KR20100116888A - Preparation method of separator for all-vanadium redox flow secondary battery and separator thereof - Google Patents

Preparation method of separator for all-vanadium redox flow secondary battery and separator thereof Download PDF

Info

Publication number
KR20100116888A
KR20100116888A KR1020090035540A KR20090035540A KR20100116888A KR 20100116888 A KR20100116888 A KR 20100116888A KR 1020090035540 A KR1020090035540 A KR 1020090035540A KR 20090035540 A KR20090035540 A KR 20090035540A KR 20100116888 A KR20100116888 A KR 20100116888A
Authority
KR
South Korea
Prior art keywords
diaphragm
flow secondary
secondary battery
vanadium redox
hydrocarbon
Prior art date
Application number
KR1020090035540A
Other languages
Korean (ko)
Other versions
KR101062767B1 (en
Inventor
황갑진
이상호
김정근
최상일
진창수
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Priority to KR1020090035540A priority Critical patent/KR101062767B1/en
Publication of KR20100116888A publication Critical patent/KR20100116888A/en
Application granted granted Critical
Publication of KR101062767B1 publication Critical patent/KR101062767B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE: A manufacturing method of a separator and the separator are provided to prevent the degradation of the voltage efficiency by securing the excellent oxidation resistance and the low film resistance. CONSTITUTION: A manufacturing method of a separator for an all-vanadium redox flow secondary battery comprises the following steps: dissolving a copolymer polymer block-copolymerizied with polysulfone and polyphenylene sulfide sulfone, with 1,1,2,2-tetrachloroethane; adding an ion exchange radical introduction solvent; applying a positive ion exchanger to the copolymer polymer by the sulfonation; washing the sulfonated hydrocarbon polymer with methanol, and compress-drying; dissolving the sulfonated hydrocarbon polymer to N-methylpyrrolidone; and casting the dissolved solution to a glass plate, and drying.

Description

바나듐 레독스-흐름 2차전지용 격막의 제조 방법 및 그 격막{Preparation method of separator for all-vanadium redox flow secondary battery and separator thereof}Manufacture method of separator for vanadium redox-flow secondary battery and its separator {Preparation method of separator for all-vanadium redox flow secondary battery and separator}

본 발명은 바나듐 레독스-흐름 2차전지용 격막의 제조 방법 및 그 격막에 관한 것으로, 자세하게는 대용량 전력저장 방법 중의 하나인 바나듐 레독스-흐름 2차전지에 사용되고 있는 고가 및 충·방전 전지 운전 중에 막 저항이 증가함으로서 전압효율의 저하를 가져오는 과불소계 막을 대체하고자, 탄화수소계 고분자를 이용한 격막의 제작에 관한 것으로 바나듐 레독스-흐름 2차전지용으로서 저가이며, 전기화학적·기계적 안정성 즉, 낮은 막 저항, 내산화성, 내열성이 높은 탄화수소계 고분자를 이용한 격막의 제조 방법 및 그 격막에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a diaphragm for vanadium redox-flow secondary batteries, and a diaphragm for the same. In order to replace the perfluorinated membrane, which increases the voltage resistance and decreases the voltage efficiency, the present invention relates to the manufacture of a diaphragm using a hydrocarbon-based polymer, and is an inexpensive, electrochemical and mechanical stability for a vanadium redox-flow secondary battery. The present invention relates to a method for producing a diaphragm using a hydrocarbon-based polymer having high resistance, oxidation resistance, and heat resistance, and a diaphragm thereof.

레독스-흐름 2차전지는 태양광 발전, 풍력발전 등의 간헐적인 자연에너지를 이용하고 있는 발전 시스템의 원활한 운전을 위한 대용량 전력저장 기술 또는 비상 전원용으로 연구가 진행되고 있다 [참고문헌 1]. Redox-flow secondary batteries have been researched for high-capacity power storage technology or emergency power for smooth operation of power generation systems that use intermittent natural energy such as solar power generation and wind power generation [Ref. 1].

그 중에서도 전해액으로 바나듐 용액을 사용하는 바나듐 레독스-흐름 2차전 지는 전해액으로 Fe/Cr을 사용한 레독스-흐름 전지에서 문제시 되었던 수소가스 발생과 이에 의한 전지용량의 저하 등의 문제점을 해소하고, 기전력 및 에너지 밀도가 높고 (기전력 1.4V, 에너지 밀도 30~50Wh/kg), 시스템의 간략화가 가능하고, 조작성의 향상이 기대되고 있다 [참고문헌 2].In particular, the vanadium redox-flow secondary battery using a vanadium solution as an electrolyte solves problems such as hydrogen gas generation and a decrease in battery capacity, which are a problem in the redox-flow battery using Fe / Cr as an electrolyte. The electromotive force and energy density are high (1.4V, energy density 30-50Wh / kg), the system can be simplified, and the operability is expected to be improved [Ref. 2].

바나듐 레독스-흐름 2차전지는 충전시에는 양극에서 4가 바나듐 이온(VO2+)이 5가(VO2 +)로, 음극에서는 3가 바나듐 이온(V3+)이 2가(V2+)로 변환되며, 방전시에는 역으로 바나듐 이온의 가수가 변화하여 충·방전 반응이 진행된다.Vanadium redox-flow secondary batteries include tetravalent vanadium ions in the positive electrode upon charging to be (VO 2+) is 5 (VO 2 +), the negative electrode 3 is a vanadium ion (V 3+) 2 is (V 2+ ), And at the time of discharge, the valence of vanadium ions is reversed, and the charge and discharge reaction proceeds.

Figure 112009024702480-PAT00001
Figure 112009024702480-PAT00001

그러나 바나듐 레독스-흐름 2차전지의 최대 문제점은 격막에 있다. Fe/Cr계에서 사용되었던 스티렌 디 비닐 벤젠(styrene-divinyl benzen)계의 격막은 산화제로도 사용되는 5가 바나듐 용액에 의해 산화열화되고, 내산성이 높다고 판단되는 과불소계 막은 고가이며, 전지의 충·방전 운전시 막 저항의 증가와 함께 전지의 전압효율을 감소시킨다는 문제점이 있다 [참고문헌 3]. However, the biggest problem with vanadium redox-flow secondary batteries lies in the diaphragm. The styrene-divinyl benzen diaphragm used in the Fe / Cr system is oxidatively deteriorated by a pentavalent vanadium solution, which is also used as an oxidizing agent. • There is a problem that the voltage efficiency of the battery decreases with the increase of the membrane resistance during discharge operation [Ref. 3].

바나듐 레독스-흐름 2차전지용 격막은 높은 전류효율을 유지하기 위해 활성 종인 바나듐 이온이 막을 투과하여 생기는 자기방전을 최소화하여야 하며, 전압효율 저하를 최소화하기 위해 낮은 막 저항을 가져야 한다. 또한 장시간 운전 중에도 높은 내산성을 가져야 한다. In order to maintain high current efficiency, the vanadium redox-flow secondary battery diaphragm should minimize self-discharge caused by penetration of the active species of vanadium ions and have a low film resistance in order to minimize voltage degradation. In addition, it must have high acid resistance even during long operation.

따라서 바나듐 레독스-흐름 2차전지용으로 저가이며, 전기화학적·기계적 안정성 높은 격막의 개발이 요구되고 있다. Therefore, development of a low cost, high electrochemical and mechanically stable diaphragm for vanadium redox-flow secondary batteries is required.

[참고문헌][references]

1) 황갑진, 강안수, 大矢晴彦, 레독스-흐름 2차전지에 관한 연구동향, 화학공업과 기술, 16(5), p.455 (1998). 1) Research Trends on Hwang Gap-jin, Kang An-su, Kang Dae-soo, Redox-flow Secondary Battery, Chemical Industry and Technology, 16 (5), p.455 (1998).

2) Gab-Jin Hwang and H. Ohya, "Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery", J. Membrane Sci., 120, p.55 (1996).2) Gab-Jin Hwang and H. Ohya, "Preparation of cation exchange membrane as a separator for the all-vanadium redox flow battery", J. Membrane Sci., 120, p.55 (1996).

3) Gab-Jin Hwang and H. Ohya, "Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery", J. Membrane Sci., 132, p.55 (1997).3) Gab-Jin Hwang and H. Ohya, "Crosslinking of anion exchange membrane by accelerated electron radiation as a separator for the all-vanadium redox flow battery", J. Membrane Sci., 132, p.55 (1997).

4) Gab-Jin Hwang and H. Ohya, "Preparation of anion exchange membrane based on block copolymers PartⅠ. Amination of the chloromethylated copolymers", J. Membrane Sci., 140, p.195 (1998).4) Gab-Jin Hwang and H. Ohya, "Preparation of anion exchange membrane based on block copolymers Part I. Amination of the chloromethylated copolymers", J. Membrane Sci., 140, p. 195 (1998).

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 바나듐 레독스-흐름 2차전지용으로서 저가이며, 전기화학적·기계적 안정성 즉, 낮은 막 저항, 내산화성, 내열성이 높은 탄화수소계 고분자를 이용한 격막의 제조 방법 및 그로부터 제조되는 격막을 제공함에 있다. An object of the present invention for solving the above problems is to manufacture a diaphragm using a hydrocarbon polymer having low cost, high electrochemical and mechanical stability, ie low membrane resistance, oxidation resistance, and heat resistance, for a vanadium redox-flow secondary battery. A method and a diaphragm prepared therefrom are provided.

상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명은 대용량 전력저장 방법 중의 하나인 바나듐 레독스-흐름 2차전지에 사용되고 있는 고가 및 충·방전 전지 운전 중에 막 저항이 증가함으로서 전압효율의 저하를 가져오는 과불소계 막을 대체하는, 탄화수소계 고분자를 이용한 격막의 제조방법에 있어서, The present invention, which achieves the object as described above and removes the drawbacks of the related art, has been described in the present invention. In the manufacturing method of the diaphragm using a hydrocarbon type polymer which replaces the perfluorine type film which raises this and decreases a voltage efficiency,

엔지니어링 플라스틱 계열인 폴리슬폰과 폴리페닐렌설파이드슬폰이 블록 공중합된 공중합 폴리머를 테트라클로로에탄(TCE, 1,1,2,2-tetrachloroethane)으로 용해시킨 후, 이온교환기 도입용제를 첨가하고, 질소가스를 흘려주면서 술폰화 반응시켜 양이온 교환기를 공중합 폴리머에 도입하고, 술폰화 반응된 고분자를 메탄올로 세척하고 겔화되어 침적된 술폰화된 탄화수소 고분자를 취하여 감압 건조한 후, 건조된 술폰화 탄화수소 고분자를 메틸피리리돈(NMP)에 용해시킨 후, 용해된 용액을 글라스 판 위에 캐스팅한 뒤 건조시킴으로써 하기 화학분자식을 갖는 필름 형태의 탄화수소 격막(양이온 교환막)을 제조하는 것을 특징으로 하는 바나듐 레독스-흐름 2차전지용 격막의 제조 방법을 제공함으로써 달성된다.After dissolving the copolymerized copolymer of polysulfone and polyphenylene sulfide sulfone, which are engineering plastics, in tetrachloroethane (TCE, 1,1,2,2-tetrachloroethane), an ion exchanger introducing solvent is added and nitrogen gas Sulfonation reaction was carried out while introducing a cation exchanger into the copolymerized polymer. The sulfonated polymer was washed with methanol, gelled and deposited sulfonated hydrocarbon polymer was dried under reduced pressure, and the dried sulfonated hydrocarbon polymer was methylpyridine. After dissolving in redon (NMP), the dissolved solution is cast on a glass plate and dried to prepare a hydrocarbon membrane (cation exchange membrane) in the form of a film having the following chemical molecular formula for a vanadium redox-flow secondary battery. It is achieved by providing a method for producing the diaphragm.

[화학분자식][Chemical molecular formula]

Figure 112009024702480-PAT00002
Figure 112009024702480-PAT00002

상기에서 m:n=1:1 이다. M: n = 1: 1 in the above.

상기 이온교환기 도입용제는 클로로슬포닉산(CSA, chlorosulfonic acid), 황산(sulfuric acid), 설퍼트리옥사이드(SO3) 중에서 선택된 하나를 사용하는 것을 특징으로 한다.The ion exchanger introduction solvent is characterized in that it is used one selected from chlorosulfonic acid (CSA, chlorosulfonic acid), sulfuric acid (sulfuric acid), sulfur trioxide (SO 3 ).

상기 이온교환기 도입용제는 1~10ml를 교반하면서 1ml/min의 속도로 첨가하는 것을 특징으로 한다.The ion exchanger introducing solvent is characterized in that it is added at a rate of 1ml / min while stirring 1 ~ 10ml.

상기 질소가스는 30~300ml/min의 속도로 흘려주면서 상온(25℃)~160℃에서 30분~3시간 동안 술폰화 반응시키는 것을 특징으로 한다.The nitrogen gas is characterized in that the sulfonation reaction for 30 minutes to 3 hours at room temperature (25 ℃) ~ 160 ℃ while flowing at a rate of 30 ~ 300ml / min.

상기 겔화되어 침적된 술폰화된 탄화수소 고분자는 50℃~140℃에서 1~20시간 감압 건조하는 것을 특징으로 한다.The gelated and deposited sulfonated hydrocarbon polymer is characterized by drying under reduced pressure for 1 to 20 hours at 50 ℃ ~ 140 ℃.

상기 건조된 술폰화 탄화수소 고분자를 메틸피리리돈(NMP)에 비율이 1g:1.5~2ml가 되도록 용해시킨 후, 용해된 용액을 글라스 판 위에 캐스팅한 뒤 50~140℃에서 2시간 이상 건조시키는 것을 특징으로 한다.After dissolving the dried sulfonated hydrocarbon polymer in methylpyrilidone (NMP) so that the ratio is 1 g: 1.5-2 ml, casting the dissolved solution on a glass plate and drying at 50-140 ° C. for 2 hours or more. It is done.

또한 본 발명은 다른 실시형태로 상기 방법으로 제조되어 하기 화학분자식을 갖는 필름 형태의 탄화수소 격막(양이온 교환막)이고, 1몰 황산용액 기준당 막 저항은 1.0Ω·cm2이하 값을 나타내고, 바나듐 레독스-흐름 2차전지용 격막으로 사용시 충전상태 100%에서의 기전력이 1.4V인 것을 특징으로 하는 바나듐 레독스-흐름 2차전지용 격막을 제공함으로써 달성된다.In another embodiment, the present invention is a hydrocarbon membrane (cation exchange membrane) in the form of a film prepared by the above method having the following chemical molecular formula, wherein the membrane resistance per molar sulfuric acid solution reference is 1.0 Ω · cm 2 or less, and vanadium re It is achieved by providing a vanadium redox-flow secondary battery diaphragm characterized in that the electromotive force at 100% state of charge when used as a diaphragm for a dox-flow secondary battery is 1.4V.

[화학분자식][Chemical molecular formula]

Figure 112009024702480-PAT00003
Figure 112009024702480-PAT00003

상기에서 m:n=1:1 이다M: n = 1: 1

또한 본 발명은 다른 실시형태로 대용량 전력저장 방법 중의 하나인 바나듐 레독스-흐름 2차전지에 사용되고 있는 고가 및 충·방전 전지 운전 중에 막 저항이 증가함으로서 전압효율의 저하를 가져오는 과불소계 막을 대체하는, 탄화수소계 고 분자를 이용한 격막의 제조방법에 있어서, In another embodiment, the present invention replaces a perfluorinated membrane which increases the voltage resistance of the vanadium redox-flow secondary battery, which is one of the high-capacity power storage methods, and increases the voltage resistance during operation of the high-cost and charge-discharge batteries. In the method for producing a diaphragm using a hydrocarbon-based polymer,

엔지니어링 플라스틱 계열인 폴리슬폰과 폴리페닐렌설파이드슬폰이 블록 공중합된 공중합 폴리머를 테트라클로로에탄(TCE, 1, 1, 2, 2-tetrachloroethane)에 용해시킨 후, 헤테로폴리산(heteropoly acid)을 디메틸아세트아미드(DMAc, N-N-dimethylacetamide)에 녹인 용액을 첨가하고, 여기에 이온교환기 도입용제를 첨가하고, 질소가스를 흘려주면서 술폰화 반응시켜 양이온 교환기 및 무기 보충제를 공중합 폴리머에 도입하고, 술폰화 반응된 유-무기 복합 탄화수소 고분자를 메탄올로 세척하고 겔화되어 침적된 술폰화된 유-무기 복합 탄화수소 고분자를 취하여 감압 건조한 후, 건조된 술폰화 유-무기 복합 탄화수소 고분자를 메틸피리리돈(NMP)에 용해시킨 후, 용해된 용액을 글라스 판 위에 캐스팅한 뒤 건조시킴으로서 하기 화학분자식을 갖는 필름 형태의 유-무기 복합 탄화수소 격막 (양이온 교환막)을 제조하는 것을 특징으로 하는 바나듐 레독스-흐름 2차전지용 격막의 제조 방법을 제공함으로써 달성된다. After dissolving the copolymer copolymer of polysulfone and polyphenylene sulfide sulfone, which is an engineering plastic series, in tetrachloroethane (TCE, 1, 1, 2, 2-tetrachloroethane), heteropoly acid is dissolved in dimethylacetamide ( A solution dissolved in DMAc, NN-dimethylacetamide) is added, and an ion exchanger introduction solvent is added thereto, and a sulfonation reaction is carried out while flowing nitrogen gas to introduce a cation exchanger and an inorganic supplement to the copolymer polymer, and a sulfonated reaction oil- After washing the inorganic composite hydrocarbon polymer with methanol, taking the gelled and deposited sulfonated organic-inorganic composite hydrocarbon polymer and drying under reduced pressure, the dried sulfonated organic-inorganic composite hydrocarbon polymer was dissolved in methylpyrilidone (NMP), Organic-inorganic composite carbon in film form having the following chemical molecular formula by casting the dissolved solution on a glass plate and drying it It is achieved by providing a method for producing a vanadium redox-flow secondary battery diaphragm characterized by producing a hydrogen sulfide diaphragm (cation exchange membrane).

[화학분자식][Chemical molecular formula]

Figure 112009024702480-PAT00004
Figure 112009024702480-PAT00004

상기에서 m:n=1:1 이다.M: n = 1: 1 in the above.

상기 이온교환기 도입용제는 클로로슬포닉산(CSA, chlorosulfonic acid), 황 산(sulfuric acid), 설퍼트리옥사이드(SO3) 중에서 선택된 하나를 사용하는 것을 특징으로 한다.The ion exchanger introducing solvent is characterized in that it uses one selected from chlorosulfonic acid (CSA, chlorosulfonic acid), sulfuric acid (sulfuric acid), sulfur trioxide (SO 3 ).

상기 이온교환기 도입용제는 1~10ml를 교반하면서 1ml/min의 속도로 첨가하는 것을 특징으로 한다.The ion exchanger introducing solvent is characterized in that it is added at a rate of 1ml / min while stirring 1 ~ 10ml.

상기 헤테로폴리산(heteropoly acid)은 텅스토포스포릭 산(TPA, tungstophosphoric acid), 포스포 몰리브덴산, 실리코 몰리브덴산 중에서 선택된 하나를 사용하는 것을 특징으로 한다.The heteropoly acid (heteropoly acid) is characterized in using one selected from tungstophosphoric acid (TPA, tungstophosphoric acid), phospho molybdate, silico molybdate.

상기 헤테로폴리산(heteropoly acid)을 디메틸아세트아미드(DMAc, N-N-dimethylacetamide)에 비율이 1g : 1ml가 되도록 하여 녹인 용액 0.1 ~ 10g을 첨가하는 것을 특징으로 한다.The heteropoly acid (heteropoly acid) is dissolved in a dimethylacetamide (DMAc, N-N-dimethylacetamide) so that the ratio is 1g: 1ml, characterized in that the addition of 0.1 to 10g.

상기 질소가스는 30~300ml/min의 속도로 흘려주면서 상온(25℃)~160℃에서 30분~3시간 동안 술폰화 반응시키는 것을 특징으로 한다.The nitrogen gas is characterized in that the sulfonation reaction for 30 minutes to 3 hours at room temperature (25 ℃) ~ 160 ℃ while flowing at a rate of 30 ~ 300ml / min.

상기 겔화되어 침적된 술폰화된 유-무기 복합 탄화수소 고분자는 50℃~140℃에서 1~20시간 감압 건조하는 것을 특징으로 한다.The gelated and deposited sulfonated organic-inorganic composite hydrocarbon polymer is characterized by drying under reduced pressure for 1 to 20 hours at 50 ℃ ~ 140 ℃.

상기 건조된 술폰화 유-무기 복합 탄화수소 고분자를 메틸피리리돈(NMP)에 비율이 1g:1.5~2ml가 되도록 용해시킨 후, 용해된 용액을 글라스 판 위에 캐스팅한 뒤 50~140℃에서 2시간 이상 건조시키는 것을 특징으로 한다.After dissolving the dried sulfonated organic-inorganic hybrid hydrocarbon polymer to methylpyrilidone (NMP) in a ratio of 1 g: 1.5 to 2 ml, the dissolved solution was cast on a glass plate and then at 50 to 140 ° C. for at least 2 hours. It is characterized by drying.

또한 본 발명은 다른 실시형태로 상기 방법으로 제조되어 하기 화학분자식을 갖는 필름 형태의 탄화수소 격막(양이온 교환막)이고, 1몰 황산용액 기준당 막 저항은 1.0Ω·cm2이하 값을 나타내고, 바나듐 레독스-흐름 2차전지용 격막으로 사용시 충전상태 100%에서의 기전력이 1.4V인 것을 특징으로 하는 바나듐 레독스-흐름 2차전지용 격막을 제공함으로써 달성된다.In another embodiment, the present invention is a hydrocarbon membrane (cation exchange membrane) in the form of a film prepared by the above method having the following chemical molecular formula, wherein the membrane resistance per molar sulfuric acid solution reference is 1.0 Ω · cm 2 or less, and vanadium re It is achieved by providing a vanadium redox-flow secondary battery diaphragm characterized in that the electromotive force at 100% state of charge when used as a diaphragm for a dox-flow secondary battery is 1.4V.

[화학분자식][Chemical molecular formula]

Figure 112009024702480-PAT00005
Figure 112009024702480-PAT00005

상기에서 m:n=1:1 이다M: n = 1: 1

본 발명에 따른 탄화수소계 격막은 과불소계 막과 비교하여, 열적 안정성이 뛰어나고, 바나듐 레독스-흐름 2차전지용 전해액으로 사용되는 5가 바나듐 이온 용액 조건에서도 내산화성이 우수한 격막이 될 수 있으며, 바나듐 레독스-흐름 2차전지용 격막으로 사용했을 때 기전력을 크게 떨어뜨리지 않고 낮은 막 저항과 함께 전압 효율의 향상과 높은 내산화성에 의해 전압 효율의 저하를 방지할 수 있는 효과를 얻을 수 있는 유용한 발명으로 산업상 그 이용이 크게 기대되는 발명이다. The hydrocarbon-based diaphragm according to the present invention has excellent thermal stability, and can be a diaphragm having excellent oxidation resistance even under a pentavalent vanadium ion solution used as an electrolyte solution for vanadium redox-flow secondary batteries, compared to a perfluorine-based membrane. When used as a redox-flow secondary battery diaphragm, it is a useful invention that can achieve the effect of preventing voltage degradation by improving the voltage efficiency and high oxidation resistance together with low film resistance without significantly reducing the electromotive force. It is an invention that is expected to be greatly used in the industry.

이하 본 발명의 실시 예인 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다. 또한 본 발명을 설명함에 있어서, 관련된 공지기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.Hereinafter, the configuration and the operation of the embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear.

본 발명은 대용량 전력저장 방법 중의 하나인 바나듐 레독스-흐름 2차전지용 격막으로 사용하기 위한 탄화수소계 고분자를 이용한 격막의 제작에 관한 것으로, 기계적 강도 및 내열성이 높은 엔지니어링 플라스틱 계통인 폴리슬폰(Psf, polysulfone)에 폴리페닐렌설파이드슬폰(PPSS, polyphenylenesulfidesulfone)을 블록 공중합시킨 공중합 폴리머를 제작한 뒤, 이 공중합 폴리머에 이온 교환기를 도입함으로써 저가이며, 낮은 막 저항을 갖고, 내열성이 있음으로서 바나듐 레독스-흐름 2차전지용으로 사용할 수 있는 격막의 제조 방법에 관한 것이다.The present invention relates to the fabrication of a diaphragm using a hydrocarbon-based polymer for use as a vanadium redox-flow secondary battery, one of a large-capacity power storage method, polysulfone (Psf, which is an engineering plastics system with high mechanical strength and heat resistance). After preparing a copolymer copolymerized with polyphenylene sulfide sulfone (PPSS, polyphenylenesulfidesulfone) in polysulfone, an ion exchanger is introduced into the copolymer to inexpensive, low film resistance, and heat resistant, thereby providing vanadium redox- The manufacturing method of the diaphragm which can be used for a flow secondary battery is related.

보다 자세히 설명하면, 시판의 폴리슬폰을 유기용매인 메틸피리리돈(NMP, N-methylpyrilidone)로 용해시킨 뒤 여기에 디클로로디페닐슬폰(DCDPS, 4,4'- dichloro diphenyl sulfone), 소듐설파이드하이드레이트(sodium sulfide hydrate) 과 촉매인 리듐아세테이트디하이드레이트(lithium acetate dihydrate)을 첨가하여 교반하면서 160℃에서 질소가스를 흘려주면서 4시간 중합시키고, 4시간이 되었을 때 중합정지제인 클로로메틸프로판(3-chloro-2-methyl-1-propane)를 서서히 가해주어 반응을 정지시킴으로서 하기의 화학분자식을 갖는 폴리슬폰(Psf, polysulfone)에 폴리페닐렌설파이드슬폰(PPSS, polyphenylenesulfidesulfone)이 블록 공중합 된 공중합 폴리머(Psf-PPSS)가 제조된다 [참고문헌 4]. In more detail, commercially available polysulfone is dissolved in an organic solvent, methylpyrilidone (NMP, N-methylpyrilidone), followed by dichlorodiphenylsulfone (DCDPS, 4,4'-dichloro diphenyl sulfone) and sodium sulfide hydrate ( Sodium sulfide hydrate) and a catalyst, lithium acetate dihydrate, were added and polymerized for 4 hours while flowing nitrogen gas at 160 ° C. while stirring, and at 4 hours, chloromethylpropane (3-chloro- By stopping the reaction by slowly adding 2-methyl-1-propane, a polysulfone (Psf, polysulfone) having the following chemical molecular formula is block copolymer of polyphenylene sulfidesulfone (PPSS, polyphenylenesulfidesulfone) (Psf-PPSS) ) Is prepared [Ref. 4].

Figure 112009024702480-PAT00006
Figure 112009024702480-PAT00006

상기에서 반응정지제를 사용한 이유는 폴리슬폰과 폴리페닐렌설파이드슬폰의 혼합비율이 약1:1이 되도록 하기 위해서 이다.The reason why the reaction terminator is used is so that the mixing ratio of polysulfone and polyphenylene sulfide sulfone is about 1: 1.

이와 같이 혼합비율을 한정한 이유는 폴리슬폰의 비율이 높으면 폴리슬폰이 물에 약하기 때문에 격막을 제조하더라도 황산 수용액에서 사용하기가 어렵기 때문이다.The reason for limiting the mixing ratio is that since the ratio of polysulfone is high, it is difficult to use in aqueous sulfuric acid solution even if a diaphragm is prepared because polysulfone is weak to water.

제조된 공중합 폴리머(Psf-PPSS)는 미지근한 물로 여러 번 세척하여 반응시 생성되는 염화나트륨(NaCl)을 제거하고, 다시 메탄올(methanol)로 여러 번 세척함으로서 미 반응 물질 등을 제거해 준다.The prepared copolymer (Psf-PPSS) is washed several times with lukewarm water to remove sodium chloride (NaCl) generated during the reaction, and then washed several times with methanol (methanol) to remove the unreacted substances.

이렇게 세척된 공중합 폴리머(Psf-PPSS)는 140℃에서 감압 건조한다. 여기서 감압 건조 대신에 대기 중에 24시간 이상 건조하거나, 오븐을 이용하여 140℃이하에서 건조하여도 된다.Thus washed copolymerized polymer (Psf-PPSS) is dried under reduced pressure at 140 ℃. Instead of drying under reduced pressure, drying may be performed in the air for at least 24 hours or at 140 ° C or lower using an oven.

건조된 공중합 폴리머(Psf-PPSS)를 테트라클로로에탄(TCE, 1,1,2,2 - tetrachloroethane)에 용해시킨 후, 여기에 이온교환기 도입용제인 클로로슬포닉산(CSA, chlorosulfonic acid)을 교반하면서 첨가하고 질소가스를 흘려주면서 상온(25℃)~160℃에서 30분~3시간 동안 술폰화 반응시켜 양이온 교환기를 공중합 폴리머에 도입한다. 상기에서 온도가 하한수치보다 작으면 반응이 잘 일어나지 않고, 160℃를 넘으면 이온교환기가 막으로 도입되는 비율보다 이온교환기 도입 용제의 휘발이 빠르기 때문이고. 또한 시간을 한정한 이유는 하한수치보다 작으면 반응이 잘 일어나지 않고, 3시간 이상 반응을 하면 필름을 제조하기에 필요한 겔화된 부분보다 응집이 생겨 굳어버리는 현상이 생기기 때문이다.After dissolving the dried copolymer polymer (Psf-PPSS) in tetrachloroethane (TCE, 1,1,2,2-tetrachloroethane), while stirring the chlorosulfonic acid (CSA, chlorosulfonic acid), the solvent for introducing the ion exchange group The addition and addition of a cation exchanger into the copolymer by sulfonation at room temperature (25 ° C.) to 160 ° C. for 30 minutes to 3 hours while flowing nitrogen gas. This is because if the temperature is lower than the lower limit, the reaction does not occur well, and if it exceeds 160 ° C, the volatilization of the ion exchanger introducing solvent is faster than the rate at which the ion exchanger is introduced into the membrane. The reason for limiting the time is that the reaction is less likely to occur when the value is smaller than the lower limit value, and when the reaction is performed for 3 hours or more, aggregation occurs and becomes harder than the gelled portion necessary for producing the film.

상기에서 이온교환기 도입제인 클로로슬포닉산(CSA, chlorosulfonic acid)은 1~10ml를 교반하면서 1ml/min의 속도로 첨가한다. 이때 이온교환기 용제를 하한수치보다 작게 사용하면 반응이 잘 일어나지 않고, 또한 많이 사용하면 이온교환기가 많이 도입되는 것은 사실이지만, 어는 일정한 한계를 넘어서면 즉, 공중합 폴리머와 이온교환 용제의 비율이 어느 한계를 넘어서면 1몰 황산 용액 중에서의 막 저항 값이 증가한다. 따라서 격막을 제조할 때 막 저항이 낮게 나타나는 공중합 폴리머와 이온교환 용제의 비율을 찾는 것이 중요한데, 본 발명에서는 이온교환기의 도입 제의 양을 위와 같이 한정한 것이다.Chlorosulfonic acid (CSA, chlorosulfonic acid), which is an ion exchanger introducing agent, is added at a rate of 1 ml / min while stirring 1-10 ml. At this time, if the ion exchanger solvent is used smaller than the lower limit, the reaction does not occur well, and if it is used a lot, it is true that many ion exchangers are introduced. Beyond, the film resistance value in 1 mole sulfuric acid solution increases. Therefore, it is important to find the ratio of the copolymerization polymer and the ion exchange solvent which shows a low membrane resistance when preparing the diaphragm. In the present invention, the amount of the introduction agent of the ion exchange group is limited as described above.

또한 첨가 시간을 한정한 이유는 하한수치보다 작게 사용하면 반응이 잘 일어나지 않고, 첨가 속도가 빠르면 공중합 폴리머에 이온교환기가 도입되는 양이 적어지기 때문이다.In addition, the reason for limiting the addition time is that the reaction is less likely to occur when it is used below the lower limit value, and when the addition rate is high, the amount of ion exchange groups introduced into the copolymer is reduced.

또한 질소가스를 흘려주는 이유는 부 반응을 방지하기 위해서인데, 질소가스 30~300ml/min의 속도로 흘려준다. 이때 질소가스의 속도가 하한수치보다 작으면 반응이 잘 일어나지 않고, 유속이 빠르면 이온교환용제인 CSA를 반응하기 전에 모두 대기로 방출하기 때문이다. 이온교환용제인 CSA는 휘발 속도가 매우 빠르기 때문이다.In addition, the reason for flowing nitrogen gas is to prevent side reactions, nitrogen gas flows at a rate of 30 ~ 300ml / min. If the rate of nitrogen gas is less than the lower limit, the reaction does not occur well. If the flow rate is high, all of the gas is released to the atmosphere before the reaction of CSA, an ion exchange solvent. This is because CSA, an ion exchange solvent, has a very high volatilization rate.

또한 이온교환기 도입 용제로 황산(sulfuric acid), 설퍼트리옥사이드(SO3)등을 사용하여도 된다. In addition, sulfuric acid, sulfur trioxide (SO3), or the like may be used as an ion exchanger introduction solvent.

술폰화 반응된 고분자는 메탄올로 세척하고 겔화되어 침적된 술폰화된 탄화수소 고분자를 취하여 50℃~140℃에서 1~20시간 감압 건조한다. 이때 온도는 하한수치보다 작으면 반응이 잘 일어나지 않고, 140℃이상에서 오랜 시간 건조하게 되면 술폰화된 탄화수소 고분자가 서서히 타버리는 현상이 발생하기 때문이다. 또한 감압 건조를 실시하는 이유는 세척제로 사용하는 메탄올 등 불순물을 보다 효과 적으로 제거하기 위해서이고 상기 구간 수치에서 가장 좋은 효과를 보였다.The sulfonated polymer is washed with methanol, gelled and precipitated sulfonated hydrocarbon polymer, and dried under reduced pressure at 50 ° C to 140 ° C for 1 to 20 hours. At this time, if the temperature is less than the lower limit, the reaction does not occur well, and when drying at a temperature of 140 ° C. or more for a long time, the sulfonated hydrocarbon polymer gradually burns out. In addition, the reason for carrying out the drying under reduced pressure was to remove impurities such as methanol, which is used as a cleaning agent more effectively, and showed the best effect in the interval value.

건조된 술폰화 탄화수소 고분자는 메틸피리리돈(NMP)에 용해시킨 후 용해된 용액을 글라스 판 위에 캐스팅한 뒤 50~140℃에서 2시간 이상 건조시킴으로써 하기와 같은 화학분자식을 갖는 필름 형태의 양이온 교환막이 제작된다. 이때 온도는 하한수치보다 작으면 반응이 잘 일어나지 않고, 140℃이상에서 건조하게 되면 필름이 형성되는 것이 아니라 글라스 판에 필름이 붙어 버리기 때문이다. 또한 건조 시간을 한정한 이유는 NMP에 용해시킨 용액의 점도 때문이다. 점도가 크면 긴 시간에 건조되고, 점도가 낮으면 짧은 시간에 건조되는데 상기 구간일때 본 발명에 가장 적합한 점도를 가지게 된다.The dried sulfonated hydrocarbon polymer is dissolved in methylpyrilidone (NMP), cast the dissolved solution on a glass plate, and dried at 50-140 ° C. for at least 2 hours to form a film-type cation exchange membrane having a chemical molecular formula as follows. Is produced. At this time, if the temperature is smaller than the lower limit, the reaction does not occur well, and if the film is dried at 140 ° C. or higher, the film is not formed but the film adheres to the glass plate. The reason for limiting the drying time is due to the viscosity of the solution dissolved in NMP. If the viscosity is large, it is dried in a long time, and if the viscosity is low, it is dried in a short time, and has the most suitable viscosity for the present invention in the above section.

또한 상기 용해시 건조된 술폰화 탄화수소 고분자를 메틸피리리돈(NMP)에 비율이 1g:1.5~2ml가 되도록 용해시킨다. 이때 비율 한정의 이유는 건조된 술폰화 탄화수소 고분자와 NMP의 비율이 이 보다 높거나 낮으면 필름이 잘 형성되지 않기 때문이다.In addition, the sulfonated hydrocarbon polymer dried during the dissolution is dissolved in methylpyrilidone (NMP) so that the ratio is 1g: 1.5 ~ 2ml. The reason for the ratio limitation is that the film is not well formed if the ratio of the dried sulfonated hydrocarbon polymer and NMP is higher or lower than this.

Figure 112009024702480-PAT00007
Figure 112009024702480-PAT00007

상기에서 m:n=1:1 이다. 이와 같이 하정한 이유는 폴리슬폰(m)의 비율이 높으면 폴리슬폰이 물에 약하기 때문에 격막을 제조하더라도 황산수용액에 사용하기 어렵기 때문이다.M: n = 1: 1 in the above. The reason for this assumption is that if the ratio of polysulfone (m) is high, polysulfone is weak in water, and thus it is difficult to use the aqueous solution of sulfuric acid even if a diaphragm is produced.

이때 술폰화 탄화수소 고분자와 용매제인 NMP의 비율은 1g:1.5~2ml가 되도록 한다. 이렇게 용매제의 양을 한정한 이유는 캐스팅하여 필름을 제작할 때 쏠림의 현상과 용액의 분산 현상을 억제하기 위해서이다.At this time, the ratio of the sulfonated hydrocarbon polymer and the solvent NMP is 1g: 1.5-2ml. The reason for limiting the amount of the solvent is to suppress the phenomenon of slack and dispersion of the solution when casting to produce a film.

상기에서 필름을 만들기 위한 캐스팅 판으로 실리콘 고무 판이나 스크린 프린팅기를 사용하여도 된다.As the casting plate for making the film, a silicone rubber plate or a screen printing machine may be used.

또한 본 발명은 다른 실시형태로 건조된 공중합 폴리머(Psf-PPSS)를 테트라클로로에탄(TCE, 1,1,2,2-tetrachloroethane)에 용해시킨 후 헤테로폴리산(heteropoly acid)중의 하나인 텅스토포스포릭 산(TPA,tungstophosphoric acid)을 디메틸아세트아미드 (DMAc, N-N-dimethylacetamide)에 녹인 용액을 첨가하고, 여기에 이온교환기 도입용제인 클로로슬포닉산(CSA, chlorosulfonic acid)를 교반하면서 첨가하고 질소가스를 30~300ml/min의 속도로 흘려주면서 상온(25℃)~160℃에서 30분~3시간 동안 술폰화 반응시켜 양이온 교환기 및 무기 보충제를 공중합 폴리머에 도입한다. In another embodiment, the present invention is dissolved in a dry copolymer (Psf-PPSS) in tetrachloroethane (TCE, 1,1,2,2-tetrachloroethane) and then tungstophosphoric which is one of heteropoly acid (heteropoly acid) A solution of acid (TPA, tungstophosphoric acid) dissolved in dimethylacetamide (DMAc, NN-dimethylacetamide) is added, and chlorosulfonic acid (CSA, chlorosulfonic acid), which is an ion exchanger introduction solvent, is added thereto under stirring, and nitrogen gas is added to 30 The cation exchanger and the inorganic supplement are introduced into the copolymer by sulfonation at room temperature (25 ° C.) to 160 ° C. for 30 minutes to 3 hours while flowing at a rate of ˜300 ml / min.

상기에서 텅스토포스포릭 산(TPA,tungstophosphoric acid)과 디메틸아세트아미드 (DMAc, N-N-dimethylacetamide)의 비율은 1g:1ml가 되도록 하여 녹인 용액 0.1 ~ 10g을 첨가하고, 여기에 이온교환기 도입용제인 클로로슬포닉산(CSA, chlorosulfonic acid) 1~10ml를 교반하면서 1ml/min의 속도로 첨가한다. 이때 TPA 를 DMAc에 녹인 용액 첨가량을 한정한 이유는 하한수치보다 작으면 반응이 잘 일어나지 않고, 그 이상이 되면 이온교환기의 도입이 어렵고 이에 따라 1몰 황산 용액에서의 막 저항이 높아지기 때문이다.The ratio of tungstophosphoric acid (TPA, tungstophosphoric acid) and dimethylacetamide (DMAc, NN-dimethylacetamide) is 1 g: 1 ml, and 0.1 to 10 g of the dissolved solution is added thereto. Add 1-10 ml of sulfonic acid (CSA, chlorosulfonic acid) at a rate of 1 ml / min while stirring. The reason why the amount of TPA dissolved in DMAc is limited is that if the amount is less than the lower limit, the reaction does not occur well, and if it is more than that, the ion exchanger is difficult to be introduced, thereby increasing the membrane resistance in the 1 mol sulfuric acid solution.

또한 TPA 외에도 다른 종류의 헤테로폴리산인 포스포 몰리브덴산, 실리코 몰리브덴산을 첨가하여도 된다.In addition to TPA, other types of heteropolyacids, phospho molybdate and silico molybdate may be added.

상기 술폰화 반응된 고분자는 메탄올로 세척하고 겔화되어 침적된 술폰화된 탄화수소 고분자를 취하여 50℃~140℃에서 1~20시간 감압 건조한다.The sulfonated polymer is washed with methanol, gelled and precipitated sulfonated hydrocarbon polymer, and dried under reduced pressure at 50 ° C to 140 ° C for 1 to 20 hours.

건조된 술폰화 유-무기 복합 탄화수소 고분자는 메틸피리리돈(NMP)에 용해시킨 후 용해된 용액을 글라스 판 위에 캐스팅한 뒤 50~140℃에서 2시간 이상 건조시킴으로서 필름 형태의 유-무기 복합 양이온 교환막이 제작된다.The dried sulfonated organic-inorganic hybrid hydrocarbon polymer is dissolved in methylpyrilidone (NMP), cast the dissolved solution on a glass plate, and dried at 50-140 ° C. for at least 2 hours to form an organic-inorganic hybrid cation exchange membrane in a film form. This is produced.

이하 본 발명의 실시 예인 구성과 그 작용을 첨부도면에 연계시켜 상세히 설명하면 다음과 같다.Hereinafter, the configuration and the operation of the embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에서 개발한 탄화수소계 격막의 표면 및 단면사진인데, 제작한 탄화수소계 격막의 두께는 50~170μm이다. 1 is a surface and cross-sectional photograph of the hydrocarbon-based diaphragm developed in the present invention, the thickness of the produced hydrocarbon-based diaphragm is 50 ~ 170μm.

보통 과불소화계 막의 두께는 185μm이고, 또한 막의 두께에 따라 1몰 황산 용액에서의 막 저항도 변화한다. 즉 두께가 두꺼워 질수록 막 저항도 증가하게 되는데, 본 발명에서 제작한 탄화수소계 막은 일반적인 막에 비해 두께가 작고 1몰 황산 용액에서의 막 저항이 1.0Ω·cm2로 낮다는 것을 알 수 있다.Usually, the thickness of the perfluorinated film is 185 µm, and the film resistance in the 1 mol sulfuric acid solution also changes depending on the thickness of the film. That is, as the thickness increases, the membrane resistance also increases. The hydrocarbon-based membrane produced in the present invention has a smaller thickness than the conventional membrane and has a low membrane resistance of 1.0 Ω · cm 2 in a 1 mol sulfuric acid solution.

도 2는 본 발명에서 개발한 탄화수소계 격막의 TGA(Thermogravimetric Analyzer)분석에 의한 열적 안정성을 나타낸 그래프인데, 대표적인 과불소계 격막인 Nafion117과 비교하여 열적으로 안정하다는 것을 알 수 있다.Figure 2 is a graph showing the thermal stability by TGA (Thermogravimetric Analyzer) analysis of the hydrocarbon-based diaphragm developed in the present invention, it can be seen that it is thermally stable compared to the typical perfluorine-based diaphragm Nafion117.

도 3은 본 발명에서 개발한 탄화수소계 격막의 이온교환기 도입 용제량에 따른 1몰 황산용액에서의 막 저항 변화를 보인 그래프인데, 초기 이온 교환기를 도입하지 않았을 때 막 저항은 4kΩ·cm2을 나타냈으나, 이온교환기의 도입과 함께 저항도 감소하는 경향을 보이며, 3ml의 CSA를 도입하였을 때 0.96Ω·cm2로 제일 낮은 저항 값을 나타내며, 3ml이상에서는 거의 동등한 값을 갖았다. 따라서 제작된 격막은 바나듐 레독스-흐름 2차전지용 격막으로 사용할 수 있다고 판단된다. 3 is a graph showing the change in membrane resistance in a 1 mole sulfuric acid solution according to the amount of the ion exchanger introduced solvent of the hydrocarbon-based diaphragm developed in the present invention, the membrane resistance is 4kΩ · cm 2 when the initial ion exchanger is not introduced However, the resistance tended to decrease with the introduction of the ion exchanger, and when 3 ml of CSA was introduced, the lowest resistance value was 0.96 Ω · cm 2 . Therefore, the manufactured diaphragm can be used as a vanadium redox-flow secondary battery diaphragm.

도 4는 본 발명에서 개발한 유-무기 복합 탄화수소계 격막의 4ml의 CSA양에서 TPA량의 변화에 따른 1몰 황산용액에서의 막 저항 변화를 보인 그래프인데, 초기 이온 교환기를 도입하지 않았을 때 막 저항은 4kΩ·cm2을 나타냈으나, TPA의 양 의 증가와 함께 저항도 감소하는 경향을 보이며, 0.5g의 TPA에서 0.94Ω·cm2로 가장 작은 값을 나타내며, 0.5g이상에서는 거의 동등한 값을 갖았다. 따라서 제작된 격막은 바나듐 레독스-흐름 2차전지용 격막으로 사용할 수 있다고 판단된다. 4 is a graph showing the change in membrane resistance in 1 mol sulfuric acid solution according to the change of TPA amount in the amount of 4 ml CSA of the organic-inorganic hybrid hydrocarbon-based diaphragm developed in the present invention, the membrane when the initial ion exchanger is not introduced The resistance was 4 kΩ · cm 2 , but the resistance tended to decrease with the increase of the amount of TPA, and the smallest value was 0.94 Ω · cm 2 at 0.5 g of TPA. Had. Therefore, the manufactured diaphragm can be used as a vanadium redox-flow secondary battery diaphragm.

도 5는 본 발명에서 개발한 탄화수소계 격막을 바나듐 레독스-흐름 2차전지에 적용했을 때의 충전상태에 따른 충·방전 특성을 보인 그래프인데, 셀의 기전력은 충전상태가 크게 될수록 높아지면서 100%의 충전상태에서 1.4V의 값을 가졌다. 따라서 제작된 탄화수소계 격막은 크게 기전력을 떨어트리지 않음으로서 바나듐 레독스-흐름 2차전지용 격막으로 사용할 수 있다고 판단된다.5 is a graph showing charge and discharge characteristics according to the state of charge when the hydrocarbon-based diaphragm developed in the present invention is applied to a vanadium redox-flow secondary battery, and the electromotive force of the cell increases as the state of charge increases. It had a value of 1.4V at a state of charge of%. Therefore, the produced hydrocarbon-based diaphragm does not significantly reduce the electromotive force, so it can be used as a vanadium redox-flow secondary battery diaphragm.

도 6은 본 발명에서 개발한 유-무기 복합 탄화수소계 격막을 바나듐 레독스-흐름 2차전지에 적용했을 때의 충전상태에 따른 충·방전 특성을 보인 그래프인데, 셀의 기전력은 충전상태가 크게 될수록 높아지면서 100%의 충전상태에서 1.4V의 값을 가졌다. 따라서 제작된 탄화수소계 격막은 크게 기전력을 떨어트리지 않음으로서 바나듐 레독스-흐름 2차전지용 격막으로 사용할 수 있다고 판단된다.6 is a graph showing the charge and discharge characteristics according to the state of charge when the organic-inorganic hybrid hydrocarbon-based diaphragm developed in the present invention is applied to a vanadium redox-flow secondary battery. The higher the value, the 1.4V at 100% state of charge. Therefore, the produced hydrocarbon-based diaphragm does not significantly reduce the electromotive force, so it can be used as a vanadium redox-flow secondary battery diaphragm.

이하 본 발명의 바람직한 실시 예이다.Hereinafter is a preferred embodiment of the present invention.

[실시 예 1][Example 1]

시판의 폴리슬폰 25g을 유기용매인 메틸피리리돈(NMP, N-methyl pyrilidone) 120ml로 용해시킨 뒤 여기에 디클로로디페닐슬폰(DCDPS, 4,4' - dichloro diphenyl sulfone) 19g, 소듐설파이드하이드레이트(sodium sulfide hydrate) 5g과 촉매인 리듐아세테이트디하이드레이트(lithium acetate dihydrate) 6g을 첨가하여 교반하면서 160℃에서 질소가스를 100ml/min의 유속으로 흘려주면서 4시간 중합시키고, 4시간이 되었을 때 중합정지제인 클로로메틸프로판(3-chloro-2-methyl-1-propane) 20ml를 서서히 가해주어 반응을 정지시켜 폴리슬폰(Psf, polysulfone)에 폴리페닐렌설파이드슬폰(PPSS, polyphenylenesulfidesulfone)이 블록 공중합 된 공중합 폴리머(Psf-PPSS)를 제조하였다. 25 g of commercially available polysulfone was dissolved in 120 ml of an organic solvent, methyl pyrilidone (NMP), followed by 19 g of dichlorodiphenylsulfone (DCDPS, 4,4'-dichloro diphenyl sulfone) and sodium sulfide hydrate (sodium). 5 g of sulfide hydrate and 6 g of lithium acetate dihydrate were added to the mixture, and the mixture was stirred for 4 hours while flowing nitrogen gas at a flow rate of 100 ml / min at 160 ° C. while stirring. Slowly add 20 ml of methyl propane (3-chloro-2-methyl-1-propane) to stop the reaction, and block copolymer of polyphenylene sulfide sulfone (PPSS) to polysulfone (Psf, polysulfone) (Psf -PPSS).

제조된 공중합 폴리머(Psf-PPSS)는 미지근한 물로 여러 번 세척하여 반응시 생성되는 염화나트륨(NaCl)을 제거하고, 다시 메탄올(methanol)로 여러 번 세척함으로서 미 반응 물질 등을 제거하였다.The prepared copolymer (Psf-PPSS) was washed several times with lukewarm water to remove sodium chloride (NaCl) generated during the reaction, and then washed several times with methanol (methanol) to remove unreacted substances.

이렇게 세척된 공중합 폴리머(Psf-PPSS)는 140℃에서 6시간 감압 건조하였다. The washed copolymer (Psf-PPSS) was dried under reduced pressure at 140 ° C. for 6 hours.

건조된 공중합 폴리머(Psf-PPSS) 7g을 테트라클로로에탄(TCE, 1,1,2,2- tetrachloroethane) 50ml에 용해시킨 후 여기에 이온교환기 도입용제인 클로로슬포닉산(CSA, chlorosulfonic acid) 1~10ml를 교반하면서 1ml/min의 속도로 첨가하고 질소가스 100ml/min의 속도로 흘려주면서 상온(25℃)에서 1시간동안 술폰화 반응시켜 양이온 교환기를 공중합 폴리머에 도입하였다.7 g of dried copolymer polymer (Psf-PPSS) was dissolved in 50 ml of tetrachloroethane (TCE, 1,1,2,2-tetrachloroethane), and then 1 to chlorosulfonic acid (CSA, chlorosulfonic acid), which is an ion exchanger introduction solvent. 10 ml was added at a rate of 1 ml / min while stirring and sulfonated at room temperature (25 ° C.) for 1 hour while flowing at a rate of 100 ml / min of nitrogen gas to introduce a cation exchanger into the copolymer.

술폰화 반응된 고분자는 메탄올로 세척하고 겔화되어 침적된 술폰화된 탄화수소 고분자를 취하여 90℃에서 5시간 감압 건조하였다. The sulfonated polymer was washed with methanol, gelled and precipitated sulfonated hydrocarbon polymer, and dried under reduced pressure at 90 ° C for 5 hours.

건조된 술폰화 탄화수소 고분자는 메틸피리리돈(NMP)에 용해시킨 후 용해된 용액을 글라스 판 위에 캐스팅한 뒤 70℃에서 2시간 이상 건조시킴으로서 필름 형태의 탄화수소계 양이온 교환막을 제작하였다.The dried sulfonated hydrocarbon polymer was dissolved in methylpyrilidone (NMP), and then the dissolved solution was cast on a glass plate and dried at 70 ° C. for 2 hours or more to prepare a hydrocarbon-based cation exchange membrane in the form of a film.

제작한 탄화수소계 격막의 TGA에 의한 열적안정성 및 1몰 황산용액에서의 막 저항, 바나듐 레독스-흐름 2차전지용 격막으로 사용하였을 때의 충전상태와 전류밀도에 따른 셀의 전압을 측정하였다. 제작한 격막은 대표적인 과불소계 막인 Nafion117과 비교하여 높은 열적 안정성을 나타냈고, 1몰 황산용액에서의 막 저항은 3ml의 CSA양 이상에서 1.0Ω·cm2이하 값을 나타냈으며, 바나듐 레독스-흐름 2차전지용 격막으로 사용하였을 때 충전상태 100%에서의 기전력은 1.4V를 나타냈다 (도 2, 3, 5 참조). The thermal stability by TGA, membrane resistance in 1 mol sulfuric acid solution, and the cell voltage according to the state of charge and current density when used as the membrane for vanadium redox-flow secondary battery were measured. The prepared diaphragm showed higher thermal stability compared to Nafion117, a typical perfluorine-based membrane, and the membrane resistance in 1 mole sulfuric acid solution showed a value of 1.0 Ω · cm 2 or more at a 3 ml CSA content, and vanadium redox-flow. When used as a secondary battery diaphragm, the electromotive force at 100% state of charge was 1.4V (see FIGS. 2, 3, and 5).

[실시예 2][Example 2]

건조된 공중합 폴리머(Psf-PPSS) 7g을 테트라클로로에탄(TCE, 1,1,2,2 - tetrachloroethane) 50ml에 용해시킨 후 텅스토포스포릭 산(TPA,tungstophosphoric acid)을 디메틸아세트아미드 (DMAc, N-N-dimethylacetamide)에 녹인 용액 0.1~2g을 첨가하고, 여기에 이온교환기 도입용제인 클로로슬포닉산(CSA, chlorosulfonic acid) 4ml를 교반하면서 1ml/min의 속도로 첨가하고 질소가스 100ml/min의 속도로 흘려주면서 상온(25℃)에서 1시간동안 술폰화 반응시켜 양이온 교환기 및 무기 보충제를 공중합 폴리머에 도입하였다. 7 g of dried copolymer polymer (Psf-PPSS) was dissolved in 50 ml of tetrachloroethane (TCE, 1,1,2,2-tetrachloroethane), and then tungstophosphoric acid (TPA) was added to dimethylacetamide (DMAc, NN-dimethylacetamide) was added 0.1 ~ 2g, and 4ml of chlorosulfonic acid (CSA, chlorosulfonic acid), an ion exchanger introduction solvent, was added at a rate of 1ml / min while stirring and at a rate of 100ml / min of nitrogen gas. Sulfonation was performed at room temperature (25 ° C.) for 1 hour while flowing to introduce a cation exchanger and an inorganic supplement into the copolymer.

술폰화 반응된 고분자는 메탄올로 세척하고 겔화되어 침적된 술폰화된 탄화수소 고분자를 취하여 90℃에서 5시간 감압 건조하였다. The sulfonated polymer was washed with methanol, gelled and precipitated sulfonated hydrocarbon polymer, and dried under reduced pressure at 90 ° C for 5 hours.

건조된 술폰화 유-무기 복합 탄화수소 고분자는 메틸피리리돈(NMP)에 용해시킨 후 용해된 용액을 글라스 판 위에 캐스팅한 뒤 70℃에서 2시간 이상 건조시킴으로서 필름 형태의 유-무기 복합 양이온 교환막을 제작하였다.The dried sulfonated organic-inorganic hybrid hydrocarbon polymer was dissolved in methylpyrilidone (NMP), cast the dissolved solution on a glass plate, and dried at 70 ° C. for at least 2 hours to prepare an organic-inorganic hybrid cation exchange membrane in the form of a film. It was.

제작한 유-무기 복합 탄화수소계 격막의 TGA에 의한 열적안정성 및 1몰 황산용액에서의 막 저항, 바나듐 레독스-흐름 2차전지용 격막으로 사용하였을 때의 충전상태와 전류밀도에 따른 셀의 전압을 측정하였다. 제작한 유-무기 복합 탄화수소계 격막은 대표적인 과불소계 막인 Nafion117과 비교하여 높은 열적 안정성을 나타냈고, 1몰 황산용액에서의 막 저항은 0.5g의 TPA양 이상에서 1.0Ω·cm2이하 값을 나타냈으며, 바나듐 레독스-흐름 2차전지용 격막으로 사용하였을 때 충전상태 100%에서의 기전력은 1.4V를 나타냈다 (도 2, 4, 6 참조). Thermal stability by TGA, membrane resistance in 1 mole sulfuric acid solution, and cell voltage according to the state of charge and current density when used as membrane for vanadium redox-flow secondary battery Measured. The fabricated organic-inorganic hybrid hydrocarbon-based diaphragm showed higher thermal stability compared to Nafion117, a typical perfluorine-based membrane, and the membrane resistance of 1 mole sulfuric acid solution was 1.0Ω · cm 2 or less at 0.5g TPA or higher. When used as a diaphragm for vanadium redox-flow secondary battery, the electromotive force at 100% state of charge showed 1.4V (see FIGS. 2, 4, and 6).

본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다. The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

도 1은 본 발명에서 개발한 탄화수소계 격막의 표면 및 단면사진이고,1 is a surface and a cross-sectional photograph of a hydrocarbon-based diaphragm developed in the present invention,

도 2는 본 발명에서 개발한 탄화수소계 격막의 열적 안정성을 나타낸 그래프이고,2 is a graph showing the thermal stability of the hydrocarbon-based diaphragm developed in the present invention,

도 3은 본 발명에서 개발한 탄화수소계 격막의 이온교환기 도입 용제량에 따른 1몰 황산용액에서의 막 저항 변화를 보인 그래프이고,3 is a graph showing a change in membrane resistance in a 1 mole sulfuric acid solution according to the amount of the ion exchange group introduced solvent of the hydrocarbon-based diaphragm developed in the present invention,

도 4는 본 발명에서 개발한 유-무기 복합 탄화수소계 격막의 4ml의 CSA양에서 TPA량의 변화에 따른 1몰 황산용액에서의 막 저항 변화를 보인 그래프이고,4 is a graph showing the change of membrane resistance in 1 mol sulfuric acid solution according to the change of TPA amount in the amount of CSA of 4ml of the organic-inorganic hybrid hydrocarbon-based diaphragm developed in the present invention,

도 5는 본 발명에서 개발한 탄화수소계 격막을 바나듐 레독스-흐름 2차전지에 적용했을 때의 충전상태에 따른 충·방전 특성을 보인 그래프이고,5 is a graph showing charge and discharge characteristics according to the state of charge when the hydrocarbon-based diaphragm developed in the present invention is applied to a vanadium redox-flow secondary battery.

도 6은 본 발명에서 개발한 유-무기 복합 탄화수소계 격막을 바나듐 레독스-흐름 2차전지에 적용했을 때의 충전상태에 따른 충·방전 특성을 보인 그래프이다.6 is a graph showing charge and discharge characteristics according to the state of charge when the organic-inorganic hybrid hydrocarbon-based diaphragm developed in the present invention is applied to a vanadium redox-flow secondary battery.

Claims (16)

대용량 전력저장 방법 중의 하나인 바나듐 레독스-흐름 2차전지에 사용되고 있는 고가 및 충·방전 전지 운전 중에 막 저항이 증가함으로서 전압효율의 저하를 가져오는 과불소계 막을 대체하는, 탄화수소계 고분자를 이용한 격막의 제조방법에 있어서, Diaphragm using hydrocarbon-based polymers, which replaces perfluorine-based membranes that reduce voltage efficiency by increasing membrane resistance during operation of expensive and charged / discharged batteries used in vanadium redox-flow secondary batteries, one of the large-capacity power storage methods. In the manufacturing method of 엔지니어링 플라스틱 계열인 폴리슬폰과 폴리페닐렌설파이드슬폰이 블록 공중합된 공중합 폴리머를 테트라클로로에탄(TCE, 1,1,2,2-tetrachloroethane)으로 용해시킨 후, 이온교환기 도입용제를 첨가하고, 질소가스를 흘려주면서 술폰화 반응시켜 양이온 교환기를 공중합 폴리머에 도입하고, 술폰화 반응된 고분자를 메탄올로 세척하고 겔화되어 침적된 술폰화된 탄화수소 고분자를 취하여 감압 건조한 후, 건조된 술폰화 탄화수소 고분자를 메틸피리리돈(NMP)에 용해시킨 후, 용해된 용액을 글라스 판 위에 캐스팅한 뒤 건조시킴으로써 하기 화학분자식을 갖는 필름 형태의 탄화수소 격막(양이온 교환막)을 제조하는 것을 특징으로 하는 바나듐 레독스-흐름 2차전지용 격막의 제조 방법.After dissolving the copolymerized copolymer of polysulfone and polyphenylene sulfide sulfone, which are engineering plastics, in tetrachloroethane (TCE, 1,1,2,2-tetrachloroethane), an ion exchanger introducing solvent is added and nitrogen gas Sulfonation reaction was carried out while introducing a cation exchanger into the copolymerized polymer. The sulfonated polymer was washed with methanol, gelled and deposited sulfonated hydrocarbon polymer was dried under reduced pressure, and the dried sulfonated hydrocarbon polymer was methylpyridine. After dissolving in redon (NMP), the dissolved solution is cast on a glass plate and dried to prepare a hydrocarbon membrane (cation exchange membrane) in the form of a film having the following chemical molecular formula for a vanadium redox-flow secondary battery. Method of manufacturing the diaphragm. [화학분자식][Chemical molecular formula]
Figure 112009024702480-PAT00008
Figure 112009024702480-PAT00008
상기에서 m:n=1:1 이다M: n = 1: 1
청구항 1에 있어서,The method according to claim 1, 상기 이온교환기 도입용제는 클로로슬포닉산(CSA, chlorosulfonic acid), 황산(sulfuric acid), 설퍼트리옥사이드(SO3) 중에서 선택된 하나를 사용하는 것을 특징으로 하는 바나듐 레독스-흐름 2차전지용 격막의 제조 방법.Preparation of the vanadium redox-flow secondary battery diaphragm characterized in that the ion exchanger introduction solvent is selected from chlorosulfonic acid (CSA, chlorosulfonic acid), sulfuric acid (sulfuric acid), sulfur trioxide (SO 3 ). Way. 청구항 1에 있어서,The method according to claim 1, 상기 이온교환기 도입용제는 1~10ml를 교반하면서 1ml/min의 속도로 첨가하는 것을 특징으로 하는 바나듐 레독스-흐름 2차전지용 격막의 제조 방법.The ion exchanger introducing solvent is a method for producing a vanadium redox-flow secondary battery diaphragm, characterized in that the addition of 1 to 10ml at a rate of 1ml / min while stirring. 청구항 1에 있어서,The method according to claim 1, 상기 질소가스는 30~300ml/min의 속도로 흘려주면서 상온(25℃)~160℃에서 30분~3시간 동안 술폰화 반응시키는 것을 특징으로 하는 바나듐 레독스-흐름 2차전지용 격막의 제조 방법.Wherein the nitrogen gas flowing at a rate of 30 ~ 300ml / min at room temperature (25 ℃) ~ 160 ℃ sulfonation reaction for 30 minutes to 3 hours, characterized in that the manufacturing method of the vanadium redox-flow secondary battery diaphragm. 청구항 1에 있어서,The method according to claim 1, 상기 겔화되어 침적된 술폰화된 탄화수소 고분자는 50℃~140℃에서 1~20시간 감압 건조하는 것을 특징으로 하는 바나듐 레독스-흐름 2차전지용 격막의 제조 방법.The gelated and deposited sulfonated hydrocarbon polymer is dried under reduced pressure at 50 ° C. to 140 ° C. for 1 to 20 hours. 청구항 1에 있어서,The method according to claim 1, 상기 건조된 술폰화 탄화수소 고분자를 메틸피리리돈(NMP)에 비율이 1g:1.5~2ml가 되도록 용해시킨 후, 용해된 용액을 글라스 판 위에 캐스팅한 뒤 50~140℃에서 2시간 이상 건조시키는 것을 특징으로 하는 바나듐 레독스-흐름 2차전지용 격막의 제조 방법.After dissolving the dried sulfonated hydrocarbon polymer in methylpyrilidone (NMP) so that the ratio is 1 g: 1.5-2 ml, casting the dissolved solution on a glass plate and drying at 50-140 ° C. for 2 hours or more. The manufacturing method of the diaphragm for vanadium redox flow secondary batteries which are used. 청구항 1 내지 6 중 어느 한항에 따른 방법으로 제조되어 하기 화학분자식을 갖는 필름 형태의 탄화수소 격막(양이온 교환막)이고, 1몰 황산용액 기준당 막 저항은 1.0Ω·cm2이하 값을 나타내고, 바나듐 레독스-흐름 2차전지용 격막으로 사용시 충전상태 100%에서의 기전력이 1.4V인 것을 특징으로 하는 바나듐 레독스-흐름 2차전지용 격막.Claims 1 to 6 and is prepared by the method of the hydrocarbon to the diaphragm of the film type having the chemical molecular formula (cation exchange membrane) according to any hanhang, based on 1 mol of sulfuric acid per film resistance indicates a value of 1.0Ω · cm 2 or less, vanadium les A vanadium redox-flow secondary battery diaphragm characterized by having an electromotive force of 1.4 V at 100% state of charge when used as a diaphragm for a dox-flow secondary battery. [화학분자식][Chemical molecular formula]
Figure 112009024702480-PAT00009
Figure 112009024702480-PAT00009
상기에서 m:n=1:1 이다M: n = 1: 1
대용량 전력저장 방법 중의 하나인 바나듐 레독스-흐름 2차전지에 사용되고 있는 고가 및 충·방전 전지 운전 중에 막 저항이 증가함으로서 전압효율의 저하를 가져오는 과불소계 막을 대체하는, 탄화수소계 고분자를 이용한 격막의 제조방법에 있어서, Diaphragm using hydrocarbon-based polymers, which replaces perfluorine-based membranes that reduce voltage efficiency by increasing membrane resistance during operation of expensive and charged / discharged batteries used in vanadium redox-flow secondary batteries, one of the large-capacity power storage methods. In the manufacturing method of 엔지니어링 플라스틱 계열인 폴리슬폰과 폴리페닐렌설파이드슬폰이 블록 공중합된 공중합 폴리머를 테트라클로로에탄(TCE, 1, 1, 2, 2-tetrachloroethane)에 용해시킨 후, 헤테로폴리산(heteropoly acid)을 디메틸아세트아미드(DMAc, N-N-dimethylacetamide)에 녹인 용액을 첨가하고, 여기에 이온교환기 도입용제를 첨가하고, 질소가스를 흘려주면서 술폰화 반응시켜 양이온 교환기 및 무기 보충제를 공중합 폴리머에 도입하고, 술폰화 반응된 유-무기 복합 탄화수소 고분자를 메탄올로 세척하고 겔화되어 침적된 술폰화된 유-무기 복합 탄화수소 고분자를 취하여 감압 건조한 후, 건조된 술폰화 유-무기 복합 탄화수소 고분자를 메틸피리리돈(NMP)에 용해시킨 후, 용해된 용액을 글라스 판 위에 캐스팅한 뒤 건조시킴으로서 하기 화학분자식을 갖는 필름 형태의 유-무기 복합 탄화수소 격막 (양이온 교환막)을 제조 하는 것을 특징으로 하는 바나듐 레독스-흐름 2차전지용 격막의 제조 방법. After dissolving the copolymer copolymer of polysulfone and polyphenylene sulfide sulfone, which is an engineering plastic series, in tetrachloroethane (TCE, 1, 1, 2, 2-tetrachloroethane), heteropoly acid is dissolved in dimethylacetamide ( A solution dissolved in DMAc, NN-dimethylacetamide) is added, and an ion exchanger introduction solvent is added thereto, and a sulfonation reaction is carried out while flowing nitrogen gas to introduce a cation exchanger and an inorganic supplement to the copolymer polymer, and a sulfonated reaction oil- After washing the inorganic composite hydrocarbon polymer with methanol, taking the gelled and deposited sulfonated organic-inorganic composite hydrocarbon polymer and drying under reduced pressure, the dried sulfonated organic-inorganic composite hydrocarbon polymer was dissolved in methylpyrilidone (NMP), Organic-inorganic composite carbon in film form having the following chemical molecular formula by casting the dissolved solution on a glass plate and drying it A method for producing a vanadium redox-flow secondary battery diaphragm characterized by producing a hydrogen sulfide diaphragm (cation exchange membrane). [화학분자식][Chemical molecular formula]
Figure 112009024702480-PAT00010
Figure 112009024702480-PAT00010
상기에서 m:n=1:1 이다M: n = 1: 1
청구항 8에 있어서,The method according to claim 8, 상기 이온교환기 도입용제는 클로로슬포닉산(CSA, chlorosulfonic acid), 황산(sulfuric acid), 설퍼트리옥사이드(SO3) 중에서 선택된 하나를 사용하는 것을 특징으로 하는 바나듐 레독스-흐름 2차전지용 격막의 제조 방법.Preparation of the vanadium redox-flow secondary battery diaphragm characterized in that the ion exchanger introduction solvent is selected from chlorosulfonic acid (CSA, chlorosulfonic acid), sulfuric acid (sulfuric acid), sulfur trioxide (SO 3 ). Way. 청구항 9에 있어서,The method according to claim 9, 상기 이온교환기 도입용제는 1~10ml를 교반하면서 1ml/min의 속도로 첨가하는 것을 특징으로 하는 바나듐 레독스-흐름 2차전지용 격막의 제조 방법.The ion exchanger introducing solvent is a method for producing a vanadium redox-flow secondary battery diaphragm, characterized in that the addition of 1 to 10ml at a rate of 1ml / min while stirring. 청구항 8에 있어서,The method according to claim 8, 상기 헤테로폴리산(heteropoly acid)은 텅스토포스포릭 산(TPA, tungstophosphoric acid), 포스포 몰리브덴산, 실리코 몰리브덴산 중에서 선택된 하나를 사용하는 것을 특징으로 하는 바나듐 레독스-흐름 2차전지용 격막의 제조 방법.The heteropoly acid (heteropoly acid) is a method for producing a diaphragm for vanadium redox-flow secondary battery, characterized in that using one selected from tungstophosphoric acid (TPA, tungstophosphoric acid), phospho molybdate, silico molybdate. 청구항 8에 있어서,The method according to claim 8, 상기 헤테로폴리산(heteropoly acid)을 디메틸아세트아미드(DMAc, N-N-dimethylacetamide)에 비율이 1g : 1ml가 되도록 하여 녹인 용액 0.1 ~ 10g을 첨가하는 것을 특징으로 하는 바나듐 레독스-흐름 2차전지용 격막의 제조 방법.Method for producing a diaphragm for vanadium redox-flow secondary battery, characterized in that 0.1 to 10 g of the dissolved heteropoly acid (DMAc, NN-dimethylacetamide) is dissolved in a ratio of 1 g: 1 ml to 1 ml. . 청구항 8에 있어서,The method according to claim 8, 상기 질소가스는 30~300ml/min의 속도로 흘려주면서 상온(25℃)~160℃에서 30분~3시간 동안 술폰화 반응시키는 것을 특징으로 하는 바나듐 레독스-흐름 2차전지용 격막의 제조 방법.Wherein the nitrogen gas flowing at a rate of 30 ~ 300ml / min at room temperature (25 ℃) ~ 160 ℃ sulfonation reaction for 30 minutes to 3 hours, characterized in that the manufacturing method of the vanadium redox-flow secondary battery diaphragm. 청구항 8에 있어서,The method according to claim 8, 상기 겔화되어 침적된 술폰화된 유-무기 복합 탄화수소 고분자는 50℃~140℃에서 1~20시간 감압 건조하는 것을 특징으로 하는 바나듐 레독스-흐름 2차전지용 격막의 제조 방법.The gelated and deposited sulfonated organic-inorganic hybrid hydrocarbon polymer is dried under reduced pressure at 50 ° C. to 140 ° C. for 1 to 20 hours. 청구항 8에 있어서,The method according to claim 8, 상기 건조된 술폰화 유-무기 복합 탄화수소 고분자를 메틸피리리돈(NMP)에 비율이 1g:1.5~2ml가 되도록 용해시킨 후, 용해된 용액을 글라스 판 위에 캐스팅한 뒤 50~140℃에서 2시간 이상 건조시키는 것을 특징으로 하는 바나듐 레독스-흐름 2차전지용 격막의 제조 방법.After dissolving the dried sulfonated organic-inorganic hybrid hydrocarbon polymer to methylpyrilidone (NMP) in a ratio of 1 g: 1.5 to 2 ml, the dissolved solution was cast on a glass plate and then at 50 to 140 ° C. for at least 2 hours. The manufacturing method of the diaphragm for vanadium redox-flow secondary batteries characterized by drying. 청구항 8 내지 15 중 어느 한항에 따른 방법으로 제조되어 하기 화학분자식을 갖는 필름 형태의 탄화수소 격막(양이온 교환막)이고, 1몰 황산용액 기준당 막 저항은 1.0Ω·cm2이하 값을 나타내고, 바나듐 레독스-흐름 2차전지용 격막으로 사용시 충전상태 100%에서의 기전력이 1.4V인 것을 특징으로 하는 바나듐 레독스-흐름 2차전지용 격막.A hydrocarbon membrane (cation exchange membrane) in the form of a film prepared by the method according to any one of claims 8 to 15, having the following chemical molecular formula, wherein the membrane resistance per molar sulfuric acid solution reference is 1.0 Ω · cm 2 or less and vanadium resin A vanadium redox-flow secondary battery diaphragm characterized by having an electromotive force of 1.4 V at 100% state of charge when used as a diaphragm for a dox-flow secondary battery. [화학분자식][Chemical molecular formula]
Figure 112009024702480-PAT00011
Figure 112009024702480-PAT00011
상기에서 m:n=1:1 이다M: n = 1: 1
KR1020090035540A 2009-04-23 2009-04-23 Method for manufacturing a membrane for vanadium redox-flow secondary battery and the membrane KR101062767B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090035540A KR101062767B1 (en) 2009-04-23 2009-04-23 Method for manufacturing a membrane for vanadium redox-flow secondary battery and the membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090035540A KR101062767B1 (en) 2009-04-23 2009-04-23 Method for manufacturing a membrane for vanadium redox-flow secondary battery and the membrane

Publications (2)

Publication Number Publication Date
KR20100116888A true KR20100116888A (en) 2010-11-02
KR101062767B1 KR101062767B1 (en) 2011-09-06

Family

ID=43403679

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090035540A KR101062767B1 (en) 2009-04-23 2009-04-23 Method for manufacturing a membrane for vanadium redox-flow secondary battery and the membrane

Country Status (1)

Country Link
KR (1) KR101062767B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130034766A1 (en) * 2011-08-02 2013-02-07 Hee-Tak Kim Separator for redox flow battery and redox flow battery including same
WO2015064820A1 (en) * 2013-10-31 2015-05-07 한국에너지기술연구원 Vanadium ion low-permeable amphiphilic ion exchange membrane for redox flow battery and redox flow battery comprising same
KR20160064429A (en) 2014-11-28 2016-06-08 상명대학교 천안산학협력단 Composite membranes for redox flow battery electrolyte and their fabrication method
KR20160128046A (en) 2015-04-28 2016-11-07 (주) 레드초이스 Ion-exchnage Membrane
US9728792B2 (en) 2011-11-03 2017-08-08 Samsung Electronics Co., Ltd. Ion exchange membrane filling composition, method of preparing ion exchange membrane, ion exchange membrane, and redox flow battery
US9912002B2 (en) 2013-10-28 2018-03-06 Hyundai Electric & Energy Systems Co., Ltd. Ion exchange membrane and method for manufacturing same
CN110582878A (en) * 2017-04-28 2019-12-17 Ess技术有限公司 Integrated water circulation system using pressurized multi-chamber tank
CN117638129A (en) * 2024-01-26 2024-03-01 杭州德海艾科能源科技有限公司 Porous diaphragm for all-vanadium redox flow battery based on size screening and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101648844B1 (en) * 2014-05-19 2016-08-17 한국화학연구원 Seperator membrane made of ion-conducting polymer comprising phenyl pendant substituted with at least two sulfonated aromatic groups and redox flow batteries comprising the same
KR101952920B1 (en) 2017-04-28 2019-05-17 한국화학연구원 Polyphenylene-based anion exchange material, preparation method thereof and uses thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130034766A1 (en) * 2011-08-02 2013-02-07 Hee-Tak Kim Separator for redox flow battery and redox flow battery including same
US9728792B2 (en) 2011-11-03 2017-08-08 Samsung Electronics Co., Ltd. Ion exchange membrane filling composition, method of preparing ion exchange membrane, ion exchange membrane, and redox flow battery
US9912002B2 (en) 2013-10-28 2018-03-06 Hyundai Electric & Energy Systems Co., Ltd. Ion exchange membrane and method for manufacturing same
WO2015064820A1 (en) * 2013-10-31 2015-05-07 한국에너지기술연구원 Vanadium ion low-permeable amphiphilic ion exchange membrane for redox flow battery and redox flow battery comprising same
KR20160064429A (en) 2014-11-28 2016-06-08 상명대학교 천안산학협력단 Composite membranes for redox flow battery electrolyte and their fabrication method
KR20160128046A (en) 2015-04-28 2016-11-07 (주) 레드초이스 Ion-exchnage Membrane
CN110582878A (en) * 2017-04-28 2019-12-17 Ess技术有限公司 Integrated water circulation system using pressurized multi-chamber tank
CN110582878B (en) * 2017-04-28 2023-10-31 Ess技术有限公司 Integrated water circulation system using pressurized multi-chamber tank
CN117638129A (en) * 2024-01-26 2024-03-01 杭州德海艾科能源科技有限公司 Porous diaphragm for all-vanadium redox flow battery based on size screening and preparation method thereof
CN117638129B (en) * 2024-01-26 2024-04-30 杭州德海艾科能源科技有限公司 Porous diaphragm for all-vanadium redox flow battery based on size screening and preparation method thereof

Also Published As

Publication number Publication date
KR101062767B1 (en) 2011-09-06

Similar Documents

Publication Publication Date Title
KR101062767B1 (en) Method for manufacturing a membrane for vanadium redox-flow secondary battery and the membrane
Ding et al. Enhancing proton conductivity of polybenzimidazole membranes by introducing sulfonate for vanadium redox flow batteries applications
US9975995B2 (en) Ion conducting polymer comprising partially branched block copolymer and use thereof
JP3724064B2 (en) Polymer electrolyte for fuel cell and fuel cell
CN107394240B (en) Preparation method and application of sulfonated polyaryletherketone ion exchange membrane
US7897650B2 (en) Ionically conductive polymers for use in fuel cells
CN105131289B (en) A kind of novel sulfonated polybenzimidazoles copolymer, cross linking membrane, preparation method and applications
JP2003503510A (en) Novel ion conductive material suitable for use in electrochemical applications and related methods
CN107004880B (en) Polymer electrolyte membrane
KR101569719B1 (en) Crosslinked hydrocarbon polymer electrolyte membranes with diols by radiation and manufacturing method thereof
CN113437341B (en) Amphoteric ion conduction membrane for flow battery and preparation method thereof
US10374246B2 (en) Ion exchange membrane and manufacturing method therefor
CN111533938B (en) Densely sulfonated polyaryletherketone/SiO2Composite proton exchange membrane and preparation method thereof
US7972734B2 (en) Process for producing polymer electrolyte emulsion
KR101646661B1 (en) Method for Manufacturing Enhanced Ion Exchange Membrane and for Application of the same
Khan et al. Development of Membranes and Separators to Inhibit Cross‐Shuttling of Sulfur in Polysulfide‐Based Redox Flow Batteries: A Review
CN102120874A (en) Sulfonated polyarylether polymer ion exchange membrane containing crosslinking groups and application thereof
KR101543079B1 (en) Separator for anion exchange membrane for all-vanadium redox flow secondary battery and preparation method for the separator
KR20160143103A (en) A method for preparing a membrane-electrode assembly for fuel cell using nafion binder and hydrocarbon-based ion-conducting polymer membrane
CN111718505B (en) Sulfonated polyether-ether-ketone/polyvinylidene fluoride composite ion exchange membrane for all-vanadium redox flow battery and preparation method thereof
JP2008031466A (en) Manufacturing method of polyelectrolyte emulsion and polyelectrolyte emulsion
JP2009217950A (en) Ion conductive polymer electrolyte membrane, and manufacturing method thereof
CN111354964A (en) Amphoteric ion-containing polymer and flow battery electrolyte membrane
CN108878938A (en) A kind of ultrathin proton exchange membrane and preparation method for fuel cell
KR101963600B1 (en) Polyarylene-based polymer, process of manufacturing thereof, and the use of the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150828

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee