KR20100124076A - Method for manufacturing electromagnetic shielding composites using the electron irradiation - Google Patents

Method for manufacturing electromagnetic shielding composites using the electron irradiation Download PDF

Info

Publication number
KR20100124076A
KR20100124076A KR1020090043137A KR20090043137A KR20100124076A KR 20100124076 A KR20100124076 A KR 20100124076A KR 1020090043137 A KR1020090043137 A KR 1020090043137A KR 20090043137 A KR20090043137 A KR 20090043137A KR 20100124076 A KR20100124076 A KR 20100124076A
Authority
KR
South Korea
Prior art keywords
epoxy
resin
type epoxy
metal powder
electron beam
Prior art date
Application number
KR1020090043137A
Other languages
Korean (ko)
Other versions
KR101141701B1 (en
Inventor
강필현
전준표
노영창
김현빈
Original Assignee
한국원자력연구원
한국수력원자력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원, 한국수력원자력 주식회사 filed Critical 한국원자력연구원
Priority to KR1020090043137A priority Critical patent/KR101141701B1/en
Publication of KR20100124076A publication Critical patent/KR20100124076A/en
Application granted granted Critical
Publication of KR101141701B1 publication Critical patent/KR101141701B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE: A manufacturing method of an electromagnetic shielding composite by an electron irradiation is provided to cure the electromagnetic shielding composite at room temperature, and to improve the productivity. CONSTITUTION: A manufacturing method of an electromagnetic shielding composite comprises the following steps: mixing a polymer resin with a photopolymerization initiator, and adding metal powder for dispersing; and irradiating an electron beam to the dispersed mixture, for curing the polymer resin. The polymer resin is an alkyd resin, an epoxy resin, an acryl resin, a vinyl resin, or a silicon resin.

Description

전자선 조사에 의한 전자파 차폐용 복합체의 제조 방법{Method for manufacturing electromagnetic shielding composites using the electron irradiation}Method for manufacturing electromagnetic shielding composites using the electron irradiation}

본 발명은 전자파 차폐용 복합체 제조방법에 관한 것으로, 보다 상세하게는 분말 형태의 금속과 액체 상태의 고분자 수지를 일정 비율로 혼합한 후, 전자선을 이용하여 경화시킴으로써 전자파 차폐용 복합체를 제조하는 방법에 관한 것이며 전자선의 영향으로 경화가 진행되는 중에 미세구조가 제어되는 방법이다.The present invention relates to a method for producing a composite for shielding electromagnetic waves, and more particularly, to a method for manufacturing a composite for shielding electromagnetic waves by mixing a metal in a powder form and a polymer resin in a liquid state at a predetermined ratio, and then curing using an electron beam. It is a method in which the microstructure is controlled while curing is under the influence of an electron beam.

일반적으로 전자파 차폐 재료로서 고투자율과 고유전율을 갖는 금속 재료가 사용되고 있으나 전자기기들의 사용 주파수 대역이 증가함에 따라 고주파에서 금속 재료의 와전류 손실(Eddy current loss)이 증가하는 문제가 있었다. 따라서 이러한 와전류 손실을 줄일 수 있는 방법으로서 고분자 수지 내에 금속 재료를 분말 형태로 분산시키는 방법이 사용 및 연구되고 있다. 이러한 액체 상태의 고분자 내에 금속 분말 재료를 분산시켜 열경화제(Hardener)를 사용하여 경화를 진행 할 경 우 고분자 수지와 열경화제의 비율을 75:25 ~ 65:35로 하여 약 90 ~ 120분 정도의 경화 시간이 필요하다.Generally, metal materials having high permeability and high dielectric constant are used as electromagnetic shielding materials, but as the frequency band of electronic devices increases, the eddy current loss of the metal materials increases at high frequencies. Therefore, as a method of reducing such eddy current loss, a method of dispersing a metal material in a polymer form in powder form has been used and studied. When the metal powder material is dispersed in the liquid polymer and the curing is performed using a hardener, the ratio of the polymer resin and the thermosetting agent is 75:25 to 65:35, which is about 90 to 120 minutes. Curing time is required.

