KR20110018118A - Method for production of 3-hydroxypropionic acid from glycerol by cultivating recombinant e. coli - Google Patents

Method for production of 3-hydroxypropionic acid from glycerol by cultivating recombinant e. coli Download PDF

Info

Publication number
KR20110018118A
KR20110018118A KR1020090075748A KR20090075748A KR20110018118A KR 20110018118 A KR20110018118 A KR 20110018118A KR 1020090075748 A KR1020090075748 A KR 1020090075748A KR 20090075748 A KR20090075748 A KR 20090075748A KR 20110018118 A KR20110018118 A KR 20110018118A
Authority
KR
South Korea
Prior art keywords
glycerol
hydroxypropionic acid
glucose
coli
culture
Prior art date
Application number
KR1020090075748A
Other languages
Korean (ko)
Other versions
KR101048151B1 (en
Inventor
서진호
박용철
곽수량
박성훈
모한 라지 스브라마니안
라스나싱 첸라두라이
Original Assignee
서울대학교산학협력단
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단, 부산대학교 산학협력단 filed Critical 서울대학교산학협력단
Priority to KR1020090075748A priority Critical patent/KR101048151B1/en
Publication of KR20110018118A publication Critical patent/KR20110018118A/en
Application granted granted Critical
Publication of KR101048151B1 publication Critical patent/KR101048151B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/52Propionic acid; Butyric acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01003Aldehyde dehydrogenase (NAD+) (1.2.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/0103Glycerol dehydratase (4.2.1.30)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE: A method for efficiently preparing 3-hydroxypropinoic acid from glycerol using recombinant E.coli is provided. CONSTITUTION: A method for preparing 3-hydroxyproionic acid from glycerol comprises a step of culturing recombinant E.coli in a medium containing glycerol and rich glucose. A method for preparing the recombinant E.coli comprises: a step of transforming E.Coli to express Lactobacillus brevis-derived glycerol dehydratase and Lactobacillus brevis-derived glycerol dehydratase reactivase; and a step of expressing an enzyme which converts 3-hydroxypropin aldehyde to 3-hydroxypropionic acid.

Description

재조합 대장균을 배양하여 글리세롤로부터 3-히드록시프로피온산을 생산하는 방법{Method for production of 3-hydroxypropionic acid from glycerol by cultivating recombinant E. coli}Method for production of 3-hydroxypropionic acid from glycerol by cultivating recombinant E. coli}

본 발명은 글리세롤로부터 3-히드록시프로피온산을 생산하는 방법에 관한 것으로, 더욱 상세하게는 재조합 대장균을 이용하여 글리세롤로부터 3-히드록시프로피온산을 생산하는 방법에 관한 것이다.The present invention relates to a method for producing 3-hydroxypropionic acid from glycerol, and more particularly to a method for producing 3-hydroxypropionic acid from glycerol using recombinant E. coli.

글리세롤은 화장품, 물비누, 음식, 의약품 및 윤활유와 같이 산업적 목적으로 사용될 뿐만 아니라 발효산업에 있어서 원료물질로도 사용되고 있는데, 3-히드록시프로피온알데히드(3-hydroxypropionaldehyde, 3-HPA)를 경유하여 3-히드록시프로피온산(3-hydroxypropionic acid)을 생산하는데 사용된다(참고도 1 참조). Glycerol is used not only for industrial purposes, such as cosmetics, soaps, food, medicines and lubricants, but also as a raw material in the fermentation industry. 3-Glycerol 3-hydroxypropionaldehyde (3-HPA) It is used to produce 3-hydroxypropionic acid (see reference 1).

[참고도 1][Reference Figure 1]

Figure 112009050069463-PAT00001
Figure 112009050069463-PAT00001

3-히드록시프로피온산 또는 그 염은 유기합성에서 중요한 빌딩 블록(building block)으로 쓰일 수 있을 뿐만 아니라, 대사경로의 중간체로서 아주 핵심적인 역할을 하는 물질로 알려져 있다.3-hydroxypropionic acid or its salts are known to be important building blocks in organic synthesis, and play a key role as intermediates in metabolic pathways.

3-히드록시프로피온산(3-hydroxypropionic acid, 3-HP)은 현재 US DOE 리스트에 올라 있는 재생 바이오 매스 생산물 관련 12가지 플랫폼 화합물 중 세 번째 위치를 차지할 정도로 중요하다. 3-hydroxypropionic acid (3-HP) is important enough to occupy the third position among 12 platform compounds related to renewable biomass products currently on the US DOE list.

3-HP는 고분자 코팅제의 가교 결합제, 금속 윤활제 및 직물에 대한 정전기 방지제로 주로 사용되고 있는데, 이 외에도 많은 분야에서 활용이 되고 있는 화합물이다.3-HP is mainly used as an antistatic agent for crosslinking agents, metal lubricants and fabrics of polymer coatings, and is a compound that has been utilized in many fields.

3-HP는 광학적으로 활성이 있는 물질의 합성을 위해 중요한 역할을 하는 2개의 작용기를 가지고 있는데, 이는 화학산업에서 3-HP가 중요한 전구체로 각광받게 하는 요소이다. 3-HP를 전구체로 하여 합성되는 핵심 화합물로는 1,3-프로판디올, 아크릴릭 에시드(acrlici acid), 메틸 아크릴레이트(methyl acrylate), 아크릴아미드(acrylamide), 에틸 3-HP, 말로닉 에시드(malonic acid), 프로피로락 톤(propiolactone) 및 아크릴로니트릴(acrylonitrile) 등이 있다. 3-HP has two functional groups that play an important role in the synthesis of optically active materials, which makes 3-HP an important precursor in the chemical industry. Core compounds synthesized with 3-HP as precursors include 1,3-propanediol, acrylic acid, methyl acrylate, acrylamide, ethyl 3-HP, and malonic acid ( malonic acid), propiolactone and acrylonitrile.

3-HP는 상기에서 살펴본 바와 같이 다양한 물질의 합성을 위한 전구체로 활용되고, 다양한 응용분야를 가지고 있는데, 세계 시장의 규모가 연간 3.63 백만 톤으로 어림잡아 진다. As described above, 3-HP is used as a precursor for the synthesis of various materials and has a variety of applications, with an estimated global market size of 3.63 million tonnes per year.

그런데, 상기와 같은 중요하고 유용한 역할을 하는 3-HP에 대한 생합성 경로에 대해서는 많이 연구되어 있지 않고, 특히, 글리세롤로부터 3-HP를 생합성하는 기술에 대한 연구는 많이 이루어지지 않고 있다. However, much of the biosynthetic pathway for 3-HP, which plays such an important and useful role, has not been studied much, and in particular, there has not been much research on the technique of biosynthesis of 3-HP from glycerol.

이에 본 발명은 재조합 대장균을 이용하여 글리세롤로부터 3-히드록시프로피온산을 생산하는 방법을 개발하여 제공하는데 그 목적이 있다. Accordingly, an object of the present invention is to develop and provide a method for producing 3-hydroxypropionic acid from glycerol using recombinant E. coli.

상기 목적을 달성하기 위하여 본 발명은 글리세롤을 3-히드록시프로피온산(3-hydroxypropionic acid)의 전구체가 되는 3-히드록시프로피온알데히드(3-hydroxypropionaldehyde; 3-HPA)로 전환시키기 위하여, 락토바실러스 브레비스(Lactobacillus brevis) 유래의 글리세롤 데히드라타제를 구성하는 서브 유닛 DHAB1, DHAB2 및 DHAB3 중 DHAB1 및 DHAB2를 각각 암호화하는 오픈리딩프레임의 개시코돈 TTG 및 GTG가 ATG로 각각 변이된 락토바실러스 브레비스 유래의 글리세롤 데히드라타제(glycerol dehydratase; DHAB) 및, 락토바실러스 브레비스 유래의 글리세롤 데히드라타제 리액티바제(glycerol dehydratase reactivase)가 발현되게 형질전환되고; 3-히드록시프로피온알데히드를 3-히드록시프로피온산으로 전환시키는 효소가 발현되도록 형질전환된; 재조합 대장균을 글리세롤이 첨가되고, 포도당이 배양 중 고갈되지 않도록 충분히 존재하는 배지에서 배양하는 것을 특징으로 하는 글리세롤로부터 3-히드록시프로피온산을 생산하는 방법을 제공한다. In order to achieve the above object, the present invention, in order to convert glycerol into 3-hydroxypropionaldehyde (3-HPA), which is a precursor of 3-hydroxypropionic acid, Lactobacillus brevis ( Lactobacillus glycerol dehydratase from Lactobacillus brevis derived from the start codons TTG and GTG of the open reading frame encoding DHAB1 and DHAB2 in the subunits DHAB1, DHAB2 and DHAB3 constituting the glycerol dehydratase derived from brevis ), respectively. (glycerol dehydratase; DHAB) and glycerol dehydratase reactivase from Lactobacillus brevis is transformed to be expressed; Transformed to express an enzyme that converts 3-hydroxypropionaldehyde to 3-hydroxypropionic acid; Provided is a method for producing 3-hydroxypropionic acid from glycerol, wherein the recombinant E. coli is cultured in a medium sufficient to which glycerol is added and glucose is not depleted during culture.

이하, 본 발명의 내용을 하기에서 더욱 상세히 설명하고자 한다. Hereinafter, the content of the present invention will be described in more detail below.

본 발명에서는 글리세롤을 3-히드록시프로피온알데히드(3-hydroxypropionaldehyde, 3-HPA)로 전환하는 글리세롤 데히드라타제(glycerol dehydratase; DHAB), 불활성화된 글리세롤 데히드라타제를 재활성화하는 글리세롤 데히드라타제 리액티바제(glycerol dehydratase reactivase) 및 3-히드록시프로피온알데히드를 3-히드록시프로피온산으로 전환시키는 효소를 발현하도록 대장균을 형질전환하는데, 형질전환의 방법은 유전공학계에 알려진 공지의 방법을 통해 수행할 수 있다. In the present invention, glycerol dehydratase (DHAB) to convert glycerol to 3-hydroxypropionaldehyde (3-HPA), glycerol dehydratase Li to reactivate the inactivated glycerol dehydratase E. coli is transformed to express activase (glycerol dehydratase reactivase) and an enzyme that converts 3-hydroxypropionaldehyde to 3-hydroxypropionic acid, and the method of transformation can be carried out through known methods known in the genetic engineering field. have.

글리세롤 데히드라타제는 글리세롤을 3-히드록시프로피온알데히드로 전환하는 효소로서, 본 발명에서는 락토바실러스 브레비스(Lactobacillus brevis) 유래의 것을 사용한다. 글리세롤 데히드라타제는 B12-의존성으로서, 반응을 위해 반드시 B12가 필요하다. Glycerol dehydratase is an enzyme that converts glycerol to 3-hydroxypropionaldehyde, and in the present invention, Lactobacillus brevis ( Lactobacillus) brevis ) is used. Glycerol dehydratase is B 12 -dependent and requires B 12 for the reaction.

조효소 B12-의존성 데히드라타제는 대형 또는 "α" 서브유닛, 중간 또는 "β" 서브유닛 및 소형 또는 "γ" 서브유닛의 3개 서브유닛으로 구성된다. 이들 서브유닛은 α2β2γ2 구조로 조립되어 주효소(apoenzyme)를 형성한다. Coenzyme B 12 -dependent dehydratase consists of three subunits: a large or "α" subunit, a medium or "β" subunit and a small or "γ" subunit. These subunits assemble into α 2 β 2 γ 2 structures to form apoenzymes.

한편, 조효소 B12는 촉매반응을 일으키는 라디칼 메카니즘에 관여하기 때문에 촉매 활성에 반드시 필요한데, 조효소 B12는 상기 주효소에 결합하여 촉매활성완전효소(holoenzyme)를 형성한다. 생화학적으로, 조효소 B12-의존성 글리세롤 데히드라타제는 글리세롤에 의해 불활성화를 겪는다는 것이 공지되어 있다([Daniel et al., 상기 문헌]; 문헌 [Seifert, et al., Eur. J. Biochem. 268:2369-2378 (2001)]). On the other hand, coenzyme B 12 is necessary for catalytic activity because it is involved in the radical mechanism causing the catalytic reaction, coenzyme B 12 binds to the main enzyme to form a catalytically active enzyme (holoenzyme). Biochemically, it is known that coenzyme B 12 -dependent glycerol dehydratase undergoes inactivation by glycerol (Daniel et al., Supra); Seifert, et al., Eur. J. Biochem 268: 2369-2378 (2001)].

글리세롤 데히드라타제의 불활성화는 조효소 B12 보조인자의 코발트-탄소 (Co-C) 결합이 절단되어 5'-데옥시아데노신 및 불활성 코발라민 종이 형성되는 단계를 포함하는데, 불활성 코발라민 종은 상기 데히드라타제에 밀착 결합된 채로 유지되어, 데히드라타제 재활성화 인자의 개입 없이는 분리되지 않는다. 불활성화는 3-HPA 형성과 관련된 반응 속도를 유의하게 감소시켜서, 3-HP의 생산을 간접적으로 감소시킬 수 있는 문제를 수반하기 때문에 재활성화는 상당히 중요한 고려사항이다.Inactivation of glycerol dehydratase involves the step of cleaving cobalt-carbon (Co-C) bonds of the coenzyme B 12 cofactor to form 5'-deoxyadenosine and inert cobalamin species, the inactive cobalamin species being dehydra It remains tightly bound to the other agent and does not separate without the intervention of the dehydratase reactivation factor. Reactivation is a fairly important consideration because inactivation significantly reduces the rate of reaction associated with 3-HPA formation, and thus involves the problem of indirectly reducing the production of 3-HP.

한편, 데히드라타제 활성의 재활성화는 2가지 측면에서 해결될 수 있다.On the other hand, reactivation of dehydratase activity can be solved in two aspects.

첫 번째 방안으로, 데히드라타제 활성의 재활성화는 이를 담당하는 단백질에 의해 극복될 수 있다. 재활성화는 다단계로 일어나는데, 불활성화된 조효소 B12-의존성 데히드라타제와 데히드라타제 재활성화 인자가 ATP-의존성 과정으로 상호작용하여, 밀착 결합된 불활성 코발라민 종을 방출시켜 주효소를 생성할 수 있는 것이다. 그 후, 데히드라타제 주효소는 조효소 B12와 결합하여 촉매 활성 완전효소를 재형성할 수 있고, 불활성 코발라민 종은 효소 작용에 의한 별도의 ATP-의존성 과정으로 조효소 B12로 재생될 수 있다. In a first approach, reactivation of dehydratase activity can be overcome by the protein responsible for it. Reactivation occurs in multiple stages, where the inactivated coenzyme B 12 -dependent dehydratase and dehydratase reactivation factor can interact in an ATP-dependent process, releasing tightly bound inert cobalamin species to produce a principal enzyme. It is. Dehydratase main enzymes can then bind to coenzyme B 12 to regenerate catalytically active enzymes and inactive cobalamin species can be regenerated to coenzyme B 12 in a separate ATP-dependent process by enzymatic action.

데히드라타제 재활성화 인자는 WO 98/21341호(US 6,013,494), 문헌 [Daniel et al., 상기 문헌], 문헌 [Toraya and Mori, J. Biol. Chem. 274:3372 (1999)] 및 문헌 [Tobimatsu et al., J. Bacteriol. 181:4110 (1999)]에 기재되어 있다. Dehydratase reactivation factors are described in WO 98/21341 (US 6,013,494), Daniel et al., Supra, Toraya and Mori, J. Biol. Chem. 274: 3372 (1999) and Tobimatsu et al., J. Bacteriol. 181: 4110 (1999).

그런데, 데히드라타제 재활성화 과정 및 조효소 B12 재생 과정 둘 다 ATP를 필요로 하기 때문에, 글리세롤의 3-HPA로의 전환과정에 상당한 에너지 부담이 된다. However, since both dehydratase reactivation and coenzyme B 12 regeneration process require ATP, the conversion of glycerol to 3-HPA is a significant energy burden.

따라서, 데히드라타제 활성의 재활성화에 대한 두 번째 방안으로 배지에 첨가되는 조효소 B12의 양을 증가시키거나, 또는 배양 배지에 비타민 B12 (생체 내에서 조효소 B12로 전환됨)를 보충하여 미생물에게 추가의 조효소 B12를 공급하는 방법이 고려되어 질 수 있다. Thus, as a second approach to reactivation of dehydratase activity, microorganisms may be increased by increasing the amount of coenzyme B 12 added to the medium or supplementing the culture medium with vitamin B 12 (converted to coenzyme B 12 in vivo). Additional coenzyme B 12 may be considered.

한편, 본 발명의 재조합 대장균은 3-히드록시프로피온알데히드를 3-히드록시프로피온산으로 전환시키는 효소가 발현되도록 형질전환되어 있는데, 글리세롤 데히드라타제에 의해 생산된 3-HPA가 이 효소에 의해 3-HP로 전환된다. On the other hand, the recombinant E. coli of the present invention is transformed to express an enzyme that converts 3-hydroxypropionaldehyde to 3-hydroxypropionic acid, 3-HPA produced by glycerol dehydratase 3- Switch to HP.

본 발명의 사전 실험에 의하면, 글리세롤 데히드라타제 및 글리세롤 데히드라타제 리액티바제만을 발현시켰을 경우, 3-HPA의 생산은 원활히 이루어지나, 생산된 3-HPA가 3-HP로 원활히 전환되지 않음을 확인할 수 있었다. According to the preliminary experiments of the present invention, when only glycerol dehydratase and glycerol dehydratase reactivase were expressed, 3-HPA was produced smoothly, but 3-HPA produced was not smoothly converted to 3-HP. I could confirm it.

하지만, 본 실험예에 의할 경우 3-히드록시프로피온알데히드를 3-히드록시프로피온산으로 전환시키는 효소(일 예로, 알데히드 데히드로지나제)를 동시발현시키고, 포도당을 배지 중에 첨가할 경우, 3-HPA가 3-HP로 현저히 전환됨을 확인할 수 있었다. 다만, 3-히드록시프로피온알데히드를 3-히드록시프로피온산으로 전환시키는 효소(일 예로, 알데히드 데히드로지나제)를 동시발현시킨다 하더라도, 과량의 포도당 공급이 없다면, 3-HP가 생산되지 않음이 본 발명의 실시예 2로부터 확인되었다. However, according to the present experiment, when co-expressing an enzyme (for example, aldehyde dehydrogenase) which converts 3-hydroxypropionaldehyde to 3-hydroxypropionic acid, and adding glucose to the medium, 3- It can be seen that HPA is significantly converted to 3-HP. However, even if co-expression of an enzyme that converts 3-hydroxypropionaldehyde to 3-hydroxypropionic acid (eg, aldehyde dehydrogenase), 3-HP is not produced if there is no excess glucose supply. It was confirmed from Example 2 of the invention.

