KR20110017628A - 릴레이를 위한 백홀 서브프레임의 기준 신호 구성 방법 및 장치 - Google Patents

릴레이를 위한 백홀 서브프레임의 기준 신호 구성 방법 및 장치 Download PDF

Info

Publication number
KR20110017628A
KR20110017628A KR1020090075193A KR20090075193A KR20110017628A KR 20110017628 A KR20110017628 A KR 20110017628A KR 1020090075193 A KR1020090075193 A KR 1020090075193A KR 20090075193 A KR20090075193 A KR 20090075193A KR 20110017628 A KR20110017628 A KR 20110017628A
Authority
KR
South Korea
Prior art keywords
relay
reference signal
control channel
data
relays
Prior art date
Application number
KR1020090075193A
Other languages
English (en)
Other versions
KR101552274B1 (ko
Inventor
지형주
조준영
이주호
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020090075193A priority Critical patent/KR101552274B1/ko
Priority to EP10808387.4A priority patent/EP2466765A4/en
Priority to CN201510590736.3A priority patent/CN105227285B/zh
Priority to US13/390,502 priority patent/US8743788B2/en
Priority to PCT/KR2010/005339 priority patent/WO2011019238A2/ko
Priority to CN201080046460.8A priority patent/CN102577169B/zh
Publication of KR20110017628A publication Critical patent/KR20110017628A/ko
Priority to US14/295,215 priority patent/US9106377B2/en
Priority to US14/822,863 priority patent/US9509473B2/en
Application granted granted Critical
Publication of KR101552274B1 publication Critical patent/KR101552274B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0041Frequency-non-contiguous
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0069Allocation based on distance or geographical location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

본 발명은 릴레이가 존재하는 무선 통신 시스템에서 백홀 서브프레임 을 위한 기준 신호 구성 방법 및 이를 위한 장치에 관한 것으로서, 릴레이로 전송되는 제어 채널 및 데이터 채널의 채널 추정을 위해 제어 채널에는 릴레이 그룹간 전용 기준 신호를 전송하고 데이터 채널에는 릴레이간 전용 기준 신호를 이용하여 전송하는 기법이다. 특히 본 발명은 공간적으로 상관성이 높은 릴레이를 그룹화하여 동일한 전용 기준 신호를 사용하여 제어 채널간 다중화를 가능하도록 하는 기법이다.
OFDM, LTE-A, RELAY, WIRELESS BACKHAUL, R-PDCCH, RS, DM RS

