KR20100137621A - Producing method of low-dimensional carbon-contained composits and carbon block - Google Patents

Producing method of low-dimensional carbon-contained composits and carbon block Download PDF

Info

Publication number
KR20100137621A
KR20100137621A KR1020090055752A KR20090055752A KR20100137621A KR 20100137621 A KR20100137621 A KR 20100137621A KR 1020090055752 A KR1020090055752 A KR 1020090055752A KR 20090055752 A KR20090055752 A KR 20090055752A KR 20100137621 A KR20100137621 A KR 20100137621A
Authority
KR
South Korea
Prior art keywords
carbon
pitch
low
dimensional
graphene
Prior art date
Application number
KR1020090055752A
Other languages
Korean (ko)
Other versions
KR101079665B1 (en
Inventor
허승헌
주혜미
최성호
조광연
류도형
Original Assignee
한국세라믹기술원
극동씰테크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원, 극동씰테크 주식회사 filed Critical 한국세라믹기술원
Priority to KR1020090055752A priority Critical patent/KR101079665B1/en
Publication of KR20100137621A publication Critical patent/KR20100137621A/en
Application granted granted Critical
Publication of KR101079665B1 publication Critical patent/KR101079665B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6267Pyrolysis, carbonisation or auto-combustion reactions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE: A method for producing a low-dimensional carbon-contained composite and a method for producing a carbon block are provided to add a carbon nano tube with point/line contact properties and grapheme with surface contact properties, thereby increasing electric conductivity of a carbon composite. CONSTITUTION: Graphene and a low-dimensional carbon material are added to pitch. The grapheme, the low-dimensional carbon material, and the pitch are uniformly distributed through a post-processing process. Pressing molding of a carbon composite is performed by a press device. A molded product is thermally processed at 150~350 degrees for 2~6 hours. The molded product is carbonized at 1000~1500 degrees after oxidation stabilization. The oxidation stabilization of the molded product is performed under a low temperature for a long time. Therefore, a carbon block with high electric conductivity is manufactured.

Description

저차원탄소 함유 탄소복합체 제조 방법 및 탄소블록 제조 방법{Producing method of low-dimensional carbon-contained composits and Carbon block}Producing method of low-dimensional carbon-contained composits and carbon block

본 발명은 피치와 그라핀 및 저차원탄소 소재를 균일하게 분산한 탄소복합체와 상기 탄소복합체를 가압 성형한 후 열처리(탄화공정)하여 전기전도성이 우수한 탄소블록을 제조하는 기술에 관한 것이다.The present invention relates to a carbon composite material in which pitch and graphene and low dimensional carbon materials are uniformly dispersed, and a technology for producing a carbon block having excellent electrical conductivity by pressure molding the carbon composite material and heat treatment (carbonization process).

그라핀(Graphene)은 그라파이트가 1층 또는 여러층으로 형성된 2차원 판상 나노구조체를 의미한다. 이러한 그라핀은 일반적으로 기상증착법, 화학적 탄소층 박리법 등을 통하여 제조 된다(Mater. Today 10, 2026 (2007)). 이러한 그라핀의 구조는 sp2결합을 갖는 평면 벌집모양을 기본으로 하며, 여기에 sp혼성화된 결합전자 4개중 3개가 이용되고 나머지 전자 1개는 2차원적 평면 상하면에 파이 결합 형태로 존재하여 이것이 전기전도 물성에 중요한 역할을 한다. 이론적 연구결과에 의하면 그라핀 표면에서의 전자들은 탄도적으로 움직이며(ballistic conduction) 길이에 상관없는 움직임을 보인다. 또한 허용 전류밀도가 109A/㎠으로서 구리의 약 1,000 배이다. 그라핀의 이런 고밀도전기전도 물성은 금속성 CNT와 비슷하다. Graphene refers to a two-dimensional plate-shaped nanostructure in which graphite is formed in one layer or several layers. Such graphene is generally produced through vapor deposition, chemical carbon layer separation, or the like (Mater. Today 10, 2026 (2007)). The structure of the graphene is based on a planar honeycomb shape having sp2 bonds, and three of the four sp-hybridized bonding electrons are used, and one of the remaining electrons is present in the form of a pie bond on the upper and lower surfaces of the two-dimensional plane. Plays an important role in conductive properties. Theoretical findings indicate that the electrons on the graphene surface are ballistic conduction and move in any length. The allowable current density is 109 A / cm 2, which is about 1,000 times that of copper. Graphene's high density electrical conductivity is similar to that of metallic CNTs.

이와 같은 그라핀은 압착시 면간 접촉이 쉽게 유도되며, 따라서 탄소복합체의 첨가제로 사용시 탄소복합체의 전기전도를 향상시키는 큰 역할을 할 수 있다. 이는 탄소나노튜브의 선접촉과 비교할만하다.Such graphene is easily induced between the surface contact when pressed, and thus can play a big role in improving the electrical conductivity of the carbon composite when used as an additive of the carbon composite. This is comparable to the linear contact of carbon nanotubes.

피치(Pitch)는 크게 석탄계, 석유계, 순수물질계(PVC 피치, Pz피치, 나프탈렌피치, 아세나프탈렌 피치) 등으로 분류할 수 있다. 대표적인 원료 피치로서는 석유계와 석탄계를 들 수 있다. 석유계 피치는 주로 다환 방향족 고리 화합물에 알킬 사슬이 결합된 방향족 탄화수소로 구성되어 있으며, 석탄계 피치에는 약 2/3의 방향족 고리화합물과 이조원자고리로 구성되어 있다. 특히 3~6개의 고리화합물(b.p: 340-550℃)의 혼합물이 주종을 이루고 있으며 낮은 연화점, 낮은 용융점도, 높은 탄화수율, 및 뛰어난 흑연화성을 갖고 있어 탄소재료의 출발물질로 많이 이용되고 있다. 그러나 1000~1500℃ 열처리에도 암몰퍼스형을 가져 고 결정성 흑연과는 전기전도성에서 매우 낮은 물성을 보인다. 그러나, 피치는 매우 저렴한 원료인만큼 간단한 열처리를 통하여 고전기전도성 탄소블럭을 얻어내려는 시도가 꾸준히 이루어지고 있다.Pitch can be largely classified into coal-based, petroleum-based, pure-material-based (PVC pitch, Pz pitch, naphthalene pitch, acenaphthalene pitch) and the like. Representative raw material pitches include petroleum and coal. The petroleum pitch is mainly composed of aromatic hydrocarbons in which alkyl chains are bonded to polycyclic aromatic ring compounds, and the coal pitch is composed of approximately two-thirds of aromatic ring compounds and two-membered ring. In particular, a mixture of 3 to 6 cyclic compounds (bp: 340-550 ℃) is mainly used, and has a low softening point, low melt viscosity, high carbon yield, and excellent graphitization property, so it is widely used as a starting material for carbon materials. . However, it has an amorphous shape even in heat treatment at 1000 ~ 1500 ℃ and shows very low physical properties with crystalline graphite. However, since pitch is a very inexpensive raw material, attempts have been made to obtain high conductivity carbon blocks through simple heat treatment.

기존 연구로서 흑연분말을 피치와 복합화시켜 고전기전도성 피치계 탄소블록을 제조하려는 시도가 이루어진 바 있다. 이는 피치계 소결체(1000~1500℃에서 탄화시킨 것)가 암몰퍼스인데 반하여 흑연분말 하나 하나는 고전기전도성을 보유하고 있기 때문이다. 이는 흑연분말 자체만의 비소결성과 피치의 저전기전도성을 단점을 보완한 개념이다. 그러나 흑연분말의 점접촉성은 피치 소결체의 전기전도성 향상에 한계가 있었다.In the existing research, an attempt has been made to produce a highly conductive pitch-based carbon block by combining graphite powder with pitch. This is because the pitch-based sintered body (carbonized at 1000 to 1500 ° C) is female amorphous, whereas each graphite powder has high electroconductivity. This is a concept that complements the disadvantages of the non-sintering and pitch-low electrical conductivity of the graphite powder itself. However, the point contact property of graphite powder has a limit in improving the electrical conductivity of pitch sintered compacts.

본 발명은 그라핀을 저가(低價)의 피치와 복합하여 기존 피치만의 소결체에 비하여 전기전도성이 향상된 탄소복합체와 탄소블록을 얻는 것을 그 목적으로 한다.An object of the present invention is to obtain a carbon composite and a carbon block having improved electrical conductivity compared to a sintered body of the conventional pitch by combining graphene with a low-cost pitch.

본 발명은 (a) 그라핀과 저차원탄소 소재를 피치에 첨가하는 단계; (b) 상기 그라핀, 피치 및 저차원탄소 소재가 고르게 분산되도록 후처리 가공하는 단계; 를 포함하는 그라핀-피치 복합체 제조 방법을 제공한다. 상기 저차원탄소 소재로는 흑연분말 또는 탄소나노튜브를 적용할 수 있으며, 상기 흑연분말과 탄소나노튜브의 혼합물을 적용할 수도 있다. The present invention (a) adding the graphene and low-dimensional carbon material to the pitch; (b) post-processing the graphene, pitch and low dimensional carbon material to be evenly dispersed; It provides a graphene-pitch composite manufacturing method comprising a. As the low dimensional carbon material, graphite powder or carbon nanotubes may be applied, or a mixture of the graphite powder and carbon nanotubes may be applied.

또한, 본 발명은 상기 (a)단계의 피치는 400~600℃로 열처리하여 휘발성분을 제거하는 것임을 특징으로 하는 저차원탄소 함유 탄소복합체 제조 방법을 제공한다. 이 때, 상기 피치는 열처리를 통해 형성된 메조페이스상의 피치를 적용할 수 있고, 상기 메조페이스상의 피치에 열을 더 가하여 코크스 상태로 변환시킨 것을 적용할 수도 있다.In addition, the present invention provides a low-dimensional carbon-containing carbon composite manufacturing method characterized in that the pitch of step (a) is to remove the volatiles by heat treatment at 400 ~ 600 ℃. In this case, the pitch may be applied to the pitch on the meso face formed through the heat treatment, and may be applied to the coke state by adding heat to the pitch on the meso face.

또한, 본 발명은 상기 (b)단계에서 볼밀링으로 후처리 가공하는 것을 특징으 로 하는 저차원탄소 함유 탄소복합체 제조 방법을 제공한다. 이후 상기 (b)단계에서는 200~400℃의 열을 가하여 피치를 산화 안정화시키는 과정을 더 포함시킬 수 있다. 피치의 산화 안정화를 위해서는 5℃/min의 속도로 승온하여 1000~1500℃에서 50~70분간 유지하는 저온열처리를 할 수도 있다.In addition, the present invention provides a method for producing a low-dimensional carbon-containing carbon composite, characterized in that the post-processing by ball milling in the step (b). Thereafter, the step (b) may further include a step of oxidatively stabilizing the pitch by applying heat of 200 ~ 400 ℃. For the oxidation stabilization of the pitch, a low temperature heat treatment may be performed to increase the temperature at a rate of 5 ° C./min and maintain it at 1000 to 1500 ° C. for 50 to 70 minutes.

또한, 본 발명은 전술한 저차원탄소 함유 탄소복합체 제조 방법을 시행하여 제조된 탄소복합체를 (a) 상기 탄소복합체를 가압하여 성형체를 제조하는 공정; 및 (b) 상기 성형체를 열처리하여 탄화시키는 공정; 으로 가공하는 탄소블록 제조 방법을 함께 제공한다.In addition, the present invention is a carbon composite produced by the above-described low-dimensional carbon-containing carbon composite manufacturing method (a) a step of producing a molded body by pressing the carbon composite; And (b) heat treating the molded body to carbonize it; It also provides a method for producing a carbon block to be processed with.

또한, 본 발명은 상기 (b)공정에서 상기 성형체를 1000~1500℃에서 탄화시키는 것을 특징으로 하는 탄소블록 제조 방법을 제공하며, 이 때, 상기 성형체를 150~350℃에서 2~6시간 유지하는 열처리를 하여 산화 안정화시킨 후, 1000~1500℃에서 탄화시키는 것을 특징으로 하는 탄소블록 제조 방법을 함께 제공한다.In addition, the present invention provides a method for producing a carbon block, characterized in that the (b) carbonized the molded body at 1000 ~ 1500 ℃ in the step, wherein the molded body is maintained for 2 to 6 hours at 150 ~ 350 ℃ After the oxidation and stabilization by heat treatment, it provides a carbon block manufacturing method characterized in that the carbonization at 1000 ~ 1500 ℃.

또한, 본 발명은 상기 (b)공정에서 상기 성형체를 1700~2500℃에서 탄화시키는 것을 특징으로 하는 탄소블록 제조 방법을 제공한다.In addition, the present invention provides a method for producing a carbon block, characterized in that the (b) the carbonized the molded body at 1700 ~ 2500 ℃ in the step.

본 발명에서는 기존의 점접촉성 흑연분말(0차원 탄소 소재)만의 첨가에 한정 되지 않고, 점/선접촉성 탄소나노튜브(1차원 탄소 소재) 및 면접촉성 그라핀(2차원 탄소 소재)을 첨가하여 탄소복합체의 전기전도성을 크게 향상시킨 것이다. 본 발명이 제공하는 저차원탄소 함유 탄소복합체의 주요 구성성분으로서는 1) 「그라핀-흑연분말-피치」, 2) 「그라핀-탄소나노튜브-피치」 및 3) 「그라핀-흑연분말-탄소나노튜브-피치」를 예로 들 수 있다. In the present invention, not only the conventional point contact graphite powder (zero-dimensional carbon material) is added but also point / line contact carbon nanotubes (one-dimensional carbon material) and surface contact graphene (two-dimensional carbon material) are added. This greatly improves the electrical conductivity of the carbon composite material. Main components of the low dimensional carbon-containing carbon composites provided by the present invention include 1) "graphene-graphite powder-pitch", 2) "graphene-carbon nanotube-pitch", and 3) "graphene-graphite powder- Carbon nanotube-pitch ”.

또한, 상기 저차원탄소 함유 탄소복합체를 가압 성형한 후 열처리를 하여 고전기전도성 탄소블록을 얻을 수 있다. In addition, the low-dimensional carbon-containing carbon composite may be press-molded, followed by heat treatment to obtain a highly conductive carbon block.

결과적으로 피치-흑연분말 탄소블록 대비 전기전도성이 「그라핀-흑연분말-피치」가 함유된 탄소블록의 경우 20~50% 향상되고, 「그라핀-흑연분말-탄소나노튜브-피치」가 함유된 탄소블록의 경우는 30~70% 향상된다.As a result, the conductivity of carbon blocks containing `` graphene-graphite powder-pitch '' is improved by 20-50% compared to the pitch-graphite powder carbon block, and `` graphene-graphite powder-carbon nanotube-pitch '' is contained. In the case of a carbon block, it is improved by 30 to 70%.

Ⅰ. 저차원탄소 함유 탄소복합체 제조 방법Ⅰ. Low Dimensional Carbon-Containing Carbon Composite

본 발명은 (a) 그라핀과 저차원탄소 소재를 피치에 첨가하는 단계; (b) 상기 그라핀, 피치 및 저차원탄소 소재가 고르게 분산되도록 후처리 가공하는 단계; 를 포함하는 그라핀-피치 복합체 제조 방법을 제공한다(도 1 참조).The present invention (a) adding the graphene and low-dimensional carbon material to the pitch; (b) post-processing the graphene, pitch and low dimensional carbon material to be evenly dispersed; It provides a graphene-pitch complex manufacturing method comprising a (see Fig. 1).

상기 (a)단계는 그라핀과 저차원탄소 소재를 피치에 첨가하는 단계이다.Step (a) is a step of adding the graphene and low-dimensional carbon material to the pitch.

본 발명에서 사용되는 피치는 석탄계, 석유계, 순수물질계 피치가 모두 적용될 수 있다. 상기 피치는 휘발성분을 일부 제거시키거나 가교반응을 일부 일으키기 위해 열처리를 할 수 있다. Pitch used in the present invention may be applied to all of the coal-based, petroleum-based, pure material-based pitch. The pitch may be heat treated to remove some of the volatiles or cause some crosslinking reaction.

상기 피치를 400~600℃로 열처리하면 피치의 휘발성분이 일부 제거되고, 피치간 중축합을 일으키면 피치들은 0.1㎛정도의 구형체가 되며 이 구형체들은 어느 정도 성장하다가 다른 구형체와 합체 성장을 반복하면서 전체적으로 흐름상을 갖는 이방성의 액정과 같은 성질을 갖는다. 이 상태는 코크스(Cokes)의 전단계로서 메조페이스 상태이다. 이런 메조페이스 피치는 탄화와 흑연 연화시 휘발분의 적절한 제거와 흐름상을 갖는 액정들이 용이한 중축합으로 인한 배열이 이루어져 소결시 치밀한 흑연구조를 이룬다. 상기 메조페이스 상태의 피치에 열을 지속적으로 가하여 약 1000℃에서 열처리하면 수소잔기와 헤테로 원자의 일부가 증발 제거되어 코크스가 형성된다. 이러한 단계를 통한 최종 생성물은 하나의 무정형 탄소물질이며, 질소, 황과 같은 원자는 안전화된 헤테로 고리 화합물 상태로 상당량이 포함하고 있다.When the pitch is heat-treated at 400 to 600 ° C., some of the volatiles in the pitch are removed, and when polycondensation occurs between pitches, the pitches become spherical bodies having a diameter of about 0.1 μm. It has the same property as the anisotropic liquid crystal which has a flow phase as a whole. This state is a mesophase state as a previous stage of cokes. These mesophase pitches form a dense graphite structure during sintering, since the liquid crystals having a proper phase of volatiles and a flow phase are easily arranged during carbonization and graphite softening. When heat is continuously applied to the pitch of the mesophase state and heat treated at about 1000 ° C., some of the hydrogen residues and hetero atoms are evaporated and removed to form coke. The final product through this step is an amorphous carbon material, and atoms such as nitrogen and sulfur contain a significant amount in the form of a safe heterocyclic compound.

상기 그라핀은 휴머드 방법을 이용하여 흑연분말로부터 화학적 처리를 통하여 그라핀 산화물을 만들고, 이 그라핀 산화물을 화학적으로 환원시킴으로서 제조할 수 있다. 이렇게 제작된 그라핀은 보통 1~10층으로 형성된다. 상기 그라핀 산화물과 그라핀을 제조하기 위해 본 발명의 발명자가 행한 구체적인 방법을 설명하면 다음과 같다. The graphene may be prepared by making graphene oxide through chemical treatment from graphite powder using a human method and chemically reducing the graphene oxide. Graphene thus produced is usually formed of 1 to 10 layers. Referring to the specific method performed by the inventor of the present invention to produce the graphene oxide and graphene is as follows.

수십 마이크로 크기를 갖는 흑연 분말 50g과 NaNO3 40g을 H2SO4 가 200㎖ 녹아있는 용액에 넣고 냉각시키면서 250g의 KMnO4을 1시간에 걸쳐 천천히 넣어 준다. 그 후 H2SO4이 4~7vol%로 녹아있는 용액 5ℓ를 1시간에 걸쳐 천천히 넣어주고 H2O2을 넣어준다. 그 후 위 용액을 원심 분리하여 침전물을 3%H2SO4-0.5%H2O2 및 증류수로 씻어주면 황갈색의 그라핀 산화물이 얻어진다. 이렇게 제조된 그라핀 산화물은 3% 그라핀 수용액 40g에 증류수 2ℓ 넣어서 잘 분산 시킨 후 hydrazine hydrate 20㎖를 넣고 100℃에서 24시간 환원 처리한다. 제조된 그라핀은 거름종이로 걸러 물과 메탄올을 이용하여 세척해준다.50 g of graphite powder having a size of several tens of microparticles and 40 g of NaNO 3 were added to a solution containing 200 ml of H 2 SO 4 , and 250 g of KMnO 4 was slowly added over 1 hour while cooling. After that, slowly add 5ℓ of solution dissolved in H 2 SO 4 to 4 ~ 7vol% over 1 hour and add H 2 O 2 . The solution is then centrifuged to wash the precipitate with 3% H 2 SO 4 -0.5% H 2 O 2 and distilled water to give a tan graphene oxide. The graphene oxide thus prepared is dispersed in 2 g of distilled water in 40 g of a 3% graphene aqueous solution, and then dispersed 20 ml of hydrazine hydrate and reduced at 100 ° C. for 24 hours. The prepared graphene is filtered with a filter paper and washed with water and methanol.

한편, 상기 저차원탄소 소재로는 흑연분말 또는 탄소나노튜브를 적용할 수 있으며, 상기 흑연분말과 탄소나노튜브의 혼합물을 적용할 수도 있다. On the other hand, the low-dimensional carbon material may be applied to the graphite powder or carbon nanotubes, a mixture of the graphite powder and carbon nanotubes may be applied.

상기 (b)단계는 그라핀, 피치 및 저차원탄소 소재가 고르게 분산되도록 후처리 가공하는 단계이다. 그라핀과 저차원탄소 소재를 피치에 첨가하여 분산시키는 과정은 물리적 분산방법이나 화학적 분산방법을 적용할 수 있으며, 특히 볼밀링 방법을 적용할 수 있다. 경우에 따라서는 헥산류의 용매를 소량 첨가시켜 습식 밀링을 수행할 수도 있다.Step (b) is a step of post-processing so that the graphene, pitch and low dimensional carbon materials are evenly dispersed. The process of dispersing the graphene and the low-dimensional carbon material by adding it to the pitch may be a physical dispersion method or a chemical dispersion method, and in particular, a ball milling method may be applied. In some cases, wet milling may be performed by adding a small amount of a solvent of hexanes.

한편, 상기 (b)단계에서 상기 피치를 200~400℃로 열처리(상대적으로 낮은 온도의 열처리)하여 산화 안정화시키는 과정을 추가적으로 시행할 수 있다. 이는 피치의 점도 및 가교성을 제어하기 위한 것으로서, 이러한 저온 열처리에 의해 피치의 점도는 증가되고, 중축합은 방해를 받는다. On the other hand, in the step (b) it can be additionally carried out a process of oxidative stabilization by heat treatment (relatively low temperature heat treatment) to 200 ~ 400 ℃ the pitch. This is to control the viscosity and crosslinkability of the pitch, and the viscosity of the pitch is increased by this low temperature heat treatment, and the polycondensation is disturbed.

이와는 별도로 피치의 산화 안정화를 위해서는 온도를 5℃/min의 속도로 승 온하여 300~550℃에서 50~70분간 유지하는 저온열처리를 할 수도 있다.Separately, for the oxidation stabilization of the pitch, the temperature may be elevated at a rate of 5 ° C./min and low temperature heat treatment may be performed at 300 to 550 ° C. for 50 to 70 minutes.

Ⅱ. 탄소블록 제조 방법II. Carbon block manufacturing method

전술한 과정을 통해 제조된 탄소복합체는 가압 성형 공정과 탄화공정을 거쳐 탄소블록으로 변모하게 된다.The carbon composite produced through the above-described process is transformed into a carbon block through a press molding process and a carbonization process.

이에, 본 발명은 상기 저차원탄소 함유 탄소복합체 제조 방법을 시행하여 제조된 탄소복합체를 (a) 상기 그라핀-탄소복합체를 가압하여 성형체를 제조하는 공정; 및 (b) 상기 성형체를 열처리하여 탄화시키는 공정; 으로 가공하는 탄소블록 제조 방법을 함께 제공한다(도 2 참조).Thus, the present invention is a carbon composite prepared by performing the low-dimensional carbon-containing carbon composite manufacturing method (a) a step of producing a molded body by pressing the graphene-carbon composite; And (b) heat treating the molded body to carbonize it; It also provides a carbon block manufacturing method for processing with (see FIG. 2).

상기 (a)공정은 상기 탄소복합체를 프레스기로 가압 성형하는 것으로 시행할 수 있다.The step (a) can be carried out by press molding the carbon composite.

상기 (b)공정은 고전기전도성의 탄소블록을 얻기 위한 공정이며, 상기 성형체를 산화 안정화시키는 열처리를 한 후 탄화시키거나 산화 안정화 공정 없이 바로 탄화시킴으로써 시행할 수 있다.The step (b) is a step for obtaining a carbon block having high conductivity, and may be carried out by carbonization after heat treatment to oxidatively stabilize the molded body or carbonization immediately without an oxidation stabilization process.

상기 (b)공정은 상기 성형체를 1000~1500℃에서 탄화시킬 수 있다. 이와 같이 상기 성형체를 탄화시키기 전에는 저온 열처리에 의해 산화 안정화 작업을 시행할 수 있는데, 상기 성형체를 150~350℃에서 2~6시간 유지하는 열처리를 하여 산화 안정화시킨 후 1000~1500℃에서 탄화시킬 수 있다.In the step (b), the molded body may be carbonized at 1000 to 1500 ° C. As described above, before the carbonized product is carbonized, oxidation stabilization may be performed by low temperature heat treatment, and the carbonized product may be carbonized at 1000 ° C to 1500 ° C after oxidation stabilization by heat treatment for 2 to 6 hours at 150 to 350 ° C. have.

상기 성형체는 산화 안정화 처리가 되고 탄화되는 과정에서 치수안정성을 확보하게 되어 산소에 의한 가교결합반응으로 조직이 치밀해져 기계적 물성이 향상되고, 이에 따라 고온 소결시 피치를 함유한 성형체의, 뒤틀림, 변형 등이 최소화된다. 고온에서 일어나는 상기 성형체의 급격한 산화반응은 성형체의 균열을 일으키거나 피치성분의 분해를 일으키는 원인이 될 수 있기 때문에 상기 성형체의 산화 안정화는 저온에서 장시간 실시하는 것이 바람직하다. The molded body is subjected to oxidation stabilization process and secures dimensional stability in the process of carbonization, so that the structure is densified by cross-linking reaction by oxygen, thereby improving mechanical properties, thus, warping and deformation of the molded body containing pitch during high temperature sintering Etc. is minimized. It is preferable to perform oxidation stabilization of the molded body for a long time at low temperature because the rapid oxidation reaction of the molded product occurring at a high temperature may cause cracking of the molded body or cause decomposition of the pitch component.

본 발명의 발명자가 상기 성형체의 구체적인 산화 안정화 처리를 한 구체적인 예를 설명하면 다음과 같다. 석탄계 피치를 내화학성 반응용기(SUS)에 넣고 5℃/min으로 승온하여 300~550℃에서 50~70분간 유지한다. 열처리한 피치는 250rpm에서 12시간 이상 볼밀링을 수행하였다. 볼밀링 후 325메쉬(약 44μm) 이하의 입도를 갖는 분말만 이용하여 그라핀과 혼합하여 가압함으로써 성형체를 제작하였다. 이렇게 제조된 성형체는 공기가 순환되도록 열풍 건조기를 이용하여 150~350℃ 범위의 온도를 유지하며 2~6시간 동안 열처리를 하였다. 이렇게 산화 안정화된 그라핀-피치 복합 성형체는 1000~1500℃에서 탄화시켜 고전기전도성 탄소블럭을 제조할 수 있다.When the inventor of this invention demonstrates the specific example which carried out the specific oxidation stabilization process of the said molded object, it is as follows. The coal-based pitch is placed in a chemical resistance reaction vessel (SUS), and the temperature is raised to 5 ° C / min and maintained at 300 to 550 ° C for 50 to 70 minutes. The heat treated pitch was ball milled for 12 hours or longer at 250 rpm. After the ball milling, a molded article was prepared by mixing and pressing with graphene using only a powder having a particle size of 325 mesh (about 44 μm) or less. The molded product thus prepared was heat treated for 2 to 6 hours while maintaining a temperature in the range of 150 to 350 ° C. using a hot air dryer to circulate air. The oxidatively stabilized graphene-pitch composite molded article may be carbonized at 1000 to 1500 ° C. to produce a highly conductive carbon block.

한편, 상기 (b)공정은 상기 성형체를 1700~2500℃에서 탄화시키는 공정으로 시행할 수 있다. 1000~1500℃에서의 열처리는 피치가 탄화되더라도 암몰퍼스형에 가깝다. 그러나 1700~2500℃ 이상의 열처리를 하면 탄소의 결정화를 유도시켜 좀 더 뛰어난 고전기전도성 탄소블록을 제조할 할 수 있다. 이때, 첨가된 2차원 나노판인 그라핀은 고전기전도의 패스를 만들어 주어 피치만 사용할 경우보다 20~100% 증가된 전기전도도 향상을 보였다. 일 예로, 1000℃, 1300℃, 1500℃에서 열처리된 피치와 그라핀-탄소복합체는 각각 20지멘스에서 30지멘스, 32지멘스에서 55지멘스, 50지멘스에서 90지멘스로 크게 향상되었다. 참고로 소결전 피치의 전기전도도는 절연체의 물성을 보이지만 그라핀이 5% 첨가될 경우 약 35KΩ/sq을 보였다.On the other hand, the step (b) can be carried out as a step of carbonizing the molded body at 1700 ~ 2500 ℃. Heat treatment at 1000 ~ 1500 ℃ is close to female mold type even if pitch is carbonized. However, when the heat treatment of 1700 ~ 2500 ℃ or more induction of the crystallization of carbon can be produced a more excellent high conductivity carbon block. At this time, the added two-dimensional nano-graph graphene made a pass of the high conductivity, showing an electrical conductivity improvement of 20 ~ 100% increased than when using only the pitch. For example, the pitch and graphene-carbon composites heat-treated at 1000 ° C., 1300 ° C., and 1500 ° C. were significantly improved from 20 Siemens to 30 Siemens, 32 Siemens to 55 Siemens, and 50 Siemens to 90 Siemens, respectively. For reference, the electrical conductivity of the pitch before sintering showed the physical properties of the insulator, but showed about 35KΩ / sq when 5% of graphene was added.

도 3은 그라핀 산화물을 촬영한 사진과 SEM(주사전자현미경) 사진을 도시한 것이다. SEM사진에서는 넓은 판형태가 겹치면서 주름진 모습을 보여준다. Figure 3 shows a photograph of the graphene oxide and SEM (scanning electron microscope) photograph. In the SEM photographs, the wide plate shapes overlap and show wrinkles.

도 4는 도 3의 그라핀 산화물을 하이드라진 처리하여 제조된 그라핀 분말의 SEM 사진이다.4 is a SEM photograph of the graphene powder prepared by treating the graphene oxide of FIG.

도 5는 450~470℃에서 열처리된 피치의 SEM 사진이다.5 is a SEM photograph of the pitch heat-treated at 450 ~ 470 ℃.

도 6은 도 4의 피치에 5% 그라핀을 첨가하여 24시간 볼밀링한 후 피치 표면에 그라핀이 코팅된 그라핀-탄소복합체 분말의 SEM 사진이다. 6 is a SEM photograph of the graphene-carbon composite powder coated with graphene on the pitch surface after ball milling for 24 hours by adding 5% graphene to the pitch of FIG. 4.

도 7은 탄소복합체를 가압한 성형체를 소결하였을 경우의 탄소블럭 구조체를 모식도로 나타내었다.7 is a schematic view showing a carbon block structure in the case of sintering a molded article pressurized with a carbon composite material.

도 1은 본 발명에 따른 저차원탄소 함유 탄소복합체 제조 방법의 순서도이다.1 is a flow chart of a low-dimensional carbon-containing carbon composite manufacturing method according to the present invention.

도 2는 본 발명에 따른 탄소블록 제조 방법의 순서도이다.2 is a flowchart of a carbon block manufacturing method according to the present invention.

도 3은 그라핀 산화물을 촬영한 SEM 사진이다.3 is a SEM photograph of the graphene oxide.

도 4는 그라핀 분말의 SEM 사진이다.4 is an SEM photograph of graphene powder.

도 5는 피치의 SEM사진이다.5 is a SEM photograph of the pitch.

도 6은 그라핀-탄소복합체 분말의 SEM사진이다.6 is an SEM photograph of graphene-carbon composite powder.

도 7은 저차원탄소 소재를 함유한 탄소블록 구조체의 모식도이다. 7 is a schematic diagram of a carbon block structure containing a low dimensional carbon material.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

S11 : (a)단계(저차원탄소 함유 탄소복합체 제조 방법)S11: Step (a) (Method for producing low dimensional carbon-containing carbon composite material)

S12 : (b)단계(저차원탄소 함유 탄소복합체 제조 방법)S12: step (b) (method of preparing a low dimensional carbon-containing carbon composite)

S21 : (a)공정(탄소블록 제조 방법)S21: (a) process (carbon block manufacturing method)

S22 : (b)공정(탄소블록 제조 방법)S22: (b) process (carbon block manufacturing method)

Claims (14)

(a) 그라핀과 저차원탄소 소재를 피치에 첨가하는 단계; (a) adding graphene and a low dimensional carbon material to the pitch; (b) 상기 그라핀, 피치 및 저차원탄소 소재가 고르게 분산되도록 후처리 가공하는 단계; 를 포함하는 그라핀-피치 복합체 제조 방법.(b) post-processing the graphene, pitch and low dimensional carbon material to be evenly dispersed; Graphene-pitch composite manufacturing method comprising a. 제1항에서, 상기 (a)단계의 저차원탄소 소재는 흑연분말인 것을 특징으로 하는 저차원탄소 함유 탄소복합체 제조 방법.According to claim 1, wherein the low-dimensional carbon material of step (a) is a low-dimensional carbon-containing carbon composite manufacturing method, characterized in that the graphite powder. 제1항에서, 상기 (a)단계의 저차원탄소 소재는 탄소나노튜브인 것을 특징으로 하는 저차원탄소 함유 탄소복합체 제조 방법.The method of claim 1, wherein the low dimensional carbon material of step (a) is a carbon nanotube manufacturing method of the low dimensional carbon containing carbon composite. 제1항에서, 상기 (a)단계의 저차원탄소 소재는 흑연분말과 탄소나노튜브의 혼합물임을 특징으로 하는 저차원탄소 함유 탄소복합체 제조 방법.The method of claim 1, wherein the low dimensional carbon material of step (a) is a low dimensional carbon-containing carbon composite manufacturing method, characterized in that the mixture of graphite powder and carbon nanotubes. 제1항에서, 상기 (a)단계의 피치는 400~600℃로 열처리하여 휘발성분을 제거 한 것임을 특징으로 하는 저차원탄소 함유 탄소복합체 제조 방법.The method of claim 1, wherein the pitch of step (a) is a low-dimensional carbon-containing carbon composites manufacturing method, characterized in that the volatiles are removed by heat treatment at 400 ~ 600 ℃. 제5항에서, 상기 (a)단계의 피치는 열처리를 통해 형성된 메조페이스상의 피치임을 특징으로 하는 저차원탄소 함유 탄소복합체 제조 방법.The method of claim 5, wherein the pitch of step (a) is a low-dimensional carbon-containing carbon composite manufacturing method, characterized in that the pitch of the mesophase formed through the heat treatment. 제6항에서, 상기 (a)단계의 피치는 상기 메조페이스상의 피치에 열을 더 가하여 코크스 상태로 변환시킨 것을 특징으로 하는 저차원탄소 함유 탄소복합체 제조 방법.7. The method of claim 6, wherein the pitch of step (a) is converted to a coke state by adding heat to the pitch on the mesophase. 제1항에서, 상기 (b)단계는 볼밀링으로 후처리 가공하는 것을 특징으로 하는 저차원탄소 함유 탄소복합체 제조 방법.The method of claim 1, wherein step (b) is a low-dimensional carbon-containing carbon composites manufacturing method, characterized in that the post-treatment process by ball milling. 제8항에서, 상기 (b)단계는 200~400℃의 열을 가하여 피치를 산화 안정화시키는 과정을 더 포함하는 것을 특징으로 하는 저차원탄소 함유 탄소복합체 제조 방법.The method of claim 8, wherein step (b) further comprises the step of oxidatively stabilizing the pitch by applying heat of 200 ~ 400 ℃ low dimensional carbon-containing carbon composites manufacturing method. 제8항에서, 상기 (b)단계는 5℃/min의 속도로 승온하여 300~550℃에서 50~70분간 유지하는 저온열처리로 피치를 산화 안정화시키는 과정을 더 포함하는 것을 특징으로 하는 저차원탄소 함유 탄소복합체 제조 방법.The method of claim 8, wherein the step (b) further comprises the step of oxidatively stabilizing the pitch by low temperature heat treatment to maintain the temperature at a rate of 5 ℃ / min at 300 ~ 550 ℃ 50 ~ 70 minutes Method of producing carbon-containing carbon composites. 제1항 내지 제10항 중 어느 한 항의 저차원탄소 함유 탄소복합체 제조 방법을 시행하여 제조된 탄소복합체를 이하의 공정으로 가공하는 탄소블록 제조 방법.The carbon block manufacturing method which processes the carbon composite manufactured by implementing the low-dimensional carbon containing carbon composite manufacturing method of any one of Claims 1-10 by the following process. (a) 상기 탄소복합체를 가압하여 성형체를 제조하는 공정; 및(a) pressurizing the carbon composite to produce a molded article; And (b) 상기 성형체를 열처리하여 탄화시키는 공정;(b) heat-treating the molded body to carbonize it; 제11항에서, 상기 (b)공정은 상기 성형체를 1000~1500℃에서 탄화시키는 것을 특징으로 하는 탄소블록 제조 방법.12. The method of claim 11, wherein the step (b) carbonizes the molded body at 1000 to 1500 ° C. 제12항에서, 상기 (b)공정은 상기 성형체를 150~350℃에서 2~6시간 유지하는 열처리를 하여 산화 안정화시킨 후, 1000~1500℃에서 탄화시키는 것을 특징으로 하는 탄소블록 제조 방법.The method according to claim 12, wherein the step (b) is a carbon block manufacturing method characterized in that the carbonized at 1000 ~ 1500 ℃ after the oxidation is stabilized by heat treatment to maintain the molded body at 150 ~ 350 ℃ 2 to 6 hours. 제11항에서, 상기 (b)공정은 상기 성형체를 1700~2500℃에서 탄화시키는 것을 특징으로 하는 탄소블록 제조 방법.12. The method of claim 11, wherein the step (b) carbonizes the molded body at 1700 to 2500 ° C.
KR1020090055752A 2009-06-23 2009-06-23 Producing method of low-dimensional carbon-contained composits and Carbon block KR101079665B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090055752A KR101079665B1 (en) 2009-06-23 2009-06-23 Producing method of low-dimensional carbon-contained composits and Carbon block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090055752A KR101079665B1 (en) 2009-06-23 2009-06-23 Producing method of low-dimensional carbon-contained composits and Carbon block

Publications (2)

Publication Number Publication Date
KR20100137621A true KR20100137621A (en) 2010-12-31
KR101079665B1 KR101079665B1 (en) 2011-11-03

Family

ID=43511179

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090055752A KR101079665B1 (en) 2009-06-23 2009-06-23 Producing method of low-dimensional carbon-contained composits and Carbon block

Country Status (1)

Country Link
KR (1) KR101079665B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161410A1 (en) * 2011-05-26 2012-11-29 금오공과대학교 산학협력단 Method for manufacturing a graphite block
CN103456520A (en) * 2012-05-31 2013-12-18 海洋王照明科技股份有限公司 Manufacturing method and application for graphene/carbon nano-tube composite film
KR101469350B1 (en) * 2013-03-08 2014-12-08 주식회사 어플라이드카본나노 structure-connected carbon nano materials and fabrication method thereof
WO2015016639A1 (en) * 2013-08-01 2015-02-05 주식회사 엘지화학 Dispersant, preparation method therefor, and dispersion composition of carbon-based materials, containing same
JP2016523439A (en) * 2013-08-01 2016-08-08 エルジー・ケム・リミテッド Conductive material composition, slurry composition for electrode formation of lithium secondary battery using the same, and lithium secondary battery
KR20190064549A (en) * 2019-05-31 2019-06-10 한국에너지기술연구원 A production method of binderless carbon block using reformation of mesocarbon microbeads
KR20200109535A (en) * 2019-03-13 2020-09-23 한국에너지기술연구원 Carbon-Carbon Composites and Method for Producing the Same
CN114430030A (en) * 2022-01-14 2022-05-03 北京化工大学 Soft carbon with multi-interface structure, preparation method and energy storage application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100771840B1 (en) 2006-05-18 2007-10-31 주식회사 소디프신소재 Heterogeneous-carbonaceous materials-inserted globule carbonaceous powders and process for preparation thereof
TWI399354B (en) 2007-06-07 2013-06-21 Ibiden Co Ltd Graphite material and a method of producing graphite material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161410A1 (en) * 2011-05-26 2012-11-29 금오공과대학교 산학협력단 Method for manufacturing a graphite block
CN103456520B (en) * 2012-05-31 2016-12-14 海洋王照明科技股份有限公司 A kind of preparation method and applications of graphene/carbon nanotube composite film
CN103456520A (en) * 2012-05-31 2013-12-18 海洋王照明科技股份有限公司 Manufacturing method and application for graphene/carbon nano-tube composite film
KR101469350B1 (en) * 2013-03-08 2014-12-08 주식회사 어플라이드카본나노 structure-connected carbon nano materials and fabrication method thereof
EP3002808A4 (en) * 2013-08-01 2017-01-25 LG Chem, Ltd. Conductor composition, slurry composition for forming electrode of lithium secondary battery using same, and lithium secondary battery
JP2016523439A (en) * 2013-08-01 2016-08-08 エルジー・ケム・リミテッド Conductive material composition, slurry composition for electrode formation of lithium secondary battery using the same, and lithium secondary battery
WO2015016639A1 (en) * 2013-08-01 2015-02-05 주식회사 엘지화학 Dispersant, preparation method therefor, and dispersion composition of carbon-based materials, containing same
US10569243B2 (en) 2013-08-01 2020-02-25 Lg Chem, Ltd. Dispersing agent, its preparation method and dispersed composition of carbon-based material comprising the same
US10862124B2 (en) 2013-08-01 2020-12-08 Lg Chem, Ltd. Conducting material composition, slurry composition for forming electrode of lithium rechargeable battery and lithium rechargeable battery using the same
KR20200109535A (en) * 2019-03-13 2020-09-23 한국에너지기술연구원 Carbon-Carbon Composites and Method for Producing the Same
KR20190064549A (en) * 2019-05-31 2019-06-10 한국에너지기술연구원 A production method of binderless carbon block using reformation of mesocarbon microbeads
CN114430030A (en) * 2022-01-14 2022-05-03 北京化工大学 Soft carbon with multi-interface structure, preparation method and energy storage application thereof
CN114430030B (en) * 2022-01-14 2024-03-26 北京化工大学 Soft carbon with multi-interface structure, preparation method and energy storage application thereof

Also Published As

Publication number Publication date
KR101079665B1 (en) 2011-11-03

Similar Documents

Publication Publication Date Title
KR101079665B1 (en) Producing method of low-dimensional carbon-contained composits and Carbon block
Zhang et al. Carbon nanotube/carbon composite fiber with improved strength and electrical conductivity via interface engineering
Wu et al. Morphology-controllable graphene–TiO 2 nanorod hybrid nanostructures for polymer composites with high dielectric performance
WO2015050352A1 (en) Method for preparing carbon nanotube-graphene composite, and carbon nanotube-graphene composite prepared thereby
KR101550846B1 (en) Single step multi-atom doping method of carbon materials and use thereof
Benavente et al. Fast route to obtain Al2O3-based nanocomposites employing graphene oxide: Synthesis and sintering
Kim et al. The formation of silica nanoparticles on the polyacrylonitrile-based carbon nanofibers by graphene via electrospinning
Kim et al. Improving the mechanical strength of carbon–carbon composites by oxidative stabilization
Sokolowski et al. Ceramic coating formation during carbothermic reaction of polysiloxanes with carbon and graphite materials
Xin et al. Enhanced electrical conductivity of alumina/nano-carbon ceramic composite via iodine impregnation of gel-casted alumina body and reductive sintering
Mikociak et al. Effect of nanosilicon carbide on the carbonisation process of coal tar pitch
JP3142587B2 (en) Carbonaceous composition, carbon material for fuel cell and method for producing the same
Liu et al. In-situ formation of carbon nanotubes in pyrolytic carbon–silicon nitride composite ceramics
WO2018061830A1 (en) Graphite molded article production method
Peng et al. An optimized process for in situ formation of multi-walled carbon nanotubes in templated pores of polymer-derived silicon oxycarbide
JP4920135B2 (en) Electrical insulator-coated vapor-phase carbon fiber, method for producing the same, and use thereof
Ray et al. Thermal exfoliation of natural cellulosic material for graphene synthesis
KR101079666B1 (en) Producing method of Graphene-pitch composits and Carbon block
KR101425375B1 (en) post-treatment method of carbon materials using dehydrocyclization and post-treated carbon materials using the same and polymer composite materials comprising thereof
KR101064944B1 (en) Producing method of fuel Cell Separator Using pure-carbon Composite
KR101232715B1 (en) Glassy carbon magnet produced by solvothermal method and method for producing the same
Kumanek et al. Multi-layered graphenic structures as the effect of chemical modification of thermally treated anthracite
Zhang et al. Microstructure and mechanical properties of pitch based mixture modified by additions of graphene oxide precursor and TiB2 particles
AU2019274669B2 (en) Method of preparation of reduced graphene oxide(rGO)
KR101977572B1 (en) Pitch for carbon precursor, method of preparing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141024

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151028

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161026

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181105

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191111

Year of fee payment: 9