[참고도 2][Reference Figure 2]

Figure 112009050069463-PAT00002
Figure 112009050069463-PAT00002

상기 참고도 2에 의할 경우, 글리세롤로부터 생산된 3-HPA가 3-HP로 전환되기 위해서는 3-히드록시프로피온알데히드를 3-히드록시프로피온산으로 전환시키는 효소가 필요하고, 보조인자로 NAD+ 가 요구됨을 알 수 있다. 이때, 보조인자가 적절히 공급되지 않으면, 3-HPA만 쌓이게 되고, 3-HP로 전환되지 않게 된다. According to the reference figure 2, in order to convert 3-HPA produced from glycerol to 3-HP, an enzyme for converting 3-hydroxypropionaldehyde to 3-hydroxypropionic acid is required, and NAD + is required as a cofactor. It can be seen. At this time, if the cofactor is not properly supplied, only 3-HPA is accumulated, it is not converted to 3-HP.

그런데, 본 발명에서와 같이 포도당이 배지 중 고갈되지 않도록 충분히 공급되면, 해당경로를 통해 NAD + 가 생산되고, 이를 통해 생산된 NAD + 가 3-HP의 생산에 사용되어, 3-HPA가 3-HP로 급격히 전환되는 것으로 확인되었다. However, when glucose is supplied sufficiently to prevent depletion of the medium as in the present invention, the NAD + is produced through the route, it is used in the production of NAD + is produced from 3-HP, 3-HPA is 3- It was confirmed that the transition to HP is rapid.

따라서, 통상적으로 대장균을 배양할 때는 배지 중에 특별히 포도당을 별도로 첨가하지 않으나, 본 발명에서와 같이, 글리세롤로부터 3-HP를 생산하는 공정에서는 배지 중에 반드시 포도당을 첨가해야 하고, 특히 발효 전반에 걸쳐 포도당이 고갈되지 않게 첨가해 주어야 하는 것이다. Therefore, when culturing Escherichia coli, glucose is not specifically added in the medium, but as in the present invention, in the process of producing 3-HP from glycerol, glucose must be added in the medium, especially glucose throughout fermentation. This should be added to avoid exhaustion.

배양 방식이 회분식 배양인 경우는, 배양 중 포도당이 고갈되지 않도록, 포도당이 소모되었을 경우, 포도당을 추가적으로 배지에 첨가하는 것이 좋고, 배양 방식이 유가식 배양인 경우 글리세롤 및 포도당을 지속적으로 공급하는 유가식 배양을 수행하는게 좋다.If the culture method is batch culture, it is better to add glucose to the medium when glucose is consumed so that glucose is not depleted during the culture, and the oil price which continuously supplies glycerol and glucose when the culture method is a fed-batch culture. It is better to carry out a diet.

이상, 상기에서 살펴본 바와 같이, 본 발명은 락토바실러스 브레비스 유래의 글리세롤 데히드라타제(glycerol dehydratase; DHAB), 락토바실러스 브레비스 유래의 글리세롤 데히드라타제 리액티바제(glycerol dehydratase reactivase) 및 3-히드록시프로피온알데히드를 3-히드록시프로피온산으로 전환시키는 효소를 발현하도록 형질전환된 재조합 대장균을 이용하고, NAD+의 재생산을 위해 포도당을 배지에 고갈되지 않도록 공급함으로써, 글리세롤로부터 3-히드록시프로피온산을 효율적으로 생산할 수 있다. As described above, the present invention is a glycerol dehydratase (DHAB) derived from Lactobacillus brevis (glycerol dehydratase; DHAB), glycerol dehydratase reactivase derived from Lactobacillus brevis (glycerol dehydratase reactivase) and 3-hydroxypropion Efficient production of 3-hydroxypropionic acid from glycerol can be achieved by using recombinant E. coli transformed to express an enzyme that converts aldehyde to 3-hydroxypropionic acid and feeding glucose to the medium for regeneration of NAD + . Can be.

이하, 본 발명의 내용을 하기 실시예를 들어 더욱 상세히 설명하고자 하나, 본 발명의 권리범위가 하기 실시예에만 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited only to the following examples.

실시예Example 1: 재조합 대장균의 제조 1: Preparation of Recombinant E. Coli

락토바실러스 브레비스(Lactobacillus brevis) ATCC 367로부터 글리세롤 데히드라타제를 클로닝한 후, 이를 구성하는 서브 유닛 DHAB1, DHAB2 및 DHAB3 중 DHAB1 및 DHAB2를 각각 암호화하는 오픈리딩프레임의 개시코돈 TTG 및 GTG를 사이트-드렉티드 뮤타제네시스(site-directed mutagenesis)를 통해 ATG로 각각 치환하여, pET29b(+) 벡터(Novagen 판매)에 도입하여 pET29-dhaB(pELD) 벡터를 구축하였다 (하기 참고도 및 4 참조 요망). Lactobacillus brevis ) After cloning of glycerol dehydratase from ATCC 367, start codons TTG and GTG of open reading frames encoding DHAB1 and DHAB2 in the subunits DHAB1, DHAB2 and DHAB3 constituting the same were site-directed mutagenesis. the through -directed mutagenesis) each substituted by ATG, and introduced into the pET29b (+) vector (Novagen sale) was constructed pET29- dha B (pELD) vector (reference to Fig. 4 and see required).

[참고도 3][Reference Figure 3]

Figure 112009050069463-PAT00003
Figure 112009050069463-PAT00003

[참고도 4][Reference Figure 4]

Figure 112009050069463-PAT00004
Figure 112009050069463-PAT00004

상기 과정에서 글리세롤 데히드라타제의 클로닝 및 사이트-드렉티드 뮤타제 네시스(site-directed mutagenesis)는 오버랩 익스텐션 PCR(overlap extension PCR)을 통해 수행하였다. PCR은 하기의 표 1에 기재된 올리고뉴클레오타이드를 프라이머로 사용하여 수행하였다. Cloning of glycerol dehydratase and site-directed mutagenesis were performed through overlap extension PCR. PCR was performed using oligonucleotides described in Table 1 below as primers.

용도Usage 이름name 올리고뉴클레오타이드Oligonucleotides
dhaB 변이 및 증폭

dha B mutation and amplification
LBF1bX (Xba)LBF1bX (Xba ) 5'-GCTCTAGATAAAGGGGGATTTTTAAATG5'-GC TCTAGA TAAAGGGGGATTTTTAA A TG
LbR (BamH)LbR (BamH ) 5'-CGGGATCCCTAGTTATCACCCTTCAG5'-CG GGATCC CTAGTTATCACCCTTCAG LbOFLbOF 5'-GTTAACACTATGGCTCAAGAA5'-GTTAACACT A TGGCTCAAGAA LbORLbOR 5'-TTCTTGAGCCATAGTGTTAAC5'-TTCTTGAGCCA T AGTGTTAAC

먼저, LbF1bX-LbOR 및 LbOF-LbR의 두개의 프라이머 조합을 이용하여 첫 번째 PCR을 수행함으로써 2개의 DNA 절편을 증폭하였다. 그리고 나서 이 2개의 DNA 절편을 이용하여 두 번째 PCR을 수행하였다. 이때에는 별도의 프라이머를 첨가하지 않고 수행하였는데, 그렇다 하더라도 상기 2개의 DNA 절편이 상호 중첩되는 서열을 가지고 있기 때문에, PCR되는데는 문제가 없고, PCR 결과 두 번째 PCR 산물이 수득되었다. First, two DNA fragments were amplified by performing the first PCR using a combination of two primers, LbF1bX-LbOR and LbOF-LbR. Then, a second PCR was performed using these two DNA fragments. At this time, it was performed without adding a separate primer, but even if the two DNA fragments have a sequence overlapping with each other, there is no problem in PCR, and a second PCR product was obtained as a result of PCR.

그 후, 상기 두번째 PCR 산물을 템플레이트로 하여 LbF1bX 및 LbR의 프라이머를 첨가하여 세 번째 PCR을 수행함으로써 참고도 5의 하단에 모식화된 DNA 절편을 최종 수득하고, pET29b(+) 벡터에 도입함으로써 pET29-dhaB(pELD) 벡터를 구축하였다. Thereafter, the second PCR product was used as a template to perform a third PCR by adding primers of LbF1bX and LbR to finally obtain a modeled DNA fragment at the bottom of Reference Figure 5, and then introduced into the pET29b (+) vector to obtain pET29 - it was built dha B (pELD) vector.

한편, 락토바실러스 브레비스 ATCC 367로부터 글리세롤 데히드라타제 리액티바제(glycerol dehydratase reactivase)를 클로닝한 후, 상기 pELD 벡터에 도입하여 pELD-dhaR(pELDRR) 벡터를 구축하였다. 이 후, 상기에서 구축한 pELDRR 벡터를 이 콜라이(E. coli) BL21 star (DE3) 균주(Invitrogen 판매)에 도입하여 형질전환시킴으로써, 재조합 대장균을 제조하였다 (하기 참고도 5 및 6 참조 요망)On the other hand, after cloning a glycerol hydratase Li aektiba claim (glycerol dehydratase reactivase) having from Lactobacillus brevis ATCC 367, was introduced into the pELD vector was constructed pELD- dha R (pELDRR) vector. Subsequently, the recombinant E. coli was prepared by introducing the above-described pELDRR vector into the E. coli BL21 star (DE3) strain (Invitrogen) and transforming it (refer to FIGS. 5 and 6 below).

[참고도 5][Reference Figure 5]

Figure 112009050069463-PAT00005
Figure 112009050069463-PAT00005

[참고도 6][Reference Figure 6]

Figure 112009050069463-PAT00006
Figure 112009050069463-PAT00006

상기 과정에서 사용한 프라이머는 하기 표 2에 기재된 바와 같았다. Primers used in the above process were as described in Table 2 below.

용도Usage 이름name 올리고뉴클레오타이드Oligonucleotides 비고Remarks
dhaR 증폭

dha R amplification
LbReF (BamHⅠ)LbReF ( Bam HⅠ) 5'-CGGGATCCTTAGGAGTCTTCGTATGCAA5'-CG GGATCC TTAGGAGTCTTCGTATGCAA 정방향Forward
LbReR1 (SalⅠ)LbReR1 ( Sal I) 5'-ACGCGTCGACGCCGGCTTATCCATTGTG5'-ACGC GTCGAC GCCGGCTTATCCATTGTG 역방향Reverse LbReR2 (NotⅠ)LbReR2 ( Not Ⅰ) 5'-ATAAGAATGCGGCCGCCCACCTAATCTAATGTCTTAA5'-ATAAGAAT GCGGCCGC CCACCTAATCTAATGTCTTAA 역방향Reverse

한편, 이 콜라이(E. coli) K12로부터 클로닝된 알데히드 데히드로지나아제를 포함하는 pCDF1b-aldH (pCEa) 벡터(Raj SM, C Rathnasingh, JE Jo, SH Park. 2008. Production of 3-hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain. Process Biochemistry 43(12):1440~1446)를 구축한 후, 이것으로 상기 실시예 1에서 형질전환한 재조합 대장균을 추가적으로 형질전환시킴으로써 최종적으로 실시예 1의 재조합 대장균을 제조하였다 (참고도 7)On the other hand, E. coli (E. coli) pCDF1b- ald H ( pCEa) containing the kinase through to the aldehyde dehydrogenase cloned from the K12 vector (Raj SM, C Rathnasingh, JE Jo, Park SH. 2008. Production of 3-hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain.Process Biochemistry 43 (12): 1440 to 1446) was constructed, followed by additional transformation of the recombinant E. coli transformed in Example 1, thereby finally in Example 1 Recombinant Escherichia coli was prepared (see FIG. 7).

[참고도 7][Reference Figure 7]

Figure 112009050069463-PAT00007
Figure 112009050069463-PAT00007

실시예Example 2: 상기  2: above 실시예Example 1에서 제조한 재조합 대장균의  Of recombinant E. coli prepared in 1 회분식Batch 배양 culture

상기 실시예 1에서 제조한 재조합 대장균을 이용하여 회분식 배양을 수행하였다. Batch culture was performed using the recombinant Escherichia coli prepared in Example 1.

배양은 500 mL 플라스크에서 100 mL 부피로 수행하였다. 배지는 LB 배지를 사용하였고, 도입 효소의 발현 유도(induction)는 균체의 농도가 0.183g/L가 되었을 때, 수행했다. 유도(induction) 후, 20μM의 보효소 B12와 글리세롤을 배지 중에 보충하였다. Cultivation was performed in a 500 mL flask at a volume of 100 mL. LB medium was used as the medium, and expression induction of the introduced enzyme was performed when the concentration of the cells became 0.183 g / L. After induction, 20 μM of coenzyme B 12 and glycerol were supplemented in the medium.