Description

릴레이를 위한 백홀 서브프레임의 기준 신호 구성 방법 및 장치{METHOD AND APPARATUS FOR GENERATION OF REFERENCE SIGNAL IN BACKHAUL SUBFRAME FOR RELAY}
본 발명은 다중 캐리어를 사용하는 직교 주파수 분할 다중(Orthogonal Frequency Division Multiplexing, 이하“OFDM”) 방식 통신 시스템의 릴레이(relay)에서 무선 백홀(Backhaul)을 통해 전송되는 기준 신호(Reference signal, 이하 “RS”)의 구성 및 장치에 관한 것이다.
OFDM 전송 방식은 다중 반송파 즉, 멀티-캐리어(Multi-carrier)를 사용하여 데이터를 전송하는 방식으로서, 직렬로 입력되는 심볼(Symbol)열을 병렬화하고 이들 각각을 상호 직교 관계를 가지고 다수의 멀티 캐리어들, 즉 다수의 서브 캐리어 채널(Sub-carrier channel)들로 변조하여 전송하는 멀티캐리어 변조(Multi Carrier Modulation) 방식의 일종이다.
이와 같은 멀티캐리어 변조 방식을 적용하는 시스템은 1950년대 후반 군용 고주파 라디오에 처음 적용되었으며, 다수의 직교하는 서브 캐리어를 중첩시키는 OFDM 방식은 1970년대부터 발전하기 시작하였으나, 멀티 캐리어들 간의 직교 변조의 구현이 난해한 문제였기 때문에 실제 시스템 적용에 한계가 있었다. 그러나 1971년 Weinstein 등이 상기 OFDM 방식을 사용하는 변복조는 DFT(Discrete Fourier Transform)를 이용하여 효율적으로 처리가 가능함을 발표하면서 OFDM 방식에 대한 기술개발이 급속히 발전했다. 또한 보호구간(guard interval)을 사용하고, 보호구간에 순환 전치(Cyclic Prefix, CP) 심볼을 삽입하는 방식이 알려지면서 다중경로 및 지연 확산(delay spread)에 대한 시스템의 부정적 영향을 더욱 감소시키게 되었다.
이러한 기술적 발전에 힘입어 OFDM 방식 기술은 디지털 오디오 방송(Digital Audio Broadcasting, DAB)과 디지털 비디오 방송(Digital Video Broadcasting, DVB), 무선 근거리 통신망(Wireless Local Area Network, WLAN) 그리고 무선 비동기 전송 모드(Wireless Asynchronous Transfer Mode, WATM) 등의 디지털 전송 기술에 광범위하게 적용되고 있다. 즉, OFDM 방식은 하드웨어적인 복잡도(complexity)로 인하여 널리 사용되지 못하다가 최근 고속 푸리에 변환(Fast Fourier Transform, FFT)과 역 고속 푸리에 변환(Inverse Fast Fourier Transform, IFFT)을 포함한 각종 디지털 신호 처리 기술이 발전함으로써 실현 가능해졌다.
OFDM 방식은 종래의 주파수 분할 다중(Frequency Division Multiplexing, FDM) 방식과 비슷하나 무엇보다도 다수개의 톤 간의 직교성(orthogonality)을 유지하여 전송함으로써 고속 데이터 전송 시 최적의 전송 효율을 얻을 수 있는 특징을 가진다. 또한 OFDM 방식은 주파수 사용 효율이 좋고 다중 경로 페이딩(multi-path fading)에 강한 특성이 있어 고속 데이터 전송 시 최적의 전송 효율을 얻을 수 있다는 특징을 가진다.
OFDM 방식의 또 다른 장점은 주파수 스펙트럼을 중첩하여 사용하므로 주파수 사용이 효율적이고, 주파수 선택적 페이딩(frequency selective fading)에 강하고, 다중경로 페이딩에 강하며, 보호구간을 이용하여 심벌 간 간섭(Inter Symbol Interference, ISI) 영향을 줄일 수 있고, 하드웨어적으로 등화기(equalizer) 구조를 간단하게 설계하는 것이 가능하며, 임펄스(impulse)성 잡음에 강하다는 장점을 가지고 있어서 통신시스템 구조에 적극 활용되고 있는 추세다.
무선 통신에서 고속, 고품질의 데이터 서비스를 저해하는 요인은 대체적으로 채널 환경에 기인한다. 상기 무선 통신에서 채널 환경은 백색 가우시안 잡음(AWGN: additive white Gaussian noise) 이외에도 페이딩(fading) 현상으로 인하여 발생되는 수신 신호의 전력 변화, 음영(shadowing), 단말기의 이동 및 빈번한 속도 변화에 따른 도플러(Doppler) 효과, 타 사용자 및 다중 경로(multi-path) 신호에 의한 간섭 등으로 인해 자주 변하게 된다. 따라서 무선 통신에서 고속, 고품질의 데이터 서비스를 지원하기 위해서는 상기와 같은 채널 환경의 저해 요인을 효과적으로 극복하는 것이 필요하다.
OFDM 방식에서 변조 신호는 시간과 주파수로 구성된 2차원 자원(resource)에 위치한다. 시간 축 상의 자원은 서로 다른 OFDM 심볼로 구별되며 이들은 서로 직교한다. 주파수축 상의 자원은 서로 다른 톤(tone)으로 구별되며 이들 또한 서로 직교한다. 즉 OFDM 방식에서는 시간 축 상에서 특정 OFDM 심볼을 지정하고 주파수축 상에서 특정 톤을 지정하면 하나의 최소 단위 자원을 가리킬 수 있는데, 이를 자원 요소(Resource Element, RE)라고 칭한다. 서로 다른 RE는 주파수 선택적 채 널(frequency selective channel)을 거치더라도 서로 직교하는 특성을 가지고 있어서, 서로 다른 RE로 전송된 신호는 상호 간섭을 일으키지 않고 수신 측으로 수신될 수 있다.
물리 채널은 하나 또는 그 이상의 부호화된 비트 열을 변조한 변조심볼을 전송하는 물리 계층의 채널이다. 직교 주파수 분할 다중 접속(Orthogonal Frequency Division Multiple Access, OFDMA) 시스템에서는 송신하는 정보열의 용도나 수신기에 따라 복수의 물리 채널을 구성하여 전송한다. 하나의 물리 채널을 어떤 RE에 배치하여 전송할 것인가를 송신기와 수신기가 미리 약속하여야 하는데 그 규칙을 사상(寫像) 또는 매핑(mapping)이라고 한다.
본 발명인 릴레이의 백홀 서브프레임 기준 신호의 구성 및 이를 위한 장치는 릴레이 제어 채널의 스케줄링 시간을 감소하고 제어 채널과 데이터 채널의 채널 추정 성능을 향상 시키며 수신기 효율을 높이는 것을 목적으로 한다.
상기 과제를 해결하기 위한 본 발명에 따른 릴레이 전송을 위한 백홀 서브프레임 기준 신호 구성 방법은, 다수개의 릴레이들로 백홀 서브프레임을 송신하기 위한 기지국이 미리 결정되는 다수개의 공통 기준 신호들과 상기 공통 기준 신호들에 인접한 다수개의 추가 기준 신호들을 생성하는 과정과, 상기 기지국이 상기 백홀 서브프레임의 데이터 채널 영역에서 상기 릴레이들을 위한 제어 채널 영역에 상기 공통 기준 신호들과 추가 기준 신호들을 할당하여 송신하는 과정을 포함하는 것을 특징으로 한다. 이 때 본 발명에 따른 기준 신호 구성 방법에 있어서, 상기 기지국은 다수개의 안테나 포트들을 구비하며, 상기 공통 기준 신호는 상기 안테나 포트들에 각각 대응되어, 상기 안테나 포트 별로 구별된다.
이러한 본 발명에 따른 기준 신호 구성 방법에 있어서, 상기 생성 과정은, 상기 릴레이들을 적어도 하나의 릴레이 그룹으로 구분하는 과정과, 상기 릴레이 그룹의 릴레이들에 공통으로 적용하기 위한 추가 기준 신호로 그룹 전용 기준 신호를 생성하는 과정을 포함할 수 있다. 그리고 본 발명에 따른 기준 신호 구성 방법에 있어서, 상기 할당 및 송신 과정은, 상기 릴레이 그룹 별로 상기 제어 채널 영역을 구분하는 과정과, 상기 제어 채널 영역 별로 상기 그룹 전용 기준 신호를 할당하는 과정을 포함할 수 있다. 또한 본 발명에 따른 기준 신호 구성 방법에 있어서, 상기 생성 과정은, 상기 릴레이 각각을 위한 추가 기준 신호로 릴레이 전용 기준 신호를 생성하는 과정을 더 포함할 수 있다. 게다가, 본 발명에 따른 기준 신호 구성 방법에 있어서, 상기 할당 및 송신 과정은, 상기 데이터 채널 영역을 상기 제어 채널 영역과 상기 릴레이들을 위한 데이터 영역으로 구별하는 과정과, 상기 릴레이 별로 상기 데이터 영역을 구분하는 과정과, 상기 데이터 영역 별로 상기 릴레이 전용 기준 신호를 할당하는 과정을 더 포함할 수 있다.
또는 본 발명에 따른 기준 신호 구성 방법에 있어서, 상기 할당 및 송신 과정은, 상기 제어 채널 영역에 상기 안테나 포트들 중 적어도 어느 하나의 공통 기준 신호가 미존재 시, 상기 미존재 공통 기준 신호를 추가 기준 신호로 할당하는 과정을 포함할 수 있다.
또는 본 발명에 따른 기준 신호 구성 방법에 있어서, 상기 생성 과정은, 상기 릴레이 각각을 위한 추가 기준 신호로 릴레이 전용 기준 신호를 생성하는 과정을 포함할 수 있다. 그리고 본 발명에 따른 기준 신호 구성 방법에 있어서, 상기 할당 및 송신 과정은, 상기 제어 채널 영역에 상기 릴레이 전용 기준 신호를 분산시켜 할당하는 과정을 포함할 수 있다. 또한 본 발명에 따른 기준 신호 구성 방법에 있어서, 상기 할당 및 송신 과정은, 상기 데이터 채널 영역을 상기 제어 채널 영역과 상기 릴레이들을 위한 데이터 영역으로 구별하는 과정과, 상기 릴레이 별로 상기 데이터 영역을 구분하는 과정과, 상기 데이터 영역 별로 상기 릴레이 전용 기 준 신호를 할당하는 과정을 더 포함할 수 있다.
한편, 상기 과제를 해결하기 위한 본 발명에 따른 무선 통신 시스템에서 기지국의 릴레이 전송을 위한 백홀 서브프레임 기준 신호 구성 장치는, 다수개의 릴레이들로 백홀 서브프레임을 송신하기 위해 미리 결정되는 다수개의 공통 기준 신호들과 상기 공통 기준 신호들에 인접한 다수개의 추가 기준 신호들을 생성하는 기준 신호 발생기와, 상기 백홀 서브프레임의 데이터 채널 영역에서 상기 릴레이들을 위한 제어 채널 영역에 상기 공통 기준 신호들과 추가 기준 신호들을 할당하는 다중화기와, 상기 백홀 서브프레임을 송신하는 송신 처리기를 포함하는 것을 특징으로 한다. 이 때 본 발명에 따른 기준 신호 구성 장치에 있어서, 상기 기지국은 다수개의 안테나 포트들을 구비하고, 상기 공통 기준 신호는 상기 안테나 포트들에 각각 대응되어, 상기 안테나 포트 별로 구별된다.
이러한 본 발명에 따른 기준 신호 구성 장치에 있어서, 상기 기준 신호 발생기는 상기 릴레이들을 적어도 하나의 릴레이 그룹으로 구분하고, 상기 릴레이 그룹의 릴레이들에 공통으로 적용하기 위한 추가 기준 신호로 전용 기준 신호를 생성할 수 있다. 그리고 본 발명에 따른 기준 신호 구성 장치에 있어서, 상기 다중화기는 상기 릴레이 그룹 별로 상기 제어 채널 영역을 구분하고, 상기 제어 채널 영역 별로 상기 그룹 전용 기준 신호를 할당할 수 있다. 또한 본 발명에 따른 기준 신호 구성 장치에 있어서, 상기 기준 신호 발생기는 상기 릴레이 각각을 위한 추가 기준 신호로 릴레이 전용 기준 신호를 생성할 수 있다. 게다가, 본 발명에 따른 기준 신호 구성 장치에 있어서, 상기 다중화기는 상기 데이터 채널 영역을 상기 제어 채널 영역과 상기 릴레이들을 위한 데이터 영역으로 구별하고, 상기 릴레이 별로 상기 데이터 영역을 구분하며, 상기 데이터 영역 별로 상기 릴레이 전용 기준 신호를 할당할 수 있다.
또는 본 발명에 따른 기준 신호 구성 장치에 있어서, 상기 다중화기는 상기 제어 채널 영역에 상기 안테나 포트들 중 적어도 어느 하나의 공통 기준 신호가 미존재 시, 상기 미존재 공통 기준 신호를 추가 기준 신호로 할당할 수 있다.
또는 본 발명에 따른 기준 신호 구성 장치에 있어서, 상기 기준 신호 발생기는 상기 릴레이 각각을 위한 추가 기준 신호로 릴레이 전용 기준 신호를 생성할 수 있다. 그리고 본 발명에 따른 기준 신호 구성 장치에 있어서, 상기 다중화기는 상기 제어 채널 영역에 상기 릴레이 전용 기준 신호를 분산시켜 할당할 수 있다. 또한 본 발명에 따른 기준 신호 구성 장치에 있어서, 상기 다중화기는 상기 데이터 채널 영역을 상기 제어 채널 영역과 상기 릴레이들을 위한 데이터 영역으로 구별하고, 상기 릴레이 별로 상기 데이터 영역을 구분하며, 상기 데이터 영역 별로 상기 릴레이 전용 기준 신호를 할당할 수 있다.
본 발명의 릴레이를 위한 백홀 서브프레임 기준 신호 구성 및 이를 위한 장치에 의하면, 릴레이로 전송되는 제어 채널 및 데이터 채널의 채널 추정을 위해 제어 채널에는 릴레이 그룹간 전용 기준 신호를 전송하고 데이터 채널에는 릴레이간 전용 기준 신호를 이용하여 전송하는 기법이다. 특히 본 발명은 공간적으로 상관성이 높은 릴레이를 그룹화하여 동일한 전용 기준 신호를 사용하여 제어 채널간 다중 화를 가능하다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예들을 상세히 설명한다. 이때 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의하여야 한다. 또한 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다.
또한 이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
이하 본 명세서에서는 LTE(Long Term Evolution) 시스템과 LTE-A(LTE-Advanced) 시스템을 예로 들어 기술되었지만, 본 발명은 기지국 스케줄링이 적용되는 여타의 무선 통신 시스템에 별다른 가감 없이 적용 가능하다.
LTE(Long Term Evolution) 시스템은 OFDM 방식이 하향 링크에 적용된 대표적인 시스템이며 상향 링크에서는 SC-FDMA(Single Carrier-Frequency Division Multiple Access)가 적용되는 시스템이다. 또한 LTE-A 시스템은 LTE 시스템이 다중 밴드로 확장 구성되는 시스템이며 릴레이는 LTE-A 시스템에 적용된다.
도 1은 본 발명이 적용되는 LTE 시스템에서의 서브프레임 구조를 도시한 도면이다. 본 서브프레임은 LTE-A 시스템에서도 호환성을 위해 지원된다.
도 1을 참조하여 설명하면, 전체 LTE 전송 대역폭(107)은 다수 개의 자원 블록(Resource Block, 이하 "RB")으로 이뤄져 있으며 각 RB(109, 113)는 주파수 축으로 배열된 12개의 톤과 시간 축으로 배열된 14개의 OFDM 심볼(113) 혹은 12개의 OFDM 심볼(121)로 구성되어 있으며 자원 할당의 기본 단위가 된다. 하나의 서브프레임(105)은 1ms의 길이를 가지며 두 개의 슬롯(103)으로 구성된다. 14개의 OFDM 심볼로 구성되는 경우 일반 CP(Normal CP) 서브프레임 구조(113)라고 하고 12개의 OFDM 심볼로 구성되는 경우 확장 CP(Extended CP) 서브프레임 구조(121)라고 한다.
기준 신호(Reference Signal, 이하 "RS"; 119; 123, 125, 127. 129)는 단말기가 채널 추정을 할 수 있도록 단말기로 전송하는 기지국과 약속된 신호로 각각 안테나 포트 0(123), 1(125), 2(127) 및 3(129)로부터 송신되는 RS를 의미한다. 안테나 포트 수가 1 이상인 경우 다중 안테나(Multi-antenna)를 사용하는 것을 의미한다. 주파수 축 상에서 RS가 배치되는 RB의 절대적 위치는 셀 별로 다르게 설정되지만 RS간의 상대적인 간격은 일정하게 유지된다. 즉 동일한 안테나 포트의 RS는 6개의 RB 간격을 유지하며, RS의 절대적 위치가 셀 별로 다르게 설정되는 이유는 RS의 셀 간 충돌을 피하기 위함이다. RS의 개수는 안테나 포트 마다 차이가 있는데 안테나 포트 0과 1의 경우 하나의 RB와 서브프레임에서 총 8개의 RS가 존재하지만 안테나 포트 2와 3의 경우 하나의 RB와 서브프레임에서 총 4개의 RS가 존재한다. 따라서 안테나 4개를 사용하는 경우 안테나 포트 2와 3을 이용한 채널 추정의 정확도는 안테나 포트 0과 1을 사용하는 경우에 비해 나쁘게 된다.
한편 제어 채널(control channel) 신호는 시간 축 상에서 한 서브프레임의 선두에 위치한다. 도 1에서 참조번호 117은 제어 채널 신호가 위치할 수 있는 영역을 도시한 것이다. 제어 채널 신호는 서브프레임의 선두에 위치한 L개의 OFDM 심볼에 걸쳐 전송될 수 있다. L은 1, 2 또는 3의 값을 가질 수 있다. 도 117를 참조하여 설명하면 L인 3인 경우이다. 제어 채널의 양이 적어서 하나의 OFDM 심볼로 제어 채널 신호의 전송이 충분한 경우에는 선두의 1 OFDM 심볼만이 제어 채널 신호 전송에 사용되고(L=1) 나머지 13개의 OFDM 심볼은 데이터 채널 신호 전송에 사용된다. L의 값은 제어 채널을 수신 동작에서 할당 제어 채널 자원의 디맵핑을 위한 기본 정보로 사용되며 이를 수신하지 못하는 경우 제어채널을 복구할 수 없게 된다.
서브프레임이 MBSFN(Multi-Media Broadcast over a Single Frequency Network)인 경우에는 L은 2로 고정되며, MBSFN의 본래 목적을 위한 방송 정보를 전송하는 채널로 사용되거나, LTE-A 시스템에서는 다양한 용도로 사용이 가능하고 릴레이 백홀 전송에도 사용된다. 방송 서브프레임으로 해당 서브프레임이 지시되면 LTE 단말은 해당 서브프레임의 제어 채널 영역은 수신이 가능하지만 데이터 영역을 수신하지 않는다. 단, LTE-A 단말은 다른 용도로 해당 서브프레임의 데이터 영역도 수신이 가능하다.
제어 채널 신호를 서브프레임의 선두에 위치시키는 이유는 단말기가 우선 제어 채널 신호를 수신하여 자신에게 전송되는 데이터 채널 신호의 전송 여부를 인지함으로써 데이터 채널 수신 동작을 수행할 것인가를 판단하기 위함이다. 따라서 만약 자신에게 전송되는 데이터 채널 신호가 없다면 데이터 채널 신호를 수신할 필요가 없고, 따라서 데이터 채널 신호 수신 동작에서 소모되는 전력을 아낄 수 있다. 또한 선두에 위치한 제어 채널을 데이터 채널에 비해 빠르게 수신함으로 스케줄링 릴레이를 줄일 수 있다.
LTE 시스템에서 정의하는 하향 링크 제어 채널은 PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid ARQ Indicator Channel), PDCCH(Packet Data Control Channel) 등이 있으며 도 1의 참조번호 117 영역에서 REG(Resource element group)단위(111)로 전송된다.
PCFICH는 CCFI(Control Channel Format Indicator) 정보를 전송하기 위한 물리채널이다. CCFI란 서브프레임에서 제어 채널이 차지하는 심볼 수 L을 알려주기 위해 2 비트로 구성된 정보이다. 우선적으로 CCFI를 수신하여야 제어 채널에 할당된 심볼 수를 알고 수신할 수 있으므로, PCFICH는 고정적으로 하향 링크 자원이 할당된 경우를 제외한 모든 단말기가 서브프레임에서 최초로 수신해야 하는 채널이다. 그리고 PCFICH를 수신하기 전에는 L을 알 수 없기 때문에 PCFICH는 첫 번째 OFDM 심볼에서 전송되어야만 한다. PCFICH 채널은 16개의 부반송파에 4 등분 되어 전 대역에 걸쳐 전송된다.
PHICH는 하향 링크 ACK/NACK 신호를 전송하기 위한 물리채널이다. PHICH를 수신하는 단말기는 상향 링크에서 데이터 송신을 진행 중인 단말기이다. 따라서 PHICH의 개수는 상향 링크에서 데이터 송신을 진행 중인 단말기의 수에 비례한다. PHICH는 첫 번째 OFDM 심볼에서 전송되거나(LPHICH=1) 세 OFDM 심볼에 걸쳐서 전송된다(LPHICH=3). PHICH의 구성 정보(사용되는 채널의 양, LPHICH)는 단말에게 PBCH(Primary broadcast channel)를 통해 모든 단말에게 셀에 최초 접속 시에 알려준다. PHICH 채널도 PCFICH와 동일하게 셀 마다 지정된 위치에 전송하게 된다. 따라서 PHICH 제어 채널은 다른 제어 채널 정보와 무관하게 단말에 셀에 연결되어 PBCH 정보를 얻게 되면 수신할 수 있다.
PDCCH(117)는 데이터 채널 할당 정보 혹은 전력제어 정보 등을 송신하는 물리 채널이다. PDCCH는 수신하는 단말기의 채널 상태에 따라서 채널 부호화율을 다르게 설정할 수 있다. 기지국에서 PDCCH의 변조 방식으로 QPSK(Quadrature Phase Shift Keying)를 고정적으로 사용하기 때문에 채널 부호화율을 변경하려면 하나의 PDCCH가 사용하는 자원의 양을 변경해야 한다. 즉 기지국은, 채널 상태가 양호한 단말기에게는 높은 채널 부호화율을 적용하여 사용하는 자원의 양을 줄일 수 있도록 한다. 반면에 기지국은, 채널 상태가 나쁜 단말기에게는 사용하는 자원의 양을 늘리더라도 높은 채널 부호화율을 적용하여 수신이 가능하도록 한다. 개별 PDCCH가 소모하는 자원의 양은 제어 채널 요소(Control Channel Element, 이하 "CCE")라는 단위로 결정된다. 또한, CCE는 다수 개의 REG(resource element group)(111)로 구성된다. PDCCH의 REG는 다이버시티 보장을 위해 인터리버를 거친 후해 제어 채널 자원에 배치된다.
