copper powder coated with silver by electroless coating method and copper powder coated with silver thereof
CN101599335B (en) Oxidation resistant dimethyl silicon oil based magnetic fluid and preparation method thereof
CN101434418A (en) Method for preparing Co3O4 nano material by hydrothermal method under magnetic field effect
Yang et al. A simple way for preparing antioxidation nano-copper powders
CN1263675C (en) Inert thick salt medium method for preparing nanometer powder
JP5142891B2 (en) Cuprous oxide powder and method for producing the same
CN100425376C (en) Method for preparing ferrous powder dispersed by alumina in Nano level
Sinha et al. Synthesis of nanosized copper powder by an aqueous route
CN104625082B (en) Nanometer nickel powder preparation method
KR20110019603A (en) Preparation of silver nano-powder from agcl by slurry reduction methods and silver nano-powder thereof
CN110817966A (en) Preparation method of spherical manganese carbonate
CN107759464B (en) Controllable preparation method of monodisperse copper oxalate powder
CN112811450A (en) Preparation method of spherical nano-micron alumina
Byrappa Novel hydrothermal solution routes of advanced high melting nanomaterials processing
KR101314990B1 (en) Manufacturing method of conductive copper powder
Alavi et al. An investigation on electroless nickel coating on yttria stabilized zirconia nanoparticles via single step surface activation methods
CN102874867A (en) Method for preparing monodisperse submicron microsphere of titanium dioxide
Yonezawa et al. Detailed investigation of the reduction process of cupric oxide (CuO) to form metallic copper fine particles with a unique diameter
Zaiyuan et al. Preparation of chain copper oxide nanoparticles by microwave
Jha Synthesis of Nanosized copper oxide particles using hydrothermal treatment
KR101194273B1 (en) Manufacturing apparatus for spherical iron particles with excelletn dispersive property and method of manufacturing the same
Demirkiran A study on preparation of copper powder without an external electrical current source

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application