KR20100127983A - Negative current collector for secondary battery with reduced weight - Google Patents

Negative current collector for secondary battery with reduced weight Download PDF

Info

Publication number
KR20100127983A
KR20100127983A KR1020090046360A KR20090046360A KR20100127983A KR 20100127983 A KR20100127983 A KR 20100127983A KR 1020090046360 A KR1020090046360 A KR 1020090046360A KR 20090046360 A KR20090046360 A KR 20090046360A KR 20100127983 A KR20100127983 A KR 20100127983A
Authority
KR
South Korea
Prior art keywords
negative electrode
current collector
electrode current
copper
thickness
Prior art date
Application number
KR1020090046360A
Other languages
Korean (ko)
Inventor
양점식
양하영
Original Assignee
양점식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 양점식 filed Critical 양점식
Priority to KR1020090046360A priority Critical patent/KR20100127983A/en
Publication of KR20100127983A publication Critical patent/KR20100127983A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE: A negative electrode current collector for a secondary battery is provided to reduce the usage amount of copper by using aluminum, and to reduce the manufacturing cost of the secondary battery. CONSTITUTION: A secondary battery comprises the following: a positive electrode active material and a negative electrode active material exchanging electrons through an electrolyte around a separator when charging and discharging; and a positive electrode current collector and a negative electrode current collector(150) exchanging electricity with an external electronic device by contacting with the positive electrode active material and the negative electrode active material. The negative electrode current collector is formed with an aluminum foil(151).

Description

경량화된 2차전지용 음극집전체 {Negative Current Collector for Secondary Battery with Reduced Weight}Negative Current Collector for Secondary Battery with Reduced Weight}

본 발명은 2차전지용 음극집전체에 관한 것으로, 더욱 상세하게는 알루미늄박으로 이루어진 기재 양면에 구리가 코팅된 구리층을 형성하여 음극집전체를 제작함으로써 음극집전체의 무게를 줄일 수 있도록 하는 경량화된 2차전지용 음극집전체에 관한 것이다. The present invention relates to a negative electrode current collector for a secondary battery, and more particularly, to reduce the weight of the negative electrode current collector by forming a negative electrode current collector by forming a copper-coated copper layer on both sides of the substrate made of aluminum foil It relates to a negative electrode current collector for secondary batteries.

2차전지(secondary cell)는 외부의 전기 에너지를 화학 에너지의 형태로 바꾸어 저장해 두었다가 필요할 때에 전기를 만들어 내는 장치로서, 화학 에너지를 전기 에너지로 변환하는 방전과 역방향인 충전과정을 통하여 반복 사용이 가능한 전지이다. 이러한 2차전지로는 납축 전지(Lead_Acid), 니켈 카드뮴(Ni-Cd), 니켈 수소(Ni-MH), 리튬 이온(Li-ion), 리튬 이온 폴리머(Li-ion polymer) 등이 있는데, 2차전지는 휴대전화, 노트북, 모바일 전자기기, HEV(Hybrid electric vehicle ; 하이브리드 전기자동차) 등 다양한 분야에서 널리 쓰이고 있다.A secondary cell is a device that converts external electrical energy into chemical energy, stores it, and generates electricity when needed. It can be used repeatedly through a reverse charging process that converts chemical energy into electrical energy. It is a battery. Such secondary batteries include lead acid batteries (Lead_Acid), nickel cadmium (Ni-Cd), nickel hydrogen (Ni-MH), lithium ions (Li-ion), and lithium ion polymers (Li-ion polymer). Paper is widely used in various fields such as cell phones, laptops, mobile electronic devices, and hybrid electric vehicles (HEVs).

도 1은 이러한 종래 2차전지의 일반적인 구조를 나타낸 개념도로서, 2차전지는 양극집전체(110), 양극활물질(120), 분리막(130), 음극활물질(140), 음극집전체(150), 전해액(160)이 케이스(100)를 통하여 밀폐되어 구성된다. 1 is a conceptual view showing a general structure of such a conventional secondary battery, the secondary battery is a positive electrode current collector 110, a positive electrode active material 120, a separator 130, a negative electrode active material 140, a negative electrode current collector 150, The electrolyte 160 is sealed through the case 100.

상기 양극활물질(120)과 음극활물질(140)은 분리막(130)을 경계로 전해액(160)을 통하여 전자를 주고 받으며 기전력을 발생시키게 되는데, 발생하는 기전력은 양극집전체(110)와 음극집전체(150)를 통하여 전자기기(200)에 공급되게 된다. 즉, 양극활물질(120)에서 음극활물질(140)로 전자가 이동하는 경우 충전이 수행되고 음극활물질(140)에서 양극활물질(120)로 전자가 이동하는 경우 방전이 수행된다. 상기 양극집전체(110) 및 음극집전체(150)는 방전시 음극활물질(140)에서 양극활물질(120)로의 전자 이동에 따라 발생하는 전기를 전자기기(200)에 공급하거나 충전시 외부의 충전기에 의해 공급되는 전기를 양극활물질(120) 및 음극활물질(140)로 공급하는 역할을 수행하게 되는데, 통상 양극집전체(110)는 알루미늄박으로 제작되고 음극집전체(150)는 구리박으로 제작된다. The positive electrode active material 120 and the negative electrode active material 140 transmit and receive electrons through the electrolyte 160 at the boundary of the separator 130 to generate electromotive force. The generated electromotive force is the positive electrode collector 110 and the negative electrode collector. It is to be supplied to the electronic device 200 through the 150. That is, charging is performed when electrons move from the cathode active material 120 to the cathode active material 140, and discharge is performed when electrons move from the cathode active material 140 to the cathode active material 120. The positive electrode current collector 110 and the negative electrode current collector 150 supply electricity generated by the movement of the electrons from the negative electrode active material 140 to the positive electrode active material 120 to the electronic device 200 during charging or when the external charger is charged. It serves to supply the electricity supplied by the positive electrode active material 120 and the negative electrode active material 140, the positive electrode current collector 110 is made of aluminum foil and the negative electrode current collector 150 is made of copper foil do.

