KR20110001106A - Method of preparing polythiophene derivative and polythiophene derivative prepared using the same - Google Patents

Method of preparing polythiophene derivative and polythiophene derivative prepared using the same Download PDF

Info

Publication number
KR20110001106A
KR20110001106A KR1020090058503A KR20090058503A KR20110001106A KR 20110001106 A KR20110001106 A KR 20110001106A KR 1020090058503 A KR1020090058503 A KR 1020090058503A KR 20090058503 A KR20090058503 A KR 20090058503A KR 20110001106 A KR20110001106 A KR 20110001106A
Authority
KR
South Korea
Prior art keywords
polythiophene derivative
producing
solvent
organic solvent
solution
Prior art date
Application number
KR1020090058503A
Other languages
Korean (ko)
Other versions
KR101089635B1 (en
Inventor
이성구
이경균
임상명
임은희
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020090058503A priority Critical patent/KR101089635B1/en
Publication of KR20110001106A publication Critical patent/KR20110001106A/en
Application granted granted Critical
Publication of KR101089635B1 publication Critical patent/KR101089635B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

PURPOSE: A polythiophene derivative is provided to ensure excellent stability and conductivity by removing a side chain according to heating and lengthening a conjugation length. CONSTITUTION: A method for preparing a polythiophene derivative comprises the steps of: dissolving 3-bromoethyl thiophene in a solvent; adding sodium diethyldithiocarbamate trihydrate to the prepared solution; adding water to the mixed solution, extracting the mixture in an organic solvent phase, and removing moisture from the extracted solution; dissolving the obtained monomer in a solvent, adding FeCl3, and then stirring the mixture; and filtering the precipitate from the obtained solution.

Description

폴리티오펜 유도체의 제조방법 및 그를 통해 제조된 폴리티오펜 유도체{METHOD OF PREPARING POLYTHIOPHENE DERIVATIVE AND POLYTHIOPHENE DERIVATIVE PREPARED USING THE SAME}Method for preparing polythiophene derivatives and polythiophene derivatives produced therefrom TECHNICAL FIELD

본 발명은 폴리티오펜 유도체의 제조방법 및 그를 통해 제조된 폴리티오펜 유도체에 관한 것으로, 더욱 상세하게는 경화형으로서 다른 용매 등에 녹는 등의 영향을 받지 않으므로 안정성이 우수하며, 가열함에 따라 사이드 체인(side chain)이 제거되고 결과적으로 공액결합의 길이(conjugation length)가 길어져 전기전도도가 우수한 폴리티오펜 유도체의 제조방법 및 그를 통해 제조된 폴리티오펜 유도체에 관한 것이다. The present invention relates to a method for producing a polythiophene derivative and a polythiophene derivative prepared through the same, and more particularly, because it is hardened and is not affected by other solvents, and the like, and has excellent stability. Side chain) is removed and consequently the conjugation length (conjugation length) is long, the present invention relates to a method for producing a polythiophene derivative having excellent electrical conductivity and a polythiophene derivative prepared through the same.

전도성 고분자는 고분자의 본래 특성인 가볍고 가공이 쉬운 장점을 유지한 채 전기전도성을 갖는 고분자를 말한다. The conductive polymer refers to a polymer having electrical conductivity while maintaining the advantages of light and easy processing, which are the inherent characteristics of the polymer.

고분자(polymer)란 기존의 저분자 물질에 비하여 분자의 사슬이 대단히 긴 분자로 이와 같은 고분자 사슬들이 하나둘 모여 응집체(결정)를 이루게 되면 비로 소 고체형태를 이루게 된다. 이 고체형태로는 섬유, 플라스틱 또는 고무 등이 있다.A polymer is a molecule having a very long chain of molecules as compared to a conventional low molecular material. When such polymer chains are gathered together to form an aggregate, a small solid is formed. This solid form may be fiber, plastic or rubber.

가볍고 탄성이 있어 실생활에서 많이 사용되는 플라스틱과 같은 고분자 물질은 전통적으로 절연체로 알려져 왔으나 전기전도도가 높은 고분자 재료들이 발견됨으로써 고분자 재료에 대한 기존관념을 넘어서 금속을 대체할 수 있는 플라스틱 제품들의 출현이 가능해진 것이다.Polymer materials, such as plastics, which are widely used in real life because of their lightness and elasticity, have traditionally been known as insulators, but the discovery of polymer materials with high electrical conductivity enables the emergence of plastic products that can replace metals beyond the conventional concept of polymer materials. It is done.

최초로 발견된 전도성 고분자는 폴리아세틸렌으로 그 자체로는 반도체에 불과하지만 이를 요오드로 처리하면 금속에 버금가는 전기 전도성을 갖는다. The first conductive polymer found is polyacetylene, which is itself a semiconductor, but when treated with iodine it has an electrical conductivity comparable to that of metal.

이러한 전도성 고분자는 투명성, 유연성, 휴대성, 가벼움, 및 저가라는 장점을 가지고 있어 디스플레이를 비롯한 전자기기 등의 제품에 널리 응용될 수 있는 소재이다. 그러나 현재 전도성고분자의 전도도가 낮아 그 용용이 제한되고 있는 것이 현실이다. Such conductive polymers have advantages of transparency, flexibility, portability, lightness, and low cost, and thus are widely applied to products such as displays and electronic devices. However, at present, the conductivity of the conductive polymer is low, its use is limited.

이를 극복하기 위하여 CNT 등의 첨가제를 고분자 매트릭스 혹은 고분자 필름 상에 고르게 분산시켜, 내열성 및 내화학성과 같은 고분자 고유의 성질을 유지하면서도 도전성을 가진 복합재를 제조하고 있다. In order to overcome this problem, additives such as CNT are dispersed evenly on a polymer matrix or a polymer film, thereby preparing a composite having conductivity while maintaining properties of polymers such as heat resistance and chemical resistance.

한편, 전도성 고분자의 경우 박막을 형성시키고 그 위에 다른 물질을 코팅하여 사용하는 경우가 많은데, 그 과정에서 용매 등에 녹거나 변형되는 등 안정성이 부족하면 그 사용이 어려운 문제가 있다.On the other hand, in the case of the conductive polymer is often used to form a thin film and coating other materials thereon, if the stability is insufficient, such as melting or deformation in the process there is a problem that is difficult to use.

상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 경화형으로서 다른 용매 등에 녹는 등의 영향을 받지 않으므로 안정성이 우수하며, 전기전도도가 우수한 폴리티오펜 유도체의 제조방법 및 그를 통해 제조된 폴리티오펜 유도체를 제공하는 것을 그 목적으로 한다. In order to solve the problems of the prior art as described above, the present invention is a hardening type, so it is not affected by other solvents and the like, and thus has excellent stability, a method of preparing a polythiophene derivative having excellent electrical conductivity, and a polythiophene prepared therefrom. It is an object to provide a derivative.

본 발명은, (S1) 3-브로모에틸 티오펜(3-bromoethyl thiophene)을 용매에 용해시키는 단계; (S2) 상기 (S1) 단계에서 제조된 용액에 소디움 디에틸디티오카르바메이트 트리하이드레이트(sodium diethyldithiocarbamate trihydrate)를 첨가하고 혼합하는 단계; (S3) (S2) 단계에서 제조된 혼합용액에 물을 첨가하고 유기용매 상으로 추출한 후, 추출된 용액에서 수분을 제거하고 정제하는 단계; (S4) (S3) 단계에서 얻어진 모노머를 용매에 용해시킨 후 FeCl3를 첨가하고 교반하는 단계; (S5) 상기 (S4) 단계에서 얻어진 용액에서 침전물을 필터링하는 단계를 포함하는 것을 특징으로 하는 폴리티오펜 유도체의 제조방법을 제공한다.The present invention comprises the steps of dissolving (S1) 3-bromoethyl thiophene (3-bromoethyl thiophene) in a solvent; (S2) adding and mixing sodium diethyldithiocarbamate trihydrate to the solution prepared in step (S1); (S3) adding water to the mixed solution prepared in step (S2) and extracting with an organic solvent, and then removing and purifying water from the extracted solution; (S4) dissolving the monomer obtained in the step (S3) in a solvent, and then adding and stirring FeCl 3 ; (S5) It provides a method for producing a polythiophene derivative, comprising the step of filtering the precipitate in the solution obtained in the step (S4).

본 발명은 또한 상기 폴리티오펜 유도체의 제조방법에 따라 제조된 폴리티오펜 유도체를 제공한다.The present invention also provides a polythiophene derivative prepared according to the method for producing the polythiophene derivative.

위 제조방법에 따라 제조된 폴리티오펜 유도체는 하기 화학식 1로 표시된다.Polythiophene derivative prepared according to the above manufacturing method is represented by the following formula (1).

[화학식 1][Formula 1]

Figure 112009039571110-PAT00001
Figure 112009039571110-PAT00001

본 발명은 또한, (S1)2-브로모메틸-2,3디하이드로-티에노[3,4-b][1,4]디옥신(2-Bromomethyl-2,3-dihydro-thieno[3,4-b][1,4]dioxine)을 용매에 용해시키는 단계; (S2) 상기 (S1) 단계에서 제조된 용액에 소디움 디에틸디티오카르바메이트 트리하이드레이트(sodium diethyldithiocarbamate trihydrate)를 첨가하고 혼합하는 단계; (S3) (S2) 단계에서 제조된 혼합용액에 물을 첨가하고 유기용매 상으로 추출한 후, 추출된 용액에서 수분을 제거하고 정제하는 단계; (S4) (S3) 단계에서 얻어진 모노머를 용매에 용해시킨 후 FeCl3를 첨가하고 교반하는 단계; 및 (S5) 상기 (S4) 단계에서 얻어진 용액에서 침전물을 필터링하는 단계를 포함하는 것을 특징으로 하는 폴리티오펜 유도체의 제조방법을 제공한다.The invention also relates to (S1) 2-bromomethyl-2,3dihydro-thieno [3,4-b] [1,4] dioxine (2-Bromomethyl-2,3-dihydro-thieno [3]. , 4-b] [1,4] dioxine) in a solvent; (S2) adding and mixing sodium diethyldithiocarbamate trihydrate to the solution prepared in step (S1); (S3) adding water to the mixed solution prepared in step (S2) and extracting with an organic solvent, and then removing and purifying water from the extracted solution; (S4) dissolving the monomer obtained in the step (S3) in a solvent, and then adding and stirring FeCl 3 ; And (S5) provides a method for producing a polythiophene derivative comprising the step of filtering the precipitate in the solution obtained in the step (S4).

본 발명은 또한 상기 폴리티오펜 유도체의 제조방법에 따라 제조된 폴리티오펜 유도체를 제공한다.The present invention also provides a polythiophene derivative prepared according to the method for producing the polythiophene derivative.

위 제조방법에 따라 제조된 폴리티오펜 유도체는 하기 화학식 2로 표시된다.Polythiophene derivative prepared according to the above manufacturing method is represented by the following formula (2).

[화학식 2][Formula 2]

Figure 112009039571110-PAT00002
Figure 112009039571110-PAT00002

본 발명의 폴리티오펜 유도체의 제조방법 및 그를 통해 제조된 폴리티오펜 유도체에 따르면, 경화형으로서 다른 용매 등에 녹는 등의 영향을 받지 않으므로 안정성이 우수하며, 가열함에 따라 사이드 체인(side chain)이 제거되고 결과적으로 공액결합의 길이(conjugation length)가 길어져 전기전도도가 우수한 장점이 있다.According to the manufacturing method of the polythiophene derivative of the present invention and the polythiophene derivative prepared through the same, it is hardened and is not affected by other solvents and the like, so that the stability is excellent, and side chains are removed by heating. As a result, the conjugation length is long, and thus the electrical conductivity is excellent.

이하, 첨부된 도면을 참조하여 본 발명을 더욱 상세하게 설명한다. 본 명세서 및 특허청구범위에 사용된 용어나 단어는 통상적이거나 사전적 의미로 한정되어 해석되지 아니하며, 본 발명의 기술적 사항에 부합하는 의미와 개념으로 해석되어야 한다.Hereinafter, with reference to the accompanying drawings will be described in more detail the present invention. The terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary meanings and should be construed in accordance with the technical meanings and concepts of the present invention.

본 발명은, (S1) 3-브로모에틸 티오펜(3-bromoethyl thiophene)을 용매에 용 해시키는 단계; (S2) 상기 (S1) 단계에서 제조된 용액에 소디움 디에틸디티오카르바메이트 트리하이드레이트(sodium diethyldithiocarbamate trihydrate)를 첨가하고 혼합하는 단계; (S3) (S2) 단계에서 제조된 혼합용액에 물을 첨가하고 유기용매 상으로 추출한 후, 추출된 용액에서 수분을 제거하고 정제하는 단계; (S4) (S3) 단계에서 얻어진 모노머를 용매에 용해시킨 후 FeCl3를 첨가하고 교반하는 단계; (S5) 상기 (S4) 단계에서 얻어진 용액에서 침전물을 필터링하는 단계를 포함하는 것을 특징으로 하는 폴리티오펜 유도체의 제조방법을 제공한다.The present invention comprises the steps of dissolving (S1) 3-bromoethyl thiophene (3-bromoethyl thiophene) in a solvent; (S2) adding and mixing sodium diethyldithiocarbamate trihydrate to the solution prepared in step (S1); (S3) adding water to the mixed solution prepared in step (S2) and extracting with an organic solvent, and then removing and purifying water from the extracted solution; (S4) dissolving the monomer obtained in the step (S3) in a solvent, and then adding and stirring FeCl 3 ; (S5) It provides a method for producing a polythiophene derivative, comprising the step of filtering the precipitate in the solution obtained in the step (S4).

상기 폴리티오펜 유도체의 제조방법에 따르면, 먼저 3-브로모에틸 티오펜(3-bromoethyl thiophene)을 용매에 용해시킨다(S1).According to the method for preparing the polythiophene derivative, first, 3-bromoethyl thiophene is dissolved in a solvent (S1).

상기 (S1) 단계에서는 예를 들어 에탄올, 클로로포름 또는 THF 등과 같은 유기용매가 바람직하게 사용될 수 있다.In the step (S1), for example, an organic solvent such as ethanol, chloroform or THF may be preferably used.

다음으로, 상기 (S1) 단계에서 제조된 용액에 소디움 디에틸디티오카르바메이트 트리하이드레이트(sodium diethyldithiocarbamate trihydrate)를 첨가하고 혼합한다(S2).Next, sodium diethyldithiocarbamate trihydrate is added to the solution prepared in step (S1) and mixed (S2).

상기 (S2) 단계에서 소디움 디에틸디티오카르바메이트 트리하이드레이트의 첨가량은 3-브로모에틸 티오펜(3-bromoethyl thiophene) 1몰당 1.5 내지 2.5 몰인 것이 바람직하다.The amount of sodium diethyldithiocarbamate trihydrate added in step (S2) is preferably 1.5 to 2.5 moles per mole of 3-bromoethyl thiophene.

3-브로모에틸 티오펜(3-bromoethyl thiophene)와 소디움 디에틸디티오카르바메이트 트리하이드레이트의 반응은 하기 반응식 1과 같이 이루어진다.Reaction of 3-bromoethyl thiophene and sodium diethyldithiocarbamate trihydrate is performed as in Scheme 1 below.

[반응식 1]Scheme 1

Figure 112009039571110-PAT00003
Figure 112009039571110-PAT00003

다음으로, (S2) 단계에서 제조된 혼합용액에 물을 첨가하고 유기용매 상으로 추출한 후, 추출된 용액에서 수분을 제거하고 정제한다(S3).Next, water is added to the mixed solution prepared in step (S2) and extracted with an organic solvent, and then water is removed from the extracted solution and purified (S3).

상기 (S3) 단계에서 유기용매 상으로 추출 시 에틸 에테르, 에틸 아세테이트, 클로로포름 또는 THF 등의 유기용매가 바람직하게 사용될 수 있다.In the step (S3), an organic solvent such as ethyl ether, ethyl acetate, chloroform or THF may be preferably used when extracting the organic solvent.

상기 (S3) 단계에서 추출물의 정제 시에 예를 들어 컬럼 크로마토그래피(column chromatography) 또는 재결정 등의 방법이 사용될 수 있다.In the step (S3), for example, a method such as column chromatography or recrystallization may be used when the extract is purified.

다음으로, (S3) 단계에서 얻어진 모노머를 용매에 용해시킨 후 FeCl3를 첨가하고 교반한다(S4).Next, after dissolving the monomer obtained in the step (S3) in a solvent, FeCl 3 is added and stirred (S4).

상기 (S4) 단계에서 모노머의 용해 시 예를 들어 클로로포름, THF 등의 유기용매가 바람직하게 사용될 수 있다.When dissolving the monomer in the step (S4), for example, an organic solvent such as chloroform and THF may be preferably used.

상기 (S3) 단계에서 모노머가 중합되는 반응은 하기 반응식 2와 같다.The reaction in which the monomer is polymerized in step (S3) is shown in Scheme 2 below.

[반응식 2]Scheme 2

Figure 112009039571110-PAT00004
Figure 112009039571110-PAT00004

상기 (S3) 단계에서 FeCl3의 첨가량은 모노머 1몰당 2 내지 4 몰인 것이 바람직하다.The amount of FeCl 3 added in the step (S3) is preferably 2 to 4 moles per mole of monomer.

다음으로, (S4) 단계에서 얻어진 용액에서 침전물을 필터링한다(S5). 본 단계를 통해 위 중합 과정의 생성물인 폴리티오펜 유도체를 수득할 수 있다. Next, the precipitate is filtered from the solution obtained in step (S4) (S5). Through this step, it is possible to obtain a polythiophene derivative which is a product of the above polymerization process.

본 단계는 예를 들어 상기 (S4) 단계에서 얻어진 용액을 메탄올에 넣고 침전물을 필터링할 수 있다.In this step, for example, the solution obtained in the step (S4) may be put in methanol, and the precipitate may be filtered out.

위 제조방법을 통해 제조된 상기 폴리티오펜 유도체는 경화형으로서 다른 용매 등에 녹는 등의 영향을 받지 않으므로 안정성이 우수할 뿐만 아니라, 가열함에 따라 사이드 체인(side chain)이 제거되고 결과적으로 공액결합의 길이(conjugation length)가 길어져 전기전도도가 우수한 장점이 있다.The polythiophene derivative prepared by the above manufacturing method is hardened and is not affected by other solvents and the like, so that the polythiophene derivative is not only excellent in stability, but also removes side chains upon heating, and consequently, the length of the conjugated bond. (conjugation length) is long, has the advantage of excellent electrical conductivity.

본 발명은 또한, (S1) 2-브로모메틸-2,3디하이드로-티에노[3,4-b][1,4]디옥신(2-Bromomethyl-2,3-dihydro-thieno[3,4-b][1,4]dioxine)을 용매에 용해시키는 단계; (S2) 상기 (S1) 단계에서 제조된 용액에 소디움 디에틸디티오카르바메이트 트리하이드레이트(sodium diethyldithiocarbamate trihydrate)를 첨가하고 혼합하는 단계; (S3) (S2) 단계에서 제조된 혼합용액에 물을 첨가하고 유기용매 상으로 추출한 후, 추출된 용액에서 수분을 제거하고 정제하는 단계; (S4) (S3) 단계에서 얻어진 모노머를 용매에 용해시킨 후 FeCl3를 첨가하고 교반하는 단계; 및 (S5) (S4) 단계에서 얻어진 용액을 메탄올에 넣고 침전물을 필터링하는 단계를 포함하는 것을 특징으로 하는 폴리티오펜 유도체의 제조방법을 제공한다.The invention also relates to (S1) 2-bromomethyl-2,3dihydro-thieno [3,4-b] [1,4] dioxine (2-Bromomethyl-2,3-dihydro-thieno [3]. , 4-b] [1,4] dioxine) in a solvent; (S2) adding and mixing sodium diethyldithiocarbamate trihydrate to the solution prepared in step (S1); (S3) adding water to the mixed solution prepared in step (S2) and extracting with an organic solvent, and then removing and purifying water from the extracted solution; (S4) dissolving the monomer obtained in the step (S3) in a solvent, and then adding and stirring FeCl 3 ; And (S5) provides a method for producing a polythiophene derivative comprising the step of filtering the precipitate by putting the solution obtained in step (S4) to methanol.

상기 폴리티오펜 유도체의 제조방법에 따르면, 먼저 2-브로모메틸-2,3디하이드로-티에노[3,4-b][1,4]디옥신을 용매에 용해시킨다(S1).According to the method for preparing the polythiophene derivative, first, 2-bromomethyl-2,3dihydro-thieno [3,4-b] [1,4] dioxine is dissolved in a solvent (S1).

상기 (S1) 단계에서는 예를 들어 에탄올, 클로로포름 또는 THF 등과 같은 유기용매가 바람직하게 사용될 수 있다.In the step (S1), for example, an organic solvent such as ethanol, chloroform or THF may be preferably used.

다음으로, 상기 (S1) 단계에서 제조된 용액에 소디움 디에틸디티오카르바메이트 트리하이드레이트(sodium diethyldithiocarbamate trihydrate)를 첨가하고 혼합한다(S2).Next, sodium diethyldithiocarbamate trihydrate is added to the solution prepared in step (S1) and mixed (S2).

상기 (S2) 단계에서 소디움 디에틸디티오카르바메이트 트리하이드레이트의 첨가량은 2-브로모메틸-2,3-디하이드로-티에노[3,4-b][1,4]디옥신 1몰당 1.5 내지 2.5 몰인 것이 바람직하다. The amount of sodium diethyldithiocarbamate trihydrate added in the step (S2) per mol of 2-bromomethyl-2,3-dihydro-thieno [3,4-b] [1,4] dioxine It is preferable that it is 1.5-2.5 mol.

2-브로모메틸-2,3디하이드로-티에노[3,4-b][1,4]디옥신와 소디움 디에틸디티오카르바메이트 트리하이드레이트의 반응은 하기 반응식 3과 같이 이루어진다.The reaction of 2-bromomethyl-2,3dihydro-thieno [3,4-b] [1,4] dioxine with sodium diethyldithiocarbamate trihydrate is carried out as in Scheme 3 below.

[반응식 3]Scheme 3

Figure 112009039571110-PAT00005
Figure 112009039571110-PAT00005

다음으로, (S2) 단계에서 제조된 혼합용액에 물을 첨가하고 유기용매 상으로 추출한 후, 추출된 용액에서 수분을 제거하고 정제한다(S3).Next, water is added to the mixed solution prepared in step (S2) and extracted with an organic solvent, and then water is removed from the extracted solution and purified (S3).

상기 (S3) 단계에서 유기용매 상으로 추출 시 에틸 에테르, 에틸 아세테이트, 클로로포름 또는 THF 등의 유기용매가 바람직하게 사용될 수 있다. In the step (S3), an organic solvent such as ethyl ether, ethyl acetate, chloroform or THF may be preferably used when extracting the organic solvent.

상기 (S3) 단계에서 추출물의 정제 시에 예를 들어 컬럼 크로마토그래피(column chromatography) 등의 방법이 사용될 수 있다.For purification of the extract in the step (S3), for example, a method such as column chromatography may be used.

다음으로, (S3) 단계에서 얻어진 모노머를 용매에 용해시킨 후 FeCl3를 첨가하고 교반한다(S4).Next, after dissolving the monomer obtained in the step (S3) in a solvent, FeCl 3 is added and stirred (S4).

상기 (S4) 단계에서 모노머의 용해 시 예를 들어 클로로포름, THF 등의 유기용매가 바람직하게 사용될 수 있다.When dissolving the monomer in the step (S4), for example, an organic solvent such as chloroform and THF may be preferably used.

상기 (S3) 단계에서 모노머가 중합되면 하기 화학식 2와 같은 폴리티오펜 유도체가 중합된다.When the monomer is polymerized in the step (S3), a polythiophene derivative represented by Chemical Formula 2 is polymerized.

[화학식 2][Formula 2]

Figure 112009039571110-PAT00006
Figure 112009039571110-PAT00006

상기 (S3) 단계에서 FeCl3의 첨가량은 모노머 1몰당 2 내지 4몰인 것이 바람직하다.In the step (S3), the amount of FeCl 3 added is preferably 2 to 4 moles per mole of monomer.

다음으로, (S4) 단계에서 얻어진 용액에서 침전물을 필터링한다(S5). 본 단계를 통해 위 중합 과정의 생성물인 폴리티오펜 유도체를 수득할 수 있다. Next, the precipitate is filtered from the solution obtained in step (S4) (S5). Through this step, it is possible to obtain a polythiophene derivative which is a product of the above polymerization process.

본 단계는 예를 들어 상기 (S4) 단계에서 얻어진 용액을 메탄올에 넣고 침전물을 필터링할 수 있다.In this step, for example, the solution obtained in the step (S4) may be put in methanol, and the precipitate may be filtered out.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are provided to aid the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and it will be apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention. It is natural that such variations and modifications fall within the scope of the appended claims.

<< 실시예Example >>

실시예Example 1 One

4.5g의 3-bromoethyl thiophene을 60ml의 에탄올에 용해시킨 후, 8.6g의 sodium diethyldithiocarbamate trihydrate를 부가한다. 혼합용액을 실온에서 약 5시간 동안 교반시켰다. 반응 용액에 물을 첨가한 후에 ethyl ether을 사용하여 유기용매 상으로 추출하였다. MgSO4를 사용하여 남아 있는 수분을 제거하고, column chromatography 방법을 이용하여 정제하였다. 약 2.6g의 생성물을 얻었다. 합성한 monomer의 NMR 데이터는 도 1과 같다.After dissolving 4.5 g of 3-bromoethyl thiophene in 60 ml of ethanol, 8.6 g of sodium diethyldithiocarbamate trihydrate is added. The mixed solution was stirred at room temperature for about 5 hours. Water was added to the reaction solution, followed by extraction with an organic solvent using ethyl ether. The remaining water was removed using MgSO4, and purified using column chromatography. About 2.6 g of product was obtained. NMR data of the synthesized monomer is shown in FIG.

위에서 얻어진 생성물(모노머) 1.5g을 30ml의 클로로포름에 용해시켰다. 이 용액에 2g의 iron(Ⅲ) chloride를 넣고 24시간동안 교반시켰다. 반응 용액을 메탄올에 넣고 침전물을 필터링하여 약 0.6g의 생성물을 얻었다. 합성된 고분자의 NMR 데이터는 도 2와 같다. 합성된 고분자의 TGA는 도 3과 같다.1.5 g of the product (monomer) obtained above was dissolved in 30 ml of chloroform. 2 g of iron (III) chloride was added to the solution and stirred for 24 hours. The reaction solution was poured into methanol and the precipitate was filtered to give about 0.6 g of product. NMR data of the synthesized polymer is shown in FIG. 2. The TGA of the synthesized polymer is shown in FIG. 3.

실시예Example 2 2

1g의 3-bromoethyl thiophene을 40ml의 에탄올에 용해시킨 후, 3.2g의 sodium diethyldithiocarbamate trihydrate를 부가한다. 혼합용액을 실온에서 약 5시간 동안 교반시켰다. 반응 용액에 물을 첨가한 후에 ethyl ether을 사용하여 유기용매 상으로 추출하였다. MgSO4를 사용하여 남아 있는 수분을 제거하고, column chromatography 방법을 이용하여 정제하였다. 약 0.36g의 생성물을 얻었다.After dissolving 1 g of 3-bromoethyl thiophene in 40 ml of ethanol, 3.2 g of sodium diethyldithiocarbamate trihydrate are added. The mixed solution was stirred at room temperature for about 5 hours. Water was added to the reaction solution, followed by extraction with an organic solvent using ethyl ether. The remaining water was removed using MgSO 4 , and purified using column chromatography. About 0.36 g of product was obtained.

얻어진 monomer를 20ml의 클로로포름에 용해시켰다. 이 용액에 0.2g의 iron(Ⅲ) chloride를 넣고 24시간동안 교반시켰다. 반응 용액을 메탄올에 넣고 침 전물을 필터링하여 약 0.15g의 생성물을 얻었다. The obtained monomer was dissolved in 20 ml of chloroform. 0.2 g of iron (III) chloride was added to the solution and stirred for 24 hours. The reaction solution was poured into methanol and the precipitate was filtered to give about 0.15 g of product.

<< 실험예Experimental Example >>

실험예Experimental Example 1 One

실시예 1에 따라 제조된 폴리티오펜 유도체를 약 250 ℃에서 30분간 가열하여 경화된 박막을 얻었다. 열경화 전후의 UV spectrum은 도 4와 같다. UV spectrum으로부터 경화 후 conjugation length가 길어졌음을 알 수 있다.The polythiophene derivative prepared according to Example 1 was heated at about 250 ° C. for 30 minutes to obtain a cured thin film. UV spectrum before and after thermosetting is shown in FIG. It can be seen from the UV spectrum that the conjugation length became longer after curing.

실험예Experimental Example 2 2

실시예 1에 따라 제조된 폴리티오펜 유도체를 약 250 ℃에서 30분간 가열하여 경화된 박막을 얻었다. 열경화 전후의 UV spectrum은 도 5와 같다. UV spectrum으로부터 경화 후 conjugation length가 길어졌음을 알 수 있다.The polythiophene derivative prepared according to Example 1 was heated at about 250 ° C. for 30 minutes to obtain a cured thin film. UV spectrum before and after thermosetting is shown in FIG. It can be seen from the UV spectrum that the conjugation length became longer after curing.

실험예 1, 2에서 경화 후 conjugation length가 길어진 것은 폴리티오펜 유도체의 사이드 체인이 제거되었기 때문으로, 이를 통해 전기전도성이 향상된다.The long conjugation length after curing in Experimental Examples 1 and 2 was because the side chain of the polythiophene derivative was removed, thereby improving the electrical conductivity.

도 1은 실시예 1에서 합성한 monomer의 NMR 데이터를 나타낸 도면이다.1 is a diagram showing NMR data of a monomer synthesized in Example 1. FIG.

도 2는 실시예 1에서 합성된 폴리티오펜 유도체의 NMR 데이터를 나타낸 도면이다. 2 is a diagram showing NMR data of a polythiophene derivative synthesized in Example 1. FIG.

도 3은 실시예 1에서 합성된 폴리티오펜 유도체의 TGA를 나타낸 도면이다.3 is a diagram showing a TGA of a polythiophene derivative synthesized in Example 1. FIG.

도 4는 실시예 1에 따라 제조된 폴리티오펜 유도체의 열경화 전후의 UV spectrum을 나타낸 도면이다. 4 is a view showing the UV spectrum before and after thermosetting of the polythiophene derivative prepared according to Example 1.

도 5는 실시예 2에 따라 제조된 폴리티오펜 유도체의 열경화 전후의 UV spectrum을 나타낸 도면이다. 5 is a view showing the UV spectrum before and after thermosetting of the polythiophene derivative prepared according to Example 2.

Claims (18)

(S1) 3-브로모에틸 티오펜(3-bromoethyl thiophene)을 용매에 용해시키는 단계;(S1) dissolving 3-bromoethyl thiophene in a solvent; (S2) 상기 (S1) 단계에서 제조된 용액에 소디움 디에틸디티오카르바메이트 트리하이드레이트(sodium diethyldithiocarbamate trihydrate)를 첨가하고 혼합하는 단계;(S2) adding and mixing sodium diethyldithiocarbamate trihydrate to the solution prepared in step (S1); (S3) 상기 (S2) 단계에서 제조된 혼합용액에 물을 첨가하고 유기용매 상으로 추출한 후, 추출된 용액에서 수분을 제거하고 정제하는 단계;(S3) adding water to the mixed solution prepared in the step (S2) and extracting the organic solvent, and then removing and purifying water from the extracted solution; (S4) 상기 (S3) 단계에서 얻어진 모노머를 용매에 용해시킨 후 FeCl3를 첨가하고 교반하는 단계;(S4) dissolving the monomer obtained in the step (S3) in a solvent, adding and stirring FeCl 3 ; (S5) 상기 (S4) 단계에서 얻어진 용액에서 침전물을 필터링하는 단계를 포함하는 것을 특징으로 하는 폴리티오펜 유도체의 제조방법.(S5) Method for producing a polythiophene derivative, characterized in that it comprises the step of filtering the precipitate in the solution obtained in the step (S4). 제1항에 있어서,The method of claim 1, 상기 (S1) 단계에서 사용된 용매는 에탄올, 클로로포름 및 THF로 이루어진 군에서 선택되는 것을 특징으로 하는 폴리티오펜 유도체의 제조방법.The solvent used in the step (S1) is a method for producing a polythiophene derivative, characterized in that selected from the group consisting of ethanol, chloroform and THF. 제1항에 있어서,The method of claim 1, 상기 (S4) 단계에서 사용된 용매는 클로로포름 및 THF로 이루어진 군에서 선택되는 것을 특징으로 하는 폴리티오펜 유도체의 제조방법.The solvent used in the step (S4) is a method for producing a polythiophene derivative, characterized in that selected from the group consisting of chloroform and THF. 제1항에 있어서,The method of claim 1, 상기 (S3) 단계에서 유기용매 상으로 추출 시 사용된 유기용매는 에틸 에테르, 에틸 아세테이트, 클로로포름 및 THF로 이루어진 군에서 선택되는 것을 특징으로 하는 폴리티오펜 유도체의 제조방법.The organic solvent used in the extraction into the organic solvent in the step (S3) is a method for producing a polythiophene derivative, characterized in that selected from the group consisting of ethyl ether, ethyl acetate, chloroform and THF. 제1항에 있어서,The method of claim 1, 소디움 디에틸디티오카르바메이트 트리하이드레이트의 첨가량은 3-브로모에틸 티오펜(3-bromoethyl thiophene) 1몰당 1.5 내지 2.5 몰인 것을 특징으로 하는 폴리티오펜 유도체의 제조방법.A method for producing a polythiophene derivative, characterized in that the amount of sodium diethyldithiocarbamate trihydrate is 1.5 to 2.5 moles per mole of 3-bromoethyl thiophene. 제1항에 있어서,The method of claim 1, 상기 (S3) 단계에서 사용된 정제방법은 컬럼 크로마토그래피(column chromatography)인 것을 특징으로 하는 폴리티오펜 유도체의 제조방법.The purification method used in the step (S3) is a method for producing a polythiophene derivative, characterized in that the column (column chromatography). 제1항에 있어서,The method of claim 1, 상기 (S5) 단계는 상기 (S4) 단계에서 얻어진 용액을 메탄올에 넣고 침전물을 필터링하는 단계인 것을 특징으로 하는 폴리티오펜 유도체의 제조방법.The step (S5) is a method for producing a polythiophene derivative, characterized in that the step of filtering the precipitate by putting the solution obtained in the step (S4) to methanol. 제1항 내지 제7항 중 선택된 어느 한 항에 따른 폴리티오펜 유도체의 제조방법에 따라 제조된 폴리티오펜 유도체.A polythiophene derivative prepared according to the method for producing a polythiophene derivative according to any one of claims 1 to 7. 하기 화학식 1로 표시되는 폴리티오펜 유도체.Polythiophene derivative represented by the following formula (1). [화학식 1][Formula 1]
Figure 112009039571110-PAT00007
Figure 112009039571110-PAT00007
(S1) 2-브로모메틸-2,3디하이드로-티에노[3,4-b][1,4]디옥신을 용매에 용해시키는 단계;(S1) dissolving 2-bromomethyl-2,3dihydro-thieno [3,4-b] [1,4] dioxine in a solvent; (S2) 상기 (S1) 단계에서 제조된 용액에 소디움 디에틸디티오카르바메이트 트리하이드레이트(sodium diethyldithiocarbamate trihydrate)를 첨가하고 혼합하는 단계;(S2) adding and mixing sodium diethyldithiocarbamate trihydrate to the solution prepared in step (S1); (S3) 상기 (S2) 단계에서 제조된 혼합용액에 물을 첨가하고 유기용매 상으로 추출한 후, 추출된 용액에서 수분을 제거하고 정제하는 단계;(S3) adding water to the mixed solution prepared in the step (S2) and extracting the organic solvent, and then removing and purifying water from the extracted solution; (S4) 상기 (S3) 단계에서 얻어진 모노머를 용매에 용해시킨 후 FeCl3를 첨가하고 교반하는 단계;(S4) dissolving the monomer obtained in the step (S3) in a solvent, adding and stirring FeCl 3 ; (S5) 상기 (S4) 단계에서 얻어진 용액에서 침전물을 필터링하는 단계를 포함하는 것을 특징으로 하는 폴리티오펜 유도체의 제조방법.(S5) Method for producing a polythiophene derivative, characterized in that it comprises the step of filtering the precipitate in the solution obtained in the step (S4). 제10항에 있어서,The method of claim 10, 상기 (S1) 단계에서 사용된 용매는 에탄올, 클로로포름 및 THF로 이루어진 군에서 선택되는 것을 특징으로 하는 폴리티오펜 유도체의 제조방법.The solvent used in the step (S1) is a method for producing a polythiophene derivative, characterized in that selected from the group consisting of ethanol, chloroform and THF. 제10항에 있어서,The method of claim 10, 상기 (S4) 단계에서 사용된 용매는 클로로포름 및 THF로 이루어진 군에서 선택되는 것을 특징으로 하는 폴리티오펜 유도체의 제조방법.The solvent used in the step (S4) is a method for producing a polythiophene derivative, characterized in that selected from the group consisting of chloroform and THF. 제10항에 있어서,The method of claim 10, 상기 (S3) 단계에서 유기용매 상으로 추출 시 사용된 유기용매는 에틸 에테르, 에틸 아세테이트, 클로로포름 및 THF로 이루어진 군에서 선택되는 것을 특징으로 하는 폴리티오펜 유도체의 제조방법.The organic solvent used in the extraction into the organic solvent in the step (S3) is a method for producing a polythiophene derivative, characterized in that selected from the group consisting of ethyl ether, ethyl acetate, chloroform and THF. 제10항에 있어서,The method of claim 10, 소디움 디에틸디티오카르바메이트 트리하이드레이트의 첨가량은 2-브로모메틸-2,3디하이드로-티에노[3,4-b][1,4]디옥신 1몰당 1.5 내지 2.5 몰인 것을 특징으로 하는 폴리티오펜 유도체의 제조방법.The amount of sodium diethyldithiocarbamate trihydrate added is 1.5 to 2.5 moles per mole of 2-bromomethyl-2,3 dihydro-thieno [3,4-b] [1,4] dioxine Method of producing a polythiophene derivative. 제10항에 있어서,The method of claim 10, 상기 (S3) 단계에서 사용된 정제방법은 컬럼 크로마토그래피(column chromatography)인 것을 특징으로 하는 폴리티오펜 유도체의 제조방법.The purification method used in the step (S3) is a method for producing a polythiophene derivative, characterized in that the column (column chromatography). 제10항에 있어서,The method of claim 10, 상기 (S5) 단계는 상기 (S4) 단계에서 얻어진 용액을 메탄올에 넣고 침전물을 필터링하는 단계인 것을 특징으로 하는 폴리티오펜 유도체의 제조방법.The step (S5) is a method for producing a polythiophene derivative, characterized in that the step of filtering the precipitate by putting the solution obtained in the step (S4) to methanol. 제10항 내지 제16항 중 선택된 어느 한 항에 따른 폴리티오펜 유도체의 제조방법에 따라 제조된 폴리티오펜 유도체.A polythiophene derivative prepared according to the method for producing a polythiophene derivative according to any one of claims 10 to 16. 하기 화학식 2로 표시되는 폴리티오펜 유도체.Polythiophene derivative represented by the following formula (2). [화학식 2][Formula 2]
Figure 112009039571110-PAT00008
Figure 112009039571110-PAT00008
KR1020090058503A 2009-06-29 2009-06-29 Method of preparing polythiophene derivative and polythiophene derivative prepared using the same KR101089635B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090058503A KR101089635B1 (en) 2009-06-29 2009-06-29 Method of preparing polythiophene derivative and polythiophene derivative prepared using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090058503A KR101089635B1 (en) 2009-06-29 2009-06-29 Method of preparing polythiophene derivative and polythiophene derivative prepared using the same

Publications (2)

Publication Number Publication Date
KR20110001106A true KR20110001106A (en) 2011-01-06
KR101089635B1 KR101089635B1 (en) 2011-12-06

Family

ID=43609713

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090058503A KR101089635B1 (en) 2009-06-29 2009-06-29 Method of preparing polythiophene derivative and polythiophene derivative prepared using the same

Country Status (1)

Country Link
KR (1) KR101089635B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102188113B1 (en) * 2019-06-04 2020-12-07 전남대학교산학협력단 Naringenin Based Thermosets and manufacturing method of it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102188113B1 (en) * 2019-06-04 2020-12-07 전남대학교산학협력단 Naringenin Based Thermosets and manufacturing method of it

Also Published As

Publication number Publication date
KR101089635B1 (en) 2011-12-06

Similar Documents

Publication Publication Date Title
US6166172A (en) Method of forming poly-(3-substituted) thiophenes
JP5111724B2 (en) Poly (benzodithiophene)
JP5107712B2 (en) Fused thiophene, method for producing condensed thiophene, and method of using the same
JP6261478B2 (en) Soluble conductive polymer
Ge et al. Synthesis and characterization of novel soluble fluorinated aromatic polyamides derived from fluorinated isophthaloyl dichlorides and aromatic diamines
JP5474299B2 (en) Thieno [2,3-b] thiophene monomers, oligomers and polymers
JP2010520322A (en) Condensed thiophene, method for producing condensed thiophene, and method of use
US6806374B2 (en) Mono-, oligo- and poly-3-(1,1-difluoroalkyl)thiophenes and their use as charge transport materials
Hatamzadeh et al. Synthesis and characterization of polystyrene-graft-polythiophene via a combination of atom transfer radical polymerization and Grignard reaction
JP5618175B2 (en) New heterocyclic aromatic polymers
KR101505490B1 (en) Liquid crystalline epoxy compound with flexible linkage and method the same
Qiang et al. Hyperbranched polyaniline: a new conductive polyaniline with simultaneously good solubility and super high thermal stability
WO2010007648A1 (en) Novel heterocyclic aromatic compound and polymer
JP6154784B2 (en) Catalyst-free polymerization of 3,4-alkylenedioxypyrrole and 3,4-alkylenedioxyfuran
JP2009203447A (en) POLYMER CONTAINING BENZOTHIENO [3,2-b] BENZOTHIOPHENE STRUCTURE
KR101089635B1 (en) Method of preparing polythiophene derivative and polythiophene derivative prepared using the same
JP2004115695A (en) Method for producing poly(3-substituted thiophene)
Wang et al. Synthesis and characterization of novel aromatic polyamides containing 3-trifluoromethyl-substituted triphenylamine
Kamada et al. Conjugated helical polymers: End-group control and coupling reactions
Antoun et al. A Simple Route to Rod‐Coil Block Copolymers of Oligo‐and Polythiophenes with PMMA and Polystyrene
KR101478828B1 (en) Method for the terminal functionalization of polyalkylthiophene by using a click chemistry reaction
KR101188340B1 (en) Regioregular pedot derivatives and preparation method thereof
JP3164671B2 (en) Arylene vinylene polymer and method for producing the same
KR101930507B1 (en) Preparation Method for polythiophene or polythiophene derivatives using eutectic solvents
KR102560214B1 (en) Method for producing conductive polymer applicable to organic transistors based on cyclopentadithiophene

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141110

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151113

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161121

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170803

Year of fee payment: 18