KR20100114391A - High velocity oxy-fuel(hvof) spray coating process of wc-crc-ni powder for the improvement of durability of metallic components - Google Patents

High velocity oxy-fuel(hvof) spray coating process of wc-crc-ni powder for the improvement of durability of metallic components Download PDF

Info

Publication number
KR20100114391A
KR20100114391A KR1020090032900A KR20090032900A KR20100114391A KR 20100114391 A KR20100114391 A KR 20100114391A KR 1020090032900 A KR1020090032900 A KR 1020090032900A KR 20090032900 A KR20090032900 A KR 20090032900A KR 20100114391 A KR20100114391 A KR 20100114391A
Authority
KR
South Korea
Prior art keywords
powder
crc
hvof
coating
spraying
Prior art date
Application number
KR1020090032900A
Other languages
Korean (ko)
Inventor
조동율
윤재홍
이찬규
주윤곤
조재영
Original Assignee
창원대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 창원대학교 산학협력단 filed Critical 창원대학교 산학협력단
Priority to KR1020090032900A priority Critical patent/KR20100114391A/en
Publication of KR20100114391A publication Critical patent/KR20100114391A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE: An HVOF(High Velocity Oxy-Fuel) spray coating method of WC-CrC-Ni powder for the improvement of durability of a metal part is provided to improve the wear resistance and life span of a high-speed rotating element. CONSTITUTION: An HVOF spray coating method of WC-CrC-Ni powder is characterized in that the feed rate of O2 is 38FMR, the feed rate of H2 is 53FMR, the feed rate of powder is 25g/min, and the spray distance is 7 inches. WC-CrC-Ni powder comprises W68wt.%, C5wt.%, Cr21wt.%, and Ni6wt.%.

Description

금속부품의 내구성 향상을 위한 텅스텐 카바이드 계열 합금 분말의 초고속화염용사코팅공정 최적화 방법{High Velocity Oxy-Fuel(HVOF) spray coating process of WC-CrC-Ni powder for the improvement of durability of metallic components}High Velocity Oxy-Fuel (HVOF) spray coating process of WC-CrC-Ni powder for the improvement of durability of metallic components}

본 발명은 텅스텐 카바이드(WC) 계열 합금의 최적용사공정기술(OCP : Optimal Coating Process)에 의해 에어베어링스핀들과 같은 고속회전체에 내마모성 코팅층을 얻기 위해 코팅의 4공정인자(수소유속, 산소유속, 용사거리 및 분말공급량)를 실험계획법에 의거하여 최적의 조건을 도출하여 코팅할 수 있게 하는 방법에 관한 것이다.According to the present invention, the four process factors (hydrogen flow rate, oxygen flow rate, and flow rate) of a tungsten carbide (WC) alloy are used to obtain a wear-resistant coating layer on a high-speed rotating body such as air bearing spindles by OCP: Spraying distance and powder supply amount) to obtain the optimum conditions based on the experimental design method and to coat.

전통적인 경질크롬도금은 금속표면에 증착시켜 내마모, 내열, 내식성 등을 필요로 하는 곳에 널리 사용되어 왔다.Traditional hard chromium plating has been widely used in places where the wear, heat resistance, corrosion resistance and the like are deposited on the metal surface.

그러나 크롬도금은 400℃이상에서 사용하기 어려운 특성을 가지고 있을 뿐 아니라 도금과정에서 독성이 강한 발암물질인

Figure 112009022818677-PAT00001
을 배출시키고 세라믹코팅의 취성문제를 가지고 있다.However, chromium plating is not only difficult to use above 400 ℃ but also highly toxic carcinogen during plating.
Figure 112009022818677-PAT00001
Has a problem of brittleness of ceramic coating.