배양은 초기에 37℃에서 수행하다가 유도 후, 온도를 20℃(도 1)와 25℃(도 2)로 각각 달리하면서 배양을 수행하였다. 한편, B12의 분해를 막기 위해 배양시에 불빛은 차단하였다. Cultivation was initially performed at 37 ° C., followed by induction, followed by culturing while varying the temperature to 20 ° C. (FIG. 1) and 25 ° C. (FIG. 2), respectively. On the other hand, the light was blocked at the time of incubation to prevent degradation of B 12 .

배양 결과는 도 1 및 도 2와 같았는데, 도 1에서 보는 바와 같이 3-HPA의 생산은 확인이 되었으나, 3-HP의 생산은 확인되지 않았다. 한편, 20℃에서 배양한 경우가 25℃에서 배양하는 것에 비해 3-HPA의 생산량이 높았다. Culture results were the same as in Figures 1 and 2, as shown in Figure 1, the production of 3-HPA was confirmed, but the production of 3-HP was not confirmed. On the other hand, the production of 3-HPA was higher when cultured at 20 ℃ than incubated at 25 ℃.

실시예Example 3: 과량의 포도당 공급 환경 하에서 상기  3: the above under excessive glucose supply environment 실시예Example 1에서 제조한  Manufactured in 1 재조Manufacturing 합 대장균의 Sum of coliform 회분식Batch 배양 culture

상기 실시예 2에서는 3-HP의 생산이 확인되지 않았는데, 그 이유로 3-HPA에서 3-HP로의 전환시 요구되는 NAD+의 불충분한 공급이 원인으로 예측되었다. In Example 2, production of 3-HP was not confirmed, and the reason was predicted to be due to insufficient supply of NAD + required for the conversion from 3-HPA to 3-HP.

글리세롤로부터 생산된 3-HPA가 3-HP로 전환되기 위해서는 3-HPA를 3-HP로 전환시키는 효소가 필요하고, 보조인자로 NAD+ 가 요구됨을 알 수 있는데, 보조인자가 적절히 공급되지 않으면, 3-HPA만 쌓이게 되고 3-HP로 전환되지 않게 되기 때문이다. In order to convert 3-HPA produced from glycerol to 3-HP, an enzyme for converting 3-HPA to 3-HP is required, and NAD + is required as a cofactor. Only HPA will accumulate and not convert to 3-HP.

이에 본 실시예에서는 배지 중에 포도당이 고갈되지 않도록 충분히 공급하여, NAD+ 가 포도당의 해당경로를 통해 생산되고, 이를 통해 생산된 NAD + 가 3-HP의 생산에 사용될 수 있도록 발효 전략을 수립하였다. In this example, the fermentation strategy was established to supply enough glucose so as not to be depleted in the medium, so that NAD + is produced through the corresponding pathway of glucose, and the produced NAD + is used for the production of 3-HP.

그 결과, 도 3(20℃) 및 도 4(25℃)에서 확인되는 바와 같이, 과량의 포도당이 배지 중에 충분히 공급되는 환경 하에서 3-HPA가 3-HP로 급격히 전환되는 것이 확인되었다. 다만, 25℃ 조건에서 3-HP가 훨씬 더 많이 생산됨을 확인할 수 있었다. As a result, as confirmed in FIGS. 3 (20 ° C.) and 4 (25 ° C.), it was confirmed that 3-HPA was rapidly converted to 3-HP under an environment in which excess glucose was sufficiently supplied in the medium. However, it could be confirmed that much more 3-HP was produced at 25 ° C.

한편, 본 실시예에서는 상기 실시예 2에서의 방법과 동일한 방법으로 배양을 수행하되, 다만 배지는 포도당이 18 g/L 첨가된 리젠버그 배지(Riesenberg medium)를 사용하였다. On the other hand, in this Example, the culture was carried out in the same manner as in Example 2, except that the medium was used Reesenberg medium (Riesenberg medium) added with 18 g / L of glucose.

실시예Example 4: 상기  4: above 실시예Example 1에서 제조한 재조합 대장균의  Of recombinant E. coli prepared in 1 유가식Oil price 배양 culture

상기 실시예 1에서 제조한 재조합 대장균을 이용하여 유가식 배양을 수행하였다. The fed-batch culture was performed using the recombinant Escherichia coli prepared in Example 1.

배양은 2.5 L 자(jar) 발효기에서 1.0 L 부피로 수행하였다. 배지는 pH 6.8의 리젠버그 배지(Riesenberg medium)를 사용하였고, 도입 효소의 발현 유도(induction)는 균체의 농도가 35 g/L가 되었을 때, 수행하였다. 유도(induction) 후, 20 μM의 보효소를 배지 중에 보충하였다. Cultivation was carried out in a 1.0 L volume in a 2.5 L jar fermenter. Medium was used as Riesenberg medium of pH 6.8, the expression induction of the introduced enzyme was carried out when the concentration of the cells was 35 g / L. After induction, 20 μM of coenzyme was supplemented in the medium.

배양 중 공기는 1 vvm의 속도로 공급하였고, 교반은 12,000~13,000 rpm으로 수행하였으며, 배양온도는 25℃로 하였다. Air was incubated at a rate of 1 vvm, stirring was performed at 12,000 ~ 13,000 rpm, the culture temperature was 25 ℃.

배양은 pH-stat 방식의 유가식 배양을 수행하였고, pH는 28% 암모니아수를 사용하여 6.8로 조절하였다. The culture was carried out in a fed-batch culture of pH-stat method, the pH was adjusted to 6.8 using 28% ammonia water.

한편, 피딩용액(feeding solution)은 A 타입과 B 타입의 두 개를 제조하여 사용하였는데, A 타입의 피딩용액은 800 g/L의 포도당과 20 g/L의 MgSO4·7H2O 이 혼합된 용액이고, B 타입의 피딩용액은 400 g/L의 포도당, 400 g/L의 글리세롤 및 20 g/L의 MgSO4·7H2O 이 혼합된 용액이다. On the other hand, the feeding solution (feeding solution) was prepared by using two types of type A and B, the type A feeding solution is a mixture of 800 g / L glucose and 20 g / L MgSO 4 · 7H 2 O Solution, type B feeding solution, a mixture of 400 g / L glucose, 400 g / L glycerol and 20 g / L MgSO 4 .7H 2 O.

한편, B12의 분해를 막기 위해 배양시에 불빛은 차단하였다. On the other hand, the light was blocked at the time of incubation to prevent degradation of B 12 .

배양 결과는 도 5와 같았는데, 도 5에서 보는 바와 같이 약 15 g/L의 3-HP 생산이 확인되었다. The culture results were the same as in FIG. 5, as shown in FIG. 5, 3-HP production of about 15 g / L was confirmed.

도 1은 본 발명의 실시예 1에서 제조한 재조합 대장균을 이용하여 LB 배지에서 20℃로 배양한 것이다. 1 is incubated at 20 ℃ in LB medium using the recombinant E. coli prepared in Example 1 of the present invention.

도 2는 본 발명의 실시예 1에서 제조한 재조합 대장균을 이용하여 LB 배지에서 25℃로 배양한 것이다.Figure 2 is incubated at 25 ℃ in LB medium using the recombinant E. coli prepared in Example 1 of the present invention.

도 3은 본 발명의 실시예 1에서 제조한 재조합 대장균을 이용하여 포도당이 18 g/L 첨가된 리젠버그 배지(Riesenberg medium)에서 20℃로 배양한 것이다.FIG. 3 is incubated at 20 ° C. in Reesenberg medium with 18 g / L of glucose using the recombinant Escherichia coli prepared in Example 1 of the present invention.

도 4는 본 발명의 실시예 1에서 제조한 재조합 대장균을 이용하여 포도당이 18 g/L 첨가된 리젠버그 배지(Riesenberg medium)에서 25℃로 배양한 것이다.4 is incubated at 25 ° C. in Reesenberg medium with 18 g / L of glucose using the recombinant E. coli prepared in Example 1 of the present invention.

도 5는 본 발명의 실시예 1에서 제조한 재조합 대장균을 이용하여 25℃에서 포도당을 지속적으로 공급하면서 유가식 배양을 한 것이다. Figure 5 is a fed-batch culture while continuously supplying glucose at 25 ℃ using the recombinant E. coli prepared in Example 1 of the present invention.

Claims (5)

글리세롤을 3-히드록시프로피온산(3-hydroxypropionic acid)의 전구체가 되는 3-히드록시프로피온알데히드(3-hydroxypropionaldehyde; 3-HPA)로 전환시키기 위하여, 락토바실러스 브레비스(Lactobacillus brevis) 유래의 글리세롤 데히드라타제를 구성하는 서브 유닛 DHAB1, DHAB2 및 DHAB3 중 DHAB1 및 DHAB2를 각각 암호화하는 오픈리딩프레임의 개시코돈 TTG 및 GTG가 ATG로 각각 변이된 락토바실러스 브레비스 유래의 글리세롤 데히드라타제(glycerol dehydratase; DHAB) 및, 락토바실러스 브레비스 유래의 글리세롤 데히드라타제 리액티바제(glycerol dehydratase reactivase)가 발현되게 형질전환되고;Glycerol 3-hydroxy-propionic acid 3-hydroxy-propionaldehyde (3-hydroxypropionaldehyde; 3-HPA ) which is the precursor of (3-hydroxypropionic acid) in order to switch to, Lactobacillus brevis (Lactobacillus glycerol dehydratase from Lactobacillus brevis derived from the start codons TTG and GTG of the open reading frame encoding DHAB1 and DHAB2 in the subunits DHAB1, DHAB2 and DHAB3 constituting the glycerol dehydratase derived from brevis ), respectively. (glycerol dehydratase; DHAB) and glycerol dehydratase reactivase from Lactobacillus brevis is transformed to be expressed; 3-히드록시프로피온알데히드를 3-히드록시프로피온산으로 전환시키는 효소가 발현되도록 형질전환된;Transformed to express an enzyme that converts 3-hydroxypropionaldehyde to 3-hydroxypropionic acid; 재조합 대장균을 글리세롤이 첨가되고, 포도당이 배양 중 고갈되지 않도록 충분히 존재하는 배지에서 배양하는 것을 특징으로 하는 글리세롤로부터 3-히드록시프로피온산을 생산하는 방법A method for producing 3-hydroxypropionic acid from glycerol, wherein the recombinant E. coli is cultured in a medium that is sufficiently present to which glycerol is added and glucose is not depleted during the culture. 제1항에 있어서,The method of claim 1, 상기 배지는, The badge, 보효소 B12가 첨가된 것을 특징으로 하는 글리세롤로부터 3-히드록시프로피온산을 생산하는 방법Process for producing 3-hydroxypropionic acid from glycerol characterized in that coenzyme B 12 is added 제1항에 있어서,The method of claim 1, 상기 배양은, The culture, 회분식 배양으로서 배양 중 포도당이 고갈되지 않도록, 포도당이 소모되었을 경우, 포도당을 추가적으로 배지에 첨가하는 것을 특징으로 하는 글리세롤로부터 3-히드록시프로피온산을 생산하는 방법Method for producing 3-hydroxypropionic acid from glycerol, characterized in that additional glucose is added to the medium when glucose is consumed so that glucose is not depleted during the culture as a batch culture. 제1항에 있어서,The method of claim 1, 상기 배양은, The culture, 글리세롤 및 포도당을 지속적으로 공급하는 유가식 배양인 것을 특징으로 하는 글리세롤로부터 3-히드록시프로피온산을 생산하는 방법Method for producing 3-hydroxypropionic acid from glycerol, characterized in that the fed-batch culture of continuous supply of glycerol and glucose 제1항에 있어서,The method of claim 1, 상기 3-히드록시프로피온알데히드를 3-히드록시프로피온산으로 전환시키는 효소는,The enzyme for converting the 3-hydroxypropionaldehyde to 3-hydroxypropionic acid, 알데히드 데히드로지나아제(aldehyde dehydrogenase)인 것을 특징으로 하는 글리세롤로부터 3-히드록시프로피온산을 생산하는 방법Method for producing 3-hydroxypropionic acid from glycerol, characterized in that it is an aldehyde dehydrogenase
KR1020090075748A 2009-08-17 2009-08-17 Method for culturing recombinant E. coli to produce 3-hydroxypropionic acid from glycerol KR101048151B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090075748A KR101048151B1 (en) 2009-08-17 2009-08-17 Method for culturing recombinant E. coli to produce 3-hydroxypropionic acid from glycerol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090075748A KR101048151B1 (en) 2009-08-17 2009-08-17 Method for culturing recombinant E. coli to produce 3-hydroxypropionic acid from glycerol

