KR20100138503A - 전기방사를 이용한 개선된 폴리비닐알코올 나노섬유 멤브레인의 제조방법 - Google Patents

전기방사를 이용한 개선된 폴리비닐알코올 나노섬유 멤브레인의 제조방법 Download PDF

Info

Publication number
KR20100138503A
KR20100138503A KR1020090057069A KR20090057069A KR20100138503A KR 20100138503 A KR20100138503 A KR 20100138503A KR 1020090057069 A KR1020090057069 A KR 1020090057069A KR 20090057069 A KR20090057069 A KR 20090057069A KR 20100138503 A KR20100138503 A KR 20100138503A
Authority
KR
South Korea
Prior art keywords
polyvinyl alcohol
water
electrospinning
mixed solvent
nanofiber membrane
Prior art date
Application number
KR1020090057069A
Other languages
English (en)
Other versions
KR101033278B1 (ko
Inventor
이승진
정혜진
정미라
심인경
Original Assignee
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Priority to KR1020090057069A priority Critical patent/KR101033278B1/ko
Publication of KR20100138503A publication Critical patent/KR20100138503A/ko
Application granted granted Critical
Publication of KR101033278B1 publication Critical patent/KR101033278B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4309Polyvinyl alcohol
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/025Types of fibres, filaments or particles, self-supporting or supported materials comprising nanofibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/219Specific solvent system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/39Electrospinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/50Control of the membrane preparation process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/34Molecular weight or degree of polymerisation
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/04Filters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

본 발명은 전기방사를 이용한 개선된 폴리비닐알코올 나노섬유 멤브레인의 제조방법에 관한 것으로, 보다 상세하게는 폴리비닐알코올을 아세톤/물 또는 알코올/물의 혼합용매에 용해시켜 폴리비닐알코올 용액을 제조하는 단계(단계 1); 상기 단계 1에서 제조된 폴리비닐알코올용액을 전기방사하여 나노섬유 멤브레인을 형성하는 단계(단계 2); 및 상기 단계 2에서 형성된 나노섬유 멤브레인을 가교시키는 단계(단계 3)를 포함하는 개선된 폴리비닐알코올 나노섬유 멤브레인의 제조방법에 관한 것이다. 폴리비닐알코올을 적절한 비율의 아세톤/물 혼합용매 또는 알코올/물 혼합용매에 용해시켜 방사함으로써 노즐 끝에서 손실되는 용액의 양도 줄어들고, 방사 속도도 개선되며, 제조된 멤브레인의 섬유 형태는 더욱 일정해지고 비드형 섬유의 비율도 적어짐으로써 고품질의 폴리비닐알코올 나노섬유를 제조할 수 있다.
폴리비닐알코올, PVA, 전기방사, 나노섬유, 알코올/물, 아세톤/물 혼합용매

Description

전기방사를 이용한 개선된 폴리비닐알코올 나노섬유 멤브레인의 제조방법{Improved preparation method of PVA nanofiber membrane using electrospinning}
본 발명은 전기방사를 이용한 개선된 폴리비닐알코올 나노섬유 멤브레인의 제조방법에 관한 것이다.
나노섬유의 생산을 위한 전기방사법의 과학적 토대는 1882년 Raleigh가 액체의 낙하시 정전기력이 표면장력을 극복할 수 있다는 계산으로부터 발전되어 왔다.
전기방사는 수 kV 이상의 고전압에 의한 정전기력에 의해서 고분자 용액 또는 고분자 용융체가 저장소(reservoir)의 노즐을 통해 그라운드(ground) 처리가 되어있는 집적판으로 이동하면서 수십에서 수백 나노 크기의 단면적을 갖도록 연신되는 기술로 알려져 있다. 즉, 외부에서 가해진 전기장이 특정 임계값을 넘어가면 노즐에서 압출된 고분자 용액의 표면에서 발생되는 전하가 고분자 용액의 표면장력보다 커지므로 액체 분사물이 발생된다. 이렇게 발생된 극세사는 전기적으로 발생 된 굴곡 불안정성을 거쳐서 초극세사로 연신된다. 이러한 공정은 전기장의 크기와 고분자 용액의 농도를 다양화함으로써 섬유의 두께를 조절할 수 있다.
전기방사법에 의해 제조된 섬유는 직경이 마이크로미터 두께에서 나노미터 두께로 줄어들면 체적에 대한 표면적 비율의 증가와 표면 기능성 향상, 장력을 비롯한 기계적 물성의 향상 등 전혀 새로운 특성들이 나타난다.
이러한 방식으로 생산되는 나노섬유는 필터소재(EP1483034, US6,875,256), 광화학 센서소재, 카본 나노튜브 등 탄소소재(US2005/0025974, EP1500677), 생체 의학용 소재(US4,043,331, US4,878,908, WO 05/039664, WO 05/037339), 조직 공학용 소재(WO 05/026530, WO 05/047493), 약물 전달용 소재(WO 04/014304), DNA 제조용 기초소재 및 미용소재(WO 01/026610) 등으로 적용 범위가 광범위하다.
전기방사 방식으로 제조된 나노섬유가 의료용 또는 미용소재로 사용되기 위해서는 그 재료가 되는 고분자 물질이 인체 피부에 무해하여야 한다. 또한 고분자 물질을 용해시키는데 사용된 용매는 전기방사 과정 중에 빠르게 증발하므로 제조된 나노섬유 내에는 거의 잔류하지 않으나, 인체에 무해한 용매를 사용하는 것이 더욱 바람직하다.
이러한 고분자 물질의 하나로 선택될 수 있는 폴리비닐알코올(Polyvinylalcohol; PVA)은 생체 적합한 친수성 고분자 소재로 물리적, 기계적 물성 및 내화학성이 우수하기 때문에 약물전달 시스템이나 멤브레인으로 사용될 수 있다.
폴리비닐알코올은 생체 적합성이 뛰어나며, 제조하기 쉽고, 팽윤성이 있어서 상처의 삼출물을 흡수하기 적합하고, -OH기를 가지고 있어서 개질이 용이하다. 상기 폴리비닐알코올은 현재 하이드로겔 형태로 연골의 조직 재생, 유방 확대 등에 응용되고 있으며, C,H,O로 구성되어 있으므로 고분자가 생분해될 때 분해 산출물은 인체에 해롭지 않아 독성이 적다. 또한, 전기 방사법에 의한 나노섬유 형태의 멤브레인은 공극을 유지하여 혈관 신생 등에 유리하며, 형태학적으로 세포 외 기질과 유사한 구조를 가지므로 생체 적합성이 뛰어나다.
그러나, 폴리비닐알코올로 제조된 섬유의 뛰어난 물성에도 불구하고 물에 대한 용해도가 높기 때문에 소재의 응용에 제약을 받아왔다. 물리, 화학적 처리를 통해 이러한 문제를 해결하기 위한 시도가 여러 연구 논문 및 특허를 통해 발표되었고 그 중 대표적인 방법이 열처리 또는 결정화법에 의한 물리적 가교법과 가교제를 첨가한 화학적 가교방법이 그것이다.