상기 음극집전체(150)인 구리박은 통상 6㎛∼25㎛의 두께로 제작되는데, 이러한 구리박을 제조하는 방법으로는 잉곳(Ingot) 구리를 반복적으로 압연시켜 제조하는 압연법과, 구리이온을 전기분해로 환원시켜 제조하는 전기도금법이 있다. 상기 압연법은 고온 연신율이 우수하여 고용량 전지에 많이 사용되고 있으나, 구리박을 얇게 만드는데에는 한계가 있어 얇은 구리박 제조가 어려운 문제점 있다. 또한, 상기 전기도금법은 최근 전해동박의 제조기술 발달에 따라 고온에서 연신율이 우수한 전해박을 생산할 수 있도록 하고 있는데, 이러한 전기도금법은 구리박을 얇게 만드는 데는 유리하나 두께가 10㎛ 이상 두꺼워지면 많은 전력 소모가 발생하는 문제점이 있다.Copper foil, which is the negative electrode current collector 150, is usually manufactured to have a thickness of 6 μm to 25 μm. The method of manufacturing the copper foil includes a rolling method of repeatedly rolling ingot copper and a copper ion. There is an electroplating method which is produced by reduction by decomposition. The rolling method is excellent in high temperature elongation, but is widely used in high capacity batteries. However, there is a limitation in making the copper foil thin, which makes it difficult to manufacture a thin copper foil. In addition, the electroplating method has been able to produce an electrolytic foil having excellent elongation at high temperature in accordance with the recent development of manufacturing technology of the electrolytic copper foil, such an electroplating method is advantageous for thinning the copper foil, but consumes a lot of power when the thickness is more than 10㎛ thick There is a problem that occurs.

또한, 음극집전체(150)인 구리박은 비중이 8.9 g/㎤로 무거워서, 이러한 구리박이 음극집전체(150)로 사용되는 2차전지 또한 무게는 많이 나가는 문제점이 있다. 특히, HEV에 사용되는 2차전지의 무게는 자동차 대당 수십 ㎏ 내지 수백 ㎏에 이르고 있는데, 이 HEV용 2차전지 무게의 약 30%를 음극집전체(150)가 차지하고 있다. In addition, the copper foil of the negative electrode current collector 150 has a specific gravity of 8.9 g / cm 3, so that the secondary battery used as the negative electrode current collector 150 also has a large weight. In particular, the weight of the secondary battery used in the HEV ranges from several tens of kilograms to several hundred kilograms per vehicle, and the negative electrode current collector 150 occupies about 30% of the weight of the secondary battery for HEV.

따라서, 종래의 방법으로 제작되는 2차전지는 구리박인 음극집전체(150)의 제조에 많은 전력 소모를 가져와 2차전지의 제작 비용을 상승시키는 원인이 되고 있으며, 이렇게 제작된 2차전지는 중량이 무거운 문제점 있으며, 이러한 2차전지가 HEV 등에 사용되는 경우 HEV의 전력 효율이 떨어지는 문제점이 있었다. Therefore, the secondary battery manufactured by the conventional method causes a lot of power consumption in the manufacture of the negative electrode current collector 150, which is copper foil, causing a rise in the manufacturing cost of the secondary battery, and the secondary battery thus manufactured is heavy There is a problem, and when such a secondary battery is used for HEV, there is a problem in that the power efficiency of HEV falls.

본 발명은 상술한 종래 기술의 문제점을 해결하기 위하여 제안된 것으로서, 본 발명의 목적은 2차전지에 사용되는 음극집전체의 중량을 줄이고 제조시 전력 사용량을 줄여 2차전지의 제작 비용을 절감할 수 있도록 하는 경량화된 2차전지의 음극집전체를 제공하는 데 있다.The present invention has been proposed to solve the above-described problems of the prior art, an object of the present invention is to reduce the weight of the negative electrode current collector used in the secondary battery and to reduce the power consumption during manufacturing to reduce the manufacturing cost of the secondary battery The present invention provides a negative electrode current collector of a lightweight secondary battery.

상기 목적을 달성하기 위한 본 발명에 따른 2차전지의 음극집전체는 충방전시 분리막을 경계로 전해액을 통하여 전자를 주고 받는 양극활물질 및 음극활물질과, 상기 양극활물질 및 음극활물질과 접촉하여 외부 전자기기와 전기를 주고 받는 양극집전체 및 음극집전체가 구비된 2차전지에 있어서, 상기 음극집전체는 알루미늄박을 기재로 하고, 이 알루미늄박 기재 양면에 구리가 코팅된 구리층이 형성되어 이루어진다.The negative electrode current collector of the secondary battery according to the present invention for achieving the above object is the positive electrode active material and the negative electrode active material to send and receive electrons through the electrolyte at the boundary of the separator during charge and discharge, and the external electron in contact with the positive electrode active material and the negative electrode active material In a secondary battery provided with a positive electrode current collector and a negative electrode current collector that exchanges electricity with a device, the negative electrode current collector is made of aluminum foil, and a copper layer coated with copper is formed on both sides of the aluminum foil base material. .