Publications (2)

Publication Number Publication Date
KR20110018118A true KR20110018118A (en) 2011-02-23
KR101048151B1 KR101048151B1 (en) 2011-07-11

Family

ID=43775916

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090075748A KR101048151B1 (en) 2009-08-17 2009-08-17 Method for culturing recombinant E. coli to produce 3-hydroxypropionic acid from glycerol

Country Status (1)

Country Link
KR (1) KR101048151B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085321A1 (en) * 2011-12-07 2013-06-13 삼성전자주식회사 Recombinant microorganism for producing 3-hydroxypropionaldehyde and/or 3-hydroxypropionic acid and method for producing 3-hydroxypropionaldehyde and/or 3-hydroxypropionic acid using same
WO2013095009A1 (en) * 2011-12-20 2013-06-27 삼성전자 주식회사 Recombinant microorganisms for producing 3-hydroxypropionic acid, and method for producing 3-hydroxypropionic acid using the recombinant microorganisms
KR101505172B1 (en) * 2011-12-20 2015-03-24 삼성전자주식회사 3-hydroxypropionic acid-producing recombinant microorganism and method of producing 3-hydroxypropionic acid using the same
WO2022098163A1 (en) * 2020-11-05 2022-05-12 주식회사 엘지화학 Microorganisms having capability of producing 3-hydroxypropionic acid from glucose and uses thereof
WO2024167326A1 (en) * 2023-02-09 2024-08-15 지에스칼텍스 주식회사 Recombinant microorganism for production of 3-hydroxypropionic acid

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11566250B2 (en) 2017-10-26 2023-01-31 Noroo Ic Co., Ltd. Production and separation of 3-hydroxypropionic acid
US11059769B2 (en) 2017-10-26 2021-07-13 Noroo Ic Co., Ltd. Production and separation of 3-hydroxypropionic acid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852517B1 (en) 1999-08-30 2005-02-08 Wisconsin Alumni Research Foundation Production of 3-hydroxypropionic acid in recombinant organisms
US20070148749A1 (en) 2004-03-26 2007-06-28 Shinzo Yasuda Process for producting 1,3-propanediol and or/3-hydroxypropionic acid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085321A1 (en) * 2011-12-07 2013-06-13 삼성전자주식회사 Recombinant microorganism for producing 3-hydroxypropionaldehyde and/or 3-hydroxypropionic acid and method for producing 3-hydroxypropionaldehyde and/or 3-hydroxypropionic acid using same
WO2013095009A1 (en) * 2011-12-20 2013-06-27 삼성전자 주식회사 Recombinant microorganisms for producing 3-hydroxypropionic acid, and method for producing 3-hydroxypropionic acid using the recombinant microorganisms
KR101505172B1 (en) * 2011-12-20 2015-03-24 삼성전자주식회사 3-hydroxypropionic acid-producing recombinant microorganism and method of producing 3-hydroxypropionic acid using the same
WO2022098163A1 (en) * 2020-11-05 2022-05-12 주식회사 엘지화학 Microorganisms having capability of producing 3-hydroxypropionic acid from glucose and uses thereof
WO2024167326A1 (en) * 2023-02-09 2024-08-15 지에스칼텍스 주식회사 Recombinant microorganism for production of 3-hydroxypropionic acid

Also Published As

Publication number Publication date
KR101048151B1 (en) 2011-07-11

Similar Documents

Publication Publication Date Title
KR101048151B1 (en) Method for culturing recombinant E. coli to produce 3-hydroxypropionic acid from glycerol
Niu et al. Direct biosynthesis of adipic acid from lignin-derived aromatics using engineered Pseudomonas putida KT2440
Bae et al. Valorization of C1 gases to value-added chemicals using acetogenic biocatalysts
Rieckenberg et al. Cell‐free synthesis of 1, 3‐propanediol from glycerol with a high yield
RU2459871C2 (en) Method for enzymatic production of 2-hydroxy-2-methyl carboxylic acids
Blombach et al. Corynebacterium glutamicum tailored for high-yield L-valine production
Fernández-Sandoval et al. Laboratory metabolic evolution improves acetate tolerance and growth on acetate of ethanologenic Escherichia coli under non-aerated conditions in glucose-mineral medium
JP4275666B2 (en) Highly efficient hydrogen production method using microorganisms
KR100885616B1 (en) Method for producing amino acids using glycerol
KR101048485B1 (en) Method of culturing recombinant E. coli to simultaneously produce 3-hydroxypropionic acid and 1,3-propanediol from glycerol
Yun et al. Production of 1, 3-propanediol using a novel 1, 3-propanediol dehydrogenase from isolated Clostridium butyricum and co-biotransformation of whole cells
Tenhaef et al. Production of D-xylonic acid using a non-recombinant Corynebacterium glutamicum strain
CN104388373A (en) Construction of escherichia coli system with coexpression of carbonyl reductase Sys1 and glucose dehydrogenase Sygdh
Sirisansaneeyakul et al. Repeated fed‐batch production of xylitol by Candida magnoliae TISTR 5663
Lin et al. Deletion of poxB, pta, and ackA improves 1, 3-propanediol production by Klebsiella pneumoniae
Hoefel et al. Comparative reaction engineering studies for succinic acid production from sucrose by metabolically engineered Escherichia coli in fed‐batch‐operated stirred tank bioreactors
Meng et al. Non-sterilized fermentation of 2, 3-butanediol with seawater by metabolic engineered fast-growing Vibrio natriegens
CN107231807A (en) Genetic modification phenylpyruvate decarboxylase, preparation method and use
Mi et al. Cellular engineering and biocatalysis strategies toward sustainable cadaverine production: state of the art and perspectives
Labib et al. Toward the sustainable production of the active Pharmaceutical Ingredient Metaraminol
Guo et al. Improved succinic acid production through the reconstruction of methanol dissimilation in Escherichia coli
CN113046283A (en) Engineering strain for producing adipic acid by reducing TCA (trichloroacetic acid) and construction method thereof
Liu et al. Engineering glucose-to-glycerol pathway in Klebsiella pneumoniae and boosting 3-hydroxypropionic acid production through crispr interference
EP1918382A1 (en) Semi-continuous cascade fermentation process for pantothenate production
KR20200121746A (en) Engineered methanotrophs for producing 2,3-BOD

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160701

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170704

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180620

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190625

Year of fee payment: 9