KR20110016979A - Composite electrode and method for manufacturing the same - Google Patents

Composite electrode and method for manufacturing the same Download PDF

Info

Publication number
KR20110016979A
KR20110016979A KR1020110008645A KR20110008645A KR20110016979A KR 20110016979 A KR20110016979 A KR 20110016979A KR 1020110008645 A KR1020110008645 A KR 1020110008645A KR 20110008645 A KR20110008645 A KR 20110008645A KR 20110016979 A KR20110016979 A KR 20110016979A
Authority
KR
South Korea
Prior art keywords
ceramic
porous support
composite electrode
metal oxide
conductive polymer
Prior art date
Application number
KR1020110008645A
Other languages
Korean (ko)
Other versions
KR101060288B1 (en
Inventor
최희성
이영관
Original Assignee
삼성전기주식회사
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전기주식회사, 성균관대학교산학협력단 filed Critical 삼성전기주식회사
Priority to KR1020110008645A priority Critical patent/KR101060288B1/en
Publication of KR20110016979A publication Critical patent/KR20110016979A/en
Application granted granted Critical
Publication of KR101060288B1 publication Critical patent/KR101060288B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE: A composite electrode and a manufacturing method thereof are provided to increase stability at high temperature and capacity of charge and discharge by increasing a specific surface when a capacitor and a secondary battery are manufactured. CONSTITUTION: A composite electrode includes ceramic or metal porous support(102) and a conductive polymer(101). The conductive polymer is formed on the surface of the porous support. One or more carbon nano tubes are vertically formed on the surface of the porous support.

Description

복합전극 및 이의 제조방법{composite electrode and method for manufacturing the same}Composite electrode and method for manufacturing the same

본 발명은 복합전극 및 이의 제조방법에 관한 것이다.The present invention relates to a composite electrode and a method of manufacturing the same.

일반적으로, 고성능 휴대용 전원은 모든 휴대용 정보 통신 기기, 전자 기기, 전기자동차 등에 필수적으로 사용되는 완제품 기기의 핵심부품이다. 최근 개발되고 있는 차세대 에너지 저장시스템은 모두 전기 화학적인 원리를 이용한 것으로 리튬(Li)계 이차전지와 전기화학 캐패시터(electrochemical capacitor)가 대표적이다.In general, high-performance portable power supplies are a key component of the finished products essential to all portable information and communication devices, electronic devices, electric vehicles, and the like. All of the next generation energy storage systems that are being developed recently use electrochemical principles, such as lithium (Li) secondary batteries and electrochemical capacitors.

전기화학 캐패시터는 전극과 전해질간의 전기화학적인 반응으로 야기되는 캐패시터 거동을 이용하여 전기에너지를 저장 및 공급하는 에너지 저장 장치로서 기존의 전해 캐패시터와 이차전지에 비하여 각각 에너지 밀도와 출력 밀도가 월등하여 다량의 에너지를 신속하게 저장하거나 공급할 수 있는 신개념의 에너지 저장 동력원으로 최근 들어 많은 관심을 받고 있다. 전기화학 캐패시터는 짧은 시간 내에 많은 양의 전류를 공급할 수 있는 특성으로 인하여 전자장치의 back-up 동력원, 휴대용 이동통신기기의 펄스 동력원, 하이브리드 전기자동차의 고출력 동력원으로 많은 응용이 기대되고 있다.An electrochemical capacitor is an energy storage device that stores and supplies electrical energy by using a capacitor behavior caused by an electrochemical reaction between an electrode and an electrolyte. The electrochemical capacitor has a much higher energy density and output density than conventional electrolytic capacitors and secondary batteries. Recently, it has received much attention as a new concept of energy storage power source capable of storing or supplying energy rapidly. Electrochemical capacitors are expected to be used as a back-up power source for electronic devices, pulse power sources for portable mobile communication devices, and high-power power sources for hybrid electric vehicles due to their ability to supply a large amount of current in a short time.

이러한 전기화학 캐패시터는 전극과 전해질간에 발생하는 전기 이중층 (electrical double layer)의 원리를 이용한 전기 이중층 캐패시터(electrical double layer capacitor : EDLC)와 전해질내 이온의 전극표면상 흡착반응 또는 전극의 산화/환원 반응 등의 전극과 전해질간에 전하의 이동을 동반하는 패러데이 반응(faradaicreation)에서 발생되는 의사캐패시턴스(pseudocapacitance)에 의해 EDLC형과 비교시 최고 용량이 10배정도 큰 초고용량을 발현하는 슈퍼캐패시터(supercapacitor)로 구분된다.These electrochemical capacitors are based on the electrical double layer capacitor (EDLC) using the principle of electrical double layer occurring between the electrode and the electrolyte, and adsorption reaction on the electrode surface of the ions in the electrolyte or oxidation / reduction reaction of the electrode. It is classified as a supercapacitor that expresses a supercapacitor with a maximum capacity of about 10 times as large as that of the EDLC type by the pseudocapacitance generated in the faradaicreation accompanied by the transfer of charge between the electrode and the electrolyte. do.

슈퍼캐패시터의 전극 소재로는 주로 금속산화물이나 전도성 고분자가 이용되고 있으며 이중에서 현재 슈퍼캐패시터용 전극소재로 가장 많은 주목을 받고 있는 것은 전이금속 산화물계 소재들로서, 특히 루테늄옥사이드는 수계 전해질에서 매우 높은 비축전용량, 긴 작동시간, 높은 전기전도도, 그리고 우수한 고율특성을 보임으로 인해 가장 많은 연구가 진행되고 있다. 그러나, 이러한 수계 전해질을 사용하는 경우, 수계 전해질의 작동 전압이 1 V로 제한됨으로 인하여 에너지밀도가 제한된다는 단점이 있다.Metal oxides or conductive polymers are mainly used as electrode materials for supercapacitors, and most of them are transition metal oxide materials, and ruthenium oxide is particularly high in aqueous electrolytes. Most research is being carried out due to its capacity, long operating time, high electrical conductivity and excellent high rate characteristics. However, when using such an aqueous electrolyte, there is a disadvantage that the energy density is limited because the operating voltage of the aqueous electrolyte is limited to 1V.