폴리비닐알코올 하이드로겔을 제조하는 물리적 방법으로 i) 고농도 PVA 수용액의 동결, ii) 진공 하에서 폴리비닐알코올 수용액의 부분 동결건조, iii) PVA 수용액의 동결 및 해빙의 반복, iv) 폴리비닐알코올 수용액의 낮은 온도에서의 결정화, v) 폴리비닐알코올 수용액의 동결 및 해빙 후 방사선을 조사시켜 하이드로겔 제조, vi) 알코올을 이용한 결정화법, vii) 열가교 등이 사용된다.
폴리비닐알코올 하이드로겔을 제조하는 화학적 방법으로 보론산, 디카르복실산, 글루타알데히드 등과 같은 단분자 이작용기 가교제를 사용하여 겔을 형성시키 는 방법이 있다(KR2004-19982, KR2005-94559, KR2005-112432, KR2006-9051).
상기 전기방사법을 이용한 폴리비닐알코올 나노섬유와 관련한 종래기술은 다음과 같다.
대한민국 특허등록 제703607호에서는 폴리비닐알코올 수지를 증류수에 용해하여 소정의 고형성분을 가지는 방사용액을 형성하는 용해 단계; 상기 용해 단계에서 형성된 방사용액을 전기방사장치의 전압이 걸려있는 노즐을 통해 방사하여 컬렉터(COLLECTOR)상에 집적하여 폴리비닐알코올 나노 웹(WEB)을 생성하는 전기방사 단계; 및 상기 전기방사 단계에서 생성된 폴리비닐알코올 나노 웹을 유리전이온도 이상의 온도로부터 결정화온도 이하의 온도로 열처리하는 열처리 단계;를 포함하는 폴리비닐알코올 나노 섬유 부직포의 제조방법을 개시하고 있다.
대한민국 특허등록 제841463호에서는 수산기를 함유한 친수성 고분자의 가교를 위한 가교결합제에 있어서, 알루미늄 아세테이트 1몰 당 1/3몰의 붕산이 결합된 붕산으로 안정화된 알루미늄 아세테이트인 폴리비닐알콜의 가교결합제, 이를 이용하여 제조되는폴리비닐알콜 제품 및 이를 제조하는 방법을 개시하고 있다.
대한민국 특허등록 제835082호에서는 폴리비닐알코올, 폴리아크릴산 및 폴리에틸렌옥사이드의 나노섬유 집합체로 이루어진 나노섬유 웹 및 전기방사를 통한 상기 나노섬유의 제조방법을 개시하고 있다.
상기 종래의 전기방사를 이용한 폴리비닐알코올 나노섬유 제조방법은 대부분 용매로서 물(증류수)을 사용하는 수계 전기방사였다. 그러나, 폴리비닐알코올을 수계 전기방사하게 되면, 방사부의 노즐 끝에서 손실되는 용액의 양이 많고, 컬렉터에 집적되는 속도가 느리고 양도 적을 뿐 아니라 멤브레인의 일정한 두께를 유지하기 위해서는 방사 시간이 많이 걸리는 문제가 있다.
이에 본 발명자들은 전기방사를 이용한 폴리비닐알코올 나노섬유 제조시 효율적으로 전기방사할 수 있는 방법을 연구하던 중, 폴리비닐알코올을 적절한 비율의 아세톤/물 혼합용매 또는 알코올/물 혼합용매에 용해시켜 방사할 때에 노즐 끝에서 손실되는 용액의 양도 줄어들고, 방사 속도도 개선되며, 제조된 멤브레인의 섬유 형태는 더욱 일정해지고 비드형 섬유의 비율도 적어짐으로써 고품질의 폴리비닐알코올 나노섬유를 제조할 수 있음을 확인하고 본 발명을 완성하였다.
본 발명의 목적은 전기방사를 이용한 개선된 폴리비닐알코올 나노섬유 멤브레인의 제조방법을 제공하는 데 있다.
본 발명의 다른 목적은 상기 제조방법으로 제조된 폴리비닐알코올 나노섬유 멤브레인을 제공하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명은
폴리비닐알코올을 아세톤/물 또는 알코올/물의 혼합용매에 용해시켜 폴리비닐알코올 용액을 제조하는 단계(단계 1);
상기 단계 1에서 제조된 폴리비닐알코올용액을 전기방사하여 나노섬유 멤브레인을 형성하는 단계(단계 2); 및
상기 단계 2에서 형성된 나노섬유 멤브레인을 가교시키는 단계(단계 3)를 포함하는 폴리비닐알코올 개선된 나노섬유 멤브레인의 제조방법을 제공한다.
또한, 본 발명은 상기 제조방법으로 제조된 폴리비닐알코올 나노섬유 멤브레인을 제공한다.
본 발명에 의하면, 폴리비닐알코올을 적절한 비율의 아세톤/물 혼합용매 또는 알코올/물 혼합용매에 용해시켜 방사함으로써 노즐 끝에서 손실되는 용액의 양도 줄어들고, 방사 속도도 개선되며, 제조된 멤브레인의 섬유 형태는 더욱 일정해지고 비드형 섬유의 비율도 적어짐으로써 고품질의 폴리비닐알코올 나노섬유를 제조할 수 있다.
이하, 본 발명을 상세하게 설명한다.
본 발명은
폴리비닐알코올을 아세톤/물 또는 알코올/물의 혼합용매에 용해시켜 폴리비닐알코올 용액을 제조하는 단계(단계 1);
상기 단계 1에서 제조된 폴리비닐알코올용액을 전기방사하여 나노섬유 멤브레인을 형성하는 단계(단계 2); 및
상기 단계 2에서 형성된 나노섬유 멤브레인을 가교시키는 단계(단계 3)를 포함하는 폴리비닐알코올 나노섬유 멤브레인의 제조방법을 제공한다.
먼저, 상기 단계 1은 폴리비닐알코올을 아세톤/물 또는 알코올/물의 혼합용매에 용해시켜 폴리비닐알코올 용액을 제조하는 단계이다.
본 발명에 따른 제조방법에 있어서, 상기 폴리비닐알코올은 분자량 30,000~70,000, 중합도 200~7,000, 검화도 85 mol% 이상인 것을 사용하는 것이 바람직하다.
본 발명에 따른 제조방법에 있어서, 상기 폴리비닐알코올은 아세톤/물 또는 알코올/물의 혼합용매에 용해시킨다. 이때, 알코올은 메탄올, 에탄올, 프로판올 등의 저급 알코올을 사용할 수 있으나, 이에 제한되지 않는다.
본 발명에 따른 제조방법에 있어서, 상기 아세톤/물 또는 알코올/물의 혼합용매의 혼합비율은 아세톤 또는 알코올:물=2:8~5:5인 것이 바람직하다. 상기 범위를 벗어나는 경우에는 아세톤 또는 알코올이 폴리비닐알코올 용액에 고르게 분산되지 않거나 수계 단독 방사와 같이 비드형 섬유의 출현이 많아지는 문제가 있다.
본 발명에 따른 제조방법에 있어서, 상기 혼합용매에 용해되는 폴리비닐알코올의 함량은 15~25 중량%인 것이 바람직하다. 만일 상기 폴리비닐알코올의 함량이 15 중량% 미만이면 원치 않는 비드섬유가 형성될 수 있고, 25 중량%를 초과하면 점액성이 커져 일정 굵기의 나노섬유를 얻지 못한다는 문제가 있다.
다음으로, 상기 단계 2는 상기 단계 1에서 제조된 폴리비닐알코올용액을 전기방사하여 나노섬유 멤브레인을 형성하는 단계이다.
본 발명에 따른 제조방법에 있어서, 상기 전기방사시 전압은 15~25 kV으로 조절하고, 유속은 0.01~0.04 ml/min으로 조절하는 것이 바람직하다. 상기 전압이 15 kV 미만인 경우에는 섬유 형태가 아닌 입자 형태로 분사되는 문제가 있으며, 25 kV를 초과하는 경우에는 안전상의 문제가 있을 수 있다. 또한, 상기 유속이 0.01 ml/min 미만이면 속도가 너무 느려서 방사가 오래 걸리는 문제가 있고, 0.04 ml/min을 초과하는 경우에는 방사시 폴리비닐알코올 용액의 손실(loss)이 커지는 문제가 있다.
상기 조건에서 얻어진 멤브레인은 도 2에 나타낸 바와 같이 100~300 nm의 균일한 두께를 갖는 나노섬유가 부직포 형태로 서로 얽혀있는 구조를 갖는다.
다음으로, 상기 단계 3은 상기 단계 2에서 형성된 나노섬유 멤브레인을 가교시키는 단계이다.
상기 단계 2에서 형성된 폴리비닐알코올 나노섬유 멤브레인은 물에 쉽게 용해되어 피부의 적은 습기에 의해서도 반응하므로 바로 적용하기가 어려우므로 가교처리를 통하여 불용성화 시키는 것이 바람직하다.
본 발명에 따른 제조방법에 있어서, 상기 가교방법은 당업계에서 통상적으로 사용하는 방법을 이용할 수 있으며, 예를 들면 물리적 가교방법 또는 화학적 가교방법을 사용할 수 있다. 상기 물리적 가교방법으로는 유리전이온도 이상의 온도로부터 결정화온도 이하의 온도로 열처리하는 방법, 동결건조 등의 결정화법, 방사선 조사 등을 사용할 수 있고, 상기 화학적 가교방법으로는 보론산, 디카르복실산, 글루타알데히드 등의 가교제를 첨가하여 가교하는 방법을 사용할 수 있으나, 이에 제한되지 않는다.