PHICH는 여러 ACK/NACK 신호를 다중화 하기 위해 코드 다중화(Code Domain Multiplexing, CDM) 기법을 적용한다. 하나의 REG에는 8개의 PHICH 신호가 4개씩 실수부과 허수부에 각각 코드 다중화 되고, 주파수 다이버시티 이득을 얻기 위해서 NPHICH 개수만큼 반복되어 주파수 축 상에서 최대한 떨어지도록 배치되어 전송된다. 따라서 NPHICH 개의 REG를 사용하면 8개 혹은 그 이하의 PHICH 신호를 구성할 수 있다. 8개를 초과하는 PHICH 신호를 구성하기 위해서는 또 다른 NPHICH 개의 REG를 사용하여야 한다.
PCFICH와 PHICH의 자원량과 할당이 정해진 후에는 스케줄러는 L값을 정하게 되고 이 값에 근거하여 제외한 물리 제어 채널은 할당된 제어채널의 REG에 매핑되고 주파수 다이버시티 이득을 얻기 위해 인터리빙(interleaving)을 수행한다. 인터리빙은 제어채널의 REG단위로 L에 의하여 정해진 서브프레임의 총 REG에 대해 수행한다. 제어채널의 인터리버의 출력은 셀 간에 동일한 인터리버를 사용하기 때문에 발생하는 셀 간 간섭(inter-cell interference)을 방지함과 동시에 하나 혹은 다수개의 심볼에 걸쳐 할당된 제어채널의 REG들이 주파수 축에서 멀리 떨어져 다이버시티 이득을 얻을 수 있도록 한다. 또한 동일한 채널을 구성하는 REG가 각 채널 별로 심볼 간에 균등하게 분배함을 보장한다.
최근에는 LTE 시스템이 진화된 LTE-A 시스템의 개발 연구가 진행되고 있다. LTE-A 시스템에서는 셀 내의 음영지역 해소를 위해 릴레이를 이용한 커버리지 확대에 대한 연구가 진행되고 있으며 릴레이가 기지국과 동일하게 동작하면서 릴레이와 기지국간 링크를 무선으로 연결하는 무선 백홀(Wireless backhaul)의 연구가 진행되고 있다.
도 2는 OFDM 시스템에서 릴레이의 송수신 프레임간의 관계를 도시하는 도면 이다.
도 2를 참조하여 설명하면, 릴레이(203)는 기지국(201)으로부터 단말로 전송되는 데이터를 수신하고, 릴레이에 연결된 단말로 각각의 데이터를 전송한다. 릴레이가 존재하는 셀은 도 2와 같이 각각의 채널의 성격에 따라 다양한 링크로 구분할 수 있다.
도 2의 참조번호 209는 기지국과 기지국에 연결된 단말(207)간의 링크(Link A)를 의미하며 릴레이로부터 수신하는 단말(205)은 참조번호 213의 링크(Link C)로 데이터를 수신한다. 하지만 단말 입장에서는 릴레이는 기존 기지국과 동일하게 보이기 때문에 참조번호 209와 213의 링크(Link A, C)는 참조번호 219에서 보이는 것처럼 동일한 전송영역으로 생각할 수 있다. 참조번호 211은 기지국과 릴레이 간 링크(Link B)로 릴레이로 연결된 단말에게 데이터를 전송하거나 릴레이와 기지국간 상위 레이어 신호를 교환하는 데에 사용한다.
참조번호 215~217은 기지국으로부터 릴레이를 거쳐 단말로 전송되는 데이터의 서브프레임 관계를 나타낸 것이다. 참조번호 215는 기지국에서 단말 혹은 릴레이로 전송되는 하향 링크 서브프레임의 구조를 나타낸 것이고 참조번호 217은 릴레이에서 단말로 전송되거나 기지국에서 수신하는 영역을 도시한 것이다. 참조번호 219는 기지국에 연결된 단말 혹은 릴레이에 연결된 단말이 기지국 혹은 릴레이로부터 수신되는 영역을 도시한 것이다. 참조번호 221은 백홀 전송을 위한 데이터가 송신되는 서브프레임을 나타낸 것이다. 백홀 서브프레임은 스케줄링에 따라서 기지국에 연결된 단말과 전송과 다중화 할 수 있으며 혹은 백홀 데이터 전송 전용으로 전 송이 가능하다. 참조번호 235는 백홀 전송에 사용되는 자원 영역을 나타낸 것이다. 기지국은 모든 서브프레임에서 제어 채널(225)을 전송하며 동일하게 릴레이도 제어 채널을 전송 하게 된다. 릴레이는 전송과 동시에 수신이 불가능하기 때문에 릴레이가 제어 채널을 송신할 때 기지국으로부터 송신되는 제어 채널 정보를 수신하지 못한다. 기지국은 제어 채널 전송 후에 릴레이로 전송되는 데이터를 참조번호 235와 같은 영역에 전송하는데 이에 릴레이는 해당 영역을 수신해야 한다. 릴레이는 컨트롤 채널 전송 영역에서 송신을 했기 때문에 해당 부분을 수신하기 위해서는 송수신 전환이 필요하고 따라서 참조번호 229와 같이 빈 영역이 필요로 하게 된다.
도 3은 LTE-A 시스템 릴레이의 백홀 서브프레임의 구조를 도시한 도면이다.
도 3을 참조하여 설명하면, 참조 번호 301은 기지국이 자신의 셀에 속한 단말을 스케줄링 하기 위해 전송되는 제어 채널이 위치하는 곳이다. 이 영역에는 릴레이는 자신 셀의 단말을 위한 스케줄링 정보를 전송해야 하기 때문에 수신을 하지 못한다. 도 303은 릴레이로 전송되는 제어 채널이 전송되는 영역을 나타낸 것이다. 이 영역은 상위에서 미리 릴레이에게 알려 주는 영역이다. 기지국이 릴레이에 제어 채널이 전송되는 자원의 양을 알려 주어도 실제로 제어 채널이 전송되는 자원은 도 303의 해당 영역 전체에 전송되지 않고 일부 영역에 전송된다. 도 303은 전체 영역이 모두 제어 채널에 사용되는 것을 도시한 것이다. 도 323은 릴레이로 전송되는 데이터 채널이 전송되는 영역을 도시한 것이다. 릴레이로 전송되는 데이터 채널은 릴레이 제어 채널이 할당된 심볼 이후에 전송이 가능하다. 도 305는 셀 내의 단말로 전송되는 데이터 채널 영역을 도시한 것이다. 기지국 스케줄러는 단말의 스케줄 링 정보와 할당된 릴레이 제어 채널의 위치에 따라서 제어 채널 영역 중간 및 외각에 모두 할당이 가능하고 릴레이 제어 채널과 주파수 자원에서 다중화되는 것이 고려된다. 도 307은 릴레이로 전송되는 추가적인 데이터 채널을 도시한 것이다. 릴레이로 전송되는 데이터 양이 많은 경우 릴레이 제어 채널 영역의 주파수 자원보다 더 많은 양의 데이터 채널 자원이 필요한 경우 기지국은 기할당한 제어 채널 영역 이외의 자원에도 릴레이 데이터 채널을 전송할 수 있다.
릴레이 제어 채널의 구조를 상세히 도시한 것이 도 313이고 일반 CP 서브프레임과 확장 CP 서브프레임의 구조가 각각 도 323와 325에 도시하였다. 참조 번호 323과 325를 통해 릴레이로 전송되는 제어 채널은 4번째 OFDM 심볼에서 3개의 심볼에 걸쳐서 전송되며 7번째 심볼부터는 데이터 채널이 전송되는 것을 확인할 수 있다. 릴레이 제어 채널인 도 319를 참조하며 릴레이 제어 채널 영역에는 포트 0과 1의 기준 신호만 전송되고 포트 2와 3의 기준 신호는 그 이전 심볼과 다음 슬롯의 심볼에 전송되는 것을 확인할 수 있다.
그러나 상기 설명한 바와 같이 최초 3개 OFDM 심볼은 릴레이가 수신할 수 없으므로 릴레이 제어 채널 전송을 위해 4개의 안테나를 사용하는 경우 릴레이는 제어 채널의 채널 추정을 위해서 서브프레임 내의 두번째 슬롯에 전송되는 안테나 포트 2와 3의 기준 신호를 이용하야 한다. 상기 설명한 것과 같이 제어 채널 신호가 데이터 채널 보다 먼전 전송되는 것은 수신 딜레이 감소를 위한 것이며 두 번째 슬롯의 안테나 포트를 이용하는 경우에 이러한 이점이 사라지며 또한 전체 서브 프레임과 하나의 RB에 걸쳐서 기준 신호가 2개만 존재하여 채널 추정 성능이 떨어지는 문제가 발생한다.
도 4는 본 발명의 실시 예에 적용되는 릴레이 제어 채널의 구성 구조를 도시한 도면이다. 도 401의 릴레이 제어 채널은 하나의 제어 채널을 구성하는 기본 단위가 하나의 RB에 할당된 제어 채널 자원에 맵핑이 되는 구조이다. 도 403은 하나의 제어 채널을 이루는 자원 맵핑 기본 단위를 도시한 것이다. 도 401과 같이 구성되는 경우 하나의 RB 자원에는 서로 다른 릴레이로 전송되는 제어 채널이 서로 다중화되지 못하고 하나의 RB 자원에는 하나의 릴레이로 전송되는 제어 채널만 전송된다. 도 405는 하나의 RB에 두 개의 릴레이 제어 채널 할당 자원이 맵핑되는 경우의 도면을 도시한 것이다. 2개의 자원은 주파수 축에서 6개의 RE를 차지하며 이와 같은 경우 하나의 RB에는 최대 2개의 릴레이로 전송되는 제어 채널이 다중화되어 전송될 수 있다. 도 425는 4개의 RE가 하나의 릴레이 제어 채널 구성 기본 단위로 형성된 도면이다. 도 425와 같이 3개의 릴레이로 전송되는 제어 채널이 존재 하는 경우 도 415, 417 및 421에는 릴레이 1로 전송되는 제어 채널의 일부 자원이 도 413과 도 423에는 릴레이 2으로 전송되는 제어 채널의 일부 자원이 도 411, 도 419 및 도 427에는 릴레이 3으로 전송되는 제어 채널의 일부가 전송된다.
상기 기술된 제어 채널 구조 방법은 하기 기술되는 실시예에 모두 적용될 수 있다. 즉 본 발명의 실시예들에서, 백홀 서브프레임에 공통 기준 신호들과 함께, 공통 기준 신호들에 인접하여 추가 기준 신호들이 할당되는 구조를 제안한다. 이 때 추가 기준 신호는 공통 기준 신호와 유사하게 생성될 수 있으며, 공통 기준 신호와 상이하게 생성될 수도 있다. 예를 들면, 추가 기준 신호는 릴레이들의 상관도 에 따라 생성될 수 있으며, 각 릴레이의 특성에 따라 생성될 수도 있다. 다시 말해, 추가 기준 신호는 공통 기준 신호일 수 있고, 릴레이들의 상관도에 따른 릴레이 그룹 전용 기준 신호일 수 있으며, 릴레이 별 특성에 따른 릴레이 전용 기준 신호일 수도 있다. 하기 설명에서, 기존 기준 신호는 공통 기준 신호와 동일한 의미로 해석될 수 있으며, 추가 기준 신호들과 별도로 미리 결정되는 기준 신호를 나타낸다.
제 1 실시예