상기 음극집전체는 4 ㎛ 내지 70 ㎛ 범위의 두께로 형성되고, 상기 알루미늄박은 3 ㎛ 내지 65 ㎛ 두께로 형성되며, 상기 구리층은 각각 0.1 ㎛ 내지 3.0 ㎛ 두께로 형성되는 것이 바람직하다.The negative electrode current collector is formed to a thickness of 4 ㎛ to 70 ㎛ range, the aluminum foil is formed of 3 ㎛ to 65 ㎛ thickness, the copper layer is preferably formed of 0.1 ㎛ to 3.0 ㎛ thickness each.

한편, 상기 구리층은 전기도금법, 무전해 도금법, 스퍼터링법, 이온증착법, 플라즈마 증착법 중 적어도 어느 하나 이상의 방법을 통하여 알루미늄박의 양면에 구리가 코팅되어 이루어지게 된다.On the other hand, the copper layer is made of copper is coated on both sides of the aluminum foil through at least one method of electroplating, electroless plating, sputtering, ion deposition, plasma deposition.

본 발명에 따른 2차전지용 음극집전체는 알루미늄박 기재 양면에 구리를 얇게 코팅하여 음극집전체를 제작함으로써 종래 구리박으로만 제작되던 음극집전체에 비해 무게가 가벼워 2차전지의 경량화를 이룰 수 있으며, 이러한 2차전지를 HEV에 적용하는 경우 HEV의 경량화를 이룰 수 있는 효과가 있다.The negative electrode current collector for the secondary battery according to the present invention is lighter than the negative electrode current collector, which is conventionally made only of copper foil, by making a thin coating of copper on both sides of the aluminum foil base material to achieve a light weight of the secondary battery. In addition, when the secondary battery is applied to the HEV, there is an effect that the weight of the HEV can be achieved.

또한, 본 발명에 다른 2차전지의 음극집전체는 종래 구리박으로만 제작된 음극집전체에 비해 구리 사용량을 줄이고 구리보다 저렴한 알루미늄을 기재로 사용함으로써 2차전지의 제작 비용을 절감할 수 있는 효과가 있다. In addition, the negative electrode current collector of the secondary battery according to the present invention can reduce the amount of copper used as compared to the negative electrode current collector made of conventional copper foil and can reduce the manufacturing cost of the secondary battery by using aluminum as a base material, which is cheaper than copper. It works.

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명의 실시예에 따른 2차전지용 음극집전체의 단면도이다.2 is a cross-sectional view of a negative electrode current collector for a secondary battery according to an embodiment of the present invention.

도 2에 도시된 바와 같이, 본 발명에 따른 2차전지용 음극집전체(150)는 양극집전체(110)로 사용되는 알루미늄박(151)을 기재(Substate)로 하여, 이 알루미늄박(151)의 양면에 구리를 코팅하여 구리층(152)을 형성함으로써 이루어진다.As shown in FIG. 2, the anode current collector 150 for a secondary battery according to the present invention uses the aluminum foil 151 used as the cathode current collector 110 as a substrate, and the aluminum foil 151. It is made by forming a copper layer 152 by coating copper on both sides of the.

상기 음극집전체(150)의 기재로 사용되는 알루미늄박(151) 비중은 2.9g/㎤로 8.9g/㎤인 구리 비중의 약 30% 수준에 불과하고, 가격 또한 대체로 동일 무게일 경우 구리 가격의 30%에 불과하다. 따라서, 구리보다 가볍고 가격이 저렴한 알루미늄박(151)을 음극집전체(150)의 기재로 사용하게 되면 음극집전체(150)는 종래 구리박으로만 구성된 음극집전체에 비해 가볍고 제작 비용이 적게 소요될 수 있다.The specific gravity of the aluminum foil 151 used as the base material of the negative electrode current collector 150 is 2.9 g / cm 3, which is only about 30% of the specific gravity of copper, which is 8.9 g / cm 3, and when the price is about the same weight, Only 30%. Therefore, when the aluminum foil 151, which is lighter and cheaper than copper, is used as a base material of the negative electrode current collector 150, the negative electrode current collector 150 is lighter and requires less manufacturing cost than the conventional negative electrode current collector composed of only copper foil. Can be.

이러한 알루미늄박(150)의 양면에 구리를 코팅하여 구리층(152)을 형성하는 방법으로는 전기도금법, 무전해 도금법, 스퍼터링(Sputtering)법, 이온증착(Ion Plating)법, 플라스마 증착법 등이 적용될 수 있다. 상기 전기도금법은 전해액 속에 잠겨 있는 소재와 도금재료 사이의 전위차에 의해 야기되는 전해작용을 이용하여 소재를 피복시키는 방법이며, 무전해 도금법은 외부전원의 사용없이 자기 촉매적 화학반응을 통하여 이루어지는 도금법이다. 상기 스퍼터링법은 플라즈마를 사용하여 플라즈마 내에서 생성된 이온들로 하여금 증착 대상 웨이퍼 표면에 코팅되도록 하는 증착법이며, 이온증착법은 진공챔버내에 아르곤 등의 가스를 주입하여 고진공 상태에서 플라즈마를 일으켜 증착물질과 가스를 이온화하여 증착될 물체에 증착하는 진공증착법이며, 상기 플라스마 증착법은 플라즈마를 이용하여 막을 생성하는 증착법이다. 이러한 증착 방법은 종래 기술을 이용하므로 이에 대한 상세한 설명은 생략하기로 한다. As a method of forming the copper layer 152 by coating copper on both surfaces of the aluminum foil 150, an electroplating method, an electroless plating method, a sputtering method, an ion plating method, a plasma deposition method, or the like may be applied. Can be. The electroplating method is a method of coating a material by using the electrolytic action caused by the potential difference between the material immersed in the electrolyte and the plating material, the electroless plating method is a plating method through a self-catalytic chemical reaction without the use of an external power source. . The sputtering method is a deposition method in which ions generated in the plasma are coated on the surface of the wafer to be deposited using plasma, and the ion deposition method generates a plasma in a high vacuum state by injecting a gas such as argon into the vacuum chamber. A gas deposition method is a vacuum deposition method in which a gas is ionized and deposited on an object to be deposited, and the plasma deposition method is a deposition method that generates a film using plasma. Since the deposition method uses the prior art, a detailed description thereof will be omitted.

본 발명의 실시예에서 상기 음극집전체(150)의 전체 두께는 4㎛ ∼ 70㎛ 범위로 이루어지는데, 이 중 음극집전체(150)의 기재인 알루미늄박(151)의 두께는 3㎛ ∼ 65 ㎛ 범위로 이루어지고, 알루미늄박(151)의 양면에 코팅되는 구리층(152)의 두께는 각각 0.1㎛ ∼ 3.0㎛ 범위로 이루어진다. 상기 알루미늄박(151)의 경우 두께가 3㎛ 미만으로 얇아지면 전지제조 공정에서 강도가 너무 낮아져 취급시에 찢 어지거나 주름이 발생하는 등 전지제조가 곤란해지는 문제점이 있으며, 65㎛ 이상이 되면 음극집전체의 두께가 너무 두꺼워져 전지의 경량화와 소형화가 어려워지게 된다. 또한, 상기 구리층(152)의 경우 두께가 0.1㎛ 이하가 되면 알루미늄박(151)을 완전히 코팅하기 어렵고 외부의 작은 충격으로도 코팅된 구리층(152)의 파괴를 가져와 기재인 알루미늄박(151)의 부식을 야기할 수 있으며, 구리층(152)의 두께가 3㎛ 이상이 되는 경우 코팅 비용이 상승하고 무게가 많이 나가기 때문에 경량화를 이루기 어려운 문제점이 있으므로 구리층(152)의 두께는 적어도 0.1㎛ 이상 3㎛ 미만 두께로 알루미늄박(151)에 코딩되는 것이 바람직하다. In the embodiment of the present invention, the total thickness of the negative electrode current collector 150 is in the range of 4 μm to 70 μm, and the thickness of the aluminum foil 151, which is the base material of the negative electrode current collector 150, is 3 μm to 65. The thickness of the copper layer 152, which is formed in the micrometer range and coated on both sides of the aluminum foil 151, is in the range of 0.1 μm to 3.0 μm, respectively. In the case of the aluminum foil 151, when the thickness is thinner than 3 μm, the strength is too low in the battery manufacturing process, so that the battery manufacturing is difficult, such as tearing or wrinkles during handling. The overall thickness becomes so thick that it becomes difficult to reduce the weight and size of the battery. In addition, in the case of the copper layer 152, when the thickness is 0.1 μm or less, it is difficult to completely coat the aluminum foil 151 and bring about the destruction of the coated copper layer 152 even by a small external impact, thereby causing the aluminum foil 151 to be a substrate. ) May cause corrosion, and if the thickness of the copper layer 152 is greater than or equal to 3 μm, since the coating cost increases and the weight is high, it may be difficult to achieve weight reduction, and thus the thickness of the copper layer 152 may be at least 0.1. It is preferable to encode the aluminum foil 151 to a thickness of not less than 3 µm.

본 발명의 실시예에서 음극집전체(150)의 기재로 알루미늄박(151)이 사용되는 이유는 알루미늄박(151)의 전기전도성이 우수하고 값이 저렴한 재료이기 때문으로, 알루미늄박(151)보다 가볍고, 전기전도성이 우수한 재료는 찾아보기 어렵다.The reason why the aluminum foil 151 is used as the base material of the negative electrode current collector 150 in the embodiment of the present invention is that the aluminum foil 151 has excellent electrical conductivity and is a low-cost material, Light and excellent electrical conductivity materials are hard to find.

종래의 집전체는 양극집전체(110)에서는 알루미늄박을 사용하며, 음극집전체(150)에서는 구리박을 사용하는데, 도전체인 알루미늄박과 구리박의 표면으로 전류가 흐르기 때문에 전류의 이동시 집전체 두께의 전체 단면적이 필요하지는 않지만, 일정한 두께가 필요한 이유는 음극활물질(140)과 양극활물질(120)을 코팅하는 공정 및 전지제조 공정에서 집전체가 일정한 강도를 유지해야 하기 때문이다. 따라서 종래 음극집전체(150)인 구리박을 본 발명에서와 같이 구리층(152)이 코팅된 알루미늄박(151)으로 대체하는 경우 표면의 코팅된 구리층(152)이 표피효과를 가져와 종래 구리박과 동일한 기능을 수행할 수 있게 된다.The conventional current collector uses aluminum foil in the positive electrode current collector 110, and copper foil in the negative electrode current collector 150. Since current flows to the surfaces of aluminum foil and copper foil, which are conductors, the current collector is moved when the current is moved. Although the overall cross-sectional area of the thickness is not necessary, the reason why a constant thickness is required is that the current collector must maintain a constant strength in the process of coating the negative electrode active material 140 and the positive electrode active material 120 and the battery manufacturing process. Therefore, when the copper foil, which is the conventional negative electrode collector 150, is replaced with the aluminum foil 151 coated with the copper layer 152 as in the present invention, the coated copper layer 152 on the surface has a skin effect, and thus the conventional copper You can perform the same functions as Park.

이하에서는 상기의 구성으로 이루어진 음극집전체(150)의 제작 실시예에 대하여 설명한다.Hereinafter, an embodiment of manufacturing the negative electrode current collector 150 having the above configuration will be described.

< 실시예 1 >&Lt; Example 1 >

두께 7㎛인 알루미늄박(151) 기재 양면에 스퍼터링법으로 각각 0.5㎛ 두께의 구리층(152)을 코팅하여 음극집전체(150)의 전체 두께가 8㎛가 되도록 하였다. Both surfaces of the aluminum foil 151 substrate having a thickness of 7 μm were coated with a copper layer 152 having a thickness of 0.5 μm, respectively, by sputtering so that the total thickness of the negative electrode current collector 150 was 8 μm.

< 실시예 2 >&Lt; Example 2 >

두께 6㎛인 알루미늄박(151) 기재 양면에 무전해 도금법으로 각각 1.0㎛ 두께를 구리층(152)을 코팅하여 음극집전체(150)의 전체 두께가 8㎛가 되도록 하였다.Both surfaces of the aluminum foil 151 substrate having a thickness of 6 μm were coated with a copper layer 152 with a thickness of 1.0 μm by electroless plating, respectively, so that the total thickness of the negative electrode current collector 150 was 8 μm.

< 실시예 3 ><Example 3>

두께 9㎛인 알루미늄박(151) 기재 양면에 각각 0.5㎛ 두께의 구리층(152)을 피로인산동 도금액을 이용한 전기도금법으로 코팅하여 음극집전체(150)의 전체 두께가 10㎛가 되도록 하였다.A 0.5 μm thick copper layer 152 was coated on both sides of a 9 μm thick aluminum foil 151 substrate by an electroplating method using a pyrophosphate copper plating solution so that the total thickness of the negative electrode current collector 150 was 10 μm.

< 실시예 4 ><Example 4>

두께 8㎛인 알루미늄박(151) 기재 양면에 각각 1.0㎛ 두께의 구리층(152)을 시안화구리동 도금액을 이용한 전기도금법으로 코팅하여 음극집전체(150)의 전체 두께가 10㎛가 되도록 하였다.A copper layer 152 having a thickness of 1.0 μm was coated on both surfaces of an aluminum foil 151 substrate having a thickness of 8 μm by an electroplating method using a copper cyanide copper plating solution so that the total thickness of the negative electrode current collector 150 was 10 μm.

< 실시예 5 ><Example 5>

두께 7㎛인 알루미늄박(151) 기재 양면에 각각 1.5㎛ 두께의 구리층(152)을 황산동 도금액을 이용한 전기도금법으로 코팅하여 음극집전체(150)의 전체 두께가 10㎛가 되도록 하였다.A copper layer 152 having a thickness of 1.5 µm was coated on both sides of an aluminum foil 151 substrate having a thickness of 7 µm by an electroplating method using a copper sulfate plating solution so that the total thickness of the anode collector 150 was 10 µm.

< 실시예 6 ><Example 6>

두께 19㎛인 알루미늄박(151) 기재 양면에 각각 0.5㎛ 두께의 구리층(152)을 피로인산동 도금액을 이용한 전기도금법으로 코팅하여 음극집전체(150)의 전체 두께가 20㎛가 되도록 하였다.A 0.5 μm thick copper layer 152 was coated on both sides of a 19 μm thick aluminum foil 151 substrate by an electroplating method using a pyrophosphate copper plating solution so that the total thickness of the negative electrode current collector 150 was 20 μm.

< 실시예 7 ><Example 7>

두께 18㎛인 알루미늄박(151) 기재 양면에 각각 1.0㎛ 두께의 구리층(152)을 황산동 도금액을 이용한 전기도금법으로 코팅하여 음극집전체(150)의 전체 두께가 20㎛가 되도록 하였다.A copper layer 152 having a thickness of 1.0 μm was coated on both sides of an aluminum foil 151 substrate having a thickness of 18 μm by an electroplating method using a copper sulfate plating solution so that the total thickness of the negative electrode current collector 150 was 20 μm.

< 실시예 8 ><Example 8>

두께 17㎛인 알루미늄박(151) 기재 양면에 각각 1.5㎛ 두께의 구리층(152)을 황산동 도금액을 이용한 전기도금법으로 코팅하여 음극집전체(150)의 전체 두께가 20㎛가 되도록 하였다.A copper layer 152 having a thickness of 1.5 μm was coated on both surfaces of the base of the aluminum foil 151 having a thickness of 17 μm by an electroplating method using a copper sulfate plating solution so that the total thickness of the negative electrode current collector 150 was 20 μm.

< 실시예 9 ><Example 9>

두께 28㎛인 알루미늄박(151) 기재 양면에 각각 1.0㎛ 두께의 구리층(152)을 황산동 도금액을 이용한 전기도금법으로 코팅하여 음극집전체(150)의 전체 두께가 30㎛가 되도록 하였다.A copper layer 152 having a thickness of 1.0 μm was coated on both surfaces of an aluminum foil 151 substrate having a thickness of 28 μm by an electroplating method using a copper sulfate plating solution so that the total thickness of the negative electrode current collector 150 was 30 μm.

< 실시예 10 ><Example 10>

두께 27㎛인 알루미늄박(151) 기재 양면에 각각 1.5㎛ 두께의 구리층(152)을 황산동 도금액을 이용한 전기도금법으로 코팅하여 음극집전체(151)의 전체 두께가 30㎛가 되도록 하였다.A copper layer 152 having a thickness of 1.5 µm was coated on both surfaces of the base of the aluminum foil 151 having a thickness of 27 µm, respectively, by an electroplating method using a copper sulfate plating solution so that the total thickness of the negative electrode current collector 151 was 30 µm.

< 실시예 11 ><Example 11>

두께 26㎛인 알루미늄박(151) 기재 양면에 각각 0.5㎛ 두께의 구리층(152)을 피로인산동 도금액에서 코팅한 후, 그 위에 1.5㎛ 두께의 구리층(152)을 황산동 도금액을 이용한 전기도금법으로 코팅하여 음극집전체(150)의 전체 두께가 50㎛가 되도록 하였다.After coating a copper layer 152 having a thickness of 0.5 μm on the both surfaces of the aluminum foil 151 substrate having a thickness of 26 μm with a pyrophosphate copper plating solution, an electroplating method using a copper sulfate plating solution with a copper layer 152 having a thickness of 1.5 μm thereon By coating with a total thickness of the negative electrode collector 150 is 50㎛.

< 실시예 12 ><Example 12>

두께 46㎛인 알루미늄박(151) 기재 양면에 각각 0.5㎛ 두께의 구리층(152)을 피로인산동 도금액에서 코팅한 후, 그 위에 1.5㎛ 두께의 구리층(152)을 시안화구리동 도금액을 이용한 전기도금법으로 코팅하여 음극집전체(150)의 전체 두께가 50㎛가 되도록 하였다.After coating the copper layer 152 having a thickness of 0.5 μm on both surfaces of the base of the aluminum foil 151 having a thickness of 46 μm with a pyrophosphate copper plating solution, the copper layer 152 having a thickness of 1.5 μm was applied thereto using a copper cyanide copper plating solution. Coating was performed by electroplating so that the total thickness of the negative electrode current collector 150 was 50 μm.

상기 실시예를 통하여 제작된 음극집전체(150)의 무게와 비교하기 위하여 다음의 비교예와 같이 종래 방법을 이용하여 음극집전체를 제작하였다.In order to compare the weight of the negative electrode current collector 150 manufactured by the above embodiment, a negative electrode current collector was manufactured using a conventional method as in the following comparative example.

< 비교예 1 ><Comparative Example 1>

황산동 도금액을 이용한 전기도금법으로 두께 8㎛의 구리박을 만들어 2차전지용 음극집전체로 이용한다.An electroplating method using copper sulfate plating solution is used to make a copper foil having a thickness of 8 μm and used as a negative electrode current collector for secondary batteries.

< 비교예 2 ><Comparative Example 2>

황산동 도금액을 이용한 전기도금법으로 두께 10㎛의 구리박을 만들어 2차전지용 음극집전체로 이용한다.Electroplating method using copper sulfate plating solution is used to make a copper foil having a thickness of 10㎛ as a negative electrode current collector for secondary batteries.

< 비교예 3 ><Comparative Example 3>

황산동 도금액을 이용한 전기도금법으로 두께 20㎛의 구리박을 만들어 2차전지용 음극집전체로 이용한다.Copper plating having a thickness of 20 μm is made by electroplating using copper sulfate plating solution and used as a negative electrode current collector for secondary batteries.

< 비교예 4 ><Comparative Example 4>

순도 99.9%의 무산소동 잉곳(Ingot)을 반복적으로 압연하여 두께 50㎛의 구리박을 만들어 2차전지용 음극집전체로 이용한다.Oxygen-free copper ingots having a purity of 99.9% are repeatedly rolled to form a copper foil having a thickness of 50 μm, which is used as a negative electrode current collector for secondary batteries.

다음의 표 1은 상기 비교예에 의해 제작된 음극집전체의 무게를 기준으로 상기 실시예를 통하여 제작된 음극집전체(150)의 무게 감소율을 나타낸 비교표이다. The following Table 1 is a comparison table showing the weight reduction rate of the negative electrode current collector 150 manufactured through the embodiment based on the weight of the negative electrode current collector produced by the comparative example.

Figure 112009031870462-PAT00001
Figure 112009031870462-PAT00001

상기 표 1에서, 무게감소율(%) = {(비교예 무게 - 전체 무게)/비교예 무게}×100 이다.In Table 1, the weight loss rate (%) = {(comparative weight-total weight) / comparative weight} x 100.

상기 표 1에서 나타난 바와 같이, 본 발명에 실시예에 따라 알루미늄박(151) 기재 양면에 구리층(152)이 코팅되어 이루어지는 음극집전체(150)는 동일한 두께의 구리박으로 이루어진 음극집전체에 비해 그 무게가 현저히 감소된 것을 확인할 수 있다. 또한, 본 발명의 실시예에 따른 음극집전체(150)는 종래 구리박만으로 이루어진 음극집전체에 비해 가격이 비싼 구리의 사용이 현저히 줄어들고 줄어든 만큼 가격이 저렴한 알루미늄박을 이용하므로 제작 비용이 절감될 수 있다.As shown in Table 1, according to the embodiment of the present invention, the negative electrode current collector 150 formed by coating the copper layer 152 on both sides of the aluminum foil 151 base material has a negative electrode current collector made of copper foil having the same thickness. It can be seen that the weight is significantly reduced. In addition, the negative electrode current collector 150 according to the embodiment of the present invention uses an aluminum foil which is inexpensive as the use of expensive copper is significantly reduced and reduced compared to the negative electrode current collector made of conventional copper foil, thereby reducing manufacturing costs. Can be.

이러한 본 발명에 따른 경량화된 2차전지용 음극집전체는 상술한 실시예에 한정되는 것은 아니며, 본 발명이 속하는 기술 분야에서 통상의 지식을 갖는 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구 범위의 균등범위 내에서 다양한 수정 및 변형이 이루어질 수 있음은 물론이다. Such a lightweight secondary battery negative electrode current collector according to the present invention is not limited to the above-described embodiment, the technical idea of the present invention by the person skilled in the art to which the present invention belongs and the patent will be described below Of course, various modifications and variations can be made within the scope of the claims.

도 1은 이러한 종래 2차전지의 일반적인 구조를 나타낸 개념도,1 is a conceptual diagram showing a general structure of such a conventional secondary battery,

도 2는 본 발명에 따른 2차전지용 음극집전체의 단면도이다.2 is a cross-sectional view of a negative electrode current collector for a secondary battery according to the present invention.

※ 도면의 주요 부분에 대한 부호의 설명[Description of Drawings]

100 : 케이스 110 : 양극집전체100: case 110: positive electrode current collector

120 : 양극활물질 130 : 분리막120: cathode active material 130: separator

140 : 음극활물질 150 : 음극집전체140: negative electrode active material 150: negative electrode current collector

151 : 알루미늄박 152 : 구리층151: aluminum foil 152: copper layer

160 : 전해액 200 : 전자기기160: electrolyte 200: electronic device

Claims (5)

충방전시 분리막(130)을 경계로 전해액(160)을 통하여 전자를 주고 받는 양극활물질(120) 및 음극활물질(140)과, 상기 양극활물질(120) 및 음극활물질(140)과 접촉하여 외부 전자기기(200)와 전기를 주고 받는 양극집전체(110) 및 음극집전체(150)가 구비된 2차전지에 있어서, When charging and discharging, the positive electrode active material 120 and the negative electrode active material 140 which exchange electrons through the electrolyte 160 at the boundary of the separator 130 and the external electrons in contact with the positive electrode active material 120 and the negative electrode active material 140 In the secondary battery provided with a positive electrode collector 110 and a negative electrode collector 150 to exchange electricity with the device 200, 상기 음극집전체(150)는 알루미늄박(151)을 기재로 하고, 이 알루미늄박(151) 기재 양면에 구리가 코팅된 구리층(152)이 형성되어 이루어지는 것을 특징으로 하는 2차전지용 음극집전체.The negative electrode current collector 150 is based on an aluminum foil 151, and a negative electrode current collector for secondary batteries, characterized in that the copper layer 152 coated with copper is formed on both sides of the aluminum foil 151 substrate. . 제 1항에 있어서,The method of claim 1, 상기 음극집전체(150)는 4 ㎛ 내지 70 ㎛ 범위의 두께로 형성되는 것을 특징으로 하는 2차전지용 음극집전체.The negative electrode collector 150 is a secondary battery negative electrode collector, characterized in that formed in a thickness of 4 ㎛ to 70 ㎛ range. 제 1항에 있어서,The method of claim 1, 상기 음극집전체(150)의 기재인 알루미늄박(151)은 3 ㎛ 내지 65 ㎛ 두께로 형성되는 것을 특징으로 하는 2차전지용 음극집전체.The aluminum foil 151, which is a substrate of the negative electrode current collector 150, is formed to have a thickness of 3 μm to 65 μm. 제 1항에 있어서, The method of claim 1, 상기 알루미늄박(151)의 양면에 코팅되는 구리층(152)은 각각 0.1 ㎛ 내지 3.0 ㎛ 두께로 형성되는 것을 특징으로 하는 2차전지용 음극집전체.Copper layer 152 is coated on both sides of the aluminum foil 151 is a negative electrode current collector for secondary batteries, characterized in that each formed to a thickness of 0.1 ㎛ to 3.0 ㎛. 제 1항에 있어서,The method of claim 1, 상기 구리층(152)은 전기도금법, 무전해 도금법, 스퍼터링법, 이온증착법, 플라즈마 증착법 중 적어도 어느 하나 이상의 방법을 통하여 알루미늄박(151)의 양면에 구리가 코팅되어 이루어지는 것을 특징으로 형성하는 것을 특징으로 하는 2차전지용 음극집전체.The copper layer 152 is formed by coating copper on both sides of the aluminum foil 151 through at least one of electroplating, electroless plating, sputtering, ion deposition, and plasma deposition. A negative electrode current collector for secondary batteries.
KR1020090046360A 2009-05-27 2009-05-27 Negative current collector for secondary battery with reduced weight KR20100127983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090046360A KR20100127983A (en) 2009-05-27 2009-05-27 Negative current collector for secondary battery with reduced weight

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090046360A KR20100127983A (en) 2009-05-27 2009-05-27 Negative current collector for secondary battery with reduced weight

Publications (1)

Publication Number Publication Date
KR20100127983A true KR20100127983A (en) 2010-12-07

Family

ID=43504994

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090046360A KR20100127983A (en) 2009-05-27 2009-05-27 Negative current collector for secondary battery with reduced weight

Country Status (1)

Country Link
KR (1) KR20100127983A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012076328A1 (en) * 2010-12-10 2012-06-14 Sb Limotive Company Ltd. Collector for a lithium-ion cell, lithium-ion accumulator and motor vehicle comprising a lithium-ion accumulator
WO2012076327A1 (en) * 2010-12-10 2012-06-14 Sb Limotive Company Ltd. Conductor foil for a lithium-ion cell, lithium-ion accumulator and motor vehicle comprising a lithium-ion accumulator
WO2012079921A1 (en) * 2010-12-13 2012-06-21 Sb Limotive Company Ltd. Lithium-ion cell, lithim-ion rechargeable battery and motor vehicle with a lithium-ion rechargeable battery
CN104335402A (en) * 2012-05-02 2015-02-04 海德鲁铝业钢材有限公司 Textured current collector foil
WO2020210913A1 (en) * 2019-04-17 2020-10-22 2555663 Ontario Limited Lithium metal anode assemblies and an apparatus and method of making same
CN112735847A (en) * 2020-12-23 2021-04-30 广东风华高新科技股份有限公司 Lithium ion capacitor negative electrode plate with Cu transition layer and preparation method and application thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012076328A1 (en) * 2010-12-10 2012-06-14 Sb Limotive Company Ltd. Collector for a lithium-ion cell, lithium-ion accumulator and motor vehicle comprising a lithium-ion accumulator
WO2012076327A1 (en) * 2010-12-10 2012-06-14 Sb Limotive Company Ltd. Conductor foil for a lithium-ion cell, lithium-ion accumulator and motor vehicle comprising a lithium-ion accumulator
US20140015453A1 (en) * 2010-12-10 2014-01-16 Samsung Sdi Co., Ltd. Conductor Foil for a Lithium-Ion Cell, Lithium-Ion Accumulator and Motor Vehicle Comprising a Lithium-Ion Accumulator
WO2012079921A1 (en) * 2010-12-13 2012-06-21 Sb Limotive Company Ltd. Lithium-ion cell, lithim-ion rechargeable battery and motor vehicle with a lithium-ion rechargeable battery
CN103370814A (en) * 2010-12-13 2013-10-23 罗伯特·博世有限公司 Lithium-ion cell, lithim-ion rechargeable battery and motor vehicle with a lithium-ion rechargeable battery
US9276265B2 (en) 2010-12-13 2016-03-01 Robert Bosch Gmbh Lithium-ion cell, lithium-ion rechargeable battery and motor vehicle with a lithium-ion rechargeable battery
CN104335402A (en) * 2012-05-02 2015-02-04 海德鲁铝业钢材有限公司 Textured current collector foil
US9887044B2 (en) 2012-05-02 2018-02-06 Hydro Aluminium Rolled Products Gmbh Textured current collector foil
WO2020210913A1 (en) * 2019-04-17 2020-10-22 2555663 Ontario Limited Lithium metal anode assemblies and an apparatus and method of making same
CN112735847A (en) * 2020-12-23 2021-04-30 广东风华高新科技股份有限公司 Lithium ion capacitor negative electrode plate with Cu transition layer and preparation method and application thereof

Similar Documents

Publication Publication Date Title
CN110676420B (en) Lithium ion battery&#39;s lithium diaphragm of mending
US8709663B2 (en) Current collector for lead acid battery
CN110224182B (en) Method for pre-lithiation of lithium ion battery
US20140030636A1 (en) Corrosion resistant current collector utilizing graphene film protective layer
KR20100127983A (en) Negative current collector for secondary battery with reduced weight
Yang et al. Calendering effect on the electrochemical performances of the thick Li-ion battery electrodes using a three dimensional Ni alloy foam current collector
Yin et al. Hybrid energy storage devices combining carbon-nanotube/polyaniline supercapacitor with lead-acid battery assembled through a “directly-inserted” method
JP4831946B2 (en) Non-aqueous electrolyte battery
KR101028657B1 (en) Lithium powder and silicon oxide double layer anode, method of manufacturing the anode and lithium secondary battery using the anode
CN116014068A (en) Pole piece, battery cell, battery, energy storage system and equipment
CN113964289A (en) Surface organic phosphoric acid etched composite zinc-philic passive film modified zinc metal cathode and preparation method and application thereof
KR20170085425A (en) Copper Foil, Method for Manufacturing The Same, Electrode Comprising The Same, and Secondary Battery Comprising The Same
US9281537B2 (en) Method of fabricating thin film electrodes including metal tubes filled with active material
KR20130090160A (en) Tri-layered cathode collector and secondary battery having the same
US20190363395A1 (en) Thin film solid-state secondary battery
CN214428670U (en) Lithium ion battery capable of being charged at low temperature
CN209016215U (en) Rechargeable battery
KR102248310B1 (en) Secondary battery, fuel battery and separator for secondary battery or fuel battery and manufacturing method of separator for secondary battery or fuel battery
CN115692718A (en) Aqueous battery
Kang et al. Preparation of Flexible Self‐Supporting 3D SiOx‐Based Membrane Anodes with Stabilized Electrochemical Performances for Lithium‐Ion Batteries
KR101850645B1 (en) Aluminum foil for cathode current collector in lithium ion battery, method of manufacturing the same, lithium ion battery having the same
US20190221890A1 (en) Low-Voltage Microbattery
CN204651392U (en) A kind of anode pole piece of lithium ion battery
CN111092216B (en) Preparation method of nanowire type Sn-Ni alloy negative electrode material
CN219873594U (en) Battery and electronic equipment

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application