종래에 사용된 금속 분말과 고분자 수지의 경화 방법의 경우, 경화가 진행되는 동안 장시간이 소모됨으로서 금속 분말과 고분자 수지의 밀도 차이로 인하여 금속 분말이 중력 등의 외부 요인에 의하여 침전 등의 현상이 발생하여 제품내의 금속 분말 분산도가 좋지 못하며 생산 효율이 저하되는 문제점을 가지고 있다.In the conventional method of curing the metal powder and the polymer resin, a long time is consumed during the curing process, and due to the difference in density between the metal powder and the polymer resin, the metal powder may be precipitated due to external factors such as gravity. As a result, the dispersibility of the metal powder in the product is not good and the production efficiency is lowered.

본 발명에서는 상기와 같은 문제점을 해결하기 위한 것으로, 전자파 차폐용 금속 분말과 고분자 수지의 복합체의 제조 방법에서 전자선을 이용함으로써 상온에서도 경화가 가능하며, 또한 경화에 걸리는 시간도 수분 이내로까지 단축할 수 있어 생산성을 향상시키고 생산원가를 절감할 수 있는 전자파 차폐용 복합체의 효율적인 제조방법을 제공하는 것이며, 경화가 발생하는 동안 복합체 내의 금속 분말들의 미세구조를 전자선의 방향으로 제어할 수 있는 방법이다.In the present invention to solve the above problems, by using an electron beam in the method of manufacturing a composite of the electromagnetic shielding metal powder and the polymer resin can be cured at room temperature, and the curing time can be shortened to within a few minutes. The present invention provides an efficient method for manufacturing an electromagnetic wave shielding composite that can improve productivity and reduce production costs, and can control the microstructure of metal powders in the composite in the direction of an electron beam during curing.

상기한 목적을 달성하기 위하여, 본 발명은 고분자 수지와 광중합개시제를 혼합하고 금속 분말의 조성을 조절하는 단계, 및 금속 분말과 고분자 수지가 혼합된 상태에서 전자선 조사를 이용하여 고분자 수지를 경화하여 복합체를 제조하는 단계를 포함한다.In order to achieve the above object, the present invention comprises the steps of mixing the polymer resin and the photopolymerization initiator and adjusting the composition of the metal powder, and curing the polymer resin by using electron beam irradiation in the mixed state of the metal powder and polymer resin Manufacturing step.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

단계 1에서는, 고분자 수지와 광중합개시제를 혼합하고 금속 분말의 조성을 조절한다. In step 1, the polymer resin and the photopolymerization initiator are mixed and the composition of the metal powder is adjusted.

고분자 수지를 전자선 조사로 경화하기 위해서는 미량의 광중합개시제를 필요로 한다. 고분자 수지는 대게 높은 점도를 가지고 있기 때문에 미량의 광중합개시제를 고분자 수지 내로 적절히 분산시키기 위해서는 고분자 수지를 용매로 점도를 낮출 필요가 있다. 이후 액상의 고분자 수지와 금속 분말을 적절한 비율로 혼합하고 초음파 분쇄기(sonicator)등을 사용하여 금속 분말을 분산시켜야 한다. 회전식 증발기(Rotary evaporator) 등의 기기를 사용하면 점도를 낮추기 위하여 사용되었던 용매를 제거할 수 있다.In order to cure the polymer resin by electron beam irradiation, a small amount of photopolymerization initiator is required. Since the polymer resin generally has a high viscosity, it is necessary to lower the viscosity of the polymer resin with a solvent in order to properly disperse a small amount of the photopolymerization initiator into the polymer resin. After that, the liquid polymer resin and the metal powder should be mixed in an appropriate ratio, and the metal powder should be dispersed using an ultrasonic sonicator. Instruments such as rotary evaporators can be used to remove the solvents used to lower the viscosity.

단계 2에서는, 상기 단계 1에서 적절히 혼합된 금속 분말과 고분자 수지를 전자선 조사를 사용하여 경화한다.In step 2, the metal powder and the polymer resin mixed in step 1 above are cured using electron beam irradiation.

고분자 수지의 경화를 위하여 전자선 조사 조건은 100 ~ 1,000kGy 가량이 적절하며, 100kGy 미만인 경우, 고분자 수지의 완전 경화가 이루어 지지 않아 제품의 안정성이 떨어질 수 있으며, 1,000kGy 초과인 경우, 제품의 온도가 상승하여 재현성이 떨어지며 불필요한 조사로 인하여 경제성이 떨어지게 된다.In order to cure the polymer resin, the electron beam irradiation condition is suitable about 100 ~ 1,000kGy, if less than 100kGy, the stability of the product can be reduced because the complete curing of the polymer resin is not achieved, if the temperature of the product is more than 1,000kGy As it rises, reproducibility decreases and economics decrease due to unnecessary investigation.

상기 고분자 수지는 알키드 수지, 에폭시 수지, 아크릴 수지, 비닐 수지 또 는 실리콘 수지일 수 있다. 상기 에폭시 수지에는, 일반 비스페놀 A형 에폭시(DGEBA Type Epoxy), 비스페놀 F형 에폭시(DGEBF Type Epoxy), 노볼락형 에폭시(Novolac Type Epoxy), 난연성 에폭시(Brominated Epoxy), 지환족 에폭시(Cycloaliphatic Epoxy), 고무 변성 에폭시(Rubber Modified Epoxy), 지방족 폴리글리시딜형 에폭시(Aliphatic Polyglycidyl Type Epoxy), 글리시딜 아민형 에폭시(Glycidyl Amine Type Epoxy) 등을 예로 들 수 있다.The polymer resin may be an alkyd resin, an epoxy resin, an acrylic resin, a vinyl resin, or a silicone resin. Examples of the epoxy resin include general bisphenol A epoxy (DGEBA Type Epoxy), bisphenol F epoxy (DGEBF Type Epoxy), novolac epoxy (Novolac Type Epoxy), flame retardant epoxy (Brominated Epoxy), cycloaliphatic epoxy (Cycloaliphatic Epoxy) Examples thereof include rubber modified epoxy, aliphatic polyglycidyl type epoxy, and glycidyl amine type epoxy.

전자선 조사로 금속 분말과 고분자 수지의 복합체를 제조하는 본 발명의 방법에 따라, 고분자 수지를 경화하기 위하여 다량의 경화제를 사용할 필요가 없으며 경화에 필요한 시간이 수분으로 단축되었다. 또한 고분자 수지 내 금속 분말의 미세 구조에 영향을 주어 자기적 특성을 변화시킬 수 있다.According to the method of the present invention for producing a composite of a metal powder and a polymer resin by electron beam irradiation, it is not necessary to use a large amount of curing agent to cure the polymer resin and the time required for curing is shortened to several minutes. In addition, it may affect the microstructure of the metal powder in the polymer resin to change the magnetic properties.

이하, 본 발명을 실시예와 비교예로 상세히 설명한다.Hereinafter, the present invention will be described in detail with Examples and Comparative Examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are illustrative of the present invention and are not intended to limit the scope of the present invention.

실시예Example 1: 전자선을 이용한  1: using electron beam FeFe -- SiSi 금속 분말과 에폭시 수지의 복합체 제조 Preparation of Composites of Metal Powders and Epoxy Resins

단계 1: 에폭시 수지는 비스페놀 A형의 디글리시딜 에테르(Diglycidyl ether of bisphenol A type, DGEBA)를 사용하였으며 광중합개시제는 트리아릴설포늄 헥사플루오로안티모네이트(triarylsulfonium hexafluoroantimonate, TASHFA)를 사용했다. DGEBA 수지와 에탄올 용매를 1:1로 초음파 분쇄기를 사용하여 혼합한 후, DGEBA와 TASHFA를 97:3 비율로 혼합했다. Fe-Si 금속 분말을 광중합개시제가 포함된 에폭시 수지와 3:7(시료 A)과 5:5(시료 B)의 비율로 혼합한 후, 초음파 분쇄기를 사용하여 분산시켰다. 이후 에탄올 용매를 회전식 증발기를 사용하여 제거했다.Step 1: Epoxy resin was used diglycidyl ether of bisphenol A type (DGEBA) and photoinitiator was used triarylsulfonium hexafluoroantimonate (TASHFA). . The DGEBA resin and ethanol solvent were mixed 1: 1 using an ultrasonic mill, and then DGEBA and TASHFA were mixed in a ratio of 97: 3. Fe-Si metal powder was mixed with an epoxy resin containing a photoinitiator in a ratio of 3: 7 ( Sample A ) and 5: 5 ( Sample B ), and then dispersed using an ultrasonic mill. The ethanol solvent was then removed using a rotary evaporator.

단계 2: 상기 단계에서 제조한 금속 분말과 에폭시 수지를 1mm 두께로 주물에 담아 전자선을 조사했다. 이때 전자선 조사선량은 10 kGy/scan 로 하였고 전체 조사량은 300 kGy 로 했다. 시료 A와 시료 B의 미세구조분석 결과를 도1에 나타나 있다. 전자선을 사용하여 경화한 시료의 경우 전자선의 방향으로 판상의 금속 분말들이 정렬하고 있음을 확인하였다. Step 2: The metal powder prepared in the above step and the epoxy resin were placed in a casting with a thickness of 1 mm to irradiate the electron beam. At this time, the electron beam irradiation dose was 10 kGy / scan and the total radiation dose was 300 kGy. The results of the microstructure analysis of Samples A and B are shown in FIG. In the case of the sample cured using the electron beam, it was confirmed that the plate-shaped metal powders were aligned in the direction of the electron beam.

비교예Comparative example 1:  One: 열경화제를Thermosetting agent 이용한  Used FeFe -- SiSi 금속 분말과  Metal powder and EpoxyEpoxy 수지의 복합체 제조 Preparation of Composites of Resins

단계 1: 실시예 1에서 사용한 DGEBA 수지의 열경화제로서 폴리마이드 수지를 사용했다. 폴리아미드 수지는 점도가 낮기 때문에 열경화제에 Fe-Si 금속 분말을 쉽게 분산시킬 수 있었다. DGEBA와 열경화제의 비율은 3:1로 하여 상온에서 90분간 방치하여 복합체를 제조했다. 이때 실시예 1과 동일하게 에폭시와 Fe-Si 금속 분말의 비율은 7:3(시료 C)와 5:5(시료 D)로 제조했다.Step 1: Polyamide resin was used as the thermosetting agent of the DGEBA resin used in Example 1. Since the polyamide resin had a low viscosity, the Fe-Si metal powder could be easily dispersed in the thermosetting agent. The ratio of DGEBA and thermosetting agent was 3: 1, and the mixture was left at room temperature for 90 minutes to prepare a composite. At this time, the ratio of the epoxy and Fe-Si metal powder was prepared in the same manner as in Example 1 in 7: 3 ( sample C ) and 5: 5 ( sample D ).

단계 2: 상기 단계 1에서 열경화제를 사용하여 경화한 시료의 미세구조는 도 2에 나타나 있다. 열경화제를 사용하여 경화한 시료의 경우, 금속 분말들이 무작위 방향을 가지고 있음을 확인하였다. VSM(Vibrating Sample Magnetometer)를 사용하여 자기이력곡선을 측정한 결과를 도 3에 나타나 있다. 전자선 조사로 경화한 시료의 경우가 열경화제를 사용하여 경화한 시료보다 잔류자화 값이 상승하여 자기이력곡선의 각형성이 향상되었다.Step 2: The microstructure of the sample cured using the thermosetting agent in step 1 is shown in FIG. For samples cured using a thermoset, it was confirmed that the metal powders had a random orientation. Figure 3 shows the result of measuring the hysteresis curve using a VSM (Vibrating Sample Magnetometer). In the case of the sample cured by the electron beam irradiation, the residual magnetization value was higher than that of the sample cured using the thermosetting agent, thereby improving the angular formation of the magnetic hysteresis curve.

도1은 본 발명에서 전자선 조사에 제조된 복합체의 미세구조 사진이다.Figure 1 is a microstructure picture of the composite prepared in the electron beam irradiation in the present invention.

도2는 본 발명에서 비교예로 제작한 경화제를 사용하여 제조된 복합체의 미세구조 사진이다.Figure 2 is a microstructure picture of the composite prepared using the curing agent prepared in the comparative example in the present invention.

도3은 본 발명에서의 전자선 조사에 의한 복합체와 경화제를 사용하여 제조된 복합체의 자기이력곡선 측정 결과이다.Figure 3 is a result of measuring the hysteresis curve of the composite prepared by the electron beam irradiation and the curing agent in the present invention.

Claims (9)

고분자 수지와 광중합개시제를 혼합한 후, 이에 금속 분말을 첨가하고 분산시키는 단계, 및Mixing the polymer resin with the photopolymerization initiator, adding and dispersing the metal powder thereto, and 상기 분산된 혼합물에 전자선을 조사하여 고분자 수지를 경화시켜 복합체를 제조하는 단계Irradiating the dispersed mixture with an electron beam to cure the polymer resin to prepare a composite 를 포함하는 전자파 차폐용 복합체의 제조 방법.Method of manufacturing a composite for shielding electromagnetic waves comprising a. 청구항 1 에 있어서, 상기 고분자 수지는 알키드 수지, 에폭시 수지, 아크릴 수지, 비닐 수지 또는 실리콘 수지인 것을 특징으로 하는 전자파 차폐용 복합체의 제조 방법.The method of claim 1, wherein the polymer resin is an alkyd resin, an epoxy resin, an acrylic resin, a vinyl resin, or a silicone resin. 청구항 2 에 있어서, 상기 에폭시 수지는 일반 비스페놀 A형 에폭시(DGEBA Type Epoxy), 비스페놀 F형 에폭시(DGEBF Type Epoxy), 노볼락형 에폭시(Novolac Type Epoxy), 난연성 에폭시(Brominated Epoxy), 지환족 에폭시(Cycloaliphatic Epoxy), 고무 변성 에폭시(Rubber Modified Epoxy), 지방족 폴리글리시딜형 에폭시(Aliphatic Polyglycidyl Type Epoxy) 또는 글리시딜 아민형 에폭시(Glycidyl Amine Type Epoxy) 인 것을 특징으로 하는 전자파 차폐용 복합체의 제조 방법.The method of claim 2, wherein the epoxy resin is a general bisphenol A type epoxy (DGEBA Type Epoxy), bisphenol F type epoxy (DGEBF Type Epoxy), novolac type epoxy (Novolac Type Epoxy), flame retardant epoxy (Brominated Epoxy), alicyclic epoxy (Cycloaliphatic Epoxy), Rubber Modified Epoxy, Aliphatic Polyglycidyl Type Epoxy or Glycidyl Amine Type Epoxy Way. 청구항 1 에 있어서, 전자선 조사 조건은 100 ~ 1,000kGy 인 것을 특징으로 하는 전자파 차폐용 복합체의 제조 방법.The method of manufacturing an electromagnetic wave shielding composite according to claim 1, wherein the electron beam irradiation conditions are 100 to 1,000 kGy. 청구항 1 에 있어서, 상기 전자기 조사는 상온에서 실시되는 것을 특징으로 하는 연자성 재료의 전자기적 물성의 개선 방법.The method of claim 1, wherein the electromagnetic irradiation is performed at room temperature. 고분자 수지와 금속 분말의 혼합물에 전자선을 조사함을 포함하는 금속 분말의 미세 구조의 제어 방법.A method of controlling the microstructure of a metal powder comprising irradiating an electron beam to a mixture of a polymer resin and a metal powder. 청구항 6 에 있어서, 상기 고분자 수지는 알키드 수지, 에폭시 수지, 아크릴 수지, 비닐 수지 또는 실리콘 수지인 것을 특징으로 하는 금속 분말의 미세 구조의 제어 방법.The method according to claim 6, wherein the polymer resin is an alkyd resin, an epoxy resin, an acrylic resin, a vinyl resin, or a silicone resin. 청구항 7 에 있어서, 상기 에폭시 수지는 일반 비스페놀 A형 에폭시(DGEBA Type Epoxy), 비스페놀 F형 에폭시(DGEBF Type Epoxy), 노볼락형 에폭시(Novolac Type Epoxy), 난연성 에폭시(Brominated Epoxy), 지환족 에폭시(Cycloaliphatic Epoxy), 고무 변성 에폭시(Rubber Modified Epoxy), 지방족 폴리글리시딜형 에폭시(Aliphatic Polyglycidyl Type Epoxy) 또는 글리시딜 아민형 에폭시(Glycidyl Amine Type Epoxy) 인 것을 특징으로 하는 금속 분말의 미세 구조의 제어 방법.The method of claim 7, wherein the epoxy resin is a general bisphenol A epoxy (DGEBA Type Epoxy), bisphenol F epoxy (DGEBF Type Epoxy), novolac type epoxy (Novolac Type Epoxy), flame retardant epoxy (Brominated Epoxy), alicyclic epoxy (Cycloaliphatic Epoxy), rubber modified epoxy (Rubber Modified Epoxy), aliphatic polyglycidyl type epoxy (Aliphatic Polyglycidyl Type Epoxy) or glycidyl amine type epoxy (Glycidyl Amine Type Epoxy) Control method. 청구항 5 에 있어서, 전자선 조사 조건은 100 ~ 1,000kGy 인 것을 특징으로 하는 금속 분말의 미세 구조의 제어 방법.The method for controlling the microstructure of a metal powder according to claim 5, wherein the electron beam irradiation conditions are 100 to 1,000 kGy.
KR1020090043137A 2009-05-18 2009-05-18 Method for manufacturing electromagnetic shielding composites using the electron irradiation KR101141701B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090043137A KR101141701B1 (en) 2009-05-18 2009-05-18 Method for manufacturing electromagnetic shielding composites using the electron irradiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090043137A KR101141701B1 (en) 2009-05-18 2009-05-18 Method for manufacturing electromagnetic shielding composites using the electron irradiation

Publications (2)

Publication Number Publication Date
KR20100124076A true KR20100124076A (en) 2010-11-26
KR101141701B1 KR101141701B1 (en) 2012-05-04

Family

ID=43408430

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090043137A KR101141701B1 (en) 2009-05-18 2009-05-18 Method for manufacturing electromagnetic shielding composites using the electron irradiation

Country Status (1)

Country Link
KR (1) KR101141701B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150015204A (en) * 2013-07-31 2015-02-10 (주)창성 Polymer binder composition for electromagnetic wave shield and magnetic sheet using it and manufacturing method of polymer binder composition and magntic sheet.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100796157B1 (en) * 2006-05-10 2008-01-21 스카이코팅 주식회사 Composition containing electrify prevention
KR100791205B1 (en) 2006-11-09 2008-01-02 에스케이씨하스디스플레이필름(주) Optical filter for display panel and preparation thereof
KR20080112474A (en) * 2007-06-21 2008-12-26 에스에스씨피 주식회사 Method of manufacturing an electromagnetic wave-shielding sheet having a metal pattern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150015204A (en) * 2013-07-31 2015-02-10 (주)창성 Polymer binder composition for electromagnetic wave shield and magnetic sheet using it and manufacturing method of polymer binder composition and magntic sheet.

Also Published As

Publication number Publication date
KR101141701B1 (en) 2012-05-04

Similar Documents

Publication Publication Date Title
CN101375353B (en) Composite magnetic sheet and process for producing the same
CN108269671A (en) Mictomagnetism powder and the electronic component using mictomagnetism powder
JP2020075508A (en) Composition
CN101740193B (en) Rare-earth permanent magnet with high magnetic performance and high electric resistance and preparation method thereof
US10537938B2 (en) Magnetic core and method for manufacturing same
CN106952703A (en) A kind of high temperature resistant high magnetic characteristics permanent-magnet material
TW201929002A (en) Composite magnetic powder, magnetic resin composition, magnetic resin paste, magnetic resin powder, magnetic resin slurry, magnetic resin sheet, metal foil-attached magnetic resin sheet, magnetic prepreg, and inductor component
CN106960710A (en) A kind of preparation method of high temperature resistant high magnetic characteristics permanent-magnet material
Schubert et al. Effect of particle size and size distribution on the permeability of soft magnetic liquid silicone rubber composites
CN102408680A (en) Thermosetting resin able to realize high temperature heating and curing in high frequency magnetic field and preparation method thereof
KR101141701B1 (en) Method for manufacturing electromagnetic shielding composites using the electron irradiation
US20230078286A1 (en) Magnetic resin composition, cured product, and electronic component
CN107393709B (en) A kind of method that isostatic cool pressing prepares high-orientation anisotropic bonded magnet
Hosseini et al. Effect of hybridization of carboxyl‐terminated acrylonitrile butadiene liquid rubber and alumina nanoparticles on the fracture toughness of epoxy nanocomposites
WO2017014067A1 (en) Glass filler and resin composition for solid object modeling using same
JP2010132840A (en) Epoxy resin composition for adhesive sheet
WO2020140506A1 (en) Soft magnetic composite with two-dimensional magnetic moment and high working frequency band, and preparation method therefor
JP2012060071A (en) Method of producing composite magnetic body and magnetic field orientation device for producing composite magnetic body
JP7404912B2 (en) Composite magnetic material precursor for magnetic cores, composite materials for magnetic cores, magnetic cores and electronic components
KR101856561B1 (en) Method of manufacturing shape anisotropy magnetic particle and method of manufacturing electromagnetic wave absorbing sheet including the same
WO2022118470A1 (en) Paste
JP5927764B2 (en) Core-shell structured particles, paste composition, and magnetic composition using the same
Wang et al. Influence of external magnetic field on the microwave absorption properties of carbonyl iron and polychloroprene composites film
JPH1097912A (en) Composite magnetic element, manufacture thereof and electromagnetic interference suppressor
JP2009094405A (en) Magnet paste and thick film magnet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141230

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160324

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170329

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180406

Year of fee payment: 7