이러한 이유로, 최근 작동 전압이 2.3 V 이상인 유기계 전해질에서 사용할 수 있는 바나듐옥사이드, 망간 옥사이드나 니켈옥사이드, 코발트옥사이드 등의 전극 소재의 개발이 활발하게 이루어지고 있으나 이들 대체 전극 소재의 경우 현재까지 루테늄옥사이드에 상응하는 전기화학적인 특성을 나타내고 있지 못한 실정이다.For this reason, electrode materials such as vanadium oxide, manganese oxide, nickel oxide, and cobalt oxide, which can be used in organic electrolytes having an operating voltage of 2.3 V or more, have been actively developed. However, these alternative electrode materials have been applied to ruthenium oxide. It does not show corresponding electrochemical properties.

한편, 현재 금속산화물 전극의 전기화학적인 특성을 증대시키기 위한 방법의 일환으로, 비축전용량이 큰 금속산화물 전극 소재와 전기전도성이 우수한 탄소계 물질을 복합하여 탄소소재/금속산화물 복합전극을 구성하는 연구가 세계적인 추세로 진행되고 있다.On the other hand, as part of a method for increasing the electrochemical characteristics of the current metal oxide electrode, a study to configure a carbon material / metal oxide composite electrode by combining a metal oxide electrode material with a large specific capacitance and a carbon-based material having excellent electrical conductivity Is on a global trend.

현재까지 보고된 바에 의하면, 탄소계 물질과 금속산화물의 복합전극을 제조하는 방법에는 금속산화물의 합성 시에 탄소계 물질을 혼합하여 제조된 탄소소재/금속산화물을 도전재 및 바인더와 섞어 페이스트 형태로 만들거나, 또는 이미 합성된 금속산화물과 도전재 및 바인더를 탄소소재와 함께 섞어 페이스트 형태로 만든 후 이를 집전체에 도포하는 페이스팅법이 있다.Reported to date, a method for manufacturing a composite electrode of a carbon-based material and a metal oxide includes a carbon material / metal oxide prepared by mixing a carbon-based material in the synthesis of a metal oxide in a paste form by mixing a conductive material and a binder. Alternatively, there is a pasting method in which a metal oxide, a conductive material, and a binder, which are already synthesized, are mixed with a carbon material to form a paste, and then applied to a current collector.

그러나, 이러한 페이스팅법으로 탄소소재/금속산화물 복합전극을 제조하는 경우, 그 공정이 매우 복잡하며 비교적 긴 시간이 소요되는 다단계 공정이며 도전재 및 바인더의 사용은 필수불가결하나 이들은 전극의 비축전 용량을 발현하는 실제 전기화학 반응에 참여하지 않는 요소들로 이러한 것들이 문제점으로 지적된다.However, when the carbon material / metal oxide composite electrode is manufactured by such a pasting method, the process is very complicated and takes a long time, a multi-step process, and the use of a conductive material and a binder is indispensable, but they do not have the specific capacitance of the electrode. These are pointed out as problems that do not participate in the actual electrochemical reactions that they express.

이에 본 발명자들은 보다 큰 비표면적을 가지며 탄소소재가 아닌 전극의 지지체를 연구한 결과 본 발명에 이르게 되었다.The present inventors have led to the present invention as a result of studying the support of the electrode having a larger specific surface area and not a carbon material.

따라서 본 발명은 비표면적이 크며, 고온 안정성이 있는 복합전극을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a composite electrode having a large specific surface area and high temperature stability.

본 발명의 일 측면에서는, 세라믹 또는 금속 다공성 지지체; 및 상기 세라믹 다공성 지지체의 표면에 형성된 전도성 폴리머 또는 금속산화물;을 포함하는 복합전극을 제공한다.In one aspect of the invention, a ceramic or metal porous support; And a conductive polymer or metal oxide formed on the surface of the ceramic porous support.

본 발명의 다른 측면에서는, 세라믹 또는 금속 다공성 지지체; 상기 세라믹 다공성 지지체의 표면에 수직으로 형성된 하나 이상의 탄소나노튜브; 및 상기 탄소나노튜브가 형성된 세라믹 다공성 지지체의 표면에 형성된 전도성 폴리머 또는 금속산화물;을 포함하는 복합전극을 제공한다.In another aspect of the invention, a ceramic or metal porous support; At least one carbon nanotube formed perpendicular to the surface of the ceramic porous support; And a conductive polymer or metal oxide formed on the surface of the ceramic porous support on which the carbon nanotubes are formed.

본 발명의 또 다른 측면에서는, 전도성이 우수한 금속 성분으로 도금된 세라믹 또는 금속 다공성 지지체; 상기 도금된 다공성 지지체의 표면에 수직으로 형성된 하나 이상의 탄소나노튜브; 및 상기 탄소나노튜브가 형성된 다공성 지지체의 표면에 형성된 전도성 폴리머 또는 금속산화물;을 포함하는 복합전극을 제공한다.In another aspect of the present invention, a ceramic or metal porous support plated with a high conductivity metal component; At least one carbon nanotube formed perpendicular to the surface of the plated porous support; And a conductive polymer or metal oxide formed on the surface of the porous support on which the carbon nanotubes are formed.

본 발명의 바람직한 실시예에 따른 복합전극을 이용하여 캐패시터 또는 2차전지를 제조하는 경우, 비표면적이 증가되어 충방전 용량 및 에너지 밀도/출력 밀도가 증가될 수 있으며, 고온에서의 안정성 및 신뢰성이 높아질 수 있다.When manufacturing a capacitor or a secondary battery using a composite electrode according to a preferred embodiment of the present invention, the specific surface area is increased to increase the charge and discharge capacity and energy density / output density, and the stability and reliability at high temperature Can be.

도 1은 본 발명의 일 실시예에 따른 복합전극을 나타낸 단면도이다.
도 2는 본 발명의 다른 일 실시예에 따른 복합전극을 나타낸 단면도이다.
도 3은 본 발명의 또 다른 일 실시예에 따른 복합전극을 나타낸 단면도이다.
도 4는 본 발명에 사용될 수 있는 단섬유로 제조된 세라믹 지지체의 SEM 사진이다.
도 5는 본 발명에 사용될 수 있는 장섬유로 제조된 세라믹 지지체의 SEM 사진이다.
도 6은 본 발명에 사용될 수 있는 폼 형태로 제조된 세라믹 구조체의 SEM 사진이다.
도 7은 본 발명의 실시예에 따른 캐패시터의 도식도이다.
도 8은 본 발명에 사용될 수 있는 단섬유의 세라믹 다공성 지지체이다.
도 9는 본 발명의 실시예에 따른 폴리피롤이 코팅된 세라믹 필터의 SEM 사진이다.
도 10은 도 9의 축소배율의 사진이다.
도 11은 도 9의 세라믹 섬유에 대한 확대배율의 사진이다.
도 12는 본 발명의 일 실시예의 실험데이터이다.
1 is a cross-sectional view showing a composite electrode according to an embodiment of the present invention.
2 is a cross-sectional view of a composite electrode according to another exemplary embodiment of the present invention.
3 is a cross-sectional view of a composite electrode according to another exemplary embodiment of the present invention.
Figure 4 is an SEM image of a ceramic support made of short fibers that can be used in the present invention.
5 is an SEM photograph of a ceramic support made of long fibers that can be used in the present invention.
6 is a SEM photograph of a ceramic structure made in the form of a foam that can be used in the present invention.
7 is a schematic diagram of a capacitor according to an embodiment of the present invention.
8 is a short fiber ceramic porous support that can be used in the present invention.
9 is an SEM image of a polypyrrole-coated ceramic filter according to an embodiment of the present invention.
10 is a photograph of the reduced magnification of FIG. 9.
FIG. 11 is an enlarged photograph of the ceramic fiber of FIG. 9. FIG.
12 is experimental data of an embodiment of the present invention.

본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.As the invention allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the written description. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all transformations, equivalents, and substitutes included in the spirit and scope of the present invention. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.

(a), (b) 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. Terms (a) and (b) may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.

본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "having" are intended to indicate that there is a feature, number, step, operation, component, or a combination thereof described in the specification, but one or more other features or numbers. It is to be understood that the present invention does not exclude in advance the possibility of the presence or the addition of steps, actions, components, or a combination thereof.

이하, 본 발명에 따른 복합전극 및 이의 제조방법의 바람직한 실시예를 첨부도면을 참조하여 상세히 설명하기로 하며, 첨부 도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성 요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, a preferred embodiment of a composite electrode and a method of manufacturing the same according to the present invention will be described in detail with reference to the accompanying drawings, in the description with reference to the accompanying drawings, the same or corresponding components are given the same reference numerals and Duplicate description thereof will be omitted.

도 1은 본 발명의 일 실시예에 따른 세라믹 또는 금속 다공성 지지체(102)와 표면에 형성된 전도성 폴리머(101)를 나타낸다.1 illustrates a ceramic or metal porous support 102 and a conductive polymer 101 formed on a surface according to an embodiment of the present invention.

본 발명에 사용될 수 있는 세라믹 다공성 지지체는 전극에 사용될 수 있는 표면적을 가지고 있다면 형태에 제한이 없으나, 바람직하게는 단섬유를 이용한 세라믹 페이퍼, 장섬유를 이용한 세라믹 페이퍼, 세라믹 미립자를 이용한 세라믹 페이퍼 또는 폼 형태의 내부 구조를 가지는 세라믹 구조체 등의 형태일 수 있다. 구체적인 예를 들면 도 4는 단섬유로 제조된 세라믹 페이퍼를 나타내며, 도 5은 장섬유로 제조된 세라믹 페이퍼를 나타내며, 도 6은 폼 형태로 제조된 세라믹 구조체를 나타낸다.The ceramic porous support that can be used in the present invention is not limited in shape as long as it has a surface area that can be used for the electrode, but preferably, ceramic paper using short fibers, ceramic paper using long fibers, ceramic paper or foam using ceramic fine particles It may be in the form of a ceramic structure having an internal structure of the form. For example, Figure 4 shows a ceramic paper made of short fibers, Figure 5 shows a ceramic paper made of long fibers, Figure 6 shows a ceramic structure made in the form of foam.

세라믹 다공성 지지체를 이용하게 되면 고온 안정성 및 신뢰성을 확보할 수 있어 기존의 전극과는 달리 고온 소성을 필요로 하는 분야에도 사용될 수 있다.When the ceramic porous support is used, high temperature stability and reliability can be ensured, so that it can be used in fields requiring high temperature firing, unlike conventional electrodes.

금속 다공성 지지체는 일반적으로 알려진 다공성 박막제조기술을 사용하여 제조될 수 있으며, Li, Al, Sn, Bi, Si, Sb, Ni, Cu, Ti, V, Cr, Mn, Fe, Co, Zn, Mo, W, Ag, Au, Pt, Ir, Ru 및 이들의 합금 또는 산화물을 이용할 수 있다.Metallic porous supports can be prepared using commonly known porous thin film manufacturing techniques, Li, Al, Sn, Bi, Si, Sb, Ni, Cu, Ti, V, Cr, Mn, Fe, Co, Zn, Mo , W, Ag, Au, Pt, Ir, Ru and their alloys or oxides can be used.

세라믹 지지체의 경우, 비표면적 및 고온 안정성 면에서는 유리하나 전극에 사용되기 위해서는 세라믹 지지체의 표면에 도전층을 형성할 필요성이 있다.In the case of the ceramic support, it is advantageous in terms of specific surface area and high temperature stability, but there is a need to form a conductive layer on the surface of the ceramic support in order to be used in an electrode.

본 발명의 일 실시예에서는 전도성 폴리머 또는 금속산화물을 다공성 지지체의 표면에 형성시켜 다공성 지지체를 전극으로 활용할 수 있게 한다.In an embodiment of the present invention, a conductive polymer or a metal oxide is formed on the surface of the porous support so that the porous support can be utilized as an electrode.

전도성 폴리머의 예로는 Polyacetylene, Polyaniline, Polypyrrole, Polythiophene 또는 Polyethylenedioxythiophene 등이 있으며, 금속산화물의 예로는 바나듐염, 망간염, 니콜염, 코발트염, 이리듐염 또는 루테늄염 등이 있다.Examples of the conductive polymer include Polyacetylene, Polyaniline, Polypyrrole, Polythiophene or Polyethylenedioxythiophene, and examples of metal oxides include vanadium salt, manganese salt, nicotine salt, cobalt salt, iridium salt or ruthenium salt.

다공성 지지체의 표면에 전도성 폴리머의 형성을 위해서 상기 전도성 폴리머의 모노머 용액에 지지체를 침지하는 방법을 이용할 수 있다. 모노머 용액에 침지 후 알려진 고분자 중합 공정을 통해 전도성 폴리머를 중합할 수 있다.In order to form the conductive polymer on the surface of the porous support, a method of immersing the support in the monomer solution of the conductive polymer may be used. After immersion in the monomer solution it is possible to polymerize the conductive polymer through a known polymer polymerization process.

예를 들어, 전기화학적 산화성 중합을 이용할 수 있다. 모노머의 전기화학적 산화성 중합은 -78 ℃ 내지 사용되는 용매의 비점의 온도에서 수행할 수 있다. 전기화학적 중합은 바람직하게는 -78 ℃ 내지 250 ℃, 특히 바람직하게는 -20 ℃ 내지 60 ℃에서 수행한다.For example, electrochemical oxidative polymerization can be used. The electrochemical oxidative polymerization of the monomer can be carried out at a temperature of -78 ° C to the boiling point of the solvent used. The electrochemical polymerization is preferably carried out at -78 ° C to 250 ° C, particularly preferably at -20 ° C to 60 ° C.

반응 시간은 사용되는 모노머, 사용되는 전해질, 선택된 온도 및 가해진 전류 밀도에 따라 1분 내지 24시간이다.The reaction time is from 1 minute to 24 hours depending on the monomer used, the electrolyte used, the temperature selected and the current density applied.

모노머가 액체인 경우, 전기중합 조건 하에 불활성인 용매의 존재 또는 부재 하에 전기중합을 수행할 수 있다. 고체 모노머의 전기중합은 전기중합 조건 하에 불활성인 용매의 존재 하에 수행한다. 일부 경우에는, 용매 혼합물을 사용하고(거나) 가용화제 (세제)를 용매에 가하는 것이 유리할 수 있다.When the monomer is a liquid, the electropolymerization can be carried out in the presence or absence of a solvent which is inert under the electropolymerization conditions. Electropolymerization of the solid monomers is carried out in the presence of a solvent which is inert under the electropolymerization conditions. In some cases, it may be advantageous to use a solvent mixture and / or add a solubilizer (detergent) to the solvent.

본 발명의 다공성 지지체는 3차원 구조를 형성하고 있으며 동시에 화학적으로 매우 안정하므로, 지지체 표면에 금속산화물층의 형성이 전기화학적 방법으로 수행 가능하다. 구체적으로 종래에는 박막에 균일한 금속산화물층을 형성하기 위한 방법으로 통상적으로 고온, 고압에서 수행되는 스퍼터링 및 스핀코팅 등의 법을 사용하는 바, 이는 평면 기판상에 균일한 금속산화물층을 형성할 수는 있으나 예를 들어 3차원 다공성 구조의 복잡한 형상의 표면에 균일한 금속산화물층을 형성하기 불가능하기 때문에 상온, 상압에서 수행되는 전기화학적 방법을 도입하는 경우 3차원 다공성 구조의 복잡한 형상의 기판상에 금속산화물층을 형성할 수 있다. Since the porous support of the present invention forms a three-dimensional structure and is chemically very stable at the same time, the formation of the metal oxide layer on the surface of the support can be performed by an electrochemical method. Specifically, conventionally, as a method for forming a uniform metal oxide layer on a thin film, a method such as sputtering and spin coating, which is generally performed at high temperature and high pressure, is used, which forms a uniform metal oxide layer on a planar substrate. Although it is impossible, for example, to form a uniform metal oxide layer on the surface of the complex shape of the three-dimensional porous structure, when the electrochemical method performed at room temperature and atmospheric pressure is introduced, the complex shape of the three-dimensional porous structure is formed on the substrate. A metal oxide layer can be formed on the substrate.

따라서 본 발명 일 실시예는 3차원의 다공성 구조를 형성하므로 이의 선택 사용이 가능하게 된 것이다. Therefore, one embodiment of the present invention forms a three-dimensional porous structure, so that the selective use thereof is possible.

금속산화물층의 형성을 위해 먼저 금속산화물 전착액을 제조한다. 상기 금속산화물 전착액은, 금속염 (metal salt) 구체적으로 바나듐염, 망간염, 니켈염, 코발트염, 이리듐염, 루테늄염 등 의 전이금속염 (transition metal salt)을 증류수(deionized water) 에 용해시킨 후, 산성 혹은 염기성 용액, 구체적으로 NaOH 또는 H2SO4 등을 용해액에 소량 첨가하여 적절한 pH를 1 ∼ 10으로 조절하여 제조한다. 이 때, 온도조절장치를 사용하여 제조된 상기 금속산화물 전착액의 온도를 10 ∼ 90 ℃ 사이로 조절하는 바, 상기 온도가 10 ℃ 미만이면 금속산화물이 전기화학적으로 생성되기 어렵고 90 ℃를 초과하는 경우에는 전착액이 증발되는 문제가 발생하므로 상기 범위를 유지하는 것이 바람직하다.In order to form the metal oxide layer, first, a metal oxide electrodeposition liquid is prepared. The metal oxide electrodeposition liquid is a metal salt, in particular, a transition metal salt such as vanadium salt, manganese salt, nickel salt, cobalt salt, iridium salt, ruthenium salt, and the like is dissolved in distilled water. A small amount of an acidic or basic solution, specifically NaOH or H 2 SO 4, is added to the solution to prepare an appropriate pH of 1-10. At this time, the temperature of the metal oxide electrodeposition liquid prepared using a temperature control device is adjusted to 10 ~ 90 ℃, if the temperature is less than 10 ℃ metal oxide is difficult to produce electrochemically and exceeds 90 ℃ Since the problem of evaporation of the electrodeposition liquid occurs, it is preferable to maintain the above range.

상기 금속산화물로 형성된 금속산화물층은 1 ∼ 200 ㎚ 두께 범위를 유지하는 바, 상기 1 ㎚ 미만이면 제조된 3차원 다공성 구조의 복합전극의 전기화학적 특성 구체적으로 전극의 단위 면적당 방전 전류량이 충분하지 못하고, 200 ㎚를 초과하는 경우에는 3차원 다공성 구조 내 기공을 금속산화물층이 채우게 되어 다공성 구조를 유지하게 되지 못하는 문제가 있으므로 상기 범위를 유지하는 것이 바람직하다.The metal oxide layer formed of the metal oxide maintains a thickness in the range of 1 to 200 nm. If the thickness is less than 1 nm, the electrochemical characteristics of the composite electrode of the three-dimensional porous structure manufactured may not be sufficient. In the case of exceeding 200 nm, the metal oxide layer fills pores in the three-dimensional porous structure, and thus it is not possible to maintain the porous structure.

다음으로, 상기에서 제조된 금속산화물 전착액에 3차원 세라믹 다공성 지지체를 침적시킨다.Next, the three-dimensional ceramic porous support is deposited on the metal oxide electrodeposition liquid prepared above.

다음으로, 상기 지지체 위에 전기화학적 방법으로 금속산화물층을 형성하여 복합전극을 제조한다.Next, a metal oxide layer is formed on the support by an electrochemical method to manufacture a composite electrode.

상기 전기화학적 방법은 구체적으로 정전류법, 정전위법 및 순환전류법 등을 사용할 수 있는 바, 상기 각각의 방법은 금속산화물의 두께를 상기 범위내 에서 자유롭게 조절하기 위하여 각각의 인자를 조절할 수 있다.Specifically, the electrochemical method may use a constant current method, an electrostatic potential method, a cyclic current method, and the like, and each of the methods may adjust each factor to freely control the thickness of the metal oxide within the above range.

구체적으로, 상기 정전류법은 인가전류가 0.01 ∼ -100 mA/㎠ 범위이고, 전류인가시간 1분 ∼ 500분 범위, 상기 정전위법은 인가전위 0.1 ∼ 1.5 V 범위이고, 전위인가시간 1분 ∼ 500분 범위, 상기 순환전류법 전위주사속도 1 ∼ 1000 mV/s 범위이고, 순환전위회수 1 ∼ 500회 범위내에서 수행된다.Specifically, in the constant current method, the applied current is in the range of 0.01 to -100 mA / cm 2, the current application time is in the range of 1 minute to 500 minutes, and the electrostatic potential method is in the range of the applied potential of 0.1 to 1.5 V, and the potential application time is 1 minute to 500. It is in the range of minutes, the cyclic ammeter potential scanning speed is in the range of 1 to 1000 mV / s, and is carried out in the range of 1 to 500 cycles of cyclic potential.

또한 상기 전기화학적 방법은 통상적으로 상온 및 상압하에서 수행되는 바, 이는 금속산화물층 형성을 위해 일반적으로 고온, 고압에 비해 온화한 조건 유지가 가능하다.In addition, the electrochemical method is typically carried out at room temperature and atmospheric pressure, which is generally capable of maintaining mild conditions compared to high temperature and high pressure to form a metal oxide layer.

다음으로 상에서 제조된 복합전극을 50 ∼ 400 ℃에서 대략 1 ∼ 48시간 동안 열처리를 실시하여 전극을 활성화시킴으로써 복합전극의 전기화학적인 특성을 증대시킨다. 상기 열처리 온도가 50 ℃ 미만이면 전극의 활성화 효과가 미비하고 400 ℃를 초과하는 경우에는 화학적 안정성이 저하되는 문제가 발생하므로 상기 범위를 유지하는 것이 좋다.Next, the composite electrode prepared above is subjected to heat treatment at 50 to 400 ° C. for about 1 to 48 hours to increase the electrochemical characteristics of the composite electrode by activating the electrode. If the heat treatment temperature is less than 50 ° C, the activation effect of the electrode is inadequate and if it exceeds 400 ° C, the chemical stability is deteriorated, so it is preferable to maintain the above range.

본 발명의 다른 일 실시예에서는 도 2와 같은 다공성 지지체(202), 전도성 폴리머(201) 및 탄소나노튜브(203)을 포함하는 복합전극을 제공한다.Another embodiment of the present invention provides a composite electrode including a porous support 202, a conductive polymer 201 and a carbon nanotube 203 as shown in FIG.

상기 실시예는 전술한 도 1과 같은 실시예와 비교해 볼 때 탄소나노튜브(203)의 구성이 더 부가되어 있으며 이는 전극의 비표면적을 보다 더 크게 하기 위함이다. 효율적인 표면적의 크기 향상 및 전극의 성능 향상을 위해서는 탄소나노튜브는 다공성 지지체와 수직으로 형성되는 것이 바람직하다. Compared with the above-described embodiment as shown in FIG. 1, the embodiment further includes a configuration of the carbon nanotubes 203, in order to increase the specific surface area of the electrode. In order to efficiently increase the size of the surface area and improve the performance of the electrode, the carbon nanotubes are preferably formed perpendicular to the porous support.

탄소나노튜브를 형성하는 방법은 다공성 지지체의 표면에 Ni, Co, Fe 등의 성장촉매층을 공지된 방법으로 형성하고 화학기상방법(CVD, Chemical Vapor Deposition)으로 탄화수소 화합물(예를 들어, C2H2, C2H4, CH4, C2H6) 등의 반응성 가스를 이용하는 것이다. 이외에도 지지체에 수직으로 탄소나노튜브를 형성할 수 있는 방법이라면 본 발명에 제한되지 않는다.The carbon nanotube is formed by forming a growth catalyst layer such as Ni, Co, Fe, etc. on the surface of the porous support by a known method, and a hydrocarbon compound (eg, C 2 H) by chemical vapor deposition (CVD). 2 , C 2 H 4 , CH 4 , C 2 H 6 ) and the like. In addition, the method of forming carbon nanotubes perpendicular to the support is not limited to the present invention.

탄소나노튜브(203)가 수직으로 형성된 다공성 지지체(202)는 전술한 도 1의 실시예에서와 같이 표면에 전도성 폴리머(201) 또는 금속산화물을 더 포함할 수 있다.The porous support 202 in which the carbon nanotubes 203 are vertically formed may further include a conductive polymer 201 or a metal oxide on its surface as in the above-described embodiment of FIG. 1.

전도성 폴리머(201), 금속산화물 및 다공성 지지체(202)에 관한 설명은 전술한 바와 같다.Description of the conductive polymer 201, the metal oxide and the porous support 202 is as described above.

본 발명의 또 다른 실시예에서는 도 3과 같은 다공성 지지체(302), 전도성 폴리머(301), 탄소나노튜브(303) 및 도금층(304)을 포함하는 복합전극을 제공한다.Another embodiment of the present invention provides a composite electrode including a porous support 302, a conductive polymer 301, a carbon nanotube 303 and a plating layer 304 as shown in FIG.

전술한 본 발명의 실시예와의 차이점은 전도성이 우수한 금속 성분으로 다공성 지지체(302)를 도금한 점이다.The difference from the above-described embodiment of the present invention is that the porous support 302 is plated with a metal component having excellent conductivity.

다공성 지지체(302)를 금속으로 도금하는 이유는 전도성을 보다 향상시키기 위함이다. 3차원 구조의 다공성 지지체를 도금할 수 있는 방법이라면 어떠한 방법도 본 발명에 사용될 수 있다.The reason for plating the porous support 302 with a metal is to further improve conductivity. Any method can be used in the present invention as long as it can plate the porous support of the three-dimensional structure.

탄소나노튜브(303), 전도성 폴리머(301) 및 다공성 지지체(302)에 관한 설명은 전술한 바와 같다.
The description of the carbon nanotube 303, the conductive polymer 301, and the porous support 302 is as described above.

실시예Example 1 One

Al2O3 섬유가 주요 구성성분인 세라믹 필터를 지지체로 한 복합전극을 제조하였다. 세라믹 페이퍼로는 모간사의 Kaowool Paper 1260 계열의 제품을 사용하였다. A composite electrode was prepared using a ceramic filter having Al 2 O 3 fibers as its main component. As ceramic paper, Morgan's Kaowool Paper 1260 family was used.

건조된 세라믹 필터를 피롤 단량체에 함침 시킨 후 산화제인 산화철수용액에 넣어 화학중합을 실시하였다. 이렇게 중합된 폴리피롤-세라믹필터 전극은 물과 에탄올을 이용하여 세척한 후 다시 건조하였다. The dried ceramic filter was impregnated into the pyrrole monomer and then chemically polymerized in an iron oxide solution as an oxidizing agent. The polymerized polypyrrole-ceramic filter electrode was washed with water and ethanol and dried again.

도 8은 중합전 순수한 세라믹필터이다. 도 9는 중합 후 폴리피롤이 코팅된 세라믹필터의 SEM 사진이며, 도 10은 이의 축소배율의 사진이고, 도 11은 세라믹 섬유 하나만을 확대한 사진이다. 이를 통하여 폴리피롤이 세라믹 섬유 위에 잘 코팅된 것을 확인할 수 있다.
8 is a pure ceramic filter before polymerization. 9 is a SEM picture of a polypyrrole-coated ceramic filter after polymerization, FIG. 10 is a picture of a reduced magnification thereof, and FIG. 11 is an enlarged picture of only one ceramic fiber. It can be seen that the polypyrrole is well coated on the ceramic fiber.

실시예Example 2 2

실시예 1에서 사용한 세라믹 필터를 지지체로 한 복합전극을 제조하였다. 상기 지지체의 표면에 Ni를 성장촉매로, 메탄가스를 반응성 가스로 이용하여 탄소나노튜브를 세라믹 지지체의 표면에 수직으로 성장시켰다. Ni 성장 촉매층은 스퍼터를 이용하여 20-30nm 두께로 제조하였다. 이후 플라즈마 화학기상 층착법(PECVD) 방식으로 카본 나노튜브를 성장시켰다. 이때 환원분위기를 만들기 위하여 암모니아 가스를 사용하였으며, 100-130 sccm 으로 흘리며 진공도는 1.2-1.3 torr로 유지하였다. 기재의 온도를 700 ℃로 하고 20min 동안 아세틸렌 가스를 30 sccm로 흘리면서 카본 나노튜브를 성장시켰다. 이후, 실시예 1에서 사용한 방법으로 탄소나노튜브가 형성된 세라믹 지지체의 표면에 폴리피롤을 형성시켰다.
The composite electrode which used the ceramic filter used in Example 1 as a support body was manufactured. Carbon nanotubes were grown vertically on the surface of the ceramic support using Ni as a growth catalyst and methane gas as a reactive gas on the surface of the support. Ni growth catalyst layer was prepared in a 20-30nm thickness using a sputter. Then, carbon nanotubes were grown by plasma chemical vapor deposition (PECVD). At this time, ammonia gas was used to form a reducing atmosphere, and the vacuum was maintained at 1.2-1.3 torr while flowing at 100-130 sccm. The carbon nanotubes were grown by heating the substrate to 700 ° C. and flowing acetylene gas at 30 sccm for 20 min. Thereafter, polypyrrole was formed on the surface of the ceramic support on which the carbon nanotubes were formed by the method used in Example 1.

실시예Example 3 3

실시예 1에서 사용한 세라믹 필터를 지지체로 사용하여 상기 지지체의 표면을 은 입자로 도금하였다. 상기 도금은 무전해동도금 및 전기도금을 순차적으로 수행하는 방법을 이용하였다.The surface of the support was plated with silver particles using the ceramic filter used in Example 1 as the support. The plating used a method of sequentially performing electroless copper plating and electroplating.

도금 후 탄소나노튜브의 형성 및 폴리피롤의 형성은 실시예 2와 동일한 방법을 이용하였다.
Formation of carbon nanotubes and polypyrrole after plating was performed in the same manner as in Example 2.

실험예Experimental Example

실시예 1에서 준비된 폴리피롤이 코팅된 세라믹필터를 전극활성 물질로, 중합에 사용된 동일한 세라믹필터를 분리막으로, 금을 집전체로 사용하여 그 전기화학적 특성을 측정하고, 정전용량을 계산하였다. 도 7 는 구성된 캐패시터의 도식도이다.The polypyrrole-coated ceramic filter prepared in Example 1 was used as an electroactive material, the same ceramic filter used for polymerization was used as a separator, and gold was used as a current collector to measure its electrochemical properties, and the capacitance was calculated. 7 is a schematic diagram of a configured capacitor.

도 12는 제작된 전극을 상온에서 2 mA.cm-2, 5 mA.cm-2, 10 mA.cm-2의 전류밀도로 1 V 까지 충전 후, 방전 하여 얻은 그래프이다. 충방전 실험 방법을 이용하여 정전용량을 측정할 수 있는데, 방전커브 중에서 직선으로 나오는 구간을 골라서 다음 식에 의거하여 정전용량을 구할 수 있다.
FIG. 12 is a graph obtained by discharging the prepared electrode to a current density of 1 mA at a room temperature of 2 mA. Cm -2 , 5 mA.cm -2 , and 10 mA.cm -2 . Capacitance can be measured using the charging / discharging experiment method. The capacitance can be obtained based on the following equation by selecting a section coming out of a straight line from the discharge curve.

[수학식 1][Equation 1]

C = i · △t /△V
C = i · Δt / △ V

i 는 전류를 의미하고, △V 만큼의 전압이 변화하였을 때 걸리는 시간을 △t 라 한다. 충방전 방법으로 시험을 했을 때는 각각의 전극에 인가해준 전류밀도와 최종 도달 전압이 일정하므로, 방전할 때 걸리는 시간이 정전용량을 나타내주는 지표라 할 수 있다. 수학식 1을 통하여 계산된 정전용량은 전극물질 무게로 나누어 비정전용량으로 나타내었다. 이는 표 1에서 알 수 있다. i is referred to as the time it takes to sense the current and, as long as the voltage is changed △ t of V. When tested by the charge and discharge method, since the current density applied to each electrode and the final voltage reached are constant, the time taken for discharging is an index indicating capacitance. The capacitance calculated through Equation 1 is expressed as a specific capacitance divided by the weight of the electrode material. This can be seen in Table 1.

[표 1]TABLE 1

Figure pat00001

Figure pat00001

충방전실험 과정에서 준비된 전극은 측정한 모든 전류밀도에서 95%이상 충방전 효율을 가짐을 확인할 수 있다. 각 전류밀도 별 충방전 효율은 상기 표 1과 같다. 충방전 효율이 모두 95% 이상으로 매우 우수함을 알 수 있었다.
It can be seen that the electrode prepared in the charging and discharging experiment has more than 95% charge and discharge efficiency at all measured current densities. Charge and discharge efficiency for each current density is shown in Table 1 above. All of the charge and discharge efficiency was found to be very good, more than 95%.

상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention as defined in the appended claims. It will be understood that the invention may be varied and varied without departing from the scope of the invention.

전술한 실시예 외의 많은 실시예들이 본 발명의 특허청구범위 내에 존재한다.Many embodiments other than the above-described embodiments are within the scope of the claims of the present invention.

101:전도성 폴리머
102:세라믹 다공성 지지체
201:전도성 폴리머
202:세라믹 다공성 지지체
203:탄소나노튜브
301:전도성 폴리머
302:세라믹 다공성 지지체
303:탄소나노튜브
304:도금층
101: conductive polymer
102: ceramic porous support
201: conductive polymer
202: ceramic porous support
203: carbon nanotube
301: conductive polymer
302: ceramic porous support
303: carbon nanotubes
304: Plating layer

Claims (6)

세라믹 또는 금속 다공성 지지체; 및
상기 다공성 지지체의 표면에 형성된 전도성 폴리머 또는 금속산화물; 을 포함하는 복합전극.
Ceramic or metal porous supports; And
A conductive polymer or metal oxide formed on the surface of the porous support; Composite electrode comprising a.
세라믹 또는 금속 다공성 지지체;
상기 다공성 지지체의 표면에 수직으로 형성된 하나 이상의 탄소나노튜브; 및
상기 탄소나노튜브가 형성된 다공성 지지체의 표면에 형성된 전도성 폴리머 또는 금속산화물;
을 포함하는 복합전극.
Ceramic or metal porous supports;
At least one carbon nanotube formed perpendicular to the surface of the porous support; And
A conductive polymer or metal oxide formed on a surface of the porous support on which the carbon nanotubes are formed;
Composite electrode comprising a.
전도성이 우수한 금속 성분으로 도금된 세라믹 또는 금속 다공성 지지체;
상기 도금된 다공성 지지체의 표면에 수직으로 형성된 하나 이상의 탄소나노튜브; 및
상기 탄소나노튜브가 형성된 다공성 지지체의 표면에 형성된 전도성 폴리머 또는 금속산화물;
을 포함하는 복합전극.
Ceramic or metal porous supports plated with a highly conductive metal component;
At least one carbon nanotube formed perpendicular to the surface of the plated porous support; And
A conductive polymer or metal oxide formed on a surface of the porous support on which the carbon nanotubes are formed;
Composite electrode comprising a.
제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
상기 세라믹 다공성 지지체는 단섬유, 장섬유 또는 세라믹 미립자를 이용한 페이퍼 형태 또는 폼 형태의 내부구조를 가지는 세라믹 구조체인 것을 특징으로 하는 복합전극.
The method according to any one of claims 1 to 3,
The ceramic porous support is a composite electrode, characterized in that the ceramic structure having an internal structure of paper or foam form using short fibers, long fibers or ceramic fine particles.
제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
상기 전도성 폴리머는 폴리아세틸렌(Polyacetylene), 폴리아닐린(Polyaniline), 폴리피롤(Polypyrrole), 폴리티오펜(Polythiophene) 및 폴리에틸렌디옥시티오펜(Polyethylenedioxythiophene)으로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 복합전극.
The method according to any one of claims 1 to 3,
The conductive polymer is at least one selected from the group consisting of polyacetylene (Polyacetylene), polyaniline (Polyaniline), polypyrrole (polypyrrole), polythiophene (Polythiophene) and polyethylenedioxythiophene (Polyethylenedioxythiophene).
제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
상기 금속산화물은 바나듐염, 망간염, 니켈염, 코발트염, 이리듐염 및 루테늄염으로 이루어진 군에서 선택된 하나 이상인 것을 특징으로 하는 복합전극.
The method according to any one of claims 1 to 3,
The metal oxide is a composite electrode, characterized in that at least one selected from the group consisting of vanadium salt, manganese salt, nickel salt, cobalt salt, iridium salt and ruthenium salt.
KR1020110008645A 2011-01-28 2011-01-28 composite electrode and method for manufacturing the same KR101060288B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110008645A KR101060288B1 (en) 2011-01-28 2011-01-28 composite electrode and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110008645A KR101060288B1 (en) 2011-01-28 2011-01-28 composite electrode and method for manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020090036143A Division KR101036164B1 (en) 2009-04-24 2009-04-24 composite electrode and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20110016979A true KR20110016979A (en) 2011-02-18
KR101060288B1 KR101060288B1 (en) 2011-08-30

Family

ID=43775132

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110008645A KR101060288B1 (en) 2011-01-28 2011-01-28 composite electrode and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR101060288B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014066824A1 (en) * 2012-10-25 2014-05-01 Purdue Research Foundation A super-capacitor and arrangement for miniature implantable medical devices
US9356294B2 (en) 2012-03-02 2016-05-31 Samsung Sdi Co., Ltd. Secondary battery including collectors with pores and manufacturing method thereof
KR101694044B1 (en) * 2015-08-04 2017-01-06 성균관대학교산학협력단 Porous dendritic structured hybrid film for pseudocapacitor and method for manufacturing thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007182360A (en) * 2005-02-16 2007-07-19 Nissan Motor Co Ltd Article having whisker formed thereon and electrochemical capacitor using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9356294B2 (en) 2012-03-02 2016-05-31 Samsung Sdi Co., Ltd. Secondary battery including collectors with pores and manufacturing method thereof
WO2014066824A1 (en) * 2012-10-25 2014-05-01 Purdue Research Foundation A super-capacitor and arrangement for miniature implantable medical devices
KR101694044B1 (en) * 2015-08-04 2017-01-06 성균관대학교산학협력단 Porous dendritic structured hybrid film for pseudocapacitor and method for manufacturing thereof

Also Published As

Publication number Publication date
KR101060288B1 (en) 2011-08-30

Similar Documents

Publication Publication Date Title
KR101036164B1 (en) composite electrode and method for manufacturing the same
Zhang et al. Fiber-based multifunctional nickel phosphide electrodes for flexible energy conversion and storage
Zeng et al. Metal–organic-framework-derived ZnO@ C@ NiCo 2 O 4 core–shell structures as an advanced electrode for high-performance supercapacitors
Li et al. Hierarchical CoMoO 4@ Co 3 O 4 nanocomposites on an ordered macro-porous electrode plate as a multi-dimensional electrode in high-performance supercapacitors
Wang et al. Co3O4@ MWCNT nanocable as cathode with superior electrochemical performance for supercapacitors
Hu et al. Cathodic deposition of Ni (OH) 2 and Co (OH) 2 for asymmetric supercapacitors: importance of the electrochemical reversibility of redox couples
Cao et al. Core–shell structural PANI-derived carbon@ Co–Ni LDH electrode for high-performance asymmetric supercapacitors
Guo et al. Facile synthesis and excellent electrochemical properties of CoMoO 4 nanoplate arrays as supercapacitors
KR101199004B1 (en) Nano Porous Electrode for Super Capacitor and Method for Preparing the Same
Li et al. A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide
Gupta et al. Potentiostatically deposited nanostructured α-Co (OH) 2: A high performance electrode material for redox-capacitors
Liu et al. Synthesis and characterization of RuO 2/poly (3, 4-ethylenedioxythiophene) composite nanotubes for supercapacitors
TWI332667B (en) Method for preparing a nanostructured composite electrode through electrophoretic deposition and a product prepared thereby
KR101031019B1 (en) Method for manufacturing metal electrode having transition metallic coating layer and metal electrode manufactured thereby
EP3131863B1 (en) Hierarchical composite structures based on graphene foam or graphene-like foam
Zeng et al. Electrodeposition of hierarchical manganese oxide on metal nanoparticles decorated nanoporous gold with enhanced supercapacitor performance
Li et al. Three-dimensional hierarchical self-supported NiCo 2 O 4/carbon nanotube core–shell networks as high performance supercapacitor electrodes
US20110026189A1 (en) Single-wall Carbon Nanotube Supercapacitor
Klankowski et al. Higher-power supercapacitor electrodes based on mesoporous manganese oxide coating on vertically aligned carbon nanofibers
CN102292288A (en) Substrate for forming carbon nanotubes, carbon nanotube composite, energy device, method for producing same, and device incorporating same
JPWO2012086697A1 (en) Nanoporous ceramic composite metal
Yu et al. Construction of a high-performance three-dimensional structured NiCo2O4@ PPy nanosheet array free-standing electrode for a hybrid supercapacitor
Arslan et al. Electrochemical storage properties of polyaniline-, poly (N-methylaniline)-, and poly (N-ethylaniline)-coated pencil graphite electrodes
Patnaik et al. Porous RuO x N y S z electrodes for microsupercapacitors and microbatteries with enhanced areal performance
Kim Nanoporous gold for energy applications

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150707

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160701

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170703

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180702

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190701

Year of fee payment: 9