상기 방법으로 가교처리한 폴리비닐알코올 나노섬유 멤브레인은 도 4에 나타낸 바와 같이, 물에 넣어도 용해되지 않기 때문에 마스크팩 소재, 상처드레싱, 인 공 피부, 약물전달 재료 및 이온교환 멤브레인 등의 기능성 소재로 사용될 수 있다.
또한, 본 발명은 상기 제조방법으로 제조된 폴리비닐알코올 나노섬유 멤브레인을 제공한다.
본 발명에 따라 제조된 폴리비닐알코올 나노섬유 멤브레인과 종래 폴리비닐알코올을 물에 용해시켜 전기방사한 나노섬유 멤브레인을 비교한 결과, 상기 폴리비닐알코올을 물에 용해시켜 전기방사한 나노섬유는 섬유 두께가 일정하지 않고, 비드형으로 섬유가 뭉친 모습이 보이나(도 2), 본 발명에 따라 폴리비닐알코올을 알코올/물 또는 아세톤/물 혼합용매에 용해시켜 전기방사한 나노섬유는 섬유 두께가 일정하며 비드형의 섬유도 거의 나타나지 않음을 알 수 있다(도 1). 따라서 본 발명은 개선된 고품질의 폴리비닐알코올 나노섬유 멤브레인을 제조할 수 있으며, 상기 제조된 폴리비닐알코올 나노섬유 멤브레인은 마스크팩 소재, 상처드레싱, 인공 피부, 약물전달 재료 및 이온교환 멤브레인 등의 기능성 소재로 사용될 수 있다.
이하, 본 발명을 하기의 실시예에 의해 더욱 상세히 설명한다. 단, 하기의 실시예는 본 발명을 예시할 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.
< 실시예 > 폴리비닐알코올 나노섬유 멤브레인 제조
분자량 30,000~70,000, 중합도 200~7,000, 검화도 85 mol% 이상인 폴리비닐알코올을 아세톤/물(1:5) 혼합용매에 15~25%의 농도로 용해시켰다. 용해된 폴리비닐알코올 용액을 전기방사장치(Model 110, KD Scientific)를 이용하여 방사부와 적층부 간의 거리를 10~30 cm로 이격하고, 적용전압을 15~30 kV로 조절하고, 폴리비닐알코올 용액의 유속을 0.02~0.05 ml/min으로 조절하여 전기방사함으로써 나노섬유 멤브레인을 제조하였다. 이후, HCl과 같은 산을 첨가한 아세톤 용매에 글루타알데히드 3~10 ml를 넣은 글루타알데히드 용액에 상기에서 제조된 폴리비닐알코올 나노섬유 멤브레인을 넣고 15~30시간 동안 침지시킨 후, 증류수 또는 글리신 수용액에 넣고 2~3일 동안 방치시켜 세척함으로써 100~300 nm 두께의 폴리비닐알코올 나노섬유 멤브레인을 제조하였다.
< 비교예 >
폴리비닐알코올을 증류수에 용해시켜 전기방사하는 것을 제외하고는 실시예와 동일한 방법으로 수행하였다.
<관찰>
상기 실시예와 비교예에서 가교처리 전 제조된 폴리비닐알코올 나노섬유 멤브레인을 화상분석기으로 관찰하여 1도 2에 나타내었다.
도 1도 2에 나타낸 바와 같이, 폴리비닐알코올을 물에 용해시켜 전기방 사한 나노섬유는 섬유 두께가 일정하지 않고, 비드형으로 섬유가 뭉친 모습이 보이나(도 2), 본 발명에 따라 폴리비닐알코올을 아세톤/물 혼합용매에 용해시켜 전기방사한 나노섬유는 섬유 두께가 일정하며 비드형의 섬유도 거의 나타나지 않았다(도 1).
도 3은 상기 도 1의 폴리비닐알코올 나노섬유 멤브레인을 가교처리한 후의 화상분석기 사진이며, 도 4는 상기 도 3의 폴리비닐알코올 나노섬유 멤브레인을 물에 넣은 후 화상분석기으로 관찰한 사진이다.
폴리비닐알코올은 물에 대한 용해도가 강하여 전기방사로 제조한 폴리비닐알코올 나노섬유 멤브레인은 물에 닿으면 바로 용해되었으나, 가교 후에는 도 4에 나타낸 바와 같이 물에 용해되지 않음을 알 수 있다.
< 실험예 1> 전기방사 개선효과 측정
본 발명에 따른 아세톤/물 또는 알코올/물 혼합용매를 사용한 전기방사의 개선효과를 알아보기 위하여 다음과 같은 실험을 수행하였다.
상기 실시예와 비교예에서 폴리비닐알코올 용액 100 ml를 전기방사하여 나노섬유 멤브레인 제조시 전기방사장치(Model 110, KD Scientific)의 노즐 끝에서의 폴리비닐알코올 용액의 손실량 및 방사속도를 측정하여 표 1에 나타내었다.
방사시 용액의 손실량(%) 방사속도 (ml/min)
실시예 0~15 >0.03
비교예 40~50 <0.01
표 1에 나타낸 바와 같이, 용매로서 물을 이용한 수계 방사(비교예)는 노즐 끝에서 용액이 분사되지 않고 바로 물방울로 떨어짐으로써 적층부에서 집적이 잘 이루어지지 않으며, 방사 시 용액의 손실량이 40~50%로 나타나고, 방사속도는 0.01 ml/min이하로 매우 낮게 나타났으나, 본 발명에 따라 물에 알코올 또는 아세톤을 혼합한 혼합용매를 사용하는 경우에는 방사시 용액이 거의 손실되지 않고 집적되었으며 방사속도 또한 0.03 ml/min 이상으로 개선되는 것으로 나타났다.
따라서 본 발명에 따른 방법은 폴리비닐알코올을 적절한 비율의 아세톤/물 혼합용매 또는 알코올/물 혼합용매에 용해시켜 방사함으로써 노즐 끝에서 손실되는 용액의 양도 줄어들고, 방사 속도도 개선되며, 제조된 멤브레인의 섬유 형태는 더욱 일정해지고 비드형 섬유의 비율도 적어짐으로써 고품질의 폴리비닐알코올 나노섬유를 제조할 수 있다.
< 실험예 2> 혼합용매의 비율에 따른 효과 측정
본 발명에 따른 아세톤/물 또는 알코올/물 혼합용매의 혼합비율에 따른 효과를 알아보기 위하여 다음과 같은 실험을 수행하였다.
아세톤/물 또는 알코올/물 혼합용매의 혼합비율을 1:9~6:4로 변화시키는 것을 제외하고는 실시예와 동일한 방법으로 폴리비닐알코올 나노섬유 멤브레인을 제조하여 도 5~8에 나타내었다.
도 5도 6은 각각 아세톤:물=3:7, 아세톤:물=2:8일 때의 폴리비닐알코올 나노섬유 멤브레인을 나타낸 것이고, 도 7도 8은 각각 에탄올:물=2:8, 에탄올:물=5:5일 때의 나노섬유 멤브레인을 나타낸 것이다.
상기 도 5~8에 나타낸 바와 같이, 아세톤/물 또는 알코올/물 혼합용매의 혼합비율이 2:8~5:5일 경우 나노섬유가 잘 형성되며, 알코올의 경우보다 아세톤을 넣을 때가 좀 더 나노섬유의 형태가 안정적이고 두께가 일정하게 나타났다. 또한 아세톤/물의 혼합비율이 2:8일 경우 방사시 멤브레인의 두께 조절이 더 용이하였다.
아세톤/물 또는 알코올/물 혼합용매의 혼합비율이 1:9인 경우에는 수계방사와 같이 비드섬유가 많이 발생되었고, 6:4인 경우에는 폴리비닐알코올이 완전히 분산되지 않아 전기방사하지 못하였다.
따라서 폴리비닐알코올의 전기방사시 아세톤/물 또는 알코올/물 혼합용매의 혼합비율은 2:8~5:5인 것이 바람직함을 알 수 있다.
도 1은 본 발명의 일실시예에 의해 가교처리 전 제조된 폴리비닐알코올 나노섬유 멤브레인을 나타내는 화상분석기 사진이다.
도 2는 본 발명의 일비교예에 의해 가교처리 전 제조된 폴리비닐알코올 나노섬유 멤브레인을 나타내는 화상분석기 사진이다.
도 3은 상기 도 1의 폴리비닐알코올 나노섬유 멤브레인을 가교처리한 후의 화상분석기 사진이다.
도 4는 상기 도 3의 폴리비닐알코올 나노섬유 멤브레인을 물에 넣은 후 화상분석기으로 관찰한 사진이다.
도 5는 본 발명의 일실시예에 의해 용매로서 아세톤:물=3:7인 혼합용매를 사용하여 제조된 폴리비닐알코올 나노섬유 멤브레인을 나타내는 화상분석기 사진이다.
도 6은 본 발명의 일실시예에 의해 용매로서 아세톤:물=2:8인 혼합용매를 사용하여 제조된 폴리비닐알코올 나노섬유 멤브레인을 나타내는 화상분석기 사진이다.
도 7은 본 발명의 일실시예에 의해 용매로서 에탄올:물=2:8인 혼합용매를 사용하여 제조된 폴리비닐알코올 나노섬유 멤브레인을 나타내는 화상분석기 사진이다.
도 8은 본 발명의 일실시예에 의해 용매로서 에탄올:물=5:5인 혼합용매를 사용하여 제조된 폴리비닐알코올 나노섬유 멤브레인을 나타내는 화상분석기 사진이 다.

Claims (9)

  1. 폴리비닐알코올을 아세톤/물 또는 알코올/물의 혼합용매에 용해시켜 폴리비닐알코올 용액을 제조하는 단계(단계 1);
    상기 단계 1에서 제조된 폴리비닐알코올용액을 전기방사하여 나노섬유 멤브레인을 형성하는 단계(단계 2); 및
    상기 단계 2에서 형성된 나노섬유 멤브레인을 가교시키는 단계(단계 3)를 포함하는 개선된 폴리비닐알코올 나노섬유 멤브레인의 제조방법.
  2. 제1항에 있어서, 상기 폴리비닐알코올은 상기 폴리비닐알코올은 분자량 30,000~70,000, 중합도 200~7,000, 검화도 85 mol% 이상인 것을 특징으로 하는 개선된 폴리비닐알코올 나노섬유 멤브레인의 제조방법.
  3. 제1항에 있어서, 상기 알코올은 메탄올, 에탄올 또는 프로판올인 것을 특징으로 하는 개선된 폴리비닐알코올 나노섬유 멤브레인의 제조방법.
  4. 제1항에 있어서, 상기 아세톤/물 또는 알코올/물의 혼합용매의 혼합비율은 2:8~5:5인 것을 특징으로 하는 개선된 폴리비닐알코올 나노섬유 멤브레인의 제조방법.
  5. 제1항에 있어서, 상기 혼합용매에 용해되는 폴리비닐알코올의 함량은 15~25 중량%인 것을 특징으로 하는 개선된 폴리비닐알코올 나노섬유 멤브레인의 제조방법.
  6. 제1항에 있어서, 상기 전기방사는 전압은 15~30 kV, 유속은 0.01~0.04 ml/min으로 조절된 전기방사 장치에서 수행되는 것을 특징으로 하는 개선된 폴리비닐알코올 나노섬유 멤브레인의 제조방법.
  7. 제1항에 있어서, 상기 가교는 글루타알데히드 가교제를 첨가하여 가교하는 것을 특징으로 하는 개선된 폴리비닐알코올 나노섬유 멤브레인의 제조방법.
  8. 제1항 내지 제7항 중 어느 한 항의 제조방법으로 제조되는 폴리비닐알코올 나노섬유 멤브레인.
  9. 제8항에 있어서, 상기 나노섬유의 두께는 100~300 nm인 것을 특징으로 하는 폴리비닐알코올 나노섬유 멤브레인.
KR1020090057069A 2009-06-25 2009-06-25 전기방사를 이용한 개선된 폴리비닐알코올 나노섬유 멤브레인의 제조방법 KR101033278B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090057069A KR101033278B1 (ko) 2009-06-25 2009-06-25 전기방사를 이용한 개선된 폴리비닐알코올 나노섬유 멤브레인의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090057069A KR101033278B1 (ko) 2009-06-25 2009-06-25 전기방사를 이용한 개선된 폴리비닐알코올 나노섬유 멤브레인의 제조방법