최근에는 초고속화염용사법(HVOF : High Velocity Oxy-Fuel)으로 재료의 표면을 코팅하여 마모나 부식환경 등의 가혹한 분위기하에서 부품들의 수명향상을 필요로 하는 자동차, 항공기 등의 산업분야에서 이 기술이 응용되고 있다.In recent years, this technology has been applied to industries such as automobiles and aircrafts that require longer lifespan of parts under harsh atmospheres such as abrasion or corrosion by coating the surface of materials with HVOF (High Velocity Oxy-Fuel). It is becoming.

세계 에어베어링 장치의 주된 생산업체인 Wstwind Air Bearing 와 JEVCO International은 경질크롬도금을 활용한 스핀들을 도입함으로써 120,000RPM이상의 에어베어링 장치를 생산하고 있다.The world's leading producers of air bearings, Wstwind Air Bearing and JEVCO International, produce more than 120,000 RPM air bearings by adopting hard chrome-plated spindles.

고속회전체의 축 부는 RPM이 증가할수록 고열이 발생하고 부식마모가 심하여 점점 고가의 재질을 사용하게 되었다.As the RPM of the high-speed rotor increases, high heat is generated and corrosion wear is severe, and more expensive materials are used.

그러나 금속재질은 고온에서 열적변형이 심하고 물리적 특성이 감소함으로써 원자재의 원가상승에 비해서 그 수명향상에 한계를 가지게 되었고 고온에서 축 부가 고착되는 현상이 나타난다.However, the metal material has a severe thermal deformation at high temperatures and a decrease in physical properties, which has a limit on improving its lifespan compared to the cost increase of raw materials, and the shaft is fixed at high temperatures.

이를 개선하고자 Cr경질도금을 수행하였지만 도금에서도 역시 고착현상 및 코팅탈락 등의 문제가 나타났다.In order to improve this, Cr hard plating was performed, but problems such as sticking phenomenon and coating dropout also appeared in plating.

알루미늄 계열의 옥사이드의 경우에 부싱과의 접촉이 발생하지 않을 경우에 축부에 대한 내마모성 및 내열성이 우수하지만 에어베어링 스핀들이 스타트와 정지 시에 부싱과의 마찰이 잦아짐에 따라 그 충격을 견디지 못하고 코팅이 탈락하기 때문에 코팅 고유의 특성을 발휘하지 못하고 있다.In the case of aluminum-based oxide, the wear resistance and heat resistance to the shaft are excellent when no contact with the bushing occurs, but the bearing does not endure the impact due to the increased friction with the bushing at the start and stop of the air bearing spindle. Because of this dropping, the coating inherent properties cannot be exhibited.

국내의 일부 업체에서 적용하고 있는 알루미늄계의 용사코팅은 Cr경질에 비해 약간의 내소착성은 우수하지만 내충격성이 약하기 때문에 부품의 수명향상에 별다른 기여를 하지 못하고 있다.Aluminum-based spray coating applied by some domestic companies is slightly better in rust resistance than Cr hard, but because of its low impact resistance, it does not contribute much to the life of parts.

이로 인해 국내의 전자 및 반도체 업체들은 세계일류의 제품을 생산하기 위해 고가의 수입제품을 선호하고 있다.As a result, domestic electronics and semiconductor companies prefer expensive imported products to produce world-class products.

본 발명은 에어베어링 스핀들의 수명연장을 위한 텅스텐 카바이드 계열 합금의 최적용사공정에 필요한 4공정인자(수소유속, 산소유속, 용사거리 및 분말공급량)에 대하여 실험계획법을 이용하여 코팅층을 형성하는 최적용사조건을 제시하는 것을 목적으로 한다.The present invention is the optimal spraying to form a coating layer using the experimental design method for the four process factors (hydrogen flow rate, oxygen flow rate, spraying distance and powder supply amount) required for the optimal spraying process of tungsten carbide-based alloy for extending the life of the air bearing spindle The purpose is to present the conditions.

본 발명은 초고속화염용사법(HVOF)으로 고속회전체에 내마모성 코팅을 하기 위한 최적의 용사조건으로 O₂공급속도 38FMR(1FMR=12scfh(Standard Cubic Feet per Hour)=0.34m³/h), H₂공급속도 53FMR, 텅스텐 카바이드 계열 합금의 분말 공급속도 25g/min, 분사거리 7inch로 하는 최적의 용사코팅방법을 제공한다.In the present invention, the ultra-fast flame spraying method (HVOF) provides an optimum spraying condition for abrasion resistant coatings on high-speed rotors with an O₂ supply rate of 38 FMR (1FMR = 12 scfh (Standard Cubic Feet per Hour) = 0.34m³ / h), and an H₂ supply rate of 53FMR. It provides an optimal spray coating method for powder supply speed of 25g / min and injection distance of 7inch for tungsten carbide series alloy.

본 발명은 에어베어링 스핀들과 같은 초고속 회전체의 내마모성을 향상시켜 수명을 연장할 수 있게 하는 효과가 있다.The present invention has the effect of improving the wear resistance of an ultra-high speed rotating body such as an air bearing spindle to extend the life.

이하에서 본 발명의 바람직한 실시 예에 대하여 첨부한 도면을 참조하여 상세하게 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 (a)와 (b)는 WC-CrC-Ni 분말의 확대도, (c)는 XRD 결과도이고, 도 2는 9가지 조건에 의한 WC-CrC-Ni 코팅의 XRD이며, 도 3은 9가지 조건에 의한 WC-CrC-Ni 코팅의 SEM 단면도이고, 도 4는 9가지 조건에 의한 WC-CrC-Ni 코팅의 표면형태적 SEM 결과도이며, 도 5는 표면특성(경도, 기공도, 표면거칠기)과 공정변수들의 상관관계이고, 도 6은 최적공정으로 용사한 WC-CrC-Ni 코팅의 단면과 표면형태적 SEM결과도이며, 도 7은 최적용사공정에 의한 WC-CrC-Ni 코팅의 경도와 기공도이다.Figure 1 (a) and (b) is an enlarged view of the WC-CrC-Ni powder, (c) is an XRD results, Figure 2 is an XRD of the WC-CrC-Ni coating under 9 conditions, Figure 3 Is a SEM cross-sectional view of the WC-CrC-Ni coating under 9 conditions, Figure 4 is a surface morphological SEM results of the WC-CrC-Ni coating under 9 conditions, Figure 5 is a surface characteristic (hardness, porosity , Surface roughness) and process variables, Figure 6 is a cross-sectional and surface morphological SEM results of the WC-CrC-Ni coating sprayed by the optimal process, Figure 7 is WC-CrC-Ni by the optimum spraying process The hardness and porosity of the coating.

본 발명의 실험에 사용된 모재는 바인더(binder)층 없이도 코팅층과 강한 접찹력을 가지며 부식환경에서 사용되는 인코넬(Inconel)718소재를 사용하였다.The base material used in the experiment of the present invention used Inconel 718 material having a strong adhesive strength with the coating layer without a binder layer and used in a corrosive environment.

실험에 사용될 분말은 표1과 같은 화학조성을 가지는 스프레이 드라잉(Spray Drying)법으로 제조된 WC-CrC-Ni분말을 사용하였다.The powder to be used in the experiment was WC-CrC-Ni powder prepared by the spray drying method having the chemical composition shown in Table 1.

코팅공정은 전처리, 용사 그리고 후처리로 하였고, 전처리 과정에서 모재를 60메시(Mesh)의 알루미나(Al₂O₃)로 블래스팅(Blasting)처리를 하여 모재와 코팅층간의 접착력을 증가시키도록 하였다.The coating process was pre-treatment, thermal spraying and post-treatment. In the pretreatment process, the base material was blasted with 60 mesh alumina (Al₂O₃) to increase the adhesion between the base material and the coating layer.

용사공정에서는 용사조건을 산소와 수소가스 유속, 용사거리 그리고 분말의 공급속도에 변수를 두고 다구찌 실험계획법으로 표2와 같이 9가지의 조건에 대하여 용사코팅을 하였다.In the thermal spraying process, the thermal spraying was carried out for 9 different conditions as shown in Table 2 using the Taguchi experiment design method, with the spraying conditions varying with the flow rate of oxygen and hydrogen gas, the spraying distance, and the powder feed rate.

용사장비는 JK3000을 사용하였으며 용사시 건스피드(Gun Speed)는 3mm/sec로 일정하게 하였고, 용사분말의 캐리어 가스(Carrier Gas)는 Ar을 사용하였다.The spraying equipment used JK3000, the gun speed (Gun Speed) was sprayed at a constant 3mm / sec, and the carrier gas (Carrier Gas) of the thermal spraying powder used Ar.

시편의 냉각은 외부의 냉각장치 없이 공랭을 실시하였다.Cooling of the specimen was carried out by air cooling without an external cooling device.

코팅층은 XRD, 광학현미경, 주사전자현미경 및 EDS를 이용하여 미세조직과 조성을 분석하였으며 마이크로 비커스(Micro Vickers) 경도기를 이용하여 코팅 층의 단면 중심부에서 9회 측정한 다음 평균값으로 경도 값을 산출하였으며, 광학현미경으로 얻어진 조직사진을 영상분석기를 통하여 5회의 평균값으로 코팅층의 기공도를 얻었고, 연마를 하지 않은 시편에 대해 표면의 중심부에서 3회 측정한 평균값으로 표면거칠기를 분석하였다.The microstructure and composition of the coating layer were analyzed by XRD, optical microscope, scanning electron microscope, and EDS, and measured 9 times at the center of the cross section of the coating layer using a Micro Vickers hardness tester. The porosity of the coating layer was obtained from the tissue photograph obtained by the optical microscope with the average value of five times through an image analyzer, and the surface roughness was analyzed by the average value measured three times at the center of the surface for the unpolished specimen.

표1 WC-CrC-Ni 분말의 화학조성비Table 1 Chemical Composition Ratio of WC-CrC-Ni Powder

성분ingredient WW CC CrCr NiNi WC-CrC-NiWC-CrC-Ni 6868 55 2121 66

표2 최적용사공정에 대한 9가지 조건Table 2 Nine conditions for optimal spraying process

O₂flow rate(FMR)O₂flow rate (FMR) H₂flow rate(FMR)H₂flow rate (FMR) Feed rate(g/min)Feed rate (g / min) Spray distance(inch)Spray distance (inch) 1One 3030 5353 2525 66 22 3030 5757 3030 77 33 3030 6161 3535 88 44 3434 5353 3535 77 55 3434 5757 2525 88 66 3434 6161 3030 66 77 3838 5353 3030 88 88 3838 5757 3535 66 99 3838 6161 2525 77

WC-CrC-Ni 분말은 고경도의 WC입자가 바인더 역할을 하는 Cr과 Ni 기지 내에 혼합된 형태를 가지며, 도 1에 WC-CrC-Ni의 분말 SEM이미지와 XRD결과를 나타내었다.WC-CrC-Ni powder has a form in which high hardness WC particles are mixed in Cr and Ni bases serving as binders, and FIG. 1 shows the SEM and XRD results of the powder of WC-CrC-Ni.

XRD분석결과

Figure 112009022818677-PAT00002
, Cr₂O₃, WC, Cr₃Ni₂, Ni₃C 결정상이 존재하고 있으며 스프레이 드라잉법으로 제조된 분말의 평균 입도는 15~30㎛이다.XRD Analysis
Figure 112009022818677-PAT00002
, Cr₂O₃, WC, Cr₃Ni₂, Ni₃C crystal phases exist, and the average particle size of the powder produced by spray drying is 15 ~ 30㎛.

WC-CrC-Ni분말은 최고 약 3,500℃의 고온화염에 의해 용해 혹은 부분용해되며, 이들 액적(splat)은 최고 약 1,000m/s의 고속으로 기판에 증착된다.WC-CrC-Ni powder is dissolved or partially dissolved by a high temperature flame of up to about 3,500 ° C., and these splats are deposited on the substrate at a high speed of up to about 1,000 m / s.

다구찌 실험계획법으로 제조된 WC-CrC-Ni 코팅의 XRD결과를 도 2에 나타내었다.XRD results of the WC-CrC-Ni coating prepared by Taguchi design scheme are shown in FIG. 2.

XRD결과 WC, W₂C, Cr₂O₃, Cr₃Ni₂상들이 존재하였고 초고속화염용사법(High Velocity Oxy-Fuel) 동안 액적이 고온의 화염속을 0.1~1ms 비행하는 동안 분말의 열분해 온도 이상에서 금속과 흑연으로 분해가 일어났기 때문이라 사료된다.As a result of XRD, WC, W₂C, Cr₂O₃ and Cr₃Ni₂ phases existed, and during the High Velocity Oxy-Fuel, the droplets were decomposed into metals and graphite above the pyrolysis temperature of the powder during 0.1 ~ 1ms flight in the hot flame. It is because of this.

도 3과 4에 고속화염 용사법에 의해 제조된 WC-CrC-Ni코팅시편의 단면과 표면 형태학적 SEM결과를 나타내었다.3 and 4 show the cross-sectional and surface morphological SEM results of the WC-CrC-Ni coating specimen prepared by the high speed flame spraying method.

코팅의 두께는 약 350~400㎛이며, 모재에 60메시의 알루미나로 블래스팅 결과 실제 표면적이 증가하여 모재와 계면이 매우 치밀하게 나타나는 것으로 보아 접착력이 양호한 것으로 사료된다.The thickness of the coating is about 350 ~ 400㎛ and the adhesion is good because the surface of the substrate is very dense due to the increase of the actual surface area as a result of blasting with alumina of 60 mesh on the base material.

단면과 표면은 형태적으로 다공성의 코팅이 형성되었다.Cross sections and surfaces form a porous coating.

이는 WC의 열분해로 인하여 생성된 탄소가 산소와 반응하여 가스를 생성하고 코팅층을 통하여 탈출하였기 때문이다.This is because carbon generated by the pyrolysis of WC reacts with oxygen to produce gas and escapes through the coating layer.

각 공정에서의 표면특성과 공정변수들과의 관계를 도 5에 나타내었다.The relationship between the surface characteristics and the process variables in each process is shown in FIG. 5.

경도값은 913~1033Hv로 일반기계부품에 사용되는 소재보다 약 2배 이상 높은 경도값을 나타내었고, 산소유속 38FMR, 수소유속 53FMR, 용사거리8inch 그리고 분말공급30g/min일 때 가장 높은 경도값을 나타내었다.The hardness value is 913 ~ 1033Hv, which is about 2 times higher than the material used for general mechanical parts.The hardness value is 38FMR, 53FMR hydrogen, spraying distance 8inch, and the highest hardness at 30g / min powder supply. Indicated.

분말공급량 증가는 분말에 의한 열의 흡수로 분말온도를 낮추어 열분해를 감소시켜 경도를 높이는 효과를 나타낸다.Increasing the powder supply has the effect of increasing the hardness by reducing the thermal decomposition by lowering the powder temperature by the absorption of heat by the powder.

산소와 수소의 유속변화에 큰 변화를 나타내었다.The change in the flow rate of oxygen and hydrogen showed a big change.

기공도는 각 조건에 따라 0.27~1.50%까지 변화를 나타냈고, 산소유속 38FMR, 수소유속 61FMR, 용사거리 7inch 그리고 분말공급 25g/min일 때 가장 작은 기공도를 나타내었고, 모든 공정변수의 변화에 따른 영향이 아주 크게 작용하는 것을 알 수 있었다.The porosity showed 0.27 ~ 1.50% change according to each condition, and showed the smallest porosity at oxygen flow rate 38FMR, hydrogen flow rate 61FMR, spraying distance 7inch and powder feed 25g / min. It can be seen that the effect is very large.

표면거칠기(Ra)는 각 조건에 따라 3.526~4.754㎛까지 변화를 나타냈고, 산소유속 38FMR, 수소유속 53FMR, 용사거리 7inch 그리고 분말공급 25g/min일 때 가장 작은 표면거칠기를 나타내었고, 산소유속변화에 가장 큰 변화를 나타내었다.The surface roughness (Ra) was changed from 3.526 to 4.754㎛ according to each condition. The surface roughness (Ra) showed the smallest surface roughness when the oxygen flow rate 38FMR, the hydrogen flow rate 53FMR, the spraying distance 7inch and the powder feed 25g / min. Showed the biggest change.

표 2와 같은 실험계획법으로 제작된 시편의 표면특성분석을 통해 각 표면특성에 대한 최적공정을 선정하였고 WC계열의 분말특성상 내마모성을 고려하여 경도, 기공도, 표면거칠기 순으로 공정변수의 우선순위를 정하였다.The optimum process for each surface characteristic was selected through the surface characteristics analysis of the specimens prepared by the experimental design method as shown in Table 2. Decided.

최적코팅공정은 경도를 기준으로 하여 산소유속 38FMR, 수소유속 53FMR, 용사거리 7inch 그리고 분말공급 25g/min 이다.Optimum coating process is based on hardness, oxygen flow rate 38FMR, hydrogen flow rate 53FMR, spraying distance 7inch and powder feed 25g / min.

최적공정으로 WC-CrC-Ni 용사한 코팅층의 표면특성을 평가하였다.The surface characteristics of the WC-CrC-Ni thermal sprayed coating layer were evaluated by the optimum process.

최적공정으로 용사한 WC-CrC-Ni 코팅층의 단면과 표면 형태적 SEM, EDS결과를 도 6에 나타내었다.6 shows cross-sectional and surface morphological SEM and EDS results of the WC-CrC-Ni coating layer sprayed by the optimum process.

코팅층의 두께는 약 320이다.The thickness of the coating layer is about 320.

단면분석결과 모재와 계면이 매우 치밀한 320㎛코팅층이 생성되었고 접착력이 양호한 것으로 사료된다.As a result of the cross-sectional analysis, a 320㎛ coating layer having very dense interface with the base metal was produced and the adhesion was considered to be good.

코팅층 Ni, Cr의 풍부한 바인더 기지에 WC 분진이 분산되어 있다.WC dust is disperse | distributed to the binder base rich in coating layers Ni and Cr.

도 7에 코팅층의 경도와 기공도 분석결과를 나타내었다.7 shows the results of analyzing the hardness and porosity of the coating layer.

최적용사공정의 경도값은 1,150Hv으로 다구찌 공정의 최고값인 1,033Hv 보다 117Hv(약 11%)증가하였다.The hardness value of the optimal spraying process was 1,150Hv, which was 117Hv (about 11%) higher than the maximum value of 1,033Hv of Taguchi process.

기공도는 1.2%로 다구찌 공정 최소값인 0.27%보다 0.93%(약 344%) 증가하였는데 이는 경도와 기공도의 최적공정변수가 틀리고 기공도가 공정변수 변화에 많은 영향을 받기 때문이라 사료된다.The porosity was 1.2%, which was 0.93% (about 344%) higher than the Taguchi process's minimum value of 0.27%.

WC-CrC-Ni 분말의 HVOF 용사코팅을 한 결과 다음과 같은 결론을 얻을 수 있었다.As a result of HVOF spray coating of WC-CrC-Ni powder, the following conclusions were obtained.

1. 9가지 공정에 의해 인코넬(Inconel)718 기판 위에 고속화염 용사법으로 코팅한 WC-CrC-Ni 분말의 직경은 15~30㎛이며 코팅 평균두께 및 경도, 기공성, 표면거칠기는 350~400㎛, 965Hv, 2.65%, 4.4㎛이다.1.The diameter of WC-CrC-Ni powder coated on the Inconel 718 substrate by the high speed flame spraying method by 9 processes is 15 ~ 30㎛ and the average thickness, hardness, porosity and surface roughness of 350 ~ 400㎛ , 965Hv, 2.65%, 4.4 mu m.

2. WC-CrC-Ni HVOF 코팅의 XRD분석결과 HVOF 공정 중에 열분해가 일어나며 분말에서 존재하지 않는 새로운 상을 확인할 수 있었다.2. XRD analysis of the WC-CrC-Ni HVOF coating revealed a new phase that did not exist in the powder due to thermal decomposition during the HVOF process.

3. WC-CrC-Ni의 코팅의 최적공정은 O₂공급속도 38FMR, H₂공급속도 53FMR, 분말공급속도 25g/min, 분사거리 7inch 이다.3. The optimum process of coating WC-CrC-Ni is O₂ feed rate 38FMR, H₂ feed rate 53FMR, powder feed rate 25g / min, spraying distance 7inch.

4. 최적공정으로 HVOF한 WC-CrC-Ni 코팅층의 경도값은 1,150Hv으로 다구찌 공정의 최고값인 1,033Hv 보다 117Hv(약 11%) 증가하였다.4. The hardness value of the WC-CrC-Ni coating layer with HVOF as the optimum process was 1,150Hv, which is 117Hv (about 11%) higher than the maximum value of 1,033Hv of Taguchi process.

도 1은 (a)와 (b)는 WC-CrC-Ni 분말의 확대도, (c)는 XRD 결과도Figure 1 (a) and (b) is an enlarged view of the WC-CrC-Ni powder, (c) is an XRD results

도 2는 9가지 조건에 의한 WC-CrC-Ni 코팅의 XRD2 is XRD of WC-CrC-Ni coating under 9 conditions

도 3은 9가지 조건에 의한 WC-CrC-Ni 코팅의 SEM 단면도3 is a SEM cross-sectional view of the WC-CrC-Ni coating under 9 conditions

도 4는 9가지 조건에 의한 WC-CrC-Ni 코팅의 표면형태적 SEM 결과도Figure 4 is a surface morphological SEM results of the WC-CrC-Ni coating under 9 conditions

도 5는 표면특성(경도, 기공도, 표면거칠기)과 공정변수들의 상관관계5 is a correlation between surface characteristics (hardness, porosity, surface roughness) and process variables

도 6은 최적공정으로 용사한 WC-CrC-Ni 코팅의 단면과 표면형태적 SEM결과도Figure 6 is a cross-sectional and surface morphological SEM results of the WC-CrC-Ni coating sprayed by the optimal process

도 7은 최적용사공정에 의한 WC-CrC-Ni 코팅의 경도와 기공도7 is a hardness and porosity of the WC-CrC-Ni coating by the optimum spraying process

Claims (2)

고속회전체의 내구성 향상을 위하여 텅스텐 카바이드 계열 합금분말을 초고속화염용사법(HVOF)으로 코팅하는 방법에 있어서,In the method of coating the tungsten carbide-based alloy powder by the ultra-fast flame spraying method (HVOF) to improve the durability of the high-speed rotating body, 용사조건은 O₂공급속도 38FMR, H₂공급속도 53FMR, 분말공급속도25g/min, 분사거리7inch인 것을 특징으로 하는 금속부품의 내구성 향상을 위한 텅스텐 카바이드 계열 합금 분말의 초고속화염용사코팅공정 최적화 방법.The spraying conditions are optimized for the high-speed flame spray coating process of tungsten carbide-based alloy powder for the durability improvement of metal parts, characterized in that the spraying conditions are: O 2 feed rate 38FMR, H 2 feed rate 53FMR, powder feed rate 25g / min, spraying distance 7inch. 제 1항에 있어서, 텅스텐 카바이드 계열 합금분말의 조성은 W68wt.%, C5wt.%, Cr21wt.%, Ni6wt.% 인 것을 특징으로 하는 금속부품의 내구성 향상을 위한 텅스텐 카바이드 계열 합금 분말의 초고속화염용사코팅공정 최적화 방법.The method of claim 1, wherein the composition of the tungsten carbide-based alloy powder is W68wt.%, C5wt.%, Cr21wt.%, Ni6wt.% Characterized in that the ultra-high speed flame spraying of tungsten carbide-based alloy powder for the durability of the metal parts How to optimize the coating process.
KR1020090032900A 2009-04-15 2009-04-15 High velocity oxy-fuel(hvof) spray coating process of wc-crc-ni powder for the improvement of durability of metallic components KR20100114391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090032900A KR20100114391A (en) 2009-04-15 2009-04-15 High velocity oxy-fuel(hvof) spray coating process of wc-crc-ni powder for the improvement of durability of metallic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090032900A KR20100114391A (en) 2009-04-15 2009-04-15 High velocity oxy-fuel(hvof) spray coating process of wc-crc-ni powder for the improvement of durability of metallic components

Publications (1)

Publication Number Publication Date
KR20100114391A true KR20100114391A (en) 2010-10-25

Family

ID=43133602

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090032900A KR20100114391A (en) 2009-04-15 2009-04-15 High velocity oxy-fuel(hvof) spray coating process of wc-crc-ni powder for the improvement of durability of metallic components

Country Status (1)

Country Link
KR (1) KR20100114391A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114042911A (en) * 2021-11-22 2022-02-15 河北京津冀再制造产业技术研究有限公司 Composite powder, composite coating, preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114042911A (en) * 2021-11-22 2022-02-15 河北京津冀再制造产业技术研究有限公司 Composite powder, composite coating, preparation method and application thereof
CN114042911B (en) * 2021-11-22 2023-11-24 河北京津冀再制造产业技术研究有限公司 Composite powder, composite coating, preparation method and application thereof

Similar Documents

Publication Publication Date Title
Hong et al. The effect of temperature on the dry sliding wear behavior of HVOF sprayed nanostructured WC-CoCr coatings
Guilemany et al. Role of heat treatments in the improvement of the sliding wear properties of Cr3C2–NiCr coatings
US20110312860A1 (en) Wear-resistant and low-friction coatings and articles coated therewith
Li et al. Influence of heat treatments on the microstructure as well as mechanical and tribological properties of NiCrAlY-Mo-Ag coatings
US20070099014A1 (en) Method for applying a low coefficient of friction coating
Wank et al. Comparison of hardmetal and hard chromium coatings under different tribological conditions
Du et al. Water-lubricated tribological behavior of WC-Ni coatings deposited by off-angle HVOF spraying
Mubarok et al. Thermally sprayed SiC coatings for offshore wind turbine bearing applications
Kekes et al. Wear micro-mechanisms of composite WC-Co/Cr-NiCrFeBSiC coatings. Part I: Dry sliding
Ozbek et al. The surface properties of WC-Co-Cr based coatings deposited by high velocity oxygen fuel spraying
Ouyang et al. The friction and wear characteristics of low-pressure plasma-sprayed ZrO2-BaCrO4 composite coating at elevated temperatures
Ouyang et al. Microstructure and tribological properties of low-pressure plasma-sprayed ZrO2–CaF2–Ag2O composite coating at elevated temperature
Li et al. Wear mechanism of plasma-sprayed Cr3C2 NiCr against TiO2 coating
Fadavi et al. Study on high-temperature oxidation behaviors of plasma-sprayed TiB 2-Co composite coatings
KR20100114391A (en) High velocity oxy-fuel(hvof) spray coating process of wc-crc-ni powder for the improvement of durability of metallic components
Padmavathi et al. Investigation of HVOF processed carbide based coating on AISI-4340
CN109797358A (en) A kind of preparation method of ceramic base self-lubricating composite coating
CN111850453A (en) Chromium oxide-based antifriction coating and preparation method thereof
Gadow et al. Advanced ceramic tribological layers by thermal spray routes
Bhushan Overview of