KR20100116059A - Apparatus and method for manufacturing poly-si thin film - Google Patents

Apparatus and method for manufacturing poly-si thin film Download PDF

Info

Publication number
KR20100116059A
KR20100116059A KR1020090034788A KR20090034788A KR20100116059A KR 20100116059 A KR20100116059 A KR 20100116059A KR 1020090034788 A KR1020090034788 A KR 1020090034788A KR 20090034788 A KR20090034788 A KR 20090034788A KR 20100116059 A KR20100116059 A KR 20100116059A
Authority
KR
South Korea
Prior art keywords
substrate
thin film
power
electrode
silicon thin
Prior art date
Application number
KR1020090034788A
Other languages
Korean (ko)
Other versions
KR101043786B1 (en
Inventor
노재상
홍원의
Original Assignee
주식회사 엔씰텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엔씰텍 filed Critical 주식회사 엔씰텍
Priority to KR1020090034788A priority Critical patent/KR101043786B1/en
Priority to TW99112328A priority patent/TW201104025A/en
Priority to PCT/KR2010/002476 priority patent/WO2010123262A2/en
Publication of KR20100116059A publication Critical patent/KR20100116059A/en
Application granted granted Critical
Publication of KR101043786B1 publication Critical patent/KR101043786B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67103Apparatus for thermal treatment mainly by conduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Abstract

PURPOSE: The poly-crystal silicon thin film manufacturing equipment and method the polycrystalline silicon thin film can be manufactured very smoothly by using the Joule heat. CONSTITUTION: The poly-crystal silicon thin film manufacturing equipment and method the chamber(110), substrate stage(120), and the electrode for the power on is included. The substrate stage is installed in one side of the chamber. The amorphous silicon thin film and the substrate equipped with the conductive film are settled.

Description

다결정 실리콘 박막 제조장치 및 방법{Apparatus and Method for Manufacturing Poly-Si Thin Film}Apparatus and Method for Manufacturing Poly-Si Thin Film

본 발명은 다결정 실리콘 박막 제조장치 및 방법에 관한 것으로, 보다 상세하게는 비정질 실리콘의 상부나 하부 등에 구비된 도전성 박막에 전원을 인가함으로써 주울(joule)열을 발생시키고 이를 통하여 다결정 실리콘 박막을 제조하는 다결정 실리콘 박막 제조장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for producing a polycrystalline silicon thin film, and more particularly, to generate joule heat by applying power to a conductive thin film provided on an upper portion or a lower portion of amorphous silicon, thereby manufacturing a polycrystalline silicon thin film. The present invention relates to a polycrystalline silicon thin film manufacturing apparatus and method.

통상, 비정질 실리콘(a-Si)은 전하 운반체인 전자의 이동도 및 개구율이 낮고, CMOS 공정에 부합되지 못하는 단점을 가지고 있다.In general, amorphous silicon (a-Si) has a disadvantage of low mobility and opening ratio of electrons as charge carriers, and incompatibility with CMOS processes.

반면, 다결정 실리콘(Poly-Si) 박막 소자는, 비정질 실리콘 TFT(a-Si TFT)에서는 불가능하였던, 영상신호를 화소에 기입하는데 필요한 구동회로를 화소 TFT-array와 같이 기판 상에 구성하는 것이 가능하다. 따라서, 다결정 실리콘 박막 소자에서는 다수의 단자와 드라이버 IC와의 접속이 불필요하게 되므로, 생산성과 신뢰성을 높이고 패널의 두께를 줄일 수 있다.On the other hand, a poly-silicon thin film element can form a driving circuit necessary for writing an image signal to a pixel, such as a pixel TFT-array, on a substrate, which was not possible with an amorphous silicon TFT (a-Si TFT). Do. Therefore, in the polycrystalline silicon thin film element, the connection between the plurality of terminals and the driver IC becomes unnecessary, so that the productivity and reliability can be increased and the thickness of the panel can be reduced.

또한, 다결정 실리콘 TFT 공정에서는 실리콘 LSI의 미세가공 기술을 그대로 이용할 수 있으므로, 배선 등에서 미세구조를 형성할 수 있다. 따라서, 비정질 실 리콘 TFT에서 보이는 드라이버 IC의 TAB 실장 상의 피치(pitch) 제약이 없으므로, 화소 축소가 용이하고 작은 화각에 다수의 화소를 실현할 수 있다. In addition, in the polycrystalline silicon TFT process, since the microfabrication technology of silicon LSI can be used as it is, a microstructure can be formed in wiring etc. Therefore, since there is no pitch constraint on the TAB mounting of the driver IC seen in the amorphous silicon TFT, pixel reduction is easy and a large number of pixels can be realized at a small angle of view.

그리고, 이러한 다결정 실리콘을 능동층에 이용한 박막 트랜지스터는 비정질 실리콘을 이용한 박막 트랜지스터와 비교할 때, 스위치 능력이 높고 자기 정합에 의해 능동층의 채널 위치가 결정되기 때문에, 소자 소형화 및 CMOS화가 가능하다는 특징이 있다. 이러한 이유로 다결정 실리콘 박막 트랜지스터는 액티브 매트릭스형 플랫 패널 디스플레이(예를 들면, 액정 표시 장치, 유기 EL) 등의 화소 스위치 소자로 사용하여 대화면화 및 드라이버가 내장된 COG(Chip On Glass) 제품의 실용화에 주요한 소자로 대두되고 있다.In addition, the thin film transistor using the polycrystalline silicon in the active layer has a high switching capability and the channel position of the active layer is determined by self-matching, compared with the thin film transistor using the amorphous silicon, so that the device can be miniaturized and CMOS. have. For this reason, polycrystalline silicon thin film transistors are used as pixel switch elements in active matrix type flat panel displays (e.g., liquid crystal displays, organic ELs), and the like. It is emerging as a major device.

이와 같은 다결정 실리콘 TFT를 제조하는 방법으로는 고온 조건에서 제조하는 방법과 저온 조건에서 제조하는 기술이 있는데, 고온 조건에서 형성하기 위해서는 기판으로 석영 등의 고가의 재질을 사용하여야 하므로 대면적화에 적당하지 않다. 따라서, 저온 조건에서 비정질 실리콘 박막을 다결정 실리콘으로 대량으로 제조하는 방법에 대한 연구가 활발히 진행되고 있다.Such polycrystalline silicon TFTs can be manufactured under high temperature and low temperature. In order to form at high temperature, expensive materials such as quartz must be used as substrates, which is not suitable for large area. not. Therefore, studies have been actively conducted on a method for producing a large amount of amorphous silicon thin film from polycrystalline silicon under low temperature conditions.

이러한 저온의 다결정 실리콘을 형성하는 방법으로는 고상 결정화(SPC: Solid Phase Crystallization)법, 금속유도 결정화(MIC: Metal Induced Crystallization)법, 금속유도측면 결정화(MILC: Metal Induced Lateral Crystallization)법, 엑시머 레이저 결정화(ELC: Excimer Laser Crystallization) 법 등이 있다.Such low-temperature polycrystalline silicon can be formed by solid phase crystallization (SPC), metal induced crystallization (MIC), metal induced side crystallization (MILC), or excimer laser. Crystallization (ELC: Excimer Laser Crystallization) method.

SPC 법은 저가의 장비를 사용하여 균일한 결정질을 얻을 수는 있으나, 높은 결정화 온도와 장시간을 요구하기 때문에, 유리 기판과 같이 열변형 온도가 상대적으로 낮은 기판을 사용할 수 없고 생산성이 낮다는 단점을 가지고 있다. 이러한 SPC 법에 의한 경우, 통상적으로 600 ~ 700℃의 온도에서 약 1 ~ 24 시간 동안 비정질 실리콘 박막에 어닐링 작업을 실시해야 결정화가 가능하다. Although the SPC method can obtain uniform crystallization using low-cost equipment, it requires high crystallization temperature and long time, so it is impossible to use substrates with relatively low heat deformation temperature such as glass substrates and low productivity. Have. In the case of the SPC method, annealing is performed on an amorphous silicon thin film at about 600 to 700 ° C. for about 1 to 24 hours to allow crystallization.

또한, SPC 법에 의해 제조된 다결정 실리콘의 경우에는 비정질상으로부터 결정상으로의 고상 상변태시 쌍정 성장(twin-growth)을 동반하므로, 형성된 결정립 내에 매우 많은 결정격자 결함들을 함유하고 있다. 이러한 인자들은 제조된 다결정 실리콘 TFT의 전자 및 홀의 이동도(mobility)를 감소시키고 문턱 전압(threshold voltage)을 상승시키는 요인으로 작용한다.In addition, the polycrystalline silicon produced by the SPC method is accompanied with twin-growth during the solid phase transformation from the amorphous phase to the crystal phase, and thus contains a large number of crystal lattice defects in the formed crystal grains. These factors serve to reduce the mobility and increase the threshold voltage of electrons and holes of the manufactured polycrystalline silicon TFT.

MIC 법은 비정질 실리콘이 특정 금속과 접촉함으로써 그것의 결정화가 SPC 법에 의한 결정화 온도보다 훨씬 낮은 온도에서 이루어지는 장점을 가지고 있다. 이러한 MIC 법을 가능하게 하는 금속으로는 Ni, Pd, Ti, Al, Ag, Au, Co, Cu, Fe, Mn 등이 있으며, 이들 금속들은 비정질 실리콘과 반응하여 공정상(eutectic phase) 또는 실리사이드상(silicide phase)을 형성하여 저온 결정화를 촉진시킨다. 그러나, MIC 법을 다결정 실리콘 TFT 제작의 실제 공정에 적용시킬 경우 채널(channel) 내에 금속의 심각한 오염 문제를 야기시킨다.The MIC method has the advantage that amorphous silicon is brought into contact with a specific metal so that its crystallization is performed at a temperature much lower than the crystallization temperature by the SPC method. Metals that enable the MIC method include Ni, Pd, Ti, Al, Ag, Au, Co, Cu, Fe, Mn, and these metals react with amorphous silicon to form eutectic or silicide phases. (silicide phase) is formed to promote low temperature crystallization. However, application of the MIC method to the actual process of polycrystalline silicon TFT fabrication causes serious contamination of the metal in the channel.

MILC 법은 MIC 법의 응용기술로서, 채널 위에 금속을 증착하는 대신 게이트 전극을 형성한 후, 자기 정렬된 구조에서 소스 및 드레인 위에 금속을 얇게 증착하여 금속유도결정화(metal induced crystallization)를 유발한 후, 채널 쪽으로 측면 결정화를 유도하는 기술이다. 이와 같은 MILC 법에 가장 많이 사용되는 금속으 로는 Ni 및 Pd을 들 수 있다. 이러한 MILC 법으로 제조된 다결정 실리콘은 SPC 법에 비하여 우수한 결정성 및 높은 전계 효과 이동도(field effect mobility)를 보임에도 불구하고, 높은 누설 전류 특성을 보인다고 알려져 있다. The MILC method is an application technique of the MIC method. Instead of depositing a metal on a channel, a gate electrode is formed, and then a metal is deposited thinly on a source and a drain in a self-aligned structure to induce metal induced crystallization. This technique induces lateral crystallization toward the channel. Ni and Pd are the most commonly used metals in this MILC method. Polycrystalline silicon prepared by the MILC method is known to exhibit high leakage current characteristics, despite excellent crystallinity and high field effect mobility compared to the SPC method.

다시 말하면, MILC 법의 경우, 금속 오염 문제는 MIC 법에 비하여 감소하기는 하였으나, 아직도 완전히 해결하지 못한 실정이다. 한편, MILC 법을 개량한 방법으로 전계유도방향성 결정화법(FALC: Field Aided Lateral Crystallization)이 있다. MILC 법에 비하여 FALC 법은 결정화 속도가 빠르며 결정화 방향의 이방성을 보이지만, 이 역시 금속의 오염 문제를 완전히 해결하지는 못하고 있다.In other words, in the MILC method, the metal contamination problem is reduced compared to the MIC method, but it is still not completely solved. On the other hand, a field-directed directional crystallization (FALC) is an improved method of the MILC method. Compared with the MILC method, FALC method has a faster crystallization rate and anisotropy in the crystallization direction, but it also does not completely solve the problem of metal contamination.

이상의 MIC 법, MILC 법, FALC 법 등의 결정화 방법은 SPC 법에 비하여 결정화 온도를 낮추었다는 점에서는 효과적이나, 결정화 시간이 여전히 길다는 점과, 모두 금속에 의하여 결정화가 유도되는 공통점을 가지고 있다. 따라서, 이러한 결정화 방법들도 금속의 오염 문제라는 점에서는 자유롭지 못하다.The crystallization methods such as the MIC method, the MILC method, and the FALC method are effective in lowering the crystallization temperature compared to the SPC method, but the crystallization time is still long, and all of them have in common that the crystallization is induced by the metal. Therefore, these crystallization methods are not free from the problem of metal contamination.

한편, 최근 개발된 ELC 법은 금속의 오염 문제를 해결하면서 유리기판 위에 저온 공정으로 다결정 실리콘 박막을 제조하는 것을 가능하게 한다. 즉, LPCVD(Low Pressure Chemical Vapor Deposition)법 또는 PECVD(Plasma Enhanced Chemical Vapor Deposition)법으로 증착된 비정질 실리콘 박막은 엑시머 레이저의 파장인 자외선 영역(λ = 308 ㎚)에 대한 흡수 계수가 매우 크기 때문에, 적정한 에너지 밀도에서 쉽게 비정질 실리콘 박막의 용융이 일어나게 된다. On the other hand, the recently developed ELC method makes it possible to produce a polycrystalline silicon thin film on a glass substrate in a low temperature process while solving the problem of metal contamination. That is, the amorphous silicon thin film deposited by LPCVD (Low Pressure Chemical Vapor Deposition) or PECVD (Plasma Enhanced Chemical Vapor Deposition) has a very large absorption coefficient for the ultraviolet region (λ = 308 nm), which is the wavelength of the excimer laser. Melting of the amorphous silicon thin film easily occurs at an appropriate energy density.

이러한 비정질 실리콘 박막을 엑시머 레이저에 의해 결정화시키는 경우, 용융 및 응고의 과정을 매우 짧은 시간 내에 동반하게 된다. 이러한 관점에서 볼 때, ELC 법은 엄밀한 의미에서 저온 공정은 아니다. When the amorphous silicon thin film is crystallized by an excimer laser, a process of melting and solidification is accompanied in a very short time. In this respect, the ELC method is not a low temperature process in the strict sense.

그러나, ELC 공정은 엑시머 레이저에 의해 크게 영향을 받은 국부적인 용융 영역에서 매우 빠르게 진행되는 용융 및 응고에 의해 결정화되는 과정을 거치므로, 기판을 손상시키지 않으면서 극히 짧은 시간(수십 nano-sec 단위) 내에 다결정 실리콘을 제조할 수 있다. 즉, 유리기판/절연층/비정질 실리콘 박막으로 이루어진 모재의 비정질 실리콘 상에 레이저가 극히 짧은 시간에 조사되면, 비정질 실리콘 박막만이 선택적으로 가열되어, 하층에 위치한 유리기판의 손상 없이 결정화가 이루어진다. However, the ELC process undergoes crystallization by very fast melting and solidification in the local melt zone, which is greatly affected by the excimer laser, resulting in extremely short time (in tens of nano-sec units) without damaging the substrate. Polycrystalline silicon can be produced within. That is, when the laser is irradiated on the amorphous silicon of the base material consisting of a glass substrate / insulating layer / amorphous silicon thin film in a very short time, only the amorphous silicon thin film is selectively heated, and crystallization is performed without damaging the glass substrate located below.

또한, 액상에서 고상으로의 상변태시 생성되는 다결정 실리콘의 경우, 고상 결정화를 통해 생성되는 다결정 실리콘의 경우보다, 열역학적으로 안정된 결정립 구조를 보이고 결정립 내의 결정 결함이 현저히 감소될 수 있는 장점이 있으므로, ELC 법으로 제조된 다결정 실리콘은 다른 여타의 결정화법들의 결과물보다 우수하다.In addition, in the case of the polycrystalline silicon produced during the phase transformation from the liquid phase to the solid phase, there is an advantage that the crystal structure in the crystal grains and the crystal defects in the crystal grains can be significantly reduced than that of the polycrystalline silicon produced through the solid phase crystallization, ELC Polycrystalline silicon produced by the process is superior to the results of other crystallization methods.

그럼에도 불구하고, ELC 법은 몇 가지 중대한 단점들을 가지고 있다. Nevertheless, ELC law has some significant drawbacks.

예를 들어, 레이저 빔 자체의 조사량이 불균일하다는 레이저 시스템 상의 문제점과, 조대한 결정립을 얻기 위한 레이저 에너지 밀도의 공정 영역이 극히 제한되어 있다는 레이저 공정 상의 문제점, 그리고 대면적에 샷(shot) 자국이 남는다는 문제점을 가지고 있다. 이들 두 요소들은 다결정 실리콘 TFT의 액티브층(active layer)를 구성하는 다결정 실리콘 박막의 결정립 크기의 불균일성을 야기시킨다. 또한, 액상에서 고상으로의 상변태를 동반하며 생성되는 다결정 실리콘의 경우 부 피 팽창이 수반되므로, 결정립계가 만들어지는 지점으로부터 표면쪽으로 심한 돌출(protrusion) 현상이 일어난다. 이러한 현상은 후속 공정인 게이트 절연층에도 직접적인 영향을 미치게 되는데, 다결정 실리콘/게이트 절연층 계면의 불균일한 평탄도에 의한 절연 파괴 전압(breakdown voltage) 감소 및 핫 캐리어 응력(hot carrier stress) 등의 소자 신뢰성에 심각한 영향을 미치고 있다.For example, problems with the laser system that the irradiation amount of the laser beam itself is uneven, problems with the laser process that the processing area of the laser energy density to obtain coarse grains are extremely limited, and shot marks in large areas It has the problem of remaining. These two factors cause non-uniformity of grain size of the polycrystalline silicon thin film constituting the active layer of the polycrystalline silicon TFT. In addition, polycrystalline silicon, which is produced with a phase transformation from a liquid phase to a solid phase, is accompanied by volume expansion, so that a severe protrusion phenomenon occurs toward the surface from the point where the grain boundary is formed. This phenomenon also directly affects the gate insulating layer, which is a subsequent process, such as reducing breakdown voltage and hot carrier stress caused by uneven flatness of the polycrystalline silicon / gate insulating layer interface. It has a serious impact on reliability.

최근에는, 상기 설명한 ELC 법의 불안정성을 해결하기 위하여 SLS(Sequential Lateral Solidification) 법이 개발되어 레이저 에너지 밀도의 공정 영역을 안정화하는데 성공하였지만, 여전히 shot 자국 및 표면 쪽으로 돌출(protrusion) 현상을 해결하지 못하였으며, 또한 평판 디스플레이 산업이 급속히 발전하고 있는 현재의 추세로 비추어 볼 때, 조만간 양산화가 필요하게 될 1 m × 1 m 크기 이상인 기판의 결정화 공정에 레이저를 이용하는 기술은 여전히 문제점을 가지고 있다. 더욱이, ELC 법과 SLS 법의 실행을 위한 장비는 매우 고가이므로, 초기 투자비와 유지비가 많이 소요된다는 문제점도 가지고 있다.Recently, a sequential lateral solidification (SLS) method has been developed to solve the instability of the ELC method described above, and has succeeded in stabilizing the process area of the laser energy density, but still does not solve the phenomenon of shot marks and protrusion toward the surface. In addition, in view of the current trend of rapidly developing flat panel display industry, there is still a problem of using a laser in the crystallization process of a substrate having a size of 1 m x 1 m or more, which will need mass production sooner or later. Moreover, since the equipment for the execution of the ELC method and the SLS method is very expensive, there is a problem that the initial investment and maintenance costs are high.

따라서, 레이저 결정화법의 장점들, 즉, 짧은 시간 내에 공정이 이루어지기 때문에 하부의 기판에 손상을 주지 않는다는 점과, 고온 상변태에 의해 결함이 거의 없는 매우 양질의 결정립을 생성할 수 있다는 점을 가지면서, 그러한 레이저 결정화법의 단점들, 즉, 국부적인 공정에 따른 조사량 불균일성 및 공정상의 제한 등과 고가 장비를 사용해야 하는 문제점들을 해결할 수 있는 비정질 실리콘 박막의 결정화 방법에 대한 필요성이 대두되고 있다. Therefore, the advantages of the laser crystallization method, namely, because the process is performed in a short time, do not damage the underlying substrate, and it is possible to produce very good grains with little defects due to high temperature phase transformation. In addition, there is a need for a method of crystallizing an amorphous silicon thin film that can solve the disadvantages of such laser crystallization method, that is, the irradiance nonuniformity and the process limitation due to the local process and the problem of using expensive equipment.

특히, 최근 차세대 평판 디스플레이의 응용에 많은 주목을 받고 있는 능동형 유기-EL(Active Matrix Organic Light Emitting Diode)의 경우, TFT-LCD가 전압 구동인데 반하여, 전류 구동 방식이기 때문에 대면적 기판에서의 결정립 크기의 균일도가 매우 중요한 인자이다. 그러므로, 레이저를 사용하는 ELC 방법 또는 SLS 방법에 의한 저온 결정화 방법이 한계에 부딪히고 있는 것이 평판 디스플레이 산업체들이 안고 있는 현실이다. 이러한 사실을 고려할 때, 레이저를 사용하지 않는 방식에 의한 저온 결정화에 의하여 양질의 다결정 실리콘 박막을 제조하는 신기술에 대한 필요성이 매우 높은 실정이다.In particular, in the case of active matrix organic light emitting diodes (EL), which are recently attracting much attention in the application of next-generation flat panel displays, the TFT-LCD is a voltage drive, but the grain size of the large-area substrate because of the current drive method. The uniformity of is a very important factor. Therefore, the reality of the flat panel display industry is that the low-temperature crystallization method using the ELC method or the SLS method using a laser hits the limit. Considering this fact, there is a great need for a new technology for producing a high quality polycrystalline silicon thin film by low temperature crystallization using a laserless method.

이러한 종래기술의 문제점을 해결하기 위하여, 본 발명의 발명자들은 한국특허출원 제2005-73076호에서, 실리콘 박막의 하부에 도전층을 개재한 다음 상기 도전층에 전원을 인가하여 그것의 주울 가열에 의해 발생한 고열에 의해, 상기 실리콘 박막의 결정화, 결정격자 결함 치유, 도펀트의 활성화, 열산화 공정 등을 행하는 실리콘 박막의 어닐닝 방법을 제시한 바 있다. In order to solve this problem of the prior art, the inventors of the present invention in Korean Patent Application No. 2005-73076, through the conductive layer on the lower portion of the silicon thin film and then applying power to the conductive layer by its joule heating Due to the high heat generated, an annealing method of the silicon thin film which performs the crystallization, crystal lattice defect healing, dopant activation, thermal oxidation, etc. of the silicon thin film has been proposed.

이상과 같은 방법은 유리기판의 열변형을 유발하지 않고, 결정격자 결함이 거의 존재하지 않으며, MIC 및 MILC 등의 결정화 방법에 의하여 제조된 다결정 실리콘 박막에서 나타나는 촉매 금속의 오염으로부터 완전히 자유로우며, 동시에 ELC 방법에 의하여 제조된 다결정 실리콘 박막에서 나타나는 표면 돌출 현상을 수반하지 않는 다결정 실리콘 박막을 제공하는 장점이 있다. The above method does not cause thermal deformation of the glass substrate, hardly any crystal lattice defects exist, and is completely free from the contamination of the catalyst metal in the polycrystalline silicon thin film manufactured by the crystallization method such as MIC and MILC, and at the same time, There is an advantage to provide a polycrystalline silicon thin film that does not involve the surface protrusion phenomenon appearing in the polycrystalline silicon thin film produced by the ELC method.

따라서, 이와 같은 매우 혁신적인 방법에 의하여 다결정 실리콘 박막을 원활하게 제조하기 위해서는 이상과 같은 방법에 따라 다결정 실리콘 박막이 제조될 수 있도록 기판을 매우 정확한 위치로 로딩하고 또 그 로딩된 기판 상의 매우 정확한 위치에 전원을 인가할 수 있는 다결정 실리콘 박막 제조장치 및 그를 이용한 다결정 실리콘 박막 제조방법이 꼭 필요한 실정이다. Therefore, in order to manufacture a polycrystalline silicon thin film smoothly by such a very innovative method, the substrate is loaded at a very accurate position so that the polycrystalline silicon thin film can be manufactured according to the above-described method, and at a very accurate position on the loaded substrate. A polycrystalline silicon thin film manufacturing apparatus capable of applying power and a polycrystalline silicon thin film manufacturing method using the same are necessary.

본 발명이 해결하고자 하는 과제는 다결정 실리콘 박막이 제조될 수 있도록 기판을 매우 정확한 위치로 로딩하고 또 그 로딩된 기판 상의 매우 정확한 위치에 전원을 인가할 수 있는 다결정 실리콘 박막 제조장치 및 방법을 제공하는데에 있다. SUMMARY OF THE INVENTION The present invention has been made in an effort to provide a polycrystalline silicon thin film manufacturing apparatus and method capable of loading a substrate to a very accurate position and applying power to a very accurate position on the loaded substrate so that the polycrystalline silicon thin film can be manufactured. Is in.

그리고, 본 발명이 해결하고자 하는 다른 과제는 비정질 실리콘의 상부나 하부 등에 구비된 도전성 박막에 전원을 인가함으로써 주울열을 발생시키고 이를 통하여 다결정 실리콘 박막을 제조할 수 있는 다결정 실리콘 박막 제조장치 및 방법을 제공하는데에 있다. In addition, another problem to be solved by the present invention is a polycrystalline silicon thin film manufacturing apparatus and method that can generate Joule heat by applying power to the conductive thin film provided in the upper or lower portion of the amorphous silicon, and thereby to produce a polycrystalline silicon thin film To provide.

이상과 같은 과제를 해결하기 위한 본 발명의 제1 관점에 따르면, 다결정 실리콘 박막 제조장치가 제공된다. 상기 다결정 실리콘 박막 제조장치는 챔버, 상기 챔버의 일측에 설치되고 비정질 실리콘 박막과 도전성 박막을 구비한 기판이 안착되는 기판 스테이지 및, 상기 기판 스테이지에 대향되도록 상기 챔버의 타측에 설치되고 상기 기판 스테이지에 안착된 기판 측으로 이동되어 상기 기판에 구비된 도전성 박막에 전원을 인가하도록 된 전원인가용 전극을 포함한다. 이때, 상기 전원인가용 전극은 상기 도전성 박막에 전원을 인가함으로써 주울(joule)열을 발생시키고 상기 발생된 주울열을 통하여 비정질 실리콘 박막을 결정화시킨다. According to the first aspect of the present invention for solving the above problems, a polycrystalline silicon thin film manufacturing apparatus is provided. The polycrystalline silicon thin film manufacturing apparatus includes a chamber, a substrate stage installed on one side of the chamber, and a substrate stage on which a substrate including an amorphous silicon thin film and a conductive thin film is seated, and installed on the other side of the chamber so as to face the substrate stage. And a power supply electrode which is moved toward the seated substrate and applies power to the conductive thin film provided on the substrate. In this case, the electrode for power application generates joule heat by applying power to the conductive thin film and crystallizes the amorphous silicon thin film through the generated joule heat.

다른 실시예에 있어서, 상기 기판 스테이지는 그 상면에 상기 기판이 안착되 도록 상기 챔버의 밑면에 설치되되 상호 일정간격 이격되게 설치되는 한 쌍의 기판고정블럭을 포함할 수 있다. 이 경우, 상기 한 쌍의 기판고정블럭에는 각각 상기 안착되는 기판을 흡착 고정하기 위하여 진공이 제공되는 적어도 하나의 흡착홀이 형성될 수 있다. In another embodiment, the substrate stage may include a pair of substrate fixing blocks which are installed on the bottom surface of the chamber so that the substrate is seated on the upper surface thereof and spaced apart from each other by a predetermined interval. In this case, each of the pair of substrate fixing blocks may have at least one suction hole provided with a vacuum to suck and fix the seated substrate.

또다른 실시예에 있어서, 상기 다결정 실리콘 박막 제조장치는 상기 흡착홀에 진공라인을 매개로 연결되며, 상기 흡착홀로 상기 기판을 흡착 고정하기 위한 진공을 제공하는 진공유닛을 더 포함할 수 있다. In another embodiment, the polycrystalline silicon thin film manufacturing apparatus may further include a vacuum unit connected to the adsorption hole through a vacuum line and providing a vacuum for adsorbing and fixing the substrate to the adsorption hole.

또다른 실시예에 있어서, 상기 다결정 실리콘 박막 제조장치는 상기 기판 스테이지의 측면들에 설치되어 상기 기판 스테이지에 안착되는 기판을 얼라인하는 얼라인 유닛을 더 포함할 수 있다. 이 경우, 상기 얼라인 유닛은 상기 기판 스테이지에 안착되는 기판이 얼라인되도록 상기 기판 스테이지의 전ㆍ후 방향에 위치한 측면들에 각각 설치되어 상기 기판의 전면과 후면을 각각 밀어주는 제1 얼라인 유닛 및, 상기 기판 스테이지의 좌ㆍ우 방향에 위치한 측면들에 각각 설치되어 상기 기판의 좌측면과 우측면을 각각 밀어주는 제2 얼라인 유닛을 포함할 수 있다. In another exemplary embodiment, the apparatus for manufacturing a polycrystalline silicon thin film may further include an alignment unit installed on side surfaces of the substrate stage to align a substrate seated on the substrate stage. In this case, the alignment unit is installed on side surfaces positioned in the front and rear directions of the substrate stage to align the substrate seated on the substrate stage, and the first alignment unit pushes the front and rear surfaces of the substrate, respectively. And a second alignment unit installed on side surfaces positioned in left and right directions of the substrate stage to push the left and right sides of the substrate, respectively.

또다른 실시예에 있어서, 상기 다결정 실리콘 박막 제조장치는 상기 얼라인 유닛에 의해 얼라인된 기판에 전원을 인가하기 전, 상기 기판의 얼라인을 다시 한번 더 체크하기 위한 얼라인 체크 유닛을 더 포함할 수 있다. 이 경우, 상기 얼라인 체크 유닛은 상기 기판의 모서리를 각각 촬영함으로써 상기 기판의 얼라인을 다시 한번 더 체크할 수 있도록 상기 챔버의 내벽에 각각 설치된 적어도 한 쌍의 카메라를 포함할 수 있다. In still another embodiment, the polycrystalline silicon thin film manufacturing apparatus may further include an alignment check unit for checking the alignment of the substrate once again before applying power to the substrate aligned by the alignment unit. can do. In this case, the alignment check unit may include at least one pair of cameras respectively installed on the inner wall of the chamber to check the alignment of the substrate once again by photographing each edge of the substrate.

또다른 실시예에 있어서, 상기 다결정 실리콘 박막 제조장치는 상기 전원인가용 전극에 연결되고, 필요에 따라 상기 전원인가용 전극을 상기 기판 측으로 이동시켜 상기 전원인가용 전극이 상기 기판에 접촉될 수 있도록 하는 전극이동유닛을 더 포함할 수 있다. 이 경우, 상기 기판 스테이지는 상기 챔버의 하부측에 설치될 수 있고, 상기 전극이동유닛은 상기 챔버의 상부측에 설치되어 상기 전원인가용 전극을 상기 챔버의 상부측에서 그 하부측에 위치한 상기 기판 측으로 이동시킬 수 있다. In another embodiment, the polycrystalline silicon thin film manufacturing apparatus is connected to the electrode for power supply, and if necessary, the electrode for power supply can be in contact with the substrate by moving the power supply electrode to the substrate side. It may further comprise an electrode moving unit. In this case, the substrate stage may be installed at a lower side of the chamber, and the electrode moving unit may be installed at an upper side of the chamber such that the electrode for applying power is located at a lower side of the chamber at an upper side thereof. Can be moved to the side.

한편, 이상과 같은 과제를 구현하기 위한 본 발명의 제2 관점에 따르면, 다결정 실리콘 박막 제조방법이 제공된다. 상기 다결정 실리콘 박막 제조방법은 비정질 실리콘 박막과 도전성 박막을 구비한 기판을 챔버의 내부 일측에 설치된 기판 스테이지로 로딩하는 단계, 상기 기판 스테이지에 대향되도록 상기 챔버의 타측에 설치된 전원인가용 전극을 상기 기판 스테이지에 안착된 기판 측으로 이동시켜 상기 전원인가용 전극이 상기 기판에 접촉되도록 하는 단계 및, 상기 도전성 박막에 전원을 인가함으로써 주울(joule)열을 발생시키고 상기 발생된 주울열을 통하여 상기 비정질 실리콘 박막을 결정화시키는 단계를 포함할 수 있다. On the other hand, according to the second aspect of the present invention for realizing the above problem, there is provided a polycrystalline silicon thin film manufacturing method. The method of manufacturing a polycrystalline silicon thin film may include loading a substrate including an amorphous silicon thin film and a conductive thin film to a substrate stage provided on one side of a chamber, and supplying a power supply electrode installed on the other side of the chamber to face the substrate stage. Moving to the substrate seated on a stage such that the electrode for power application is in contact with the substrate; generating joule heat by applying power to the conductive thin film; and generating the joule heat through the generated joule heat. Crystallizing.

다른 실시예에 있어서, 상기 기판 스테이지는 상기 챔버의 하부측에 설치될 수 있고, 상기 전원인가용 전극은 상기 챔버의 상부측에 설치될 수 있으며, 상기 전원인가용 전극을 상기 기판 측으로 이동시켜 상기 전원인가용 전극이 상기 기판에 접촉되도록 하는 단계는 상기 전원인가용 전극을 상기 챔버의 상부측에서 하부측으로 하강시키는 것을 포함할 수 있다. In another embodiment, the substrate stage may be installed on the lower side of the chamber, the power applying electrode may be installed on the upper side of the chamber, by moving the power applying electrode to the substrate side The step of bringing the power applying electrode into contact with the substrate may include lowering the power applying electrode from the upper side to the lower side of the chamber.

또다른 실시예에 있어서, 상기 다결정 실리콘 박막 제조방법은 상기 기판을 챔버의 내부 일측에 설치된 기판 스테이지로 로딩하는 단계 후에, 상기 기판 스테이지로 로딩된 기판을 얼라인하는 단계, 상기 얼라인된 기판을 고정하는 단계를 더 포함할 수 있다. 이 경우, 상기 얼라인된 기판을 고정하는 단계는 진공을 이용하여 상기 기판을 흡착 고정하는 단계를 포함할 수 있다. 그리고, 상기 전원인가용 전극을 상기 기판 측으로 이동시켜 상기 전원인가용 전극이 상기 기판에 접촉되도록 하는 단계는 상기 얼라인된 기판을 고정하는 단계 후에 진행될 수 있다.In another embodiment, the polycrystalline silicon thin film manufacturing method, after the step of loading the substrate to the substrate stage installed on one side of the chamber, aligning the substrate loaded in the substrate stage, the aligned substrate The method may further include fixing. In this case, fixing the aligned substrate may include adsorbing and fixing the substrate using a vacuum. The step of moving the power applying electrode toward the substrate so that the power applying electrode contacts the substrate may be performed after the fixing of the aligned substrate.

또다른 실시예에 있어서, 상기 다결정 실리콘 박막 제조방법은 상기 전원인가용 전극을 상기 기판 측으로 이동시켜 상기 전원인가용 전극이 상기 기판에 접촉되도록 하는 단계 후에, 상기 기판의 얼라인을 다시 한번 더 체크하는 얼라인 체크 단계를 더 포함할 수 있다. 이 경우, 상기 도전성 박막에 전원을 인가함으로써 주울열을 발생시키고 상기 발생된 주울열을 통하여 상기 비정질 실리콘 박막을 결정화시키는 단계는 상기 얼라인 체크 단계를 수행하여 상기 기판의 얼라인이 양호 상태로 판별되었을 때에 진행될 수 있다. In another embodiment, the polycrystalline silicon thin film manufacturing method further checks the alignment of the substrate once again after moving the power applying electrode to the substrate so that the power applying electrode is in contact with the substrate. It may further include an alignment check step. In this case, generating Joule heat by applying power to the conductive thin film and crystallizing the amorphous silicon thin film through the generated Joule heat may perform the alignment check step to determine that the alignment of the substrate is in good condition. Can be done when

또다른 실시예에 있어서, 상기 다결정 실리콘 박막 제조방법은 상기 도전성 박막에 전원을 인가함으로써 주울열을 발생시키고 상기 발생된 주울열을 통하여 상기 비정질 실리콘 박막을 결정화시키는 단계 후에, 상기 기판 측으로 이동된 전원인가용 전극을 원래의 위치로 복귀시켜 상기 전원인가용 전극을 상기 기판으로부터 분리시키는 단계, 상기 기판으로 제공되는 진공을 차단하여 상기 흡착 고정된 기판을 고정 해제시키는 단계 및, 상기 고정 해제된 기판을 외부로 언로딩시키는 단계 를 더 포함할 수 있다. In another embodiment, the method for manufacturing a polycrystalline silicon thin film generates Joule heat by applying power to the conductive thin film, and after the step of crystallizing the amorphous silicon thin film through the generated Joule heat, power moved to the substrate side Returning the electrode for application to an original position to separate the electrode for power application from the substrate; disconnecting the vacuum provided to the substrate to release the adsorption fixed substrate; and It may further comprise the step of unloading to the outside.

또다른 실시예에 있어서, 상기 다결정 실리콘 박막 제조방법은 상기 얼라인 체크 단계를 수행하여 상기 기판의 얼라인이 불량 상태로 판별되었을 때에, 상기 기판에 전원을 인가하지 않고, 상기 기판 측으로 이동된 전원인가용 전극을 원래의 위치로 복귀시켜 상기 전원인가용 전극을 상기 기판으로부터 분리시키는 단계 및, 상기 기판이 다시 얼라인되도록 상기 기판으로 제공되는 진공을 차단하여 상기 흡착 고정된 기판을 고정 해제시키는 단계를 더 포함할 수 있다. In another exemplary embodiment, the polycrystalline silicon thin film manufacturing method may include: a power source moved to the substrate side without applying power to the substrate when performing alignment check to determine that the alignment of the substrate is in a bad state Returning the electrode for application to the original position to separate the electrode for power application from the substrate; and releasing the adsorption-fixed substrate by blocking the vacuum provided to the substrate so that the substrate is aligned again. It may further include.

본 발명에 따르면, 비정질 실리콘 박막과 도전성 박막을 구비한 기판을 매우 정확한 위치로 로딩하고 또 그 로딩된 기판 상의 매우 정확한 위치 곧, 도전성 박막에 미리 설정된 일정 위치에 전원을 정확히 인가할 수 있기 때문에, 전원 인가를 통한 주울열을 이용하여 상기 비정질 실리콘 박막을 효율적으로 또 매우 균일하게 결정화시킬 수 있게 된다. 그러므로, 본 발명에 따르면, 주울열을 이용하여 다결정 실리콘 박막을 매우 원활하게 제조할 수 있게 된다. According to the present invention, since a substrate having an amorphous silicon thin film and a conductive thin film can be loaded at a very accurate position and power can be applied to a very precise position on the loaded substrate, that is, a predetermined position preset to the conductive thin film, Using Joule heat through power application, the amorphous silicon thin film can be efficiently and very uniformly crystallized. Therefore, according to the present invention, it is possible to manufacture a polycrystalline silicon thin film very smoothly using Joule heat.

이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명되어지는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되어지는 것이다. 명세서 전체에 걸쳐서 동일한 참 조번호들은 동일한 구성요소들을 나타낸다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments disclosed herein are being provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art. Like reference numerals denote like elements throughout the specification.

도 1은 본 발명에 따른 다결정 실리콘 박막 제조장치의 일실시예를 도시한 단면도이고, 도 2는 도 1에 도시한 다결정 실리콘 박막 제조장치의 챔버와 기판 스테이지를 도시한 일부절개 사시도이며, 도 3은 본 발명에 따른 다결정 실리콘 박막 제조장치의 제어관계를 도시한 블럭도이다.1 is a cross-sectional view showing an embodiment of a polycrystalline silicon thin film manufacturing apparatus according to the present invention, FIG. 2 is a partially cutaway perspective view showing a chamber and a substrate stage of the polycrystalline silicon thin film manufacturing apparatus shown in FIG. Is a block diagram showing the control relationship of the polycrystalline silicon thin film manufacturing apparatus according to the present invention.

도 1 내지 도 3을 참조하면, 본 발명의 일실시예에 따른 다결정 실리콘 박막 제조장치(100)는 챔버(110), 상기 챔버(110)의 일측 예를 들면, 하부측에 설치되고 비정질 실리콘 박막과 도전성 박막을 구비한 기판(90)이 안착되는 기판 스테이지(120), 상기 기판 스테이지(120)에 대향되도록 상기 챔버(110)의 타측 예를 들면, 상부측에 설치되고 상기 기판 스테이지(120)에 안착된 기판(90) 측으로 이동되어 상기 기판(90)에 구비된 도전성 박막에 전원을 인가하도록 된 전원인가용 전극(130) 및, 상기 다결정 실리콘 박막 제조장치(100)의 구동을 전반적으로 제어하는 중앙제어유닛(190)을 포함한다.1 to 3, the polycrystalline silicon thin film manufacturing apparatus 100 according to an embodiment of the present invention is a chamber 110, one side of the chamber 110, for example, is installed on the lower side of the amorphous silicon thin film And the substrate stage 120 on which the substrate 90 having the conductive thin film is mounted, and installed on the other side of the chamber 110 so as to face the substrate stage 120, for example, the substrate stage 120. Is moved toward the substrate 90 seated on the substrate to control the driving of the power applying electrode 130 and the polycrystalline silicon thin film manufacturing apparatus 100 to apply power to the conductive thin film provided on the substrate 90. It includes a central control unit 190.

상기 챔버(110)는 다결정 실리콘 박막 제조공정이 진행되도록 내부에 밀폐된 공정진행공간을 제공한다. 따라서, 기판(90)의 로딩으로부터 언로딩에 이르는 제반 다결정 실리콘 박막 제조공정은 이러한 공정진행공간 곧, 챔버(110)의 내부에서 진행된다. 그리고, 상기 챔버(110)의 일측에는 로봇암과 같은 기판이송유닛(180)에 의하여 기판(90) 등이 입출되도록 입출홀(미도시)이 형성되고, 상기 입출홀은 도시되지 않은 도어(door)에 의해 선택적으로 개폐된다. The chamber 110 provides a process progress space enclosed therein to allow the polycrystalline silicon thin film manufacturing process to proceed. Accordingly, the entire polycrystalline silicon thin film manufacturing process from loading of the substrate 90 to unloading is performed in such a process space, that is, inside the chamber 110. In addition, an entrance and exit hole (not shown) is formed at one side of the chamber 110 to allow the substrate 90 to enter and exit by the substrate transfer unit 180 such as a robot arm, and the entrance and exit hole is not shown. It is selectively opened and closed by).

상기 기판 스테이지(120)는 그 상면에 상기 기판(90)이 안착되도록 상기 챔 버(110)의 내부 밑면에 설치되되 상호 일정간격 이격되게 설치되는 한 쌍의 기판고정블럭(121,122)으로 구성된다. 이때, 상기 한 쌍의 기판고정블럭(121,122)에는 각각 상기 안착되는 기판(90)을 흡착 고정하기 위하여 진공이 제공되는 적어도 하나의 흡착홀(123)이 형성되고, 상기 흡착홀(123)의 상단은 상기 기판고정블럭(121,122)의 상면으로 노출된다. 그리고, 상기 흡착홀(123)에는 진공라인(161)을 매개로 진공유닛(160)이 연결된다. 상기 진공유닛(160)은 상기 진공라인(161)을 통하여 상기 흡착홀(123)로 상기 기판(90)을 흡착 고정하기 위한 진공을 제공한다. 따라서, 상기 한 쌍의 기판고정블럭(121,122)에 안착되는 기판(90)은 상기 흡착홀(123)을 통해 제공되는 진공에 의하여 상기 기판고정블럭(121,122)의 상면에 흡착 고정된다.The substrate stage 120 includes a pair of substrate fixing blocks 121 and 122 installed on an inner bottom surface of the chamber 110 so that the substrate 90 is seated on an upper surface thereof, and spaced apart from each other by a predetermined interval. At this time, the pair of substrate fixing blocks 121 and 122 are formed with at least one adsorption hole 123 provided with a vacuum to adsorb and fix the substrate 90 to be seated, respectively, and an upper end of the adsorption hole 123. Is exposed to the top surfaces of the substrate fixing blocks 121 and 122. The vacuum unit 160 is connected to the suction hole 123 through the vacuum line 161. The vacuum unit 160 provides a vacuum for adsorbing and fixing the substrate 90 to the suction hole 123 through the vacuum line 161. Therefore, the substrate 90 seated on the pair of substrate fixing blocks 121 and 122 is fixed to the upper surfaces of the substrate fixing blocks 121 and 122 by a vacuum provided through the suction holes 123.

상기 전원인가용 전극(130)은 상기 챔버(110)의 상측부에 설치되되 상기 챔버(110)의 하측부로 이동가능하게 설치되고, 전원라인(151)을 매개로 전원공급유닛(150)에 전기적으로 연결된다. 따라서, 상기 전원공급유닛(150)이 전원라인(151)을 통하여 상기 전원인가용 전극(130)으로 전원을 공급하면, 상기 전원인가용 전극(130)은 상기 도전성 박막에 공급되는 전원을 인가함으로써 주울(joule)열을 발생시키고 상기 발생된 주울열을 통하여 비정질 실리콘 박막을 결정화시킨다. The power applying electrode 130 is installed on the upper side of the chamber 110, but is installed to be movable to the lower side of the chamber 110, the electrical supply to the power supply unit 150 via the power line 151 Is connected. Accordingly, when the power supply unit 150 supplies power to the power applying electrode 130 through the power line 151, the power applying electrode 130 applies power supplied to the conductive thin film. Joule heat is generated and the amorphous silicon thin film is crystallized through the generated joule heat.

한편, 본 발명에 따른 다결정 실리콘 박막 제조장치(100)는 전극 홀더(143)를 매개로 상기 전원인가용 전극(130)에 연결되고, 필요에 따라 상기 전원인가용 전극(130)을 상기 기판(90) 측으로 이동시켜 상기 전원인가용 전극(130)이 상기 기판(90)에 접촉될 수 있도록 하는 전극이동유닛(140)을 더 포함할 수 있다. On the other hand, the polycrystalline silicon thin film manufacturing apparatus 100 according to the present invention is connected to the electrode for applying power 130 via an electrode holder 143, if necessary, the electrode for applying power 130 to the substrate ( It may further include an electrode movement unit 140 to move to the side 90 so that the power applying electrode 130 can be in contact with the substrate (90).

이때, 상기 전극이동유닛(140)은 상기 챔버(110)의 내부 상부측에 설치되어 상기 전원인가용 전극(130)을 상기 챔버(110)의 상부측에서 그 하부측에 위치한 상기 기판(90) 측으로 이동시킬 수 있다. 다시 말하면, 상기 전극이동유닛(140)은 전원인가공정이 진행되도록 상기 전원인가용 전극(130)을 그 하부에 위치한 기판(90) 측으로 하강시켜 상기 전원인가용 전극(130)이 상기 기판(90)에 접촉되도록 할 수 있고, 상기 전원인가공정이 종료되면 상기 전원인가용 전극(130)이 상기 기판(90)으로부터 분리되도록 상기 전원인가용 전극(130)을 원래의 위치로 복귀 곧, 상승시킬 수 있다. 여기서, 상기 전극이동유닛(140)은 상술한 바와 같이, 상기 전원인가용 전극(130)을 일정거리 하강 및 상승시킬 수 있는 유닛으로, 다양한 형태로 구현될 수 있다. 예를 들면, 상기 전극이동유닛(140)은 피스톤(141)과 상기 피스톤(141)으로부터 일정거리 왕복 이동되는 피스톤 로드(142)를 포함하여 구성될 수 있다. In this case, the electrode moving unit 140 is installed on the inner upper side of the chamber 110 to position the power supply electrode 130 on the lower side of the upper side of the chamber 110, the substrate 90 Can be moved to the side. In other words, the electrode transfer unit 140 lowers the power applying electrode 130 toward the substrate 90 positioned below the power applying electrode 130 so that the power applying process proceeds. The power supply electrode 130 is returned to its original position so that the power supply electrode 130 is separated from the substrate 90 when the power supply process is completed. Can be. Here, the electrode moving unit 140 is a unit that can lower and raise the power application electrode 130 by a predetermined distance, as described above, and may be implemented in various forms. For example, the electrode moving unit 140 may include a piston 141 and a piston rod 142 reciprocated by a predetermined distance from the piston 141.

그리고, 본 발명에 따른 다결정 실리콘 박막 제조장치(100)는 상기 기판 스테이지(120)의 측면들에 설치되어 상기 기판 스테이지(120)에 안착되는 기판(90)을 얼라인하는 얼라인 유닛(170)을 더 포함할 수 있다. 일실시예로, 상기 얼라인 유닛(170)은 상기 기판 스테이지(120)에 안착되는 기판(90)이 얼라인되도록 상기 기판 스테이지(120)의 전ㆍ후 방향에 위치한 측면들 곧, 상기 기판고정블럭(121,122)들의 전ㆍ후 방향에 위치한 측면들에 각각 설치되어 상기 기판(90)의 전면과 후면을 각각 밀어주는 제1 얼라인 유닛(171) 및, 상기 기판 스테이지(120)의 좌ㆍ우 방향에 위치한 측면들 곧, 상기 기판고정블럭(121,122)들의 좌ㆍ우 방향에 위치한 측 면들에 각각 설치되어 상기 기판(90)의 좌측면과 우측면을 각각 밀어주는 제2 얼라인 유닛(172)으로 구성될 수 있고, 동시에 동작되도록 설치될 수 있다. 따라서, 한 쌍의 기판고정블럭(121,122)으로 이루어진 기판 스테이지(120) 상에 안착되는 기판(90)은 이상과 같은 얼라인 유닛들(171,172)의 동시 동작에 의하여 상기 기판 스테이지(120) 상에서 얼라인될 수 있다. In addition, the polycrystalline silicon thin film manufacturing apparatus 100 according to the present invention is installed on the side surfaces of the substrate stage 120, the alignment unit 170 for aligning the substrate 90 seated on the substrate stage 120 It may further include. In an embodiment, the alignment unit 170 may include side surfaces positioned in front and rear directions of the substrate stage 120 such that the substrate 90 mounted on the substrate stage 120 is aligned. First alignment units 171 installed on side surfaces positioned in front and rear directions of the blocks 121 and 122, respectively, to push the front and rear surfaces of the substrate 90, and the left and right sides of the substrate stage 120. The second alignment unit 172 installed on the side surfaces positioned in the direction, that is, on the side surfaces positioned in the left and right directions of the substrate fixing blocks 121 and 122, respectively, and pushing the left and right surfaces of the substrate 90, respectively. It may be configured and installed to operate at the same time. Accordingly, the substrate 90 seated on the substrate stage 120 including the pair of substrate fixing blocks 121 and 122 freezes on the substrate stage 120 by simultaneous operation of the alignment units 171 and 172 as described above. Can be printed.

또한, 본 발명에 따른 다결정 실리콘 박막 제조장치(100)는 상기 얼라인 유닛(170)에 의해 얼라인된 기판(90)에 전원을 인가하기 전, 상기 기판(90)의 얼라인을 다시 한번 더 체크하기 위한 얼라인 체크 유닛(173)을 더 포함할 수 있다. 이때, 상기 얼라인 체크 유닛(173)은 얼라인 체크를 위해 미리 설정된 위치 예를 들면, 상기 기판(90)의 모서리들을 각각 촬영함으로써 상기 기판(90)의 얼라인을 다시 한번 더 체크할 수 있도록 상기 챔버(110)의 내벽에 각각 설치된 적어도 한 쌍의 카메라를 포함할 수 있다.In addition, in the polycrystalline silicon thin film manufacturing apparatus 100 according to the present invention, before applying power to the substrate 90 aligned by the alignment unit 170, the alignment of the substrate 90 is once again aligned. The apparatus may further include an alignment check unit 173 for checking. In this case, the alignment check unit 173 may check the alignment of the substrate 90 once again by photographing corners of the substrate 90 which are preset positions for alignment check, for example. It may include at least one pair of cameras respectively installed on the inner wall of the chamber 110.

이하, 도 4a 내지 도 5를 참조하여, 이상과 같이 구성되는 다결정 실리콘 박막 제조장치(100)를 이용한 다결정 실리콘 박막 제조방법을 구체적으로 설명하면 다음과 같다. Hereinafter, a method of manufacturing a polycrystalline silicon thin film using the polycrystalline silicon thin film manufacturing apparatus 100 configured as described above with reference to FIGS. 4A to 5 will be described in detail.

도 4a 내지 4g는 도 1에 도시한 다결정 실리콘 박막 제조장치를 이용한 다결정 실리콘 박막 제조방법을 설명하기 위한 도면들이고, 도 5는 본 발명에 따른 다결정 실리콘 박막 제조방법의 일실시예를 도시한 순서도이다.4A to 4G are views for explaining a polycrystalline silicon thin film manufacturing method using the polycrystalline silicon thin film manufacturing apparatus shown in FIG. 1, and FIG. 5 is a flow chart showing an embodiment of the polycrystalline silicon thin film manufacturing method according to the present invention. .

도면에 도시된 바와 같이, 본 발명에 따른 다결정 실리콘 박막 제조방법은 결정화될 박막인 비정질 실리콘 박막과 도전성 박막을 구비한 기판(90)을 챔버(110)의 내부 일측에 설치된 기판 스테이지(120)로 로딩하는 단계(S10)를 포함한다. 이때, 기판(90)의 로딩은 로봇암과 같은 기판이송유닛(180)이 이용될 수 있다. 즉, 상기 기판이송유닛(180)은 그 상부에 기판(90)을 안착시킨 다음, 챔버(110)에 마련된 입출홀을 통해 도 4a와 같이 챔버(110) 내부로 이동되고, 이동된 후에는 도 4b와 같이 소정거리 하강되어 챔버(110) 내부에 설치된 기판 스테이지(120)의 상면에 기판(90)이 안착되도록 하게 된다.As shown in the figure, the method for manufacturing a polycrystalline silicon thin film according to the present invention is a substrate stage 120 having an amorphous silicon thin film, which is a thin film to be crystallized, and a conductive thin film, to the substrate stage 120 installed inside one side of the chamber 110. It includes the step of loading (S10). At this time, the loading of the substrate 90 may be a substrate transfer unit 180, such as a robot arm. That is, the substrate transfer unit 180 is seated on the substrate 90 thereon, and then moved into the chamber 110 as shown in FIG. 4a through the entrance and exit hole provided in the chamber 110, and after The predetermined distance is lowered as shown in 4b to allow the substrate 90 to be seated on the upper surface of the substrate stage 120 installed in the chamber 110.

다음, 기판 스테이지(120)의 상면에 기판(90)이 안착되면, 기판(90)을 이송한 기판이송유닛(180)은 입출홀을 통해 챔버(110)의 외부로 이동하게 되고, 도어는 챔버(110)의 입출홀을 밀폐하게 된다. 그리고, 도어가 챔버(110)의 입출홀을 밀폐하면, 전술한 중앙제어유닛(190)은 기판 스테이지(120)에 안착된 기판(90)의 비정질 실리콘 박막이 결정화되도록 후술하는 바와 같이 제반 공정을 진행하게 된다. Next, when the substrate 90 is seated on the upper surface of the substrate stage 120, the substrate transfer unit 180 that has transferred the substrate 90 moves to the outside of the chamber 110 through the entrance and exit hole, and the door is the chamber. The entry and exit hole of the 110 is sealed. When the door closes the entrance and exit hole of the chamber 110, the above-described central control unit 190 performs various processes as described below so that the amorphous silicon thin film of the substrate 90 seated on the substrate stage 120 is crystallized. You will proceed.

즉, 기판(90)이 기판 스테이지(120)의 상면에 안착되고, 도어가 챔버(110)의 입출홀을 밀폐하면, 다결정 실리콘 박막 제조장치(100)에 구비된 얼라인 유닛(170) 곧, 기판고정블럭(121,122)의 측면들에 설치된 얼라인 유닛들(171,172)은 도 4c와 같이 동시에 구동되어 기판 스테이지(120)의 상면에 안착된 기판(90)을 얼라인하게 된다(S20). That is, when the substrate 90 is seated on the upper surface of the substrate stage 120, and the door closes the entrance and exit hole of the chamber 110, the alignment unit 170 provided in the polycrystalline silicon thin film manufacturing apparatus 100, that is, The alignment units 171 and 172 installed on the side surfaces of the substrate fixing blocks 121 and 122 are simultaneously driven as shown in FIG. 4C to align the substrate 90 mounted on the upper surface of the substrate stage 120 (S20).

이후, 기판(90)이 얼라인되면, 진공유닛(160)은 기판고정블럭(121,122)에 형성된 흡착홀(123)로 진공을 제공하게 된다. 따라서, 기판고정블럭(121,122)의 상면에 안착된 기판(90)은 이상과 같이 공급되는 진공에 의하여 도 4d에 도시된 바와 같이 기판고정블럭(121,122)의 상면에 흡착 고정된다(S30). Then, when the substrate 90 is aligned, the vacuum unit 160 provides a vacuum to the suction holes 123 formed in the substrate fixing blocks 121 and 122. Accordingly, the substrate 90 seated on the upper surfaces of the substrate fixing blocks 121 and 122 is fixed to the upper surfaces of the substrate fixing blocks 121 and 122 by the vacuum supplied as described above (S30).

다음, 기판(90)이 고정되면, 전극이동유닛(140)은 상기 기판 스테이지(120)에 대향되도록 상기 챔버(110)의 상측부에 설치된 전원인가용 전극(130)을 상기 기판 스테이지(120)에 안착된 기판(90) 측 곧, 상기 기판고정블럭(121,122)에 흡착 고정된 기판(90) 측으로 하강시켜 도 4e와 같이 상기 전원인가용 전극(130)이 상기 기판(90)의 도전성 박막에 접촉되도록 하게 된다(S40). Next, when the substrate 90 is fixed, the electrode movement unit 140 is a power supply electrode 130 installed on the upper side of the chamber 110 to face the substrate stage 120, the substrate stage 120 The power supply electrode 130 is lowered to the conductive thin film of the substrate 90 as shown in FIG. 4E by descending to the side of the substrate 90 seated on the substrate 90, to the side of the substrate 90 fixed to the substrate fixing blocks 121 and 122. The contact is made (S40).

계속하여, 전원인가용 전극(130)이 상기 기판(90)의 도전성 박막에 접촉되면, 얼라인 체크 유닛(173)은 상기 도전성 박막에 전원을 인가하기 전에, 도 4f와 같이, 상기 기판(90)의 얼라인을 다시 한번 더 체크하게 된다(S50). 따라서, 상기 얼라인 체크 단계(S50)를 수행하여 상기 기판(90)의 얼라인이 양호 상태로 판별되면, 상기 전원인가용 전극(130)은 도 4g와 같이, 상기 도전성 박막에 전원을 인가함으로써 주울열을 발생시키고 상기 발생된 주울열을 통하여 상기 비정질 실리콘 박막을 결정화시키게 된다(S60). Subsequently, when the power supply electrode 130 is in contact with the conductive thin film of the substrate 90, the alignment check unit 173 performs the substrate 90 as shown in FIG. 4F before applying power to the conductive thin film. ) Is checked again (S50). Therefore, when the alignment check of the substrate 90 is determined to be in a good state by performing the alignment check step S50, the power applying electrode 130 may apply power to the conductive thin film as illustrated in FIG. 4G. The joule heat is generated and the amorphous silicon thin film is crystallized through the generated joule heat (S60).

그리고, 이러한 비정질 실리콘 박막을 결정화시킨 후에는 상기 기판(90) 측으로 이동된 전극을 원래의 위치로 복귀 곧, 상승시켜 상기 전원인가용 전극(130)을 상기 기판(90)으로부터 분리시키게 되고(S70), 분리시킨 후에는 상기 기판(90)으로 제공되는 진공을 차단하여 상기 흡착 고정된 기판(90)을 고정 해제시키게 된다(S80). 그리고, 기판(90)의 고정 해제 후에는 상기 고정 해제된 기판(90)을 외부로 언로딩시킴으로써(S90), 박막 결정화 공정을 진행 완료하게 된다. After the crystallization of the amorphous silicon thin film, the electrode moved to the substrate 90 is returned to its original position, and then raised to separate the electrode for power supply 130 from the substrate 90 (S70). After the separation, the vacuum provided to the substrate 90 is blocked to release the adsorption fixed substrate 90 (S80). After the substrate 90 is unfixed, the thin film crystallization process is completed by unloading the unfixed substrate 90 to the outside (S90).

하지만, 상기 얼라인 체크 단계(S50)를 수행하여 상기 기판(90)의 얼라인이 불량 상태로 판별되었을 때에는 상기 기판(90)에 전원을 인가하지 않고, 상기 기판(90) 측으로 이동된 전원인가용 전극(130)을 원래의 위치로 복귀 곧, 상승시켜 상기 전원인가용 전극(130)을 상기 기판(90)으로부터 분리시키게 되고(S51), 분리시킨 후에는 상기 기판(90)이 다시 얼라인되도록 상기 기판(90)으로 제공되는 진공을 차단하여 상기 흡착 고정된 기판(90)을 고정 해제시키게 된다(S52). However, when the alignment check of the substrate 90 is determined to be in a defective state by performing the alignment check step S50, the power is moved to the substrate 90 without applying power to the substrate 90. Returning the electrode 130 to its original position, it is raised to separate the power supply electrode 130 from the substrate 90 (S51), and after the separation, the substrate 90 is aligned again. By blocking the vacuum provided to the substrate 90 so as to release the adsorption fixed substrate 90 (S52).

한편, 본 발명에 따른 다결정 실리콘 박막 제조장치는 아래와 같이, 다른 실시예로도 구현될 수 있다. On the other hand, the polycrystalline silicon thin film manufacturing apparatus according to the present invention can be implemented in other embodiments as follows.

도 6은 본 발명에 따른 다결정 실리콘 박막 제조장치의 다른 실시예를 도시한 단면도이고, 도 7은 도 6에 도시한 다결정 실리콘 박막 제조장치의 챔버와 기판 스테이지(120)를 도시한 일부절개 사시도이다.6 is a cross-sectional view showing another embodiment of the polycrystalline silicon thin film manufacturing apparatus according to the present invention, Figure 7 is a partially cutaway perspective view showing a chamber and the substrate stage 120 of the polycrystalline silicon thin film manufacturing apparatus shown in FIG. .

도 6과 도 7을 참조하면, 본 발명의 다른 실시예에 따른 다결정 실리콘 박막 제조장치(100')는 전술한 바와 같은 일실시예의 다결정 실리콘 박막 제조장치(100)와는 다른 기판 스테이지(120)를 구비할 수 있다. 6 and 7, the polycrystalline silicon thin film manufacturing apparatus 100 ′ according to another embodiment of the present invention may have a substrate stage 120 different from the polycrystalline silicon thin film manufacturing apparatus 100 of the exemplary embodiment as described above. It can be provided.

즉, 본 발명의 다른 실시예에 따른 다결정 실리콘 박막 제조장치(100')의 기판 스테이지(120)는 그 상면에 상기 기판(90)이 안착되도록 상기 챔버(110)의 내부 밑면에 설치되되 상호 일정간격 이격되게 설치되는 한 쌍의 기판고정블럭(121,122)외에, 상기 한 쌍의 기판고정블럭(121,122)들 사이에 배치되는 기판지지블럭(124)을 더 포함하여 구성될 수 있다. That is, the substrate stage 120 of the polycrystalline silicon thin film manufacturing apparatus 100 ′ according to another embodiment of the present invention is installed on the inner bottom surface of the chamber 110 so that the substrate 90 is seated on the upper surface thereof, but is mutually constant. In addition to the pair of substrate fixing blocks 121 and 122 spaced apart from each other, the substrate supporting blocks 124 may be further disposed between the pair of substrate fixing blocks 121 and 122.

이때, 상기 기판지지블럭(124)은 상기 한 쌍의 기판고정블럭(121,122)에 안 착된 기판(90)의 처짐을 방지하기 위하여 상기 기판(90)의 밑면을 지지하는 역할을 할 수 있다. 따라서, 상기 기판지지블럭(124)에는 전술한 바와 같이 진공이 제공되는 흡착홀(123)이 형성되지 않을 수도 있으며, 상기 기판고정블럭들(121,122)과 동일한 크기 및 동일한 높이 등을 갖도록 설치될 수 있다. 그리고, 상기 기판지지블럭(124)은 상기 기판고정블럭들(121,122)의 중앙에 배치될 수 있다. In this case, the substrate support block 124 may serve to support the bottom surface of the substrate 90 to prevent sagging of the substrate 90 seated on the pair of substrate fixing blocks 121 and 122. Thus, as described above, the suction hole 123 may not be formed in the substrate support block 124, and may be installed to have the same size and the same height as the substrate fixing blocks 121 and 122. have. The substrate support block 124 may be disposed at the center of the substrate fixing blocks 121 and 122.

한편, 기판 스테이지(120)가 이상과 같이 구성될 경우, 기판(90)을 얼라인하는 얼라인 유닛(170)은 도 6과 7에 도시된 바와 같이 다르게 구현될 수도 있다. 즉, 상기 얼라인 유닛(170)은 상기 기판 스테이지(120)에 안착되는 기판(90)이 얼라인되도록 상기 기판지지블럭(124)의 전ㆍ후 방향에 위치한 측면들에 각각 설치되어 상기 기판(90)의 전면과 후면을 각각 밀어주는 제1 얼라인 유닛(171') 및, 상기 기판고정블럭(121,122)들의 좌ㆍ우 방향에 위치한 측면들에 각각 설치되어 상기 기판(90)의 좌측면과 우측면을 각각 밀어주는 제2 얼라인 유닛(172)으로 구성될 수 있고, 동시에 동작되도록 설치될 수 있다. 따라서, 한 쌍의 기판고정블럭(121,122)들과 이들 사이에 배치되는 기판지지블럭(124)으로 이루어진 기판 스테이지(120) 상에 안착되는 기판(90)은 이상과 같은 얼라인 유닛(170)들의 동시 동작에 의하여 상기 기판 스테이지(120) 상에서 얼라인될 수 있다. Meanwhile, when the substrate stage 120 is configured as described above, the alignment unit 170 for aligning the substrate 90 may be implemented differently as illustrated in FIGS. 6 and 7. That is, the alignment unit 170 is installed on the side surfaces of the substrate support block 124 in the front and rear directions so that the substrate 90 seated on the substrate stage 120 is aligned. A first alignment unit 171 'for pushing the front and rear surfaces of the substrate 90 and side surfaces positioned in left and right directions of the substrate fixing blocks 121 and 122, respectively; It may be configured as a second alignment unit 172 for pushing the right side respectively, and may be installed to operate at the same time. Accordingly, the substrate 90 seated on the substrate stage 120 including the pair of substrate fixing blocks 121 and 122 and the substrate support block 124 disposed therebetween is configured as described above. It may be aligned on the substrate stage 120 by the simultaneous operation.

이상, 본 발명은 도시된 실시예들을 참고로 설명하였으나, 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 그러므로 본 발명의 범위는 첨부된 특허청구의 범위와 이와 균등한 것들에 의해 정해져야 한다.As mentioned above, although the present invention has been described with reference to the illustrated embodiments, it is only an example, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the scope of the present invention should be defined by the appended claims and their equivalents.

도 1은 본 발명에 따른 다결정 실리콘 박막 제조장치의 일실시예를 도시한 단면도이다.1 is a cross-sectional view showing an embodiment of a polycrystalline silicon thin film manufacturing apparatus according to the present invention.

도 2는 도 1에 도시한 다결정 실리콘 박막 제조장치의 챔버와 기판 스테이지를 도시한 일부절개 사시도이다.FIG. 2 is a partially cutaway perspective view illustrating a chamber and a substrate stage of the polycrystalline silicon thin film manufacturing apparatus shown in FIG. 1.

도 3은 본 발명에 따른 다결정 실리콘 박막 제조장치의 제어관계를 도시한 블럭도이다.3 is a block diagram showing a control relationship of the apparatus for manufacturing a polycrystalline silicon thin film according to the present invention.

도 4a 내지 4g는 도 1에 도시한 다결정 실리콘 박막 제조장치를 이용한 다결정 실리콘 박막 제조방법을 설명하기 위한 도면들이다.4A to 4G are views for explaining a method of manufacturing a polycrystalline silicon thin film using the polycrystalline silicon thin film manufacturing apparatus shown in FIG.

도 5는 본 발명에 따른 다결정 실리콘 박막 제조방법의 일실시예를 도시한 순서도이다.5 is a flowchart illustrating an embodiment of a method of manufacturing a polycrystalline silicon thin film according to the present invention.

도 6은 본 발명에 따른 다결정 실리콘 박막 제조장치의 다른 실시예를 도시한 단면도이다.6 is a cross-sectional view showing another embodiment of the polycrystalline silicon thin film manufacturing apparatus according to the present invention.

도 7은 도 6에 도시한 다결정 실리콘 박막 제조장치의 챔버와 기판 스테이지를 도시한 일부절개 사시도이다.FIG. 7 is a partially cutaway perspective view illustrating a chamber and a substrate stage of the polycrystalline silicon thin film manufacturing apparatus shown in FIG. 6.

Claims (19)

챔버;chamber; 상기 챔버의 일측에 설치되고, 비정질 실리콘 박막과 도전성 박막을 구비한 기판이 안착되는 기판 스테이지; 및,A substrate stage installed at one side of the chamber and on which a substrate including an amorphous silicon thin film and a conductive thin film is seated; And, 상기 기판 스테이지에 대향되도록 상기 챔버의 타측에 설치되고, 상기 기판 스테이지에 안착된 기판 측으로 이동되어 상기 기판에 구비된 도전성 박막에 전원을 인가하도록 된 전원인가용 전극을 포함하되,A power supply electrode installed on the other side of the chamber to face the substrate stage and moved to the substrate seated on the substrate stage to apply power to the conductive thin film provided on the substrate, 상기 전원인가용 전극은 상기 도전성 박막에 전원을 인가함으로써 주울(joule)열을 발생시키고 상기 발생된 주울열을 통하여 비정질 실리콘 박막을 결정화시키는 것을 특징으로 하는 다결정 실리콘 박막 제조장치.The power supply electrode generates a joule (joule) heat by applying power to the conductive thin film and polycrystalline silicon thin film manufacturing apparatus characterized in that the crystallized amorphous silicon thin film through the generated joule heat. 제 1항에 있어서,The method of claim 1, 상기 기판 스테이지는 그 상면에 상기 기판이 안착되도록 상기 챔버의 밑면에 설치되되 상호 일정간격 이격되게 설치되는 한 쌍의 기판고정블럭을 포함하는 것을 특징으로 하는 다결정 실리콘 박막 제조장치. The substrate stage is a polycrystalline silicon thin film manufacturing apparatus, characterized in that it comprises a pair of substrate fixing blocks which are installed on the bottom surface of the chamber so that the substrate is seated on the upper surface and spaced apart from each other. 제 2항에 있어서, 3. The method of claim 2, 상기 한 쌍의 기판고정블럭에는 각각 상기 안착되는 기판을 흡착 고정하기 위하여 진공이 제공되는 적어도 하나의 흡착홀이 형성되는 것을 특징으로 하는 다 결정 실리콘 박막 제조장치.And at least one adsorption hole provided with a vacuum in each of the pair of substrate fixing blocks to adsorb and fix the substrate to be seated. 제 3항에 있어서,The method of claim 3, wherein 상기 흡착홀에 진공라인을 매개로 연결되며, 상기 흡착홀로 상기 기판을 흡착 고정하기 위한 진공을 제공하는 진공유닛을 더 포함하는 것을 특징으로 하는 다결정 실리콘 박막 제조장치.And a vacuum unit connected to the adsorption hole through a vacuum line and providing a vacuum for adsorbing and fixing the substrate to the adsorption hole. 제 1항에 있어서, The method of claim 1, 상기 기판 스테이지의 측면들에 설치되어 상기 기판 스테이지에 안착되는 기판을 얼라인하는 얼라인 유닛을 더 포함하는 것을 특징으로 하는 다결정 실리콘 박막 제조장치.And an alignment unit installed on the side surfaces of the substrate stage to align the substrate seated on the substrate stage. 제 5항에 있어서,The method of claim 5, 상기 얼라인 유닛은 The alignment unit 상기 기판 스테이지에 안착되는 기판이 얼라인되도록 상기 기판 스테이지의 전ㆍ후 방향에 위치한 측면들에 각각 설치되어 상기 기판의 전면과 후면을 각각 밀어주는 제1 얼라인 유닛 및, 상기 기판 스테이지의 좌ㆍ우 방향에 위치한 측면들에 각각 설치되어 상기 기판의 좌측면과 우측면을 각각 밀어주는 제2 얼라인 유닛을 포함하는 것을 특징으로 하는 다결정 실리콘 박막 제조장치. A first alignment unit installed on side surfaces positioned in the front and rear directions of the substrate stage so as to align the substrate seated on the substrate stage, and pushing the front and rear surfaces of the substrate, respectively; And a second alignment unit installed on side surfaces positioned in the right direction to push the left and right sides of the substrate, respectively. 제 5항에 있어서, The method of claim 5, 상기 얼라인 유닛에 의해 얼라인된 기판에 전원을 인가하기 전, 상기 기판의 얼라인을 다시 한번 더 체크하기 위한 얼라인 체크 유닛을 더 포함하는 것을 특징으로 하는 다결정 실리콘 박막 제조장치.And an alignment check unit for checking the alignment of the substrate once again before applying power to the substrate aligned by the alignment unit. 제 7항에 있어서,The method of claim 7, wherein 상기 얼라인 체크 유닛은 상기 기판의 모서리를 각각 촬영함으로써 상기 기판의 얼라인을 다시 한번 더 체크할 수 있도록 상기 챔버의 내벽에 각각 설치된 적어도 한 쌍의 카메라를 포함하는 것을 특징으로 하는 다결정 실리콘 박막 제조장치. The alignment check unit includes at least one pair of cameras respectively installed on the inner wall of the chamber to check the alignment of the substrate once again by photographing each edge of the substrate. Device. 제 1항에 있어서,The method of claim 1, 상기 전원인가용 전극에 연결되고, 필요에 따라 상기 전원인가용 전극을 상기 기판 측으로 이동시켜 상기 전원인가용 전극이 상기 기판에 접촉될 수 있도록 하는 전극이동유닛을 더 포함하는 것을 특징으로 하는 다결정 실리콘 박막 제조장치. And an electrode moving unit connected to the electrode for applying power and moving the electrode for applying power to the substrate side as necessary so that the electrode for applying the power can contact the substrate. Thin film manufacturing apparatus. 제 9항에 있어서,The method of claim 9, 상기 기판 스테이지는 상기 챔버의 하부측에 설치되고, The substrate stage is installed on the lower side of the chamber, 상기 전극이동유닛은 상기 챔버의 상부측에 설치되어 상기 전원인가용 전극 을 상기 챔버의 상부측에서 그 하부측에 위치한 상기 기판 측으로 이동시키는 것을 특징으로 하는 다결정 실리콘 박막 제조장치.The electrode moving unit is installed on the upper side of the chamber polycrystalline silicon thin film manufacturing apparatus, characterized in that for moving the power supply electrode from the upper side of the chamber to the substrate side located on the lower side. 비정질 실리콘 박막과 도전성 박막을 구비한 기판을 챔버의 내부 일측에 설치된 기판 스테이지로 로딩하는 단계;Loading a substrate having an amorphous silicon thin film and a conductive thin film into a substrate stage provided at one side of the chamber; 상기 기판 스테이지에 대향되도록 상기 챔버의 타측에 설치된 전원인가용 전극을 상기 기판 스테이지에 안착된 기판 측으로 이동시켜 상기 전원인가용 전극이 상기 기판에 접촉되도록 하는 단계; 및, Moving the power applying electrode installed on the other side of the chamber to face the substrate seated on the substrate stage so as to face the substrate stage such that the power applying electrode contacts the substrate; And, 상기 도전성 박막에 전원을 인가함으로써 주울(joule)열을 발생시키고 상기 발생된 주울열을 통하여 상기 비정질 실리콘 박막을 결정화시키는 단계를 포함하는 다결정 실리콘 박막 제조방법. And generating joule heat by applying power to the conductive thin film and crystallizing the amorphous silicon thin film through the generated joule heat. 제 11항에 있어서, The method of claim 11, 상기 기판 스테이지는 상기 챔버의 하부측에 설치되고,The substrate stage is installed on the lower side of the chamber, 상기 전원인가용 전극은 상기 챔버의 상부측에 설치되며, The power supply electrode is installed on the upper side of the chamber, 상기 전원인가용 전극을 상기 기판 측으로 이동시켜 상기 전원인가용 전극이 상기 기판에 접촉되도록 하는 단계는 상기 전원인가용 전극을 상기 챔버의 상부측에서 하부측으로 하강시키는 것을 포함하는 것을 특징으로 하는 다결정 실리콘 박막 제조방법. Moving the power applying electrode toward the substrate so that the power applying electrode contacts the substrate includes lowering the power applying electrode from the upper side to the lower side of the chamber; Thin film manufacturing method. 제 11항에 있어서,The method of claim 11, 상기 기판을 챔버의 내부 일측에 설치된 기판 스테이지로 로딩하는 단계 후에, After loading the substrate into a substrate stage installed on one inner side of the chamber, 상기 기판 스테이지로 로딩된 기판을 얼라인하는 단계;Aligning the substrate loaded into the substrate stage; 상기 얼라인된 기판을 고정하는 단계를 더 포함하는 것을 특징으로 하는 다결정 실리콘 박막 제조방법. The method of manufacturing a polycrystalline silicon thin film further comprising the step of fixing the aligned substrate. 제 13항에 있어서,The method of claim 13, 상기 얼라인된 기판을 고정하는 단계는 진공을 이용하여 상기 기판을 흡착 고정하는 단계를 포함하는 것을 특징으로 하는 다결정 실리콘 박막 제조방법. The fixing of the aligned substrate may include adsorbing and fixing the substrate using a vacuum. 제 14항에 있어서,15. The method of claim 14, 상기 전원인가용 전극을 상기 기판 측으로 이동시켜 상기 전원인가용 전극이 상기 기판에 접촉되도록 하는 단계는 상기 얼라인된 기판을 고정하는 단계 후에 진행되는 것을 특징으로 하는 다결정 실리콘 박막 제조방법. Moving the power applying electrode toward the substrate so that the power applying electrode is in contact with the substrate is performed after the fixing of the aligned substrate. 제 15항에 있어서, The method of claim 15, 상기 전원인가용 전극을 상기 기판 측으로 이동시켜 상기 전원인가용 전극이 상기 기판에 접촉되도록 하는 단계 후에, After the step of moving the power applying electrode to the substrate side so that the power applying electrode is in contact with the substrate, 상기 기판의 얼라인을 다시 한번 더 체크하는 얼라인 체크 단계를 더 포함하 는 것을 특징으로 하는 다결정 실리콘 박막 제조방법.The method of claim 1, further comprising an alignment check step of checking the alignment of the substrate once again. 제 16항에 있어서, The method of claim 16, 상기 도전성 박막에 전원을 인가함으로써 주울열을 발생시키고 상기 발생된 주울열을 통하여 상기 비정질 실리콘 박막을 결정화시키는 단계는 상기 얼라인 체크 단계를 수행하여 상기 기판의 얼라인이 양호 상태로 판별되었을 때에 진행되는 것을 특징으로 하는 다결정 실리콘 박막 제조방법.Generating Joule heat by applying power to the conductive thin film and crystallizing the amorphous silicon thin film through the generated Joule heat proceeds when the alignment check of the substrate is determined to be in good condition by performing the alignment check step. Method for producing a polycrystalline silicon thin film, characterized in that. 제 17항에 있어서, The method of claim 17, 상기 도전성 박막에 전원을 인가함으로써 주울열을 발생시키고 상기 발생된 주울열을 통하여 상기 비정질 실리콘 박막을 결정화시키는 단계 후에, After the step of generating joule heat by applying power to the conductive thin film and crystallizing the amorphous silicon thin film through the generated joule heat, 상기 기판 측으로 이동된 전원인가용 전극을 원래의 위치로 복귀시켜 상기 전원인가용 전극을 상기 기판으로부터 분리시키는 단계;Separating the power supply electrode from the substrate by returning the power supply electrode moved to the substrate to an original position; 상기 기판으로 제공되는 진공을 차단하여 상기 흡착 고정된 기판을 고정 해제시키는 단계; 및,Blocking the vacuum provided to the substrate to release the suction fixed substrate; And, 상기 고정 해제된 기판을 외부로 언로딩시키는 단계를 더 포함하는 것을 특징으로 하는 다결정 실리콘 박막 제조방법. And unloading the released substrate to the outside. 제 16항에 있어서,The method of claim 16, 상기 얼라인 체크 단계를 수행하여 상기 기판의 얼라인이 불량 상태로 판별 되었을 때에, When the alignment check of the substrate is determined to be defective by performing the alignment check step, 상기 기판에 전원을 인가하지 않고, 상기 기판 측으로 이동된 전원인가용 전극을 원래의 위치로 복귀시켜 상기 전원인가용 전극을 상기 기판으로부터 분리시키는 단계; 및,Separating the power applying electrode from the substrate by returning the power applying electrode moved to the substrate to the original position without applying power to the substrate; And, 상기 기판이 다시 얼라인되도록 상기 기판으로 제공되는 진공을 차단하여 상기 흡착 고정된 기판을 고정 해제시키는 단계를 더 포함하는 것을 특징으로 하는 다결정 실리콘 박막 제조방법.And releasing the adsorption-fixed substrate by blocking the vacuum provided to the substrate so that the substrate is again aligned.
KR1020090034788A 2009-04-21 2009-04-21 Apparatus and Method for Manufacturing Poly-Si Thin Film KR101043786B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020090034788A KR101043786B1 (en) 2009-04-21 2009-04-21 Apparatus and Method for Manufacturing Poly-Si Thin Film
TW99112328A TW201104025A (en) 2009-04-21 2010-04-20 Apparatus and method for manufacturing poly-Si thin film
PCT/KR2010/002476 WO2010123262A2 (en) 2009-04-21 2010-04-20 Apparatus and method for manufacturing a polycrystalline silicon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090034788A KR101043786B1 (en) 2009-04-21 2009-04-21 Apparatus and Method for Manufacturing Poly-Si Thin Film

Publications (2)

Publication Number Publication Date
KR20100116059A true KR20100116059A (en) 2010-10-29
KR101043786B1 KR101043786B1 (en) 2011-06-22

Family

ID=43134751

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090034788A KR101043786B1 (en) 2009-04-21 2009-04-21 Apparatus and Method for Manufacturing Poly-Si Thin Film

Country Status (1)

Country Link
KR (1) KR101043786B1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080013460A (en) * 2006-08-09 2008-02-13 삼성전자주식회사 Apparatur for manuifacturing display panel

Also Published As

Publication number Publication date
KR101043786B1 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP5427753B2 (en) Method for manufacturing semiconductor device
JP4813743B2 (en) Manufacturing method of image display device
US6962860B2 (en) Method of manufacturing a semiconductor device
KR100729942B1 (en) Method for Annealing Silicon Thin Films Using Conductive Layer and Polycrystalline Silicon Thin Films Prepared Therefrom
US7449397B2 (en) Method for annealing silicon thin films and polycrystalline silicon thin films prepared therefrom
US20040134417A1 (en) Mask for crystallizing, method of crystallizing amorphous silicon and method of manufacturing array substrate using the same
KR100623690B1 (en) Flat Panel Display and Method of fabricating thereof
KR101084235B1 (en) Amorphous Silicon Crystallization Apparatus
KR101009431B1 (en) Apparatus and method for manufacturing poly-si thin film
KR101043786B1 (en) Apparatus and Method for Manufacturing Poly-Si Thin Film
JP2003224084A (en) Semiconductor manufacturing equipment
KR101043787B1 (en) Apparatus and Method for Manufacturing Poly-Si Thin Film
KR100980846B1 (en) Apparatus and Method for Manufacturing Poly-Si Thin Film
KR101009430B1 (en) Apparatus and Method for Manufacturing Poly-Si Thin Film
KR101009429B1 (en) Polycrystalline silicon layer, thin film transistor comprising the same, and fabricating method of the same
KR101002014B1 (en) Apparatus and method for manufacturing Poly-Si thin film
JP3196132B2 (en) Method for manufacturing liquid crystal display substrate, method for evaluating semiconductor crystal, method for manufacturing semiconductor crystal thin film, and apparatus for manufacturing semiconductor crystal thin film
KR101075261B1 (en) Fabricating method of polycrystalline silicon thin film
US8128714B2 (en) Apparatus for manufacturing polycrystalline silicon thin film
US20050148208A1 (en) Method and apparatus for forming polycrystalline layer using laser crystallization
KR20090084237A (en) Apparatus and method for manufacturing poly-si thin film
WO2010123262A2 (en) Apparatus and method for manufacturing a polycrystalline silicon thin film
KR100976593B1 (en) Thin film transistor and fabricating method of the same
KR100678737B1 (en) Method for fabricating polycrystalline silicon thin film transistor array substrate
KR101031882B1 (en) Apparatus and method for manufacturing polycrystalline silicon thin film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20140512

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20150511

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20160603

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180528

Year of fee payment: 8