Publications (2)

Publication Number Publication Date
KR20100138503A true KR20100138503A (ko) 2010-12-31
KR101033278B1 KR101033278B1 (ko) 2011-05-09

Family

ID=43511975

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090057069A KR101033278B1 (ko) 2009-06-25 2009-06-25 전기방사를 이용한 개선된 폴리비닐알코올 나노섬유 멤브레인의 제조방법

Country Status (1)

Country Link
KR (1) KR101033278B1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170023636A (ko) * 2015-08-24 2017-03-06 광주과학기술원 전기방사를 이용한 수화젤 스캐폴드의 제조방법 및 이에 의해 제조된 수화젤 스캐폴드
CN107216464A (zh) * 2017-06-14 2017-09-29 荆州市九天化工科技有限公司 一种快速溶解的聚乙烯醇的制备方法
US9850226B2 (en) 2015-03-27 2017-12-26 Myongji University Industry And Academia Coopertaion Foundation Lithium-selective crown ether, lithium adsorbent using same, and preparation method thereof
WO2021093691A1 (zh) * 2019-11-13 2021-05-20 华南理工大学 一种水溶性聚乙烯醇无纺布及其制备方法与应用
CN113491958A (zh) * 2021-03-29 2021-10-12 杭州青芒生物环保有限公司 一种用于处理污水中重金属离子复合纤维膜的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020063020A (ko) * 2001-01-26 2002-08-01 한국과학기술연구원 미세 섬유상 고분자웹의 제조 방법
US20030215624A1 (en) 2002-04-05 2003-11-20 Layman John M. Electrospinning of vinyl alcohol polymer and copolymer fibers
KR100703607B1 (ko) 2005-12-07 2007-04-06 (재)대구경북과학기술연구원 폴리비닐알코올 나노 섬유 부직포의 제조방법
KR100910241B1 (ko) * 2007-10-02 2009-07-31 주식회사 에이엠오 식물성 천연 추출물 또는 식물성 천연 정유를 함유하는나노섬유 및 이의 제조방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9850226B2 (en) 2015-03-27 2017-12-26 Myongji University Industry And Academia Coopertaion Foundation Lithium-selective crown ether, lithium adsorbent using same, and preparation method thereof
KR20170023636A (ko) * 2015-08-24 2017-03-06 광주과학기술원 전기방사를 이용한 수화젤 스캐폴드의 제조방법 및 이에 의해 제조된 수화젤 스캐폴드
CN107216464A (zh) * 2017-06-14 2017-09-29 荆州市九天化工科技有限公司 一种快速溶解的聚乙烯醇的制备方法
CN107216464B (zh) * 2017-06-14 2018-06-01 荆州市九天化工科技有限公司 一种快速溶解的聚乙烯醇的制备方法
WO2021093691A1 (zh) * 2019-11-13 2021-05-20 华南理工大学 一种水溶性聚乙烯醇无纺布及其制备方法与应用
CN113491958A (zh) * 2021-03-29 2021-10-12 杭州青芒生物环保有限公司 一种用于处理污水中重金属离子复合纤维膜的制备方法

Also Published As

Publication number Publication date
KR101033278B1 (ko) 2011-05-09

Similar Documents

Publication Publication Date Title
KR100835082B1 (ko) 전기방사법을 이용한 가교된 폴리비닐알코올 나노섬유 웹및 이의 제조방법
Nadaf et al. Recent update on electrospinning and electrospun nanofibers: current trends and their applications
Naseri et al. Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing
Pelipenko et al. Critical attributes of nanofibers: Preparation, drug loading, and tissue regeneration
Ding et al. Electrospinning: nanofabrication and applications
Elsabee et al. Chitosan based nanofibers, review
Stojanovska et al. A review on non-electro nanofibre spinning techniques
Nezarati et al. Effects of humidity and solution viscosity on electrospun fiber morphology
Kang et al. Chitosan‐coated poly (vinyl alcohol) nanofibers for wound dressings
CN103394114B (zh) 一种医用敷料用壳聚糖基超细纤维载体材料的制备方法
CN103572507A (zh) 抗菌防紫外丝素蛋白纳米纤维膜的制备方法
Muthukrishnan An overview on electrospinning and its advancement toward hard and soft tissue engineering applications
Lee et al. The influence of added ionic salt on nanofiber uniformity for electrospinning of electrolyte polymer
KR101033278B1 (ko) 전기방사를 이용한 개선된 폴리비닐알코올 나노섬유 멤브레인의 제조방법
Unnithan et al. Electrospinning of polymers for tissue engineering
Sarac Nanofibers of conjugated polymers
Khan et al. A comparative review on silk fibroin nanofibers encasing the silver nanoparticles as antimicrobial agents for wound healing applications
El-Seedi et al. Gelatin nanofibers: Recent insights in synthesis, bio-medical applications and limitations
Kalluri et al. Effect of electrospinning parameters on the fiber diameter and morphology of PLGA nanofibers
Corradini et al. Preparation of polymeric mats through electrospinning for technological uses
Mejía et al. Poly (vinyl alcohol)/Silk Fibroin/Ag NPs composite nanofibers for bone tissue engineering
WO2018047905A1 (ja) ε-ポリリジン極細繊維及び繊維構造体、それらの製造方法
CN105561371B (zh) 一种具有网格结构的可水冲散遗弃的敷料及其制备工艺
Sa’adon et al. Fabrication of Dual Layer Polyvinyl Alcohol Transdermal Patch: Effect of Freezing-Thawing Cycles on Morphological and Swelling Ability
CN113144273B (zh) 一种驱动响应复合材料及其制备方法和应用

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140416

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150427

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160422

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171024

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180614

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee