KR20100129351A - Culture methods of micro algae and environmental variation device to transfer lipids - Google Patents

Culture methods of micro algae and environmental variation device to transfer lipids Download PDF

Info

Publication number
KR20100129351A
KR20100129351A KR1020090047863A KR20090047863A KR20100129351A KR 20100129351 A KR20100129351 A KR 20100129351A KR 1020090047863 A KR1020090047863 A KR 1020090047863A KR 20090047863 A KR20090047863 A KR 20090047863A KR 20100129351 A KR20100129351 A KR 20100129351A
Authority
KR
South Korea
Prior art keywords
culture
microalgae
farmland
greenhouse
tank
Prior art date
Application number
KR1020090047863A
Other languages
Korean (ko)
Inventor
김영남
Original Assignee
김영남
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영남 filed Critical 김영남
Priority to KR1020090047863A priority Critical patent/KR20100129351A/en
Publication of KR20100129351A publication Critical patent/KR20100129351A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/04Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus by injection or suction, e.g. using pipettes, syringes, needles
    • C12M33/06Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus by injection or suction, e.g. using pipettes, syringes, needles for multiple inoculation or multiple collection of samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Clinical Laboratory Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE: A method for massively culturing micro algae which is used as an ingredient of biodiesel is provided to reduce production cost and operation cost and to help growth of rice plant. CONSTITUTION: A method for massively culturing micro algae comprises a primary laboratory room culture, secondary green house culture(1-1), tertiary farmland culture, and quarternary lipidization process(1-2). The method comprises: a process of culturing micro algae of the primary laboratory room culture; a process of diluting livestock excreta with water in a ratio of 2:8 to prepare liquid booster; a process of massively culturing on a farmland and harvesting; and a step of performing nitrogen blocking for two weeks to obtain high fatty acid.

Description

미세조류 급속배양방법 및 환경변이 지질화장치 {Culture methods of micro algae and Environmental variation device to transfer lipids }Culture methods of micro algae and Environmental variation device to transfer lipids}

수년간 산업에서는 석유자원고갈과 환경오염에 따른 많은 문제점을 안고, 이를 해결하기 위한 대체에너지 산업에 많은 관심과 노력이 있어 왔다. 그중 한 분야로써 동물 또는 식물의 지방 또는 재생유지로부터 만들어지는 바이오디젤의 원료로서의 미세조류의 배양 및 생산에 관한 것이다. 디젤유는 원유로부터 얻어지는 여러 가지 연료 중에서 가격이 저렴하여 운송수단의 원료, 즉 디젤 엔진의 원료로 가장 널리 사용되고 있다. 본 발명은 2~30억년 전에 지구에 출현해 그 종을 유지해오고 있는 미세조류를 통해 바이오디젤 원료(지방산)를 얻기 위한 방법을 제공하려 한다. For many years, there has been a lot of attention and effort in the alternative energy industry to solve these problems, which are caused by the depletion of oil resources and environmental pollution. One of them relates to the cultivation and production of microalgae as a raw material of biodiesel made from fat or regeneration of animals or plants. Diesel oil is most widely used as a raw material of a vehicle, that is, a diesel engine, because of its low cost among various fuels obtained from crude oil. The present invention seeks to provide a method for obtaining biodiesel raw material (fatty acid) through microalgae that appeared on the earth 2 to 3 billion years ago and has maintained its species.

미세조류는 지구상에 가장 오래된 생물로 그 수가 수천종에 달하나 이가운데 약 0.1% 정도의 생리활성이 알려져있어 극히 일부만이 산업적 규모로 배양되고 있는데 그 중 클로렐라(chlorella)나 스피루리나(spirulina)와 같은 미세조류는 식이보조제,건강보조식품,수산양식용사료,대체의약품 및 에너지자원등의 다양한 소재물질로 개발되고 있다. 상기의 미세조류는 담수 또는 해수에 서식하며 뿌리, 줄기, 잎이 없는 단세포형의 식물로서 엽록소를 가지고 광합성을 하며, 식물성 지방산, 단백질, 미네랄 및 각종 비타민이 함유되어 있어 건강식품 등에 활용도가 크며, 환경조건에 따라 빠른 성장과 번식활동으로 단 시일내 많은 양을 수확할 수 있는 장점이 있어 바이오디젤 원료로서의 활용에 무한한 잠재성을 가지고 있다. 미세조류는 배양조건에 따라 큰 차이를 보이므로 성장가능한 최적의 조건을 필요로 한다. 담수 조건하에서 바이오디젤의 원료를 얻기 위한 미세조류의 대량 배양방법으로는, 운전유지비가 저렴하고 간단한 개방형 배양장치(open culture system)와 고가의 장비시설이 필요로 한 밀폐형 탱크배양장치로 나누어 볼 수 있다. Microalgae are the oldest organisms on the planet, and their number is thousands, but about 0.1% of them are known for their biological activity, and only a few of them are cultivated on an industrial scale, such as chlorella or spirulina. Microalgae are being developed into various materials such as dietary supplements, health supplements, aquaculture feeds, alternative medicines, and energy resources. The microalgae are single-celled plants that live in fresh or seawater and have no roots, stems, or leaves, and have photosynthesis with chlorophyll. They contain vegetable fatty acids, proteins, minerals, and various vitamins, which make them useful for health foods. Depending on the environmental conditions, it has the advantage of being able to harvest a large amount in a short time due to rapid growth and breeding activity, and thus has unlimited potential as a biodiesel raw material. Since microalgae show a great difference depending on the culture conditions, they need optimal growth conditions. As a large-scale cultivation method of microalgae to obtain raw materials of biodiesel under fresh water conditions, it can be divided into a closed tank cultivation device which requires a low operating cost, a simple open culture system and an expensive equipment facility. have.

상기의 개방형 배양의 경우에는 생산비가 저렴한 장점이 있으나, 계절상 기후조건에 따라 수확량에 큰 영향을 미치므로 생산량이 크게 떨어지며, 밀폐형 탱크배양의 경우 미세조류의 성장시 광합성 작용을 원활하게 하여 증식에 도움을 주는 탄소원 및 미량원소를 포함하는 영양분을 별도로 공급하여 미세조류의 체세포 성장 및 번식을 도와야 하며 적정온도 및 배양조건을 맞추어야 한다. 이는 운영상의 고가의 장비구입및 고비용의 운전자금이 필요하여 바이오디젤의 원료로 사용되기에는 아직까지는 무리가 있어 건강식품,의약품 제조에 주로 이용되어 지고 있다.In the case of the open culture, the production cost has the advantage of low cost, but due to the seasonal climatic conditions, the production yield greatly decreases, and in the case of a closed tank culture, the photosynthetic action during the growth of microalgae facilitates the growth. Nutrients containing beneficial carbon and trace elements must be supplied separately to help microalgae grow and reproduce, and to adjust the appropriate temperature and culture conditions. It requires expensive equipment for operation and expensive working capital, so it is still difficult to be used as a raw material for biodiesel. Therefore, it is mainly used for manufacturing health food and medicine.

상기에서 언급했듯이 미세조류를 이용한 다양한 연구개발이 이루어지고 있으나 에너지원으로서의 미세조류의 배양시설 및 생산방법은 생산원가가 높아 연구개발이 미비한 실정으로 생산원가를 낮추면서 대량생산이 가능한 배양방법 및 시설이 절실하다. 본 발명은 담수 조건하에서 상기의 생산방법을 이원화하고 극대화하여 시설원가 및 운영비를 절감할 수 있는 배양방법 및 설비시설을 제공함에 있다. As mentioned above, various research and development using microalgae has been conducted, but the culture and production method of microalgae as an energy source has a high production cost. This is desperate. The present invention is to provide a cultivation method and facility that can reduce the facility cost and operating costs by dualizing and maximizing the production method under fresh water conditions.

설비비용 및 시설이 간단하며 운전비용이 저렴하며 대량배양이 가능한 특수제작된 비닐하우스구조의 실외 배양장치를 시설하여 생산량을 늘리고 이와 함께 농지를 이용한 농지(沓)대량배양을 통해 생산량을 극대화하며, 수확된 미세조류의 형질전환에 의한 지질지방으로의 변이를 유도하여 기존 동·식물성 유지원료보다 높은 유지함량을 가짐으로 생산성이 뛰어난 바이오디젤을 제조할 수 있다. It is equipped with an outdoor cultivation device of specially designed vinyl house structure that is simple in equipment cost, simple in operation, low in operation cost, and capable of mass cultivation, which increases production and maximizes the production through mass cultivation of farmland using farmland. By inducing the transformation of the harvested microalgae into lipid fat by transformation and having a higher maintenance content than conventional animal and vegetable fats and oils can produce a biodiesel with high productivity.

상기와 같은 장점으로 시설비용 및 운전자금을 절감할 수 있어 생산원가를 낮추게 되므로, 바이오디젤의 원료로서의 미세조류의 생산이 가능하다. With the above advantages, it is possible to reduce facility costs and operating costs, thereby lowering production costs, and thus, it is possible to produce microalgae as a raw material of biodiesel.

또한 연료를 얻기위한 바이오디젤의 생산과정(유지의 착유 → 에스테르화반응 → 바이오디젤)중 전처리과정인 착유과정에서 남은 유박(cake)에 다량 포함된 단백질을 이용한 발효과정을 거치면 바이오에탄올 또한 생산 가능하여 활용도가 높다.In addition, bioethanol can also be produced by fermentation using protein contained in a large amount of cake remaining in the milking process, which is a pretreatment process of the biodiesel production process (oil milking → esterification reaction → biodiesel) to obtain fuel. High utilization.

위와 같이 미세조류를 이용하여 생산비가 저렴한 에너지원을 만들어 낸다면 그 잠 재적인 가치는 무한하며, 고유가문제, 환경오염문제 등에 커다란 기여를 할 수 있을 것으로 본다.As described above, if microalgae are used to produce low-cost energy sources, the potential value is infinite, and it is expected to contribute to high oil prices and environmental pollution.

본 발명은 바이오디젤 원료로 사용하기 위한 미세조류(micro algae)의 대량 생산 방법에 관한 것으로, 상기 생물의 대량배양 및 형질변환을 유도하여 미세조류 내의 고 지방질을 얻기 위한 생산시설 및 배양방법을 제공하는 것을 특징으로 한다. 이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다. The present invention relates to a mass production method of micro algae for use as a biodiesel raw material, and provides a production facility and a culture method for obtaining high fat in microalgae by inducing mass culture and transformation of the organism. Characterized in that. Hereinafter, the present invention will be described in detail.

미세조류의 배양방법은 크게 1차 실험실배양, 2차 온실배양(실외배양), 3차 농지(沓)대량배양과정(실외배양), 4차 지질화변이과정의 단계로 크게 나누어 실시한다. 상기의 각 단계에서 배양 되어질 미세조류는 지방산의 함유가 다소 높고 농지의 억초농법에 적합한 클로렐라 불가리스(Chlorella vulgaris)종을 이용한 배양방법을 제공하고자 한다.The cultivation method of microalgae is largely divided into the stages of the first laboratory culture, the second greenhouse culture (outdoor culture), the third farmland mass culture process (outdoor culture), and the fourth lipidation transformation process. The microalgae to be cultured in each of the above steps is to provide a culturing method using Chlorella vulgaris species that is slightly higher in the fatty acid content and suitable for farming methods of farmland.

1차 실험실배양 단계에서는 26~30도로 유지되는 실내에서 탄소원,질소원,무기염류,발육인자(비타민류)의 부스터(배양액)와 공기펌프에 의한 교반작용으로 미세조류 성장의 최적환경을 조성하여 주면 20시간에 최대 10배 이상으로 종주를 배양한다.In the first laboratory culture stage, the optimum environment for microalgae growth is created by agitation by booster (culture medium) and air pump of carbon source, nitrogen source, inorganic salt, growth factor (vitamin) in the room maintained at 26 ~ 30 degrees. Incubate strains up to 10 times or more in 20 hours.

상기 단계에서 배양된 미세조류(Chlorella vulgaris)는 비닐하우스구조의 2차 옥외 온실배양시설에서 대량배양을 실시한다. 도 1의 1-1에 도시된 바와 같이 실험실에서 배양된 미세조류는 온실내부의 교반탱크(1)에서 탄소원인 액상부스터(2)와 일정량의 혼합과정을 이룬후 순환펌프(3)에 의해 수직투명비닐관(4)의 상부로 이송되어진후 중력에 의한 낙차에 의해 투명비닐관 끝의 홀(hole)을 통해 자연낙하를 하며 지그재그로 순환하며 이송되어진다. 순환과정에 내경 250mm 정도의 원통형의 수직투명비닐관을 투과하는 태양에너지를 이용한 광합성과 온실효과에 의한 내부의 적정온도(26~30도) 유지를 이루어 미세조류의 성장 및 분화를 촉진하게 된다. The microalgae (Chlorella vulgaris) cultured in the above step is carried out in a mass culture in a secondary greenhouse greenhouse facility of a vinyl house structure. As shown in 1-1 of FIG. 1, the microalgae cultured in a laboratory are vertically formed by a circulation pump 3 after a predetermined amount of mixing with the liquid booster 2, which is a carbon source, in the stirring tank 1 inside the greenhouse. After being transported to the upper portion of the transparent vinyl tube 4, the natural drop through the hole (hole) at the end of the transparent vinyl tube by the drop due to gravity is circulated in a zigzag is conveyed. During circulation, microalgae growth and differentiation are promoted by maintaining the optimal temperature (26 ~ 30 ° C) by the photosynthesis and greenhouse effect using solar energy penetrating the cylindrical transparent vinyl tube of 250mm inner diameter.

상기의 액상부스터(2)는 축산분료를 수거하여 2:8로 물과 희석하여 만든 거름원으로 하여 순환과정에 교반탱크(1)에서 주기적으로 혼합하여 준다. 위와같이 미세조류의 배양조건을 최적화하여 조성함으로써, 짧은 시일내에 고농도를 가진 대량의 미세조류를 배양가능하게 한다. 상기의 순환 배양되는 미세조류는 1주일 단위로 원심여과기(5)를 통과하는 과정에 물과 분리되어 수확되어지며, 분리된 물은 다시 교반탱크(1)를 통해 재순환되며 연속적인 메카니즘을 이루게 된다.The liquid booster (2) is a manure source made by diluting the livestock with dilution with water at 2: 8 and periodically mixed in the stirring tank (1) in the circulation process. By optimizing the culture conditions of the microalgae as described above, it is possible to culture a large amount of microalgae with a high concentration in a short time. The microalgae circulated and cultured are harvested by being separated from water in the course of passing through the centrifugal filter (5) on a weekly basis, and the separated water is recycled through the stirring tank (1) again to form a continuous mechanism. .

상기와 같은 온실배양시설장치는 태양에너지를 이용하고 펌프(3) 이송에 따른 최소한의 전력비가 소요되며, 구조가 간단하여 다른 생산방법과 비교하여 고가의 장비구입이 필요치 않고, 최소인력으로 운영함으로 유지관리비를 획기적으로 최소화 할 수 있어 상당한 경쟁력을 갖는다. The above-mentioned greenhouse cultivation facility uses solar energy and requires the minimum power cost according to the pump (3) transfer, and because the structure is simple, it does not require expensive equipment purchase compared to other production methods, and operates with minimum manpower. Maintenance cost can be minimized dramatically, so it has considerable competitiveness.

상기의 단계에서 배양되는 미세조류는 벼농사 시기를 맞추어 더욱 큰 규모의 대량배양이 가능한 개방형 배양장치(open culture system)에 속하는 상기단계의 3차 농지(沓)대량배양을 실시하여 수확량을 효과적으로 늘릴 수 있다. 4계절을 가지는 국내의 기후조건에서는 1년(365일)내내 개방형 배양이 불리함으로 기후조건이 맞는 농지의 모내기 시점에 미세조류(Chlorella vulgaris)를 논에 방류하여 벼의 수확시기전인 약 5개월간 일반배양을 할 수 있다.The microalgae cultivated in the above step can effectively increase the yield by carrying out the third cultivation of the farmland in the above step belonging to the open culture system that can be grown in a larger scale in accordance with the rice farming time. have. In the four-season domestic climate conditions, open culture is unfavorable all year round (365 days), so microalgae (Chlorella vulgaris) are discharged into paddy fields at the time of planting of the farmland where the climate conditions are suitable for about five months before harvesting rice. Can be cultured.

일반환경의 농지에 모내기와 동시에 온실에서 배양된 미세조류(Chlorella vulgaris)와 액상부스터를 함께 논에 방류한 후 1개월 후부터 1주일 간격으로 펌프와 유수분리장치를 통해 수확하게 된다. 농지(沓)대량배양은 미세조류인 클로렐라의 성장기후조건에 적합하여 증식활동이 원활하다. 이러한 증식활동은 벼의 건강생육을 도와주는 고급영양분 및 잡초생육을 억제하여 벼농사 및 미세조류 배양에 상생(相生)효과를 볼 수 있다. 방류된 미세조류(Chlorella vulgaris)는 다음과 같은 특징으로 벼의 생육에 도움을 준다. 첫째, 논 토양의 표층을 끈적한 점액질로 바꾸어 주며 미꾸라지 등의 작은 곤충과 소동물의 다량증식에 기여해 잡초의 발아를 1차적으로 억제하며, 둘째, 미세조류의 급속증식으로 햇볕을 차단하여 잡초의 2차적인 생육을 근원적으로 억제한다. 셋째, 효소, 비타민, 각종미네랄을 다량 함유하고 있어 벼의 건강생육을 도와주며, 축산분료를 이용한 액상부스터로 영양분을 공급하므로 벼의 유기농법이 가능하다. 상기와 같은 특징으로 일반 농가의 농지(沓)의 이용이 용이하여 그에 따른 비용이 절감되고, 배양과정이 단순하여 생산비 절감에 크게 기여한다. At the same time, the microalgae (Chlorella vulgaris) and the liquid booster, which are cultivated in the greenhouse, are discharged together in the paddy field and harvested through the pump and oil / water separator at a weekly interval from one month. Farmland mass cultivation is suitable for the growth climate conditions of chlorella, a microalgae, and has a smooth growth activity. This proliferation activity can inhibit the growth of high-grade nutrients and weeds to help the healthy growth of rice can see a win-win effect in the rice farming and microalgae culture. The released microalgae (Chlorella vulgaris) help the growth of rice with the following characteristics. First, it changes the surface layer of paddy soil to sticky mucus and contributes to the large-scale growth of small insects and small animals such as loach, and inhibits germination of weeds primarily. Second, it blocks the sun by rapidly growing microalgae. Inhibit primary growth. Third, because it contains a large amount of enzymes, vitamins, and various minerals to help the healthy growth of rice, organic food of rice is possible because it supplies nutrients with liquid booster using livestock powder. With the characteristics as described above, the use of farmland (沓) of the general farmhouse is easy to reduce the cost, and the simple cultivation process contributes significantly to the reduction of production costs.

3차 농지(沓)대량배양 또는 2차 온실배양을 거쳐 수확된 미세조류는 4차 지질화변이 과정에서 인위적인 악조건을 조성하여 생존모드로 전환을 유도하여 미세조류내의 성분을 지질지방으로 변이시켜 최대 80%가지 포집함으로 바이오디젤의 생산량을 크게 늘릴 수 있다. 상기 2차 또는 3차 단계에서 수확된 미세조류는 도 1의 1-2에 도시된 바와 같은 설비시설을 갖는다. 직사광선이 용이한 투명비닐하우스(6)로 된 상단부에 탱크(7)를 반지하형태로 타설하여 밀폐공간을 만들어 미세조류를 공기 차단하여 약 2주간 보관하게 된다. 보관중에 공기 중에 포함된 질소가 차단되어 미세 조류는 스트레스를 받아 생존을 위한 종족보존모드로의 형질전환을 하게 되는데, 이 과정에서 탄수화물이나 단백질은 지질지방으로 변이하게 된다. 먼저 투입되어 변이된 미세조류를 개폐장치(8)가 장착된 탱크하부를 통해 2중의 외곽탱크(9)로의 포집 및 수직이송장치에 의해 운반되어 보관 되어지는 작업과정을 이루게 된다.Microalgae harvested through tertiary farmland or secondary greenhouse cultivation create artificial adverse conditions in the process of tertiary lipidation, leading to conversion to survival mode, and transforming components in microalgae into lipid fats. By capturing 80% eggplant, biodiesel production can be significantly increased. The microalgae harvested in the second or third stages have facilities as shown in 1-2 of FIG. The tank 7 is placed in a ring-shaped shape at the upper end of the transparent vinyl house 6 which is easily exposed to direct sunlight to create a closed space and keep the algae for air for about two weeks. Nitrogen contained in the air is blocked during storage, and microalgae are stressed to transform into species-preservation mode for survival. In the process, carbohydrates and proteins are converted into lipid fat. First, the microalgae, which are introduced and mutated, is carried out by a collection and vertical transfer device to be stored in a double outer tank 9 through a tank bottom equipped with an opening and closing device 8 to achieve a working process.

상기 단계를 거치고 나면 수확시에 19~22%이던 지방질은 형질전환으로 최대 80%이상 변이되어 바이오디젤 생산량을 크게 늘릴 수 있는 상기의 전 단계 과정를 포함하는 구성 및 방법을 특징으로 한다. After this step, the fat was 19-22% at harvest is transformed up to 80% or more by transformation, characterized in that the configuration and method comprising the above-mentioned step to increase the biodiesel production significantly.

상기의 수확된 미세조류는 바이오디젤 원료로 사용하기 위해 압착 착유기를 통하여 지방산을 추출하는 과정을 거치게 되는데, 이 과정에 남는 유박(cake)에 다량 함유된 단백질 및 기타 다당류등은 2차적으로 발효과정을 거치게 되면 부산물로 바이오에탄올을 얻을 수 있다.The harvested microalgae are subjected to a process of extracting fatty acids through a pressurized milking machine to be used as a biodiesel raw material. Proteins and other polysaccharides contained in a large amount of milk cake remaining in this process are fermented secondly. After passing through to obtain a ethanol as a by-product.

도 1은 2차 온실배양시설 내의 배양조 및 4차 지질환경변이를 위한 시설장치의 사시도1 is a perspective view of a facility for the culture tank and the fourth geological environment change in the secondary greenhouse culture facility

Claims (1)

바이오디젤의 원료로 사용하기 위한 미세조류의 대량배양방법 및 설비장치에 관한 것으로, 크게 1차 실험실배양, 2차 온실배양, 3차 농지(沓)배양, 4차 지질화변이과정의 단계로 이루어지는 구성에서 1차 실험실배양 단계의 미세조류 종주를 배양하는 과정과,The present invention relates to a mass culture method and equipment for microalgae for use as a raw material of biodiesel, and comprises largely the stages of primary laboratory culture, secondary greenhouse culture, tertiary farmland culture, and tertiary lipidation transformation process. Culturing the microalgal strains of the first laboratory culture stage in the composition, 2차 비닐하우스 구조의 온실배양 시설내의 교반탱크를 시작으로 여러조로 이어진 수직비닐투명관의 자연낙하와 펌프에 의해 순환하는 구성 및 형태와, 축산분료를 이용하여 물과 2:8로 희석시켜 액상부스터를 만드는 방법과,The structure and form of natural drop of a vertical vinyl transparent tube connected to several tanks starting from a stirring tank in a greenhouse-cultivation facility of a secondary vinyl house structure, and circulated by a pump, and diluted 2: 8 with water using a livestock powder How to make boosters, 농가(農家)의 모내기 시점에 논에 방류하여 대량배양 및 수확하는 3차 농지(沓)배양 방법 및 구성과,The method and composition of the tertiary farmland cultivation, which is mass-cultivated and harvested by discharging rice fields at the time of farming 4차 반지하 형태의 탱크조의 설계 및 직사광선을 유도하기 위한 비닐하우스 상단부의 구성 및 장치와 밀폐된 탱크에서의 2주간의 질소차단으로 지질화변이과정을 유도해 고지방산을 얻기 위한 방법을 가지는 미세조류의 급속배양방법 및 환경변이 지질화장치Microalgae with the design and configuration of the upper part of the tank tank of the fourth round ring type and the structure of the upper part of the greenhouse to induce direct sunlight, and the method of obtaining the high fatty acid by inducing the lipidation transformation process by nitrogen blocking for two weeks in a closed tank. Rapid Culture Method and Environmental Variation
KR1020090047863A 2009-05-30 2009-05-30 Culture methods of micro algae and environmental variation device to transfer lipids KR20100129351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090047863A KR20100129351A (en) 2009-05-30 2009-05-30 Culture methods of micro algae and environmental variation device to transfer lipids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090047863A KR20100129351A (en) 2009-05-30 2009-05-30 Culture methods of micro algae and environmental variation device to transfer lipids

Publications (1)

Publication Number Publication Date
KR20100129351A true KR20100129351A (en) 2010-12-09

Family

ID=43505964

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090047863A KR20100129351A (en) 2009-05-30 2009-05-30 Culture methods of micro algae and environmental variation device to transfer lipids

Country Status (1)

Country Link
KR (1) KR20100129351A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160136623A (en) 2015-05-20 2016-11-30 (주)웰니스앤 Microalgae culture system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160136623A (en) 2015-05-20 2016-11-30 (주)웰니스앤 Microalgae culture system

Similar Documents

Publication Publication Date Title
Vonshak Recent advances in microalgal biotechnology
CN102325874A (en) Optimization of algal product production through uncoupling cell proliferation and algal product production
CN102036551A (en) Algal culture production, harvesting, and processing
CN103459585A (en) Process for production of microalgae, cyanobacteria and metabolites thereof
Chernova et al. Use of biomass for producing liquid fuel: Current state and innovations
Bhateria et al. Algae as biofuel
CN106688868A (en) Novel-type tribonema and cultivation and application thereof
Mulumba et al. Tubular photobioreactor for microalgae biodiesel production
CN207404942U (en) A kind of microalgae carbon sequestration and sewage ecological treatment system
CN103881915A (en) Method for producing chlorella for feeding by using livestock excrement
Yin et al. Characterization of various microalgae for biodiesel fuel production
Masojídek et al. Solar bioreactors used for the industrial production of microalgae
Sukumaran et al. The Prospects of the Cultivation of Arthrospira platensis under Outdoor Conditions in Malaysia.
Kumar et al. Plants and algae species: Promising renewable energy production source.
KR101684254B1 (en) Method for high concentration cultivation of microalgae using mud-clay extracts or humic acid
KR20100129351A (en) Culture methods of micro algae and environmental variation device to transfer lipids
Nedelcu et al. Modern Technologies and Installations Designed to Industrial Scale Cultivation of Microalgae for Obtaining Algal Biomass
Juracsek Algae farming
Li Inexpensive culturing of freshwater algae in a simulated warm environment using chicken manure medium
CN104498362A (en) Biomass cultivation method for chlorella
JPS6352960B2 (en)
Saeid et al. Algae biomass as a raw material for production of algal extracts
CN103642830B (en) Protonema engineering blue algae with high fat content and high essential fatty acid content and constructed by adopting reverse vector method
Reith et al. Microalgal mass cultures for Co-production of fine chemicals and biofuels & water purification
Lesun et al. Biofuels

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application