도 5는 본 발명의 제 1 실시예에 따른 릴레이 백홀 기준 신호의 구조를 도시한 도면이다. 도 5를 참조하여 설명하면, 본 발명의 제 1 실시예에서 제안하는 구조는 셀 내의 릴레이 간에 지리적으로 공간적으로 상관도가 높은 릴레이를 모아서 그룹으로 구성하고 구성된 그룹에 사용할 수 있는 프리코딩을 선택하고 그룹 내의 포함된 릴레이 제어 채널간에 다중화하여 그룹간에 전용 기준 신호를 이용하여 전송하는 방법이다. 반면 릴레이로 전송되는 데이터 채널은 릴레이 간에 다중화되지 않기 때문에 릴레이 간에 전용 기준 신호를 이용하여 전송하는 기법이다. 제어 채널에 사용하는 프리코딩과 데이터 채널에 사용하는 프리코딩을 서로 다른 것이 그 특징이다.
도 5를 참조하여 설명하면, 릴레이 A-1과 A-2가 지리적 혹은 공간적으로 상관도가 높은 릴레이이며 릴레이 B-1과 B-2가 지리적 혹은 공작적으로 상관도가 높은 릴레이이다. 따라서 기지국은 릴레이 간에 상관도를 고려하여 그룹 A에는 릴레이 A-1과 릴레이 A-2를 포함하고 그룹 B에는 릴레이 B-1과 릴레이 B-2를 포함하여 구성한다. 그룹간에 서로 다른 상관도를 가지기 때문에 기지국은 그룹 간에 서로 다른 프리코딩을 이용하여 안테나 빔을 형성하여야 하며 따라서 서로 다른 자원을 할당해야 한다. 도 559는 전체 제어 채널이 전송 가능한 영역이며 그 중에서 도 507은 그룹 A에 해당하는 릴레이의 제어 채널이 전송되는 영역을 도시한 것이며 도 509는 그룹 B에 해당하는 릴레이의 제어 채널이 전송되는 영역을 도시한 것이다.
예를 들어, 도 507에는 그룹 A에 해당하는 릴레이의 제어 채널이 도 4의 도 401, 405, 425와 같이 다중화 되어 전송될 수 있다. 도 507과 도 509에 해당하는 자원 영역에서 제어 채널 영역을 제외한 도 519, 521, 523, 525의 데이터 채널은 릴레이의 데이터 채널이 전송된다. 따라서 도 507과 같이 그룹 A에 해당한 릴레이가 사용한 자원에는 그룹 A-1과 그룹 A-2의 데이터 채널이 전송되고 데이터 채널은 릴레이 간에 다중화하지 않기 때문에 각각의 영역은 릴레이 간에 서로 다른 프리코딩을 이용하여 안테나 빔을 형성한다. 동일하게 도 521과 525의 그룹 B에 해당하는 데이터 영역도 릴레이 B-1과 B-2의 데이터 채널이 전송된다. 릴레이로 전송되는 데이터 채널이 부족한 경우에는 추가로 자원을 사용할 수 있는데 이미 제어 채널 자원 용도로 할당된 RB 자원에 할당하는 경우에는 그 자원에 제어 채널이 존재하지 않아도(559) 데이터 채널은 제어 채널 심볼 이후에 맵핑되어 전송되고(517), 그렇지 않은 영역(511)은 전체 영역에 걸쳐서 데이터 채널이 전송되어야 한다(529).
릴레이 제어 채널과 데이터 채널의 상세도인 505를 일반 CP 서브프레임(545)과 확장 CP 서브프레임(533)을 참조하여 설명하면, 일반 CP 서브프레임의 경우에는 도 539의 릴레이 제어 채널 영역에는 그룹 A에 해당하는 제어 채널이 다중화되어 전송되고 도 535의 제어 채널에 전송되는 릴레이 그룹 전용 신호는 그룹 단위로 프리코딩되어 4번째 심볼 혹은 6번째 심볼에 전송될 수 있다. 확장 CP 서브프레임의 경우에는 도 547의 제어 채널 영역에 그룹 A에 해당하는 릴레이의 릴레이 제어 채널이 다중화되어 전송되고 도 555의 릴레이 그룹 전용 기준 신호에 릴레이 그룹 단위로 프리코딩되어 5번째 심볼 혹은 6번째 심볼에 전송된다. 데이터 채널의 경우 일반 CP 서브프레임 구조에서는 도 541과 같이 그룹 A 내의 릴레이 A-1의 데이터 채널이 전송되며 도 537과 같이 릴레이 전용 기준 신호가 릴레이 별로 프리코딩되어 2번째 슬롯의 3번째 혹은 4번째 혹은 6번째에 전송된다. 확장 CP 서브프레임 구조에서는 도 549와 같이 그룹 A에 포함되는 릴레이 A-1의 데이터 채널이 전송되며 도 557과 같이 릴레이 전용 기준 신호가 릴레이 별로 프리코딩되어 2번째 슬롯의 세 번째 혹은 5번째 심볼에 전송된다.
도 6은 본 발명의 제 1 실시예에 따른 기지국의 송신 과정을 도시한 순서도이다.
도 6을 참조하여 설명하면, 우선 기지국은 단계 603에서 현재 서브프레임이 릴레이 백홀 전송을 위한 서브프레임인 경우, 하향 링크 백홀 전송 준비를 한다. 그리고 기지국은 단계 605에서 릴레이의 채널 및 셀 내의 지리적, 공간적 상관성을 고려하여 동일한 안테나 빔패턴의 사용 가능한 릴레이 간에 그룹을 형성한다. 또한 기지국은 단계 607에서 같은 그룹에 속한 릴레이로 전송되는 제어 채널이 미리 결정되는 바에 따라 임의의 RB자원에 다중화 되도록 릴레이 제어 채널 자원을 할당한다.
다음으로, 기지국은 단계 609에서 릴레이 그룹 간에 최적의 빔패턴을 선택하고 릴레이 제어 채널이 전송되는 부분의 기준 신호와 제어 채널에 프리코딩을 수행한다. 이 때 기준 신호는 공통 기준 신호 및 그룹 전용 기준 신호를 포함한다. 그리고 기지국은 단계 611에서는 릴레이로 가는 데이터 채널이 RB 단위로 할당되도록 스케줄링을 수행한다. 또한 기지국은 단계 613에서는 각 릴레이로 전송되는 데이터 채널을 위한 릴레이 간에 최적의 빔패턴을 선택하여 데이터 채널과 기준 신호에 프리코딩한다. 이 때 기준 신호는 공통 기준 신호 및 릴레이 전용 기준 신호를 포함한다. 이 후 기지국은 단계 615에서 제어 채널과 제어 채널에 전송되는 릴레이 그룹 전용 기준 신호를 전송한다. 게다가, 기지국은 단계 617에서 릴레이 별로 전송되는 데이터 채널과 데이터 채널에 전송되는 릴레이 전용 기준 신호를 전송한다.
도 7은 본 발명의 제 1 실시예에 따른 릴레이의 수신 과정을 도시한 순서도이다.
도 7을 참조하여 설명하면, 릴레이는 단계 703에서 현재 서프프레임이 릴레이 백홀을 위한 서브프레임인 경우 하향링크 수신을 준비한다. 그리고 릴레이는 단계 705에서 백홀 수신을 위해 할당된 자원에서 제어 채널과 데이터 채널을 분리한다. 또한 제어 채널의 경우, 릴레이는 단계 707에서 기준 신호의 채널 추정 값을 이용하여 릴레이 제어 채널을 수신한다. 이 때 기준 신호는 공통 기준 신호 및 릴레이 전용 기준 신호를 포함한다.
다음으로, 릴레이는 단계 709에서 릴레이 제어 채널을 복조하여 현재 서브프레임의 스케줄링 정보를 수신한다. 그리고 릴레이는 단계 711에서 스케줄링 정보를 이용하여 할당 받은 자원의 데이터 채널 영역의 기준 신호의 채널 추정 정보를 이용하여 데이터 채널을 수신한다. 이 때 기준 신호는 공통 기준 신호 및 릴레이 전용 기준 신호를 포함한다. 또한 릴레이는 단계 713에서 데이터 채널을 복조 하여 백홀 데이터를 수신하여 백홀 송수신을 완료한다.
제 2 실시예
도 8은 본 발명의 제 2 실시예에서 제안하는 릴레이 제어 채널의 다중화 방법의 도면이다. 제 2 실시예에서 제어 채널 자원 할당 구조는 제 1실시예와 동일하게 적용이 가능하다.
도 8을 참조하여 설명하면, 본 발명의 제 2 실시예에서 제안하는 방법은 릴레이 제어 채널 영역에 추가로 공통 기준 신호(CRS)를 추가적인 안테나 포트에 대해서 전송하는 기법이다. 이 기법은 시스템의 전송 안테나 개수에 따라 다르게 적용되는 방법으로 안테나 개수가 2개 이하인 경우에는 기존의 서브프레임과 공통 기준 신호를 그대로 사용하지만 안테나 개수가 2개를 초과하는 경우 추가적으로 안테나 포트 2와 3에 대한 공통 기준 신호를 릴레이 제어 채널 영역에 한해서 추가로 전송하는 방법이다. LTE 서브프레임의 경우에는 릴레이 제어 채널이 할당된 자원 영역에만 해당하며 LTE-A 전용 서브프레임이나 MBSFN의 경우에는 전체 대역에 걸쳐서 공통 기준 신호가 전송되지 않기 때문에 할당된 릴레이 제어 채널 영역에 모드 공통 기준 신호가 전송되어야 한다.
도 823은 릴레이 제어 채널이 전송되는 영역을 도시한 것이다. 도 823의 영역에는 하나의 RB에 여러 릴레이로 가는 제어 채널이 다중화되는 구조나 다중화되 지 않는 구조 모두 사용이 가능하나 다중화되지 않는 구조에서 그 효과가 크다. 이유는 제어 채널과 데이터 채널의 RB 자원이 다른 경우에 첫 번째 슬롯과 두 번째 슬롯의 기준 신호 간에 채널 추정 보완이 어렵기 때문이다. 같은 RB에 속한 경우에는 모든 슬롯에서 전송되는 기준 신호의 채널 추정 보완이 가능하다.
도 809와 813은 릴레이 1로 송신되는 릴레이의 데이터 채널이 전송되는 영역이고 도 811과 813은 릴레이 2로 송신되는 릴레이 데이터 채널이 전송되는 영역을 도시한 것이다. 도 825의 상세 도면인 도 835와 843을 참조하여 설명하면 도 829는 릴레이 제어 채널이 전송되는 영역이며 도 845와 849는 안테나 포트 2에 해당하는 추가적인 공통 기준 신호가 전송되는 영역이며 도 847과 851은 안테나 포트 3에 해당하는 추가적인 공통 기준 신호가 전송되는 영역이다. 도 831은 기존 서브프레임 구조를 동일하게 사용한다. 도 843의 확장 CP 서브프레임 구조에서는 도 837 영역에는 릴레이 제어 채널이 전송되며 도 853과 857에는 안테나 포트 2에 해당하는 공통 기준 신호가 전송되며 도 855와 도 859에는 안테나 포트 3에 해당하는 공통 기준 신호가 전송된다.
이러한 방법을 사용하는 기지국이 릴레이에 안테나 빔을 형성하여 전송하는 경우 기준 신호는 프리코딩을 사용하지 않기 때문에 릴레이는 프리코딩 정보 없이 데이터 영역을 복조하지 못한다. 따라서 릴레이로 전송되는 데이터가 프리코딩되는 경우 상위 시그널링 정보로 현재 사용되는 프리코딩 정보를 릴레이에 전송해야 한다. 릴레이가 고정 위치에 존재함에 따라 프리코딩 정보는 거의 변하지 않기 때문에 상위 시그널링으로 전송이 가능하다.
도 9은 본 발명의 제 2 실시예에 따른 기지국의 송신 과정을 도시한 순서도이다.
도 9을 참조하여 설명하면, 우선 기지국은 단계 903에서 현재 서브프레임이 릴레이 백홀 전송을 위한 서브프레임인 경우 하향 링크 백홀 전송 준비를 한다. 그리고 기지국은 단계 905에서 시스템의 전송 안테나 개수가 4개 이상이 경우에 추가 CRS 전송을 준비한다. 또한 기지국은 단계 907에서 릴레이 제어 채널을 구성하여 제어 채널 간에 다중화한다.
다음으로, 기지국은 단계 909에서 릴레이 제어 채널과 추가된 CRS를 다중화한다. 이 후 기지국은 단계 911에서 현재 서브프레임이 LTE-A 서브프레임이나 MBSFN 서브프레임인 경우 서브프레임의 릴레이 자원 영역에 기존 CRS와 추가된 CRS를 다중화하여 전송한다. 그리고 기지국은 단계 913에서 다중화된 제어 채널과 데이터 채널을 TDM하여 다중화한다. 또한 기지국은 단계 915에서 현재 서브프레임을 전송한다.
도 10은 본 발명의 제 2 실시예에 따른 릴레이의 수신 과정을 도시한 순서도이다.
도 10을 참조하여 설명하면, 릴레이는 단계 1003에서 현재 서프프레임이 릴레이 백홀을 위한 서브프레임인 경우 하향링크 수신을 준비한다. 릴레이는 단계 1005에서 백홀 수신을 위해 할당된 자원에서 제어 채널과 데이터 채널을 분리한다. 그리고 릴레이는 단계 1007에서 시스템이 4개 이상의 안테나를 지원하는 경우에는 제어 채널에 추가된 CRS의 위치에서 채널 추정 정보를 습득하여 릴레이 제어 채널 을 수신한다.
다음으로, 릴레이는 단계 1009에서 릴레이 제어 채널을 복조하여 현재 서브프레임의 스케줄링 정보를 수신한다. 그리고 릴레이는 단계 1011에서 스케줄링 정보를 이용하여 할당 받은 자원의 데이터 채널 영역의 CRS 채널 추정 정보와 추가된 CRS 채널 추정 정보를 이용하여 데이터 채널을 수신한다. 또한 릴레이는 단계 1013에서 데이터 채널을 복조하여 백홀 데이터를 수신하고 백홀 수신을 완료한다.
제 3 실시예
도 11는 본 발명의 제 3 실시예에서 제안하는 릴레이 기준 신호 구성 방법을 도시한 것이다.
제 3 실시예에서 제안하는 방법은 제어 채널과 데이터 채널 영역 모두에 적용되는 릴레이 전용 기준 신호를 이용하는 방법이다. 이 방법은 도 4의 도 425와 같이 RB 안에 다수 개의 릴레이 제어 채널이 다중화되는 경우 그 다중화 되는 자원의 위치가 랜덤하게 배치되는 영향을 고려한 것이다. 자원의 위치가 고정적인 경우에는 하나의 전용 패턴을 이용하여 전송이 가능하지만 자원의 위치가 계속 변하는 경우에는 하나의 패턴을 적용하는 경우 그 채널 추정 성능을 보장하기 어렵다. 따라서 본 실시예에서는 자원이 할당되는 영역이 변하여도 변하는 영역을 따라서 채널 추정이 가능하도록 전용 기준 신호를 구성하는 방법이다. 이를 위해서는 할당되는 자원 중에서 일부 자원을 전용 기준 신호 용으로 할당하여, 랜덤하게 자원이 배치되어도 그 자원에 따라 전용 기준 신호도 랜덤하게 퍼지도록 하는 것이다.
도 11을 참조하면, 도 1127은 릴레이의 제어 채널이 전송되는 영역이다. 현 재 릴레이가 2개 있는 경우 2개의 릴레이에 전송되는 제어 채널이 자원 할당 단위로 나누어져 도 1127 영역에 전송되며 데이터 영역은 릴레이 1로 전송되는 데이터의 경우에는 도 1109, 1113에 릴레이 2로 전송되는 데이터의 경우에는 도 1111과 도 1115에 전송된다.
도 1125의 상세 도면인 도 1137과 도 1149을 이용하여 설명하면, 도 1137은 릴레이 1과 2로 전송되는 2개의 RB 영역을 도시한 것이다. 도 1131은 제어 채널이 전송되는 영역으로 제어 채널의 기본 할당 자원은 총 4개의 RE로 구성되며 그 중에 3개는 제어 채널 전송에 그리고 1개의 릴레이 전용 기준 신호에 사용된 경우이다. 따라서 도 1129는 릴레이 1로 전송되는 제어 채널의 채널 추정에 사용되는 전용 기준 신호가 되며 도 1135는 릴레이 1로 전송되는 데이터 채널에 사용되는 전용 기준 신호가 된다. 제 3 실시예에서는 제어 채널과 데이터 채널에 사용되는 프리코딩은 제어 채널과 데이터 채널 모두 릴레이 전용 제어 채널을 사용하기 때문에 동일한 프리코딩을 사용한다. 도 1139은 릴레이 2로 전송되는 제어 채널의 전용 기준 신호를 도시한 것이다. 도 1149를 참조하여 설명하면 도 1141은 릴레이 제어 채널이 전송되는 영역이고 도 1151은 릴레이 1로 전송되는 제어 채널의 전용 기준 신호이며 도 1145는 릴레이 2로 전송되는 데이터 채널의 전용 기준 신호이다.
도 12는 본 발명의 제 3 실시예에 따른 기지국의 송신 과정을 도시한 순서도이다.
도 12을 참조하여 설명하면, 우선 기지국은 단계 1203에서 현재 서브프레임이 릴레이 백홀 전송을 위한 서브프레임인 경우 하향 링크 백홀 전송 준비를 한다. 그리고 기지국은 단계 1205에서 기지국은 각 릴레이로 전송되는 채널을 위한 최적의 안테나 빔패턴을 선택한다. 또한 기지국은 단계 1207에서 릴레이 제어 채널을 구성하고 릴레이 제어 채널의 기본 할당 단위 중에서 일부 RE 자원을 릴레이 전용 기준 신호로 지정한다. 이 후 기지국은 단계 1209에서 각 릴레이로 전송되는 제어 채널을 다중화하여 제어 채널 영역에 할당한다.
다음으로, 기지국은 단계 1211에서 각 릴레이로 전송되는 데이터 채널을 할당하고 RB 자원에 맵핑한다. 이 후 기지국은 단계 1213에서 다중화된 제어 채널과 데이터 채널을 TDM 다중화한다. 그리고 기지국은 단계 1215에서 릴레이 제어 채널에 사용되는 전용 기준 신호, 릴레이 제어 채널, 릴레이 데이터 채널에 사용하는 전용 기준 신호 및 릴레이 데이터 채널에 각 릴레이에 선택된 프리코딩을 적용한다. 이 때 기준 신호는 공통 기준 신호 및 릴레이 전용 기준 신호를 포함한다. 또한 기지국은 단계 1217에서 현재 백홀 서브프레임을 전송하고 완료한다.
도 13은 본 발명의 제 3 실시예에 따른 릴레이의 수신 과정을 도시한 순서도이다.
도 13을 참조하여 설명하면, 릴레이는 단계 1303에서 현재 서프프레임이 릴레이 백홀을 위한 서브프레임인 경우 하향링크 수신을 준비한다. 그리고 릴레이는 단계 1305에서 백홀 수신을 위해 할당된 자원에서 제어 채널과 데이터 채널을 분리한다. 또한 릴레이는 단계 1307에서 제어 채널과 데이터 채널의 릴레이 전용 기준 신호의 채널 추정 정보를 이용하여 릴레이 제어 채널을 수신한다.
다음으로, 릴레이는 단계 1309에서 릴레이 제어 채널을 복조하여 현재 서브 프레임의 스케줄링 정보를 수신한다. 그리고 릴레이는 단계 1311에서 스케줄링 정보를 이용하여 할당 받은 자원의 제어 채널과 데이터 채널 영역의 릴레이 전용 기준 신호의 채널 추정 정보를 이용하여 데이터 채널을 수신한다. 또한 릴레이는 단계 1313에서 데이터 채널을 복조하여 백홀 데이터를 수신하고 완료한다.
상기와 같이 동작하기 위한 기지국 및 릴레이의 내부 구성을 설명하면 다음과 같다.
도 14은 본 발명의 실시예에 따른 기지국의 블록 구성도이다.
도 14을 참조하여 설명하면, 기지국은 릴레이 프리코딩 선택기(1401), 컨트롤러(1403), 릴레이 제어 채널을 위한 기준 신호 발생기(1405), R-PDCCH 발생기(1413), 릴레이 제어 채널을 위한 다중화기(1407), 릴레이 데이터 채널을 위한 기준 신호 발생기(1415), 릴레이 데이터 채널 발생기(1417), 릴레이 데이터 채널을 위한 다중화기(1425), 프리코더(1407), 단말기를 위한 제어 채널 구성기(1423), 데이터 채널 구성기(1419), 기준 신호 발생기(1421), FDM(1431) 및 송신 처리기(1433)을 구비한다.
릴레이 프리코딩 선택기(1401)는 이용하여 각 릴레이의 제어 채널과 데이터 채널에 사용한 프리코딩을 위한 정보를 제공한다. 컨트롤러(1403)는 스케줄링을 관장하며, 현재 서브프레임 전송을 위한 스케줄링을 수행한다. 그리고 컨트롤러(1403)는 릴레이 프리코딩 선택기(1401)의 정보를 이용하여 프리코딩 인덱스 제공한다.
릴레이 제어 채널을 위한 기준 신호 발생기(1405)는 릴레이 제어 채널의 기 준 신호를 프리코딩 인덱스에 따라 생성한다. R-PDCCH 생성기(1413)는 릴레이 제어 채널을 생성한다. 릴레이 제어 채널을 위한 다중화기(1407)는 기준 신호와 제어 채널을 다중화한다.
릴레이 데이터 채널을 위한 기준 신호 발생기(1415)는 릴레이 데이터 채널에 사용되는 기준 신호를 생성한다. 릴레이 데이터 채널 발생기(1417)는 릴레이 데이터 채널을 생성한다. 릴레이 데이터 채널을 위한 다중화기(1425)는 기준 신호와 데이터 채널을 다중화한다.
컨트롤러(1403)의 제어 하에, 프리코더(1407)는 선택된 프리코딩 방식을 이용하여 을 형성한다. FDM(1431)은 단말기를 위한 제어 채널 구성기(1423), 데이터 채널 구성기(1419), 기준 신호 발생기(1421)를 통해 생성된 신호와 릴레이 제어 채널 및 릴레이 데이터 채널을 다중화하고, 송신 처리기(1433)가 서브프레임을 송신한다.
도 15은 본 발명의 실시예에 따른 릴레이의 블록 구성도이다.
도 15을 참조하여 설명하면, 릴레이는 역다중화기(1503), 컨트롤러(1505), 기준 신호 수신기(1507, 1509), 채널 추정기(1515), 릴레이 제어 채널 수신기(1511) 및 릴레이 데이터 채널 수신기(1513)을 구비한다.
역다중화기(1503)는 수신 장치(1501)를 통해 수신된 신호를 릴레이 제어 채널과 데이터 채널 기준 신호를 구분한다. 컨트롤러(1505)의 제어 하에, 기준 신호 수신기(1507, 1509)는 기준 신호를 수신한다. 채널 추정기(1515)는 기준 신호의 추정 정보를 알려준다. 이 때 채널 추정기(1515)는 제어 채널 및 데이터 채널에 필요 한 채널 추정 정보를 수집한다. 릴레이 제어 채널 수신기(1511)채널 추정 정보를 이용하여 릴레이 제어 채널을 수신한다. 그리고 제어 채널의 복조된 정보를 이용하여, 릴레이 데이터 채널 수신기(1513)는 릴레이 데이터 채널의 데이터를 수신한다.
도 1은 OFDM기반 하향링크 프레임 구조를 보인 도면,
도 2는 릴레이 OFDM 시스템에서 송수신 프레임 관계를 보인 도면
도 3은 본 발명에 적용되는 릴레이 백홀 서브프레임 도면
도 4은 본 발명에 적용되는 릴레이 제어 채널 구성 방법에 대한 도면
도 5는 본 발명의 제 1 실시 예에 따른 백홀 채널의 기준 신호 구조를 나타낸 도면
도 6은 본 발명의 제 1실시 예에 따른 기지국 송신 절차를 보인 제어 흐름도,
도 7은 본 발명에 제 1 실시 예에 따른 릴레이 수신 절차를 보인 제어 흐름도,
도 8은 본 발명의 제 2 실시 예에 따른 백홀 채널의 기준 신호 구조를 나타낸 도면
도 9은 본 발명의 제 2 실시 예에 따른 기지국 송신 절차를 보인 제어 흐름도,
도 10은 본 발명에 제 2실시 예에 따른 릴레이 수신 절차를 보인 제어 흐름도,
도 11은 본 발명의 제 3 실시 예에 따른 백홀 채널의 기준 신호 구조를 나타낸 도면
도 12은 본 발명의 제 3 실시 예에 따른 기지국 송신 절차를 보인 제어 흐름 도,
도 13은 본 발명에 제 3 실시 예에 따른 릴레이 수신 절차를 보인 제어 흐름도,
도 14는 본 발명의 기지국 송신 장치의 구성도
도 15는 본 발명의 릴레이 수신 장치의 구성도

Claims (12)

  1. 다수개의 릴레이들로 백홀 서브프레임을 송신하기 위한 기지국이 미리 결정되는 다수개의 공통 기준 신호들과 상기 공통 기준 신호들에 인접한 다수개의 추가 기준 신호들을 생성하는 과정과,
    상기 기지국이 상기 백홀 서브프레임의 데이터 채널 영역에서 상기 릴레이들을 위한 제어 채널 영역에 상기 공통 기준 신호들과 추가 기준 신호들을 할당하여 송신하는 과정을 포함하는 것을 특징으로 하는 기준 신호 구성 방법.
  2. 제 1 항에 있어서,
    상기 생성 과정은,
    상기 릴레이들을 적어도 하나의 릴레이 그룹으로 구분하는 과정과,
    상기 릴레이 그룹의 릴레이들에 공통으로 적용하기 위한 추가 기준 신호로 그룹 전용 기준 신호를 생성하는 과정을 포함하며,
    상기 할당 및 송신 과정은,
    상기 릴레이 그룹 별로 상기 제어 채널 영역을 구분하는 과정과,
    상기 제어 채널 영역 별로 상기 그룹 전용 기준 신호를 할당하는 과정을 포함하는 것을 특징으로 하는 기준 신호 구성 방법.
  3. 제 2 항에 있어서,
    상기 생성 과정은,
    상기 릴레이 각각을 위한 추가 기준 신호로 릴레이 전용 기준 신호를 생성하는 과정을 더 포함하며,
    상기 할당 및 송신 과정은,
    상기 데이터 채널 영역을 상기 제어 채널 영역과 상기 릴레이들을 위한 데이터 영역으로 구별하는 과정과,
    상기 릴레이 별로 상기 데이터 영역을 구분하는 과정과,
    상기 데이터 영역 별로 상기 릴레이 전용 기준 신호를 할당하는 과정을 더 포함하는 것을 특징으로 하는 기준 신호 구성 방법.
  4. 제 1 항에 있어서,
    상기 기지국은 다수개의 안테나 포트들을 구비하고,
    상기 공통 기준 신호는 상기 안테나 포트들에 각각 대응되어, 상기 안테나 포트 별로 구별되며,
    상기 할당 및 송신 과정은,
    상기 제어 채널 영역에 상기 안테나 포트들 중 적어도 어느 하나의 공통 기준 신호가 미존재 시, 상기 미존재 공통 기준 신호를 추가 기준 신호로 할당하는 과정을 포함하는 것을 특징으로 하는 기준 신호 구성 방법.
  5. 제 1 항에 있어서,
    상기 생성 과정은,
    상기 릴레이 각각을 위한 추가 기준 신호로 릴레이 전용 기준 신호를 생성하는 과정을 포함하며,
    상기 할당 및 송신 과정은,
    상기 제어 채널 영역에 상기 릴레이 전용 기준 신호를 분산시켜 할당하는 과정을 포함하는 것을 특징으로 하는 기분 신호 구성 방법.
  6. 제 5 항에 있어서,
    상기 할당 및 송신 과정은,
    상기 데이터 채널 영역을 상기 제어 채널 영역과 상기 릴레이들을 위한 데이터 영역으로 구별하는 과정과,
    상기 릴레이 별로 상기 데이터 영역을 구분하는 과정과,
    상기 데이터 영역 별로 상기 릴레이 전용 기준 신호를 할당하는 과정을 더 포함하는 것을 특징으로 하는 기준 신호 구성 방법.
  7. 기지국의 기준 신호 구성 장치에 있어서,
    다수개의 릴레이들로 백홀 서브프레임을 송신하기 위해 미리 결정되는 다수개의 공통 기준 신호들과 상기 공통 기준 신호들에 인접한 다수개의 추가 기준 신호들을 생성하는 기준 신호 발생기와,
    상기 백홀 서브프레임의 데이터 채널 영역에서 상기 릴레이들을 위한 제어 채널 영역에 상기 공통 기준 신호들과 추가 기준 신호들을 할당하는 다중화기와,
    상기 백홀 서브프레임을 송신하는 송신 처리기를 포함하는 것을 특징으로 하는 기준 신호 구성 장치.
  8. 제 7 항에 있어서,
    상기 기준 신호 발생기는 상기 릴레이들을 적어도 하나의 릴레이 그룹으로 구분하고, 상기 릴레이 그룹의 릴레이들에 공통으로 적용하기 위한 추가 기준 신호로 전용 기준 신호를 생성하며,
    상기 다중화기는 상기 릴레이 그룹 별로 상기 제어 채널 영역을 구분하고, 상기 제어 채널 영역 별로 상기 그룹 전용 기준 신호를 할당하는 것을 특징으로 하는 기준 신호 구성 장치.
  9. 제 8 항에 있어서,
    상기 기준 신호 발생기는 상기 릴레이 각각을 위한 추가 기준 신호로 릴레이 전용 기준 신호를 생성하며,
    상기 다중화기는 상기 데이터 채널 영역을 상기 제어 채널 영역과 상기 릴레이들을 위한 데이터 영역으로 구별하고, 상기 릴레이 별로 상기 데이터 영역을 구분하며, 상기 데이터 영역 별로 상기 릴레이 전용 기준 신호를 할당하는 것을 특징으로 하는 기준 신호 구성 장치.
  10. 제 7 항에 있어서,
    상기 기지국은 다수개의 안테나 포트들을 구비하고,
    상기 공통 기준 신호는 상기 안테나 포트들에 각각 대응되어, 상기 안테나 포트 별로 구별되며,
    상기 다중화기는 상기 제어 채널 영역에 상기 안테나 포트들 중 적어도 어느 하나의 공통 기준 신호가 미존재 시, 상기 미존재 공통 기준 신호를 추가 기준 신호로 할당하는 것을 특징으로 하는 기준 신호 구성 장치.
  11. 제 7 항에 있어서,
    상기 기준 신호 발생기는 상기 릴레이 각각을 위한 추가 기준 신호로 릴레이 전용 기준 신호를 생성하며,
    상기 다중화기는 상기 제어 채널 영역에 상기 릴레이 전용 기준 신호를 분산시켜 할당하는 것을 특징으로 하는 기준 신호 구성 장치.
  12. 제 11 항에 있어서,
    상기 다중화기는 상기 데이터 채널 영역을 상기 제어 채널 영역과 상기 릴레이들을 위한 데이터 영역으로 구별하고, 상기 릴레이 별로 상기 데이터 영역을 구분하며, 상기 데이터 영역 별로 상기 릴레이 전용 기준 신호를 할당하는 것을 특징으로 하는 기준 신호 구성 장치.
KR1020090075193A 2009-08-14 2009-08-14 릴레이를 위한 백홀 서브프레임의 기준 신호 구성 방법 및 장치 KR101552274B1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020090075193A KR101552274B1 (ko) 2009-08-14 2009-08-14 릴레이를 위한 백홀 서브프레임의 기준 신호 구성 방법 및 장치
EP10808387.4A EP2466765A4 (en) 2009-08-14 2010-08-13 METHOD AND DEVICE FOR SENDING AND RECEIVING A REFERENCE SIGNAL
CN201510590736.3A CN105227285B (zh) 2009-08-14 2010-08-13 发送和接收参考信号的方法和装置
US13/390,502 US8743788B2 (en) 2009-08-14 2010-08-13 Method and device for sending and receiving a reference signal
PCT/KR2010/005339 WO2011019238A2 (ko) 2009-08-14 2010-08-13 기준 신호 송수신 방법 및 장치
CN201080046460.8A CN102577169B (zh) 2009-08-14 2010-08-13 发送和接收参考信号的方法和装置
US14/295,215 US9106377B2 (en) 2009-08-14 2014-06-03 Method and device for sending and receiving a reference signal
US14/822,863 US9509473B2 (en) 2009-08-14 2015-08-10 Method and device for sending and receiving a reference signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090075193A KR101552274B1 (ko) 2009-08-14 2009-08-14 릴레이를 위한 백홀 서브프레임의 기준 신호 구성 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20110017628A true KR20110017628A (ko) 2011-02-22
KR101552274B1 KR101552274B1 (ko) 2015-09-10

Family

ID=43586672

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090075193A KR101552274B1 (ko) 2009-08-14 2009-08-14 릴레이를 위한 백홀 서브프레임의 기준 신호 구성 방법 및 장치

Country Status (5)

Country Link
US (3) US8743788B2 (ko)
EP (1) EP2466765A4 (ko)
KR (1) KR101552274B1 (ko)
CN (2) CN102577169B (ko)
WO (1) WO2011019238A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178642A1 (en) * 2013-04-30 2014-11-06 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving reference signal in wireless communication system supporting beam forming scheme

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010051033A1 (en) * 2008-10-30 2010-05-06 Nortel Networks Limited Relay techniques suitable for user equipment in downlink
CN104144136B (zh) * 2013-05-10 2017-12-15 华为技术有限公司 用户专用参考信号的发送方法及装置
US10541797B2 (en) * 2014-09-24 2020-01-21 Samsung Electronics Co., Ltd. Method and apparatus for controlling transmission power in transmitter of wireless communication system
WO2016195393A1 (ko) * 2015-06-05 2016-12-08 엘지전자 주식회사 무선 통신 시스템에서 빔포밍 효과를 고려한 상향링크 동기 획득의 복잡도를 감소시키는 방법 및 장치
US10225065B2 (en) * 2015-12-18 2019-03-05 Qualcomm Incorporated Common control channel subband design and signaling
CN107395333B (zh) * 2016-05-17 2022-01-21 中兴通讯股份有限公司 一种参考解调导频的处理方法及设备
CN108809580B (zh) 2017-05-05 2023-04-14 北京三星通信技术研究有限公司 传输上行信号的方法、用户设备及基站

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005050416B3 (de) * 2005-10-19 2007-04-19 Siemens Ag Verfahren zum Ausgeben von Alarmmeldungen an Teilnehmerendgeräten eines Funk-Kommunikationssystems
ES2331526T3 (es) * 2005-11-28 2010-01-07 Telecom Italia S.P.A. Procedimiento y sistema para transmitir contenido a una pluralidad de usuarios de una red de comunicacion movil.
EP1811734B1 (en) * 2006-01-19 2009-12-16 Samsung Electronics Co., Ltd. Method and apparatus for controlling transmission and reception of dedicated pilots according to MCS level in a wireless communication system
JP4642679B2 (ja) * 2006-03-14 2011-03-02 富士通株式会社 無線通信装置及び無線通信方法
US9544776B2 (en) * 2008-03-25 2017-01-10 Qualcomm Incorporated Transmission and reception of dedicated reference signals
WO2010026287A1 (en) * 2008-09-08 2010-03-11 Nokia Corporation Adaptive transmission modes for transparent relay
EP2334134B1 (en) * 2008-10-01 2018-12-05 LG Electronics Inc. Method and device for wireless subframe resource allocation
US8073463B2 (en) * 2008-10-06 2011-12-06 Andrew, Llc System and method of UMTS UE location using uplink dedicated physical control channel and downlink synchronization channel
CN101741420B (zh) * 2008-11-12 2013-08-07 华为技术有限公司 信道估计方法、装置及系统
US20100120442A1 (en) * 2008-11-12 2010-05-13 Motorola, Inc. Resource sharing in relay operations within wireless communication systems
KR101481591B1 (ko) * 2008-12-03 2015-01-12 엘지전자 주식회사 다중안테나를 갖는 무선 통신 시스템에서 하향링크 기준 신호 전송 및 수신 방법
KR101255459B1 (ko) * 2009-02-02 2013-04-16 후지쯔 가부시끼가이샤 무선 통신 시스템, 기지국 장치, 단말 장치, 및 무선 통신 시스템에서의 무선 통신 방법
WO2010110588A2 (ko) * 2009-03-23 2010-09-30 엘지전자주식회사 다중안테나 시스템에서 참조신호 전송방법 및 장치
EP2438788A1 (en) * 2009-06-04 2012-04-11 Nokia Corp. Effective labeling of subframes based on device-to-device transmission in cellular downlink spectrums
US8503381B2 (en) * 2009-08-03 2013-08-06 Lg Electronics Inc. Apparatus and method for configuring radio connection in multiple component carrier system
US9363753B2 (en) * 2011-07-19 2016-06-07 Qualcomm Incorporated Sleep mode for user equipment relays

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014178642A1 (en) * 2013-04-30 2014-11-06 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving reference signal in wireless communication system supporting beam forming scheme
US10153819B2 (en) 2013-04-30 2018-12-11 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving reference signal in wireless communication system supporting beam forming scheme

Also Published As

Publication number Publication date
EP2466765A2 (en) 2012-06-20
US8743788B2 (en) 2014-06-03
CN102577169B (zh) 2015-11-25
CN105227285B (zh) 2018-09-18
US9509473B2 (en) 2016-11-29
WO2011019238A2 (ko) 2011-02-17
US20160043845A1 (en) 2016-02-11
EP2466765A4 (en) 2014-09-24
KR101552274B1 (ko) 2015-09-10
US9106377B2 (en) 2015-08-11
US20140286263A1 (en) 2014-09-25
CN102577169A (zh) 2012-07-11
US20120188936A1 (en) 2012-07-26
CN105227285A (zh) 2016-01-06
WO2011019238A3 (ko) 2011-06-23

Similar Documents

Publication Publication Date Title
US9490955B2 (en) Method and apparatus for allocating a control channel resource of a relay node in a backhaul subframe
KR101790040B1 (ko) 무선 통신 시스템에서 전용 기준 신호를 위한 제어 채널 전송 방법 및 장치
KR101727127B1 (ko) 제어 채널의 송수신 방법 및 장치
KR101818584B1 (ko) 전용 기준 신호를 위한 공통 제어 채널 자원 할당 방법 및 장치
US20110044391A1 (en) Method and apparatus for configuring control channel in ofdm system
US9509473B2 (en) Method and device for sending and receiving a reference signal
KR20100078232A (ko) 무선 통신 시스템의 제어 채널 송수신 방법 및 장치
KR101513512B1 (ko) 직교 주파수 분할 다중 접속 시스템에서의 이종 서브프레임간 송수신 방법 및 장치
KR20090056102A (ko) 직교 주파수 분할 다중 접속 시스템에서 인터리버를 위한자원 배치 방법 및 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180830

Year of fee payment: 4