KR20100131069A - Filter reaction apparatus for producing carbon nano tube and hydrogen gas and production method for carbon nano tube and hydrogen gas from methane gas using thereof - Google Patents

Filter reaction apparatus for producing carbon nano tube and hydrogen gas and production method for carbon nano tube and hydrogen gas from methane gas using thereof Download PDF

Info

Publication number
KR20100131069A
KR20100131069A KR1020090049755A KR20090049755A KR20100131069A KR 20100131069 A KR20100131069 A KR 20100131069A KR 1020090049755 A KR1020090049755 A KR 1020090049755A KR 20090049755 A KR20090049755 A KR 20090049755A KR 20100131069 A KR20100131069 A KR 20100131069A
Authority
KR
South Korea
Prior art keywords
filter
hydrogen gas
carbon nanotubes
gas
reaction chamber
Prior art date
Application number
KR1020090049755A
Other languages
Korean (ko)
Other versions
KR101084666B1 (en
Inventor
박석주
신동열
송락현
이승복
임탁형
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020090049755A priority Critical patent/KR101084666B1/en
Publication of KR20100131069A publication Critical patent/KR20100131069A/en
Application granted granted Critical
Publication of KR101084666B1 publication Critical patent/KR101084666B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE: A filter reaction apparatus, and a production method of the carbon nanotubes and the hydrogen gas from methane using thereof are provided to reduce the heat energy consumption for producing hydrogen. CONSTITUTION: A filter reaction apparatus producing carbon nanotubes and hydrogen gas comprises the following: a hopper unit(21) formed on the lower side of the cylinder type apparatus; a heating unit(22) applying the heat to the inside of the apparatus; a partition wall(23) dividing the internal space; a reaction chamber(20) filtering gas with a filter(24); a storage chamber(30) storing solid particles from inserted from the reaction chamber; the filter supplying methane gas to the reaction chamber; and a catalyst/nano particle generator(50).

Description

탄소나노튜브와 수소가스를 생산하는 필터반응장치 및 이를 이용하여 메탄으로부터 탄소나노튜브와 수소가스를 생산하는 방법{Filter Reaction Apparatus for Producing Carbon Nano Tube and Hydrogen Gas and Production Method for Carbon Nano Tube and Hydrogen Gas from Methane Gas using Thereof}Filter Reaction Apparatus for Producing Carbon Nano Tube and Hydrogen Gas and Production Method for Carbon Nano Tube and Hydrogen Gas from Methane Gas using Thereof}

본 발명은 탄소나노튜브와 수소가스를 생산하는 필터반응장치 및 이를 이용하여 메탄으로부터 탄소나노튜브와 수소가스를 생산하는 방법에 관한 것으로, 더 상세하게는 메탄가스에 촉매나노입자를 혼합해 반응기에 투입하고, 상기 반응기 내에 열을 가함으로써 탄소와 수소를 분리시키되 분리된 탄소성분은 촉매에 흡착 성장되도록 하여 나노튜브가 형성되게 하고 분리된 수소는 필터를 통과하여 포집하여 수소가스를 수취하는 과정에서 추가적으로 탄소나노튜브를 수취할 수 있게 한 것이다. 또한 본 발명은 반응에 투입되는 금속촉매가 메탄의 열분해온도를 낮출수 있어 수소생산에 소요되는 열에너지를 줄일 수 있고, 부가적으로 고가의 탄소나노튜브를 수취할 수 있어 동시 생산되는 수소가스의 생산비용을 낮출수 있어 가격경쟁력을 확보할 수 있으며, 생산과정에서 이산화탄소가 생성되지 않아 환경오염을 방지할 수 있는 필터반응장치 및 그 생산방법에 관한 것이다.The present invention relates to a filter reaction apparatus for producing carbon nanotubes and hydrogen gas, and a method for producing carbon nanotubes and hydrogen gas from methane using the same, and more specifically, to a reactor by mixing catalyst nanoparticles with methane gas. In the process of separating the carbon and hydrogen by applying heat in the reactor, the separated carbon components are adsorbed and grown on the catalyst to form nanotubes, and the separated hydrogen is collected by passing through a filter to receive hydrogen gas. In addition, carbon nanotubes can be received. In addition, the present invention can reduce the thermal energy required for the production of hydrogen as the metal catalyst to the reaction can lower the thermal decomposition temperature of methane, additionally can receive expensive carbon nanotubes to produce hydrogen gas produced simultaneously The present invention relates to a filter reactor and a method of producing the same, which can secure cost competitiveness by lowering costs and prevent environmental pollution because carbon dioxide is not produced in the production process.

천연가스는 약 90%가 메탄(CH4) 가스로 구성되어 있으며, 고온의 분위기에서 열분해하여 수소와 탄소를 직접 생산할 수 있다. About 90% of natural gas is composed of methane (CH 4 ) gas, which can directly produce hydrogen and carbon by pyrolysis in a high temperature atmosphere.

상기 수소를 생산하는 방법으로는 수증기를 촉매로 사용하여 개질시키는 방법과, 플라즈마를 이용하는 방법이 있다. 상기 수증기를 촉매로 사용하는 방법은 현재 전 세계 수소생산공정의 40%를 차지하고 있는 검증된 상용화 공정이지만, 공정이 매우 복잡하며 수증기를 사용함에 따라 반응공정상에서 이산화탄소가 발생되어 이를 처리하는 비용이 필수적으로 요구되기 때문에 수소생산단가가 높아지는 단점이 있다. As a method of producing hydrogen, there are a method of reforming using water vapor as a catalyst and a method of using plasma. The method of using water vapor as a catalyst is a proven commercialization process that currently occupies 40% of the world's hydrogen production process, but the process is very complicated and the cost of treating carbon dioxide is generated in the reaction process due to the use of water vapor. Since it is required as a hydrogen production cost increases.

다음으로 플라즈마를 이용한 고온열분해공정은 메탄 열분해과정에서 이산화탄소가 발생되지 않는 장점이 있으나, 메탄의 열분해에 다량의 에너지를 공급해야되기 때문에 수소생산비용이 증대된다. 물론 반응과정에서 부산물로 생산되는 카본블랙에 의해 경제적 가치로 인해 최종적인 수소생산비용을 절감할 수 있다. Next, the high temperature pyrolysis process using plasma has the advantage that carbon dioxide is not generated during the methane pyrolysis process, but the hydrogen production cost is increased because a large amount of energy must be supplied to the pyrolysis of methane. Of course, the carbon black produced as a by-product during the reaction can reduce the final hydrogen production cost due to economic value.

따라서 상기 플라즈마를 이용한 방법과 같이 순수한 수소생산 뿐만 아니라 반응에서 발생되는 부가적인 고부가가치적 생산물을 수취하여 최종적으로는 수소생산비용을 절감시킬 수 있는 방향으로 연구가 진행되고 있다.Therefore, research has been conducted in the direction of reducing hydrogen production costs by receiving additional high value products generated in the reaction as well as pure hydrogen production as in the plasma-based method.

그 중 일부분이 수소생산 함과 동시에 탄소나노튜브를 합성하는 방법이 개발되고 있지만, 대부분 공정들이 탄화수소 가스의 촉매 열분해를 통하여 탄소나노튜 브를 합성한 후 장치의 운전을 중단시키고 탄소나노튜브를 포집하는 등 비연속식인 batch 방식을 갖고 있다. Although some of them produce hydrogen and produce carbon nanotubes at the same time, most processes synthesize carbon nanotubes through catalytic pyrolysis of hydrocarbon gas and stop the operation of the device and capture carbon nanotubes. It has a discontinuous batch method.

따라서, 상기 메탄으로부터 수소가스를 생산하는 과정에서 탄소나노튜브를 수취하도록 하되 수소가스를 연속적으로 생산하면서 탄소나노튜브를 수취하여 생산효율을 극대화시킬 수 있는 연구개발이 필요하다.Therefore, while receiving carbon nanotubes in the process of producing hydrogen gas from the methane, it is necessary to research and development to maximize the production efficiency by receiving carbon nanotubes while continuously producing hydrogen gas.

상기 과제를 해소하기 위한 본 발명의 탄소나노튜브와 수소가스를 생산하는 필터반응장치는, Filter reaction apparatus for producing carbon nanotubes and hydrogen gas of the present invention for solving the above problems,

메탄가스를 이용하여 탄소나노튜브와 수소가스를 생산하는 필터반응장치에 있어서, 하단이 상광하협의 원추형의 호퍼부가 형성된 통체로, 외측면에는 히팅부가 설치되어 내부에 열을 가하도록 하고, 내부에는 격벽이 설치되어 내부공간을 상하구획하고, 상기 격벽은 그 하부면에 필터가 장착되어 하부공간의 기체를 필터링하여 상측으로 공급하는 반응챔버와; 상기 반응챔버의 하부에 위치하여 상기 호퍼부와 연통되고 연결부위에는 밸브를 설치하여 개폐가 이루어지도록 하여 반응챔버에서 반응하고 남은 고체 분말을 유입받아 저장하는 저장챔버와; 상기 반응챔버의 측면에 연통설치되어 메탄가스를 반응챔버내부로 공급하는 공급관과; 상기 공급관의 유로상에 설치되어 공급되는 메탄가스에 촉매나노입자를 공급하는 촉매나노입자 발생기와; 상기 반응챔버의 구획된 상부공간에 연통되어 필터링된 수소가스를 배출하는 수소가스배출관과; 상기 저장챔버와 연통되어 저장된 고체분말을 배출하는 분 말배출관;을 포함하여 구성된다.In the filter reaction apparatus for producing carbon nanotubes and hydrogen gas using methane gas, the lower end is a cylindrical body formed with a cone-shaped hopper part of the upper and lower subsoils, and the heating part is installed on the outer surface to heat the inside. A partition wall is installed to partition the inner space up and down, and the partition wall is equipped with a filter on a lower surface of the reaction chamber for filtering the gas in the lower space and supplying it to the upper side; A storage chamber located at a lower portion of the reaction chamber and communicating with the hopper portion, and having a valve installed at a connection portion to open and close the reaction chamber so as to receive and store the remaining solid powder in the reaction chamber; A supply pipe communicating with a side of the reaction chamber and supplying methane gas into the reaction chamber; A catalytic nanoparticle generator for supplying catalytic nanoparticles to the methane gas provided on the flow path of the supply pipe; A hydrogen gas discharge pipe communicating with a partitioned upper space of the reaction chamber to discharge filtered hydrogen gas; And a powder discharge pipe communicating with the storage chamber to discharge the stored solid powder.

또한, 필터반응장치를 이용하여 메탄으로부터 탄소나노튜브와 수소가스를 생산하는 방법은,In addition, a method of producing carbon nanotubes and hydrogen gas from methane using a filter reactor,

필터가 설치된 반응챔버와 밸브의 개폐가 이루어지는 저장챔버가 수직으로 설치된 반응장치를 이용하여 메탄으로부터 탄소나노튜브와 수소가스를 생산하는 방법에 있어서, 메탄가스에 촉매나노입자를 혼합하는 단계와; 상기 촉매나노입자가 혼합된 메탄가스를 반응챔버에 투입한 후 열을 가하여 탄소와 수소를 분리시키는 열분해단계와; 상기 분리된 수소가스는 반응챔버에 설치된 필터로 필터링하여 탄소가 제거된 수소를 수취하는 수소수취단계와; 상기 열분해단계에서 분리된 탄소성분은 촉매나노입자에 흡착되어 반응챔버의 필터 표면에 부착되고, 부착된 촉매나노입자를 촉매활성점으로 하여 탄소나노튜브 합성과 성장이 이루어지는 탄소나노튜브 성장단계와; 상기 필터표면으로부터 탈거된 탄소나노튜브를 포집하여 하부의 저장챔버로 저장하는 저장단계;를 포함하여 이루어진다.A method of producing carbon nanotubes and hydrogen gas from methane using a reaction apparatus provided with a reaction chamber equipped with a filter and a storage chamber in which valves are opened and closed, the method comprising: mixing catalyst nanoparticles with methane gas; A pyrolysis step of separating carbon and hydrogen by injecting methane gas containing the catalyst nanoparticles into the reaction chamber and applying heat; A hydrogen receiving step of filtering the separated hydrogen gas with a filter installed in the reaction chamber to receive hydrogen from which carbon is removed; A carbon nanotube growth step in which the carbon component separated in the pyrolysis step is adsorbed on the catalyst nanoparticles and attached to the filter surface of the reaction chamber, and the carbon nanotube synthesis and growth are performed using the attached catalytic nanoparticles as the catalytic activity point; And storing the carbon nanotubes stripped from the filter surface and storing them in a lower storage chamber.

이상에서 상세히 기술한 바와 같이 본 발명의 탄소나노튜브와 수소가스를 생산하는 필터반응장치 및 이를 이용하여 메탄으로부터 탄소나노튜브와 수소가스를 생산하는 방법은,As described in detail above, a filter reactor for producing carbon nanotubes and hydrogen gas of the present invention and a method for producing carbon nanotubes and hydrogen gas from methane using the same,

메탄가스에 촉매나노입자를 혼합해 반응기에 투입하고, 상기 반응기 내에 열을 가함으로써 탄소와 수소를 분리시키되 분리된 탄소성분은 촉매에 흡착 성장되도 록 하여 나노튜브가 형성되게 하고 분리된 수소는 필터를 통과하여 포집하여 수소가스를 수취하는 과정에서 추가적으로 탄소나노튜브를 수취할 수 있게 한 것이다. 또한 본 발명은 반응에 투입되는 금속촉매가 메탄의 열분해온도를 낮출수 있어 수소생산에 소요되는 열에너지를 줄일 수 있고, 부가적으로 고가의 탄소나노튜브를 수취할 수 있어 동시 생산되는 수소가스의 생산비용을 낮출수 있어 가격경쟁력을 확보할 수 있으며, 생산과정에서 이산화탄소가 생성되지 않아 환경오염을 방지할 수 있는 유용한 장치 및 방법의 제공이 가능하게 된 것이다.Catalytic nanoparticles are mixed with methane gas and introduced into the reactor, and heat is added to the reactor to separate carbon and hydrogen, and the separated carbon components are adsorbed and grown on the catalyst to form nanotubes, and the separated hydrogen is filtered. In addition, carbon nanotubes can be additionally collected in the process of collecting hydrogen gas by passing through. In addition, the present invention can reduce the thermal energy required for the production of hydrogen as the metal catalyst to the reaction can lower the thermal decomposition temperature of methane, additionally can receive expensive carbon nanotubes to produce hydrogen gas produced simultaneously The cost can be lowered to secure price competitiveness, and carbon dioxide is not produced in the production process, thereby providing a useful device and method for preventing environmental pollution.

이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

도 1을 참조한 바와같이 본 발명에 따른 필터반응장치(10)는, 하단이 상광하협의 원추형으로 형성된 호퍼부(21)를 갖는 반응챔버(20)를 구비한다. 상기 반응챔버는 외측면에 히팅부(22)를 설치하여 내부에 열에너지가 전달되도록 하여 유입되는 메탄가스를 구성하는 탄소와 수소 원자를 분리하도록 한다. 상기 반응챔버(20)의 내부에는 격벽(23)을 설치하여 내부공간을 상하부로 구획한다. 상기 설치된 격벽의 하부면에는 필터(24)가 더 장착되어 반응에 의해 분리된 가스를 필터링하여 수소가스만 상부공간으로 유입되도록 한다. 상기 필터는 다양한 형태로 형성하는 것이 가능하며, 분리 가스와의 접촉면적을 증가시키기 위해 원통형과 같이 돌출된 형태로 형성하는 것이 바람직하다.As shown in FIG. 1, the filter reaction apparatus 10 according to the present invention includes a reaction chamber 20 having a hopper 21 formed at a lower end thereof in a conical shape of a light beam. The reaction chamber is provided with a heating unit 22 on the outer surface to allow thermal energy to be transferred therein to separate carbon and hydrogen atoms constituting the incoming methane gas. The partition 23 is installed inside the reaction chamber 20 to partition the inner space up and down. A filter 24 is further mounted on the lower surface of the installed partition wall to filter the gas separated by the reaction so that only hydrogen gas flows into the upper space. The filter may be formed in various shapes, and in order to increase the contact area with the separation gas, the filter may be formed in a protruding shape such as a cylinder.

상기 반응챔버(20)의 하부에는 저장챔버(30)가 연통설치된다. 상기 저장챔버는 반응챔버의 호퍼부와 연통되고, 연결된 부분에는 밸브(31)를 설치하여 유로 개폐를 단속하도록 한다. 따라서, 상기 반응챔버(20)의 호퍼부(21)에 적재되는 탄소나노튜브(80)가 밸브(31)의 개폐에 의해 저장챔버(30)로 유입되도록 한다. 이 때 상기 밸브(31)는 로터리밸브를 사용하여 반응챔버에서의 열분해반응을 중단하지 않고, 로터리밸브의 작동만으로 반응챔버의 압력손실을 최소화하면서 호퍼부(21)에 포집된 탄소나노튜브(80)를 저장챔버(30)로 공급할 수 있다.The storage chamber 30 is installed in communication with the lower portion of the reaction chamber 20. The storage chamber is in communication with the hopper portion of the reaction chamber, the valve 31 is provided in the connected portion to control the opening and closing of the flow path. Therefore, the carbon nanotubes 80 loaded on the hopper 21 of the reaction chamber 20 are introduced into the storage chamber 30 by opening and closing the valve 31. At this time, the valve 31 is a carbon nanotube (80) collected in the hopper 21 while minimizing the pressure loss of the reaction chamber by the operation of the rotary valve, without stopping the thermal decomposition reaction in the reaction chamber using a rotary valve ) May be supplied to the storage chamber 30.

다음으로 상기 반응챔버(20)의 측면에는 메탄가스를 반응챔버의 내부로 공급하는 필터(24)이 연통 설치되고, 상기 공급관의 유로상에는 촉매나노입자발생기(50)가 설치되어 공급되는 메탄가스에 촉매나노입자를 혼합 공급하도록 한다.Next, a filter 24 for supplying methane gas to the inside of the reaction chamber is connected to the side of the reaction chamber 20, and a catalyst nanoparticle generator 50 is provided on the flow path of the supply pipe to the methane gas supplied. The catalyst nanoparticles are mixed and supplied.

따라서, 상기 촉매나노입자가 혼합된 메탄가스는 히팅부에 의해 고온분위기를 갖는 반응챔버(20)로 유입되어 탄소와 수소로 분리되는 열분해반응이 이루어진다. 상기 열분해된 성분은 필터(24)에 의해 필터링되어 가스성분은 격벽의 상부공간으로 이동하고, 촉매나노입자 및 탄소성분은 필터에 흡착된다. 이 때 상기 촉매나노입자는 촉매활성점이 되어 탄소가 흡착되고 탄소나노튜브(80)의 합성과 성장이 이루어진다. Therefore, the methane gas in which the catalyst nanoparticles are mixed is introduced into the reaction chamber 20 having a high temperature atmosphere by the heating unit, and a pyrolysis reaction is performed in which carbon and hydrogen are separated. The pyrolyzed components are filtered by the filter 24 so that the gas components move to the upper space of the partition wall, and the catalyst nanoparticles and carbon components are adsorbed on the filter. At this time, the catalytic nanoparticles are catalytically active and carbon is adsorbed, and the synthesis and growth of the carbon nanotubes 80 is performed.

상기 필터(24)를 통과한 수소가스는 격벽(23) 상부공간과 연통된 수소가스배출관(60)을 통해 외부의 저장소 또는 사용처로 이송되고, 필터에 흡착된 촉매나노입자를 포함한 탄소나노튜브(80) 분말은 탈진에 의해 반응챔버의 하부 호퍼부(21)로 포집된다. 상기 포집된 탄소나노튜브는 밸브(31)의 개폐에 의해 호퍼부의 하부 에 연통된 저장챔버(30)로 투입되어 저장되며, 저장된 탄소나노튜브는 분말배출관(70)으로 배출되어 별도로 저장되거나 다른 가공이 이루어지도록 하는 공정이 수행될 수 있다.The hydrogen gas passing through the filter 24 is transferred to an external reservoir or a place of use through the hydrogen gas discharge pipe 60 communicating with the upper space of the partition 23, and includes carbon nanotubes including catalyst nanoparticles adsorbed to the filter ( 80) The powder is collected into the lower hopper 21 of the reaction chamber by exhaustion. The collected carbon nanotubes are introduced into and stored in the storage chamber 30 communicated with the lower portion of the hopper by opening and closing of the valve 31, and the stored carbon nanotubes are discharged into the powder discharge pipe 70 and separately stored or otherwise processed. A process may be performed to make this happen.

또한, 상기 탈진은 반응챔버에 설치된 탈진노즐(25)에 의해 이루어진다. 상기 탈진노즐은 반응챔버 중 격벽으로 분리된 상부공간에 설치되며, 바람직하게는 탈진노즐의 분사방향이 격벽에 설치된 필터(24) 내측을 향하도록 하는 것이다. 상기 탈진노즐(25)은 탈진가스저장조로부터 탈진가스를 공급받아 분사가 이루어지도록 하고, 유로의 단속을 탈진밸브(27) 바람직하게는 전자적인 개폐조절이 가능한 솔레노이드밸브를 사용하는 것이다. In addition, the exhaust is made by the exhaust nozzle 25 installed in the reaction chamber. The exhaust nozzle is installed in the upper space separated by the partition wall of the reaction chamber, and preferably the spraying direction of the exhaust nozzle is directed toward the inside of the filter 24 installed in the partition wall. The dedusting nozzle 25 is supplied with the degassing gas from the degassing gas storage tank so that injection is performed, and an intermittent flow path is used for the degassing valve 27.

아울러 상기 탈진밸브(27)는 격벽으로 구획된 상하부공간을 각각 측정하는 차압계(26)와 연동하여 구동이 이루어지도록 한다. 상기 차압계(26)는 반응챔버 상하부공간의 압력을 측정하여 부하가 일정수준 이상일 때 메탄가스의 공급을 중단하고 탈진이 이루어지도록 하여 필터(24)에 흡착된 탄소나노튜브(80)를 탈거한 후 메탄가스를 재공급하여 열분해반응이 이루어지도록 하는 것이다. 이러한 작용을 하는 탈진노즐(25)은 도시된 바와같이 하나의 노즐을 구비하여 분사가 이루어지도록 하거나 탈진노즐을 외주면에 다수의 통공이 형성된 관형태로 하여 필터내부에 삽입한 후 측면으로 분사가 이루어져 필터의 탈진이 이루어지도록 하는 등 필터의 형상에 따라 다양한 형태로 형성할 수 있다.In addition, the exhaust valve 27 is driven in conjunction with the differential pressure gauge 26 for measuring the upper and lower spaces respectively partitioned by the partition wall. The differential pressure gauge 26 measures the pressure in the upper and lower spaces of the reaction chamber and stops the supply of methane gas when the load is above a certain level, and removes the carbon nanotubes 80 adsorbed to the filter 24 so as to perform exhaustion. Re-feed methane to allow pyrolysis. As shown in FIG. 1, the exhaust nozzle 25 is provided with a single nozzle to spray the air or the exhaust nozzle is inserted into the filter in the form of a pipe having a plurality of through holes formed on the outer circumferential surface of the exhaust nozzle. The filter may be formed in various forms according to the shape of the filter such that the filter is exhausted.

다른 실시예로는 상기 필터의 재질을 금속재질의 필터를 사용하여 촉매나노입자의 공급없이 금속필터표면을 환원처리하여 활성화시킴으로써 탄소와 수소를 분 리하여 수소생산을 하고, 동시에 촉매활성점인 표면으로부터 탄소나노튜브를 합성하도록 할 수 있다. 필터는 스테인리스 스틸 재질로 이루어진 필터를 포함한다.In another embodiment, the material of the filter is a metal filter using a metal filter to reduce and activate the surface of the metal filter without supplying catalyst nanoparticles, thereby separating carbon and hydrogen to produce hydrogen, and simultaneously from the surface of the catalytically active point. Carbon nanotubes can be synthesized. The filter includes a filter made of stainless steel.

한편 본 발명에 따른 메탄으로부터 탄소나노튜브와 수소가스를 생산하는 방법은, 도 2를 참조한 바와같이 필터가 설치된 반응챔버와 밸브의 개폐가 이루어지는 저장챔버가 수직으로 설치된 반응장치를 이용하여 메탄으로부터 탄소나노튜브와 수소가스를 생산하는 방법에 있어서, 메탄가스에 촉매나노입자를 혼합하는 단계(S1)가 선행되어 이루어진다. 상기 단계에서는 메탄가스 또는 천연가스를 촉매나노입자발생기에 통과시킴으로써 가스 내에 촉매나노입자가 혼합되도록 한다.On the other hand, the method for producing carbon nanotubes and hydrogen gas from methane according to the present invention, as shown in FIG. In the method for producing nanotubes and hydrogen gas, a step (S1) of mixing catalyst nanoparticles with methane gas is performed in advance. In this step, the catalyst nanoparticles are mixed in the gas by passing methane gas or natural gas through the catalyst nanoparticle generator.

상기 혼합단계 다음으로는 열분해단계(S2)가 수행된다. 상기 열분해단계는 반응챔버의 내부를 고온분위기로 형성한 후 촉매나노입자가 혼합된 메탄가스를 유입되게 하여 열분해반응이 이루어지도록 하는 단계이다. 예컨대 상기 고열의 반응챔버에 유입된 촉매나노입자가 혼합된 메탄가스는 열을 흡수하면서 탄소와 수소가 분리된다. 여기서 상기 일반적인 반응챔버는 850~1700℃의 고온분위기를 유지시켜 열분해반응이 이루어지도록 하고 있으나, 본 발명은 촉매나노입자에 의해 반응온도를 600~900℃까지 낮추게 함으로써 반응챔버의 가열온도를 낮추는 등 수소생산에 사용되는 열에너지 량을 줄일 수 있다.After the mixing step, a pyrolysis step (S2) is performed. The pyrolysis step is a step in which the pyrolysis reaction is performed by forming the inside of the reaction chamber at a high temperature atmosphere to allow the mixed catalyst methane gas to flow into the methane gas. For example, methane gas mixed with catalyst nanoparticles introduced into the high-temperature reaction chamber absorbs heat and carbon and hydrogen are separated. Wherein the general reaction chamber is to maintain a high temperature atmosphere of 850 ~ 1700 ℃ to perform the pyrolysis reaction, the present invention lowers the heating temperature of the reaction chamber by lowering the reaction temperature to 600 ~ 900 ℃ by catalyst nanoparticles The amount of thermal energy used to produce hydrogen can be reduced.

다음으로는 수소수취단계(S3)가 이루어진다. 상기 단계는 상기 열분해단계에 의해 분리된 가스를 반응챔버에 설치된 필터로 탄소성분을 필터링한 후 수소가스만을 수취하여 별도로 저장 또는 사용처로의 이송하는 단계이다.Next, the hydrogen receiving step (S3) is made. The step is a step of filtering the carbon component with a filter installed in the reaction chamber by the gas separated by the pyrolysis step and receiving only hydrogen gas to be transferred to a separate storage or use.

아울러 열분해반응시 분리된 탄소 성분은 촉매나노입자를 활성점으로 하여 탄소나노튜브를 합성하는 탄소나노튜브성장단계(S4)가 이루어진다. 상기 단계에서는 열분해반응에서 분리된 탄소성분이 필터의 외면에 흡착된 촉매나노입자를 활성점으로 하여 합성되면서 탄소나노튜브가 생성되며, 반응이 진행되면서 상기 탄소나노튜브가 연속적으로 성장되는 단계이다. In addition, the carbon component separated during the pyrolysis reaction is a carbon nanotube growth step (S4) of synthesizing carbon nanotubes using catalytic nanoparticles as an active point. In this step, the carbon component separated in the pyrolysis reaction is synthesized using the catalytic nanoparticles adsorbed on the outer surface of the filter as an active point to generate carbon nanotubes, and the carbon nanotubes are continuously grown as the reaction proceeds.

도 3을 참조한 바와같이 상기 성장된 탄소나노튜브는 탈진단계(S6)에 의해 필터로부터 분리한다. 상기 탈진단계에서는 수소수취를 위해 흡입하는 방향의 역방향으로 탈진가스를 분사하여 필터 표면에 흡착된 탄소나노튜브를 분리시키는 단계이다. 상기 탈진단계의 수행여부는 반응챔버에서 필터를 설치한 격벽으로 분리된 두 공간에 각각 차압계를 설치하여 압력의 차이에 의해 판단되며, 측정치가 설정압력 이상으로 발생될 경우 촉매나노입자가 혼합된 메탄가스의 유입을 차단하고 탈진노즐을 개방함으로써 수소가스흡입의 역방향으로 분사가 이루어지도록 한다.As shown in FIG. 3, the grown carbon nanotubes are separated from the filter by a dedusting step S6. The dedusting step is a step of separating the carbon nanotubes adsorbed on the filter surface by injecting the dedusting gas in the reverse direction of the suction direction for hydrogen reception. Whether or not to perform the dedusting step is determined by the difference in pressure by installing a differential pressure gauge in each of two spaces separated by a partition in which a filter is installed in the reaction chamber. By blocking the inflow of gas and opening the exhaust nozzle, injection is performed in the reverse direction of hydrogen gas intake.

다음으로 상기 탈진단계에서 필터에서 분리된 탄소나노튜브 또는 과다하게 성장되어 필터로부터 분리된 탄소나노튜브를 포집하여 저장하는 저장단계(S5)가 이루어진다. 상기 저장단계에서는 반응챔버의 하부에서 1차적으로 포집이 이루어지고, 밸브의 조작에 의해 반응챔버의 하부에 연통설치된 저장챔버로 포집된 탄소나노튜브를 이송시키는 과정이 이루어지며, 상기 저장챔버에 포집된 탄소나노튜브는 간단한 정제과정 예컨대 촉매나노입자를 제거하는 과정으로 통해 순수한 탄소나노튜브를 수취하여 저장하거나 사용처로의 이송이 이루어지도록 한다.Next, a storage step (S5) of collecting and storing the carbon nanotubes separated from the filter or excessively grown carbon nanotubes separated from the filter in the dedusting step is performed. In the storing step, the collecting is primarily performed at the lower part of the reaction chamber, and a process of transferring the carbon nanotubes collected to the storage chamber communicating with the lower part of the reaction chamber by the operation of the valve is performed. The carbon nanotubes are subjected to a simple purification process, for example, to remove catalyst nanoparticles, so that the pure carbon nanotubes are received and stored or transferred to a place of use.

상기한 필터반응장치 및 생산방법에 의해 메탄가스(천연가스)를 열분해시키 면, 수소를 생산함과 동시에 탄소나노튜브를 생산할 수 있으며, 순간적인 탈진공정 이외에는 연속적인 생산이 가능함으로 batch 방식보다는 월등한 생산성을 제공한다.By pyrolyzing methane gas (natural gas) by the above filter reaction apparatus and production method, hydrogen can be produced and carbon nanotubes can be produced at the same time. Provide productivity.

그리고, 수소생산과정에서 이산화탄소 배출이 없으며, 고온열분해 공정에서 사용되는 열에너지보다 훨씬 낮은 에너지로 수소를 생산할 수 있다. 또한, 촉매나노입자를 연속적으로 공급할 수 있어 촉매의 수명저하를 방지하기 위한 재생과정이 필요없으며, 열분해과정의 중지 없이 연속적으로 탄소나노튜브의 수취할 수 있게 되었다. In addition, there is no carbon dioxide emission in the hydrogen production process, and hydrogen can be produced with much lower energy than thermal energy used in the high temperature pyrolysis process. In addition, since the catalyst nanoparticles can be continuously supplied, there is no need for a regeneration process to prevent the deterioration of the life of the catalyst, and the carbon nanotubes can be continuously received without stopping the pyrolysis process.

한편, 상기 서술한 예는, 본 발명을 설명하고자하는 예일 뿐이다. 따라서 본 발명이 속하는 기술분야의 통상적인 전문가가 본 상세한 설명을 참조하여 부분변경 사용한 것도 본 발명의 범위에 속하는 것은 당연한 것이다.In addition, the above-mentioned example is only an example to demonstrate this invention. Therefore, it is obvious that the ordinary skilled in the art to which the present invention pertains uses the partial change with reference to the detailed description.

도 1은 본 발명의 탄소나노튜브와 수소가스를 생산하는 필터반응장치의 전체구성을 도시한 개략도.1 is a schematic diagram showing the overall configuration of a filter reactor for producing carbon nanotubes and hydrogen gas of the present invention.

도 2 및 도 3은 본 발명에 따른 탄소나노튜브와 수소가스를 생산하는 방법을 도시한 흐름도.2 and 3 is a flow chart illustrating a method for producing carbon nanotubes and hydrogen gas according to the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

10 : 필터반응장치10: filter reaction device

20 : 반응챔버20: reaction chamber

21 : 호퍼부 22 : 히팅부 23 : 격벽21: hopper portion 22: heating portion 23: partition wall

24 : 필터 25 : 탈진노즐 26 : 차압계24 filter 25 exhaust nozzle 26 differential pressure gauge

27 : 탈진밸브27: exhaust valve

30 : 저장챔버30: storage chamber

31 : 밸브31: valve

40 : 공급관40: supply pipe

50 : 촉매나노입자 발생기50: catalytic nanoparticle generator

60 : 수소가스배출관60: hydrogen gas discharge pipe

70 : 분말배출관70: powder discharge pipe

80 : 탄소나노튜브80: carbon nanotube

Claims (6)

메탄가스를 이용하여 탄소나노튜브와 수소가스를 생산하는 필터반응장치에 있어서,In the filter reactor for producing carbon nanotubes and hydrogen gas using methane gas, 하단이 상광하협의 원추형의 호퍼부(21)가 형성된 통체로, 외측면에는 히팅부(22)가 설치되어 내부에 열을 가하도록 하고, 내부에는 격벽(23)이 설치되어 내부공간을 상하구획하고, 상기 격벽은 그 하부면에 필터(24)가 장착되어 하부공간의 기체를 필터링하여 상측으로 공급하는 반응챔버(20)와;The lower end is a cylindrical body having a cone-shaped hopper portion 21 of the upper and lower sides, and a heating part 22 is installed on the outer surface to apply heat to the inside, and a partition 23 is installed inside to partition the inner space up and down. In addition, the partition wall has a filter 24 mounted on the lower surface of the reaction chamber 20 for filtering the gas in the lower space and supply to the upper side; 상기 반응챔버의 하부에 위치하여 상기 호퍼부(21)와 연통되고 연결부위에는 밸브(31)를 설치하여 개폐가 이루어지도록 하여 반응챔버에서 반응하고 남은 고체 분말을 유입받아 저장하는 저장챔버(30)와;Located in the lower portion of the reaction chamber is in communication with the hopper portion 21 and the connecting portion is provided with a valve 31 to open and close the storage chamber 30 for receiving and storing the solid powder remaining after the reaction in the reaction chamber Wow; 상기 반응챔버의 측면에 연통설치되어 메탄가스를 반응챔버내부로 공급하는 필터(24)과;A filter 24 communicating with the side of the reaction chamber and supplying methane gas into the reaction chamber; 상기 공급관의 유로상에 설치되어 공급되는 메탄가스에 촉매나노입자를 공급하는 촉매나노입자 발생기(50)와;A catalytic nanoparticle generator (50) for supplying catalytic nanoparticles to methane gas provided on a flow path of the supply pipe; 상기 반응챔버의 구획된 상부공간에 연통되어 필터링된 수소가스를 배출하는 수소가스배출관(60)과;A hydrogen gas discharge pipe 60 communicating with a partitioned upper space of the reaction chamber to discharge filtered hydrogen gas; 상기 저장챔버와 연통되어 저장된 고체분말을 배출하는 분말배출관(70);을 포함하여 구성됨을 특징으로 하는 탄소나노튜브와 수소가스를 생산하는 필터반응장치.And a powder discharge pipe (70) for discharging the solid powder stored in communication with the storage chamber. The filter reactor for producing carbon nanotubes and hydrogen gas, comprising: a powder discharge pipe (70). 제1항에 있어서,The method of claim 1, 상기 반응챔버(20)에는 필터에 흡착된 고체분말을 분리시키기 위해 격벽(23)으로 구획된 상부공간에 탈진노즐(25)이 설치된 것을 특징으로 하는 탄소나노튜브와 수소가스를 생산하는 필터반응장치.The reaction chamber 20 is a filter reactor for producing carbon nanotubes and hydrogen gas, characterized in that the exhaust nozzle 25 is installed in the upper space partitioned by the partition wall 23 to separate the solid powder adsorbed to the filter. . 제1항에 있어서,The method of claim 1, 상기 필터(24)는 원통형인 것을 특징으로 하는 탄소나노튜브와 수소가스를 생산하는 필터반응장치.The filter 24 is a filter reactor for producing carbon nanotubes and hydrogen gas, characterized in that the cylindrical. 필터가 설치된 반응챔버와 밸브의 개폐가 이루어지는 저장챔버가 수직으로 설치된 반응장치를 이용하여 메탄으로부터 탄소나노튜브와 수소가스를 생산하는 방법에 있어서,In the method for producing carbon nanotubes and hydrogen gas from methane by using a reaction apparatus provided with a reaction chamber equipped with a filter and a storage chamber in which valves are opened and closed in a vertical direction, 메탄가스에 촉매나노입자를 혼합하는 단계(S1)와;Mixing the catalytic nanoparticles with methane gas (S1); 상기 촉매나노입자가 혼합된 메탄가스를 반응챔버에 투입한 후 열을 가하여 탄소와 수소를 분리시키는 열분해단계(S2)와;A pyrolysis step (S2) of injecting methane gas containing the catalyst nanoparticles into the reaction chamber and then applying heat to separate carbon and hydrogen; 상기 분리된 수소가스는 반응챔버에 설치된 필터로 필터링하여 탄소가 제거된 수소를 수취하는 수소수취단계(S3)와;The separated hydrogen gas is filtered through a filter installed in a reaction chamber to receive hydrogen from which carbon is removed (S3); 상기 열분해단계에서 분리된 탄소성분은 촉매나노입자에 흡착되어 반응챔버의 필터 표면에 부착되고, 부착된 촉매나노입자를 촉매활성점으로 하여 탄소나노튜 브 합성과 성장이 이루어지는 탄소나노튜브성장단계(S4)와;The carbon component separated in the pyrolysis step is adsorbed onto the catalyst nanoparticles and attached to the filter surface of the reaction chamber, and the carbon nanotube growth step is performed in which carbon nanotubes are synthesized and grown using the attached catalytic nanoparticles as the catalytic activity point. S4); 상기 필터표면으로부터 탈거된 탄소나노튜브를 포집하여 하부의 저장챔버로 저장하는 저장단계(S5);를 포함하여 이루어짐을 특징으로 하는 메탄으로부터 탄소나노튜브와 수소가스를 생산하는 방법.And collecting carbon nanotubes stripped from the filter surface and storing the carbon nanotubes in a lower storage chamber (S5). The method of producing carbon nanotubes and hydrogen gas from methane, comprising: 제4항에 있어서,The method of claim 4, wherein 상기 탄소나노튜브 성장단계(S4) 다음으로는 필터 내부에서 외부로 탈진가스를 배출시켜 부착된 탄소나노튜브를 탈거시키는 탈진단계(S6)가 더 수행됨을 특징을 하는 메탄으로부터 탄소나노튜브와 수소가스를 생산하는 방법.The carbon nanotube growth step (S4) is followed by the carbon nanotube and hydrogen gas from methane characterized in that the dedusting step (S6) to remove the attached carbon nanotubes by discharging the dedusting gas from the inside to the outside of the filter is further performed. How to produce. 제4항에 있어서,The method of claim 4, wherein 상기 열분해단계(S2)에서 가해지는 분해반응온도는 600~900℃로 이루어짐을 특징으로 하는 메탄으로부터 탄소나노튜브와 수소가스를 생산하는 방법.The decomposition reaction temperature applied in the pyrolysis step (S2) is a method for producing carbon nanotubes and hydrogen gas from methane, characterized in that consisting of 600 ~ 900 ℃.
KR1020090049755A 2009-06-05 2009-06-05 Filter Reaction Apparatus for Producing Carbon Nano Tube and Hydrogen Gas and Production Method for Carbon Nano Tube and Hydrogen Gas from Methane Gas using Thereof KR101084666B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090049755A KR101084666B1 (en) 2009-06-05 2009-06-05 Filter Reaction Apparatus for Producing Carbon Nano Tube and Hydrogen Gas and Production Method for Carbon Nano Tube and Hydrogen Gas from Methane Gas using Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090049755A KR101084666B1 (en) 2009-06-05 2009-06-05 Filter Reaction Apparatus for Producing Carbon Nano Tube and Hydrogen Gas and Production Method for Carbon Nano Tube and Hydrogen Gas from Methane Gas using Thereof

Publications (2)

Publication Number Publication Date
KR20100131069A true KR20100131069A (en) 2010-12-15
KR101084666B1 KR101084666B1 (en) 2011-11-22

Family

ID=43507175

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090049755A KR101084666B1 (en) 2009-06-05 2009-06-05 Filter Reaction Apparatus for Producing Carbon Nano Tube and Hydrogen Gas and Production Method for Carbon Nano Tube and Hydrogen Gas from Methane Gas using Thereof

Country Status (1)

Country Link
KR (1) KR101084666B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101291966B1 (en) * 2011-08-24 2013-08-09 한국에너지기술연구원 Capturing system for silicone-series nano-particle and capturing/containg vessel using for the same
US11873219B2 (en) 2018-04-09 2024-01-16 Shell Usa, Inc. Process for producing hydrogen and carbon products

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101504113B1 (en) 2013-04-03 2015-03-19 (주)티피에스 Hydrogen gas manufacturing method and manufacturing reactor apparatus of hydrogen gas using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6887291B2 (en) * 2001-08-30 2005-05-03 Tda Research, Inc. Filter devices and methods for carbon nanomaterial collection
JP2004123446A (en) * 2002-10-02 2004-04-22 Air Water Inc Process for manufacturing carbon nanotube, carbon nanotube-carrying material and hydrogen occlusion material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101291966B1 (en) * 2011-08-24 2013-08-09 한국에너지기술연구원 Capturing system for silicone-series nano-particle and capturing/containg vessel using for the same
US11873219B2 (en) 2018-04-09 2024-01-16 Shell Usa, Inc. Process for producing hydrogen and carbon products

Also Published As

Publication number Publication date
KR101084666B1 (en) 2011-11-22

Similar Documents

Publication Publication Date Title
Meng et al. Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst
CN104925755B (en) Hydrogen purification devices protection system and method based on methanol-water hydrogen production system employing reforming technology
JP5549941B2 (en) Nanocarbon production method and production apparatus
CN109821528B (en) Bi/ZnO nano heterogeneous material and preparation method and application thereof
CN103896361B (en) Device and method for treating organic waste water by water plasma torch
CN104129754B (en) A kind of biomass pyrolytic and hydrogen production of chemical chain coupling continuous reaction apparatus and utilize this device to prepare the method for hydrogen
CN204625176U (en) A kind of integrated form hydrogen from methyl alcohol machine
CN110394127B (en) Fluidized bed methane dry reforming reaction device and method with plasma in-situ coupled ultraviolet light
KR101084666B1 (en) Filter Reaction Apparatus for Producing Carbon Nano Tube and Hydrogen Gas and Production Method for Carbon Nano Tube and Hydrogen Gas from Methane Gas using Thereof
JP4852787B2 (en) Carbon production equipment
CN104401966A (en) Continuous type production equipment and method of carbon nano tube
CN103569998A (en) Device and method for preparing carbon nanotube
KR101103678B1 (en) Apparatus and process for manufacturing high purity hydrogen by catalytic decomposition of petroleum waste gas
CN102802334A (en) Sliding-arc-discharge plasma generation device loaded with magnetic field
US7985704B2 (en) Method of regenerating absorbent
CN105315124A (en) Method and system for producing acetylene by utilizing organic waste
CN104773709B (en) System and method for preparing synthesis gas by carbon dioxide displacement of coal bed gas
CN109569656A (en) A kind of V3S4The preparation of@rGO and its application of electrocatalysis characteristic
CN113086968A (en) Carbon dioxide recycling treatment system and method
JP2006096590A (en) Apparatus for directly cracking lower hydrocarbon
CN102527309A (en) Device and method for preparing fuel by reducing carbon dioxide by hydrogen production through vapor discharge cracking
CN102430723A (en) Triethylamine gas producing and recycling system
KR102193200B1 (en) Thermochemical upgrading system of bio-gas
KR101538211B1 (en) Plasmatron Equipment for Carbon Dioxide Destruction
CN106118738A (en) A kind of device of gas liquid two phase discharge hydrofinishing bio oil

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141106

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151106

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161027

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20170906

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181030

Year of fee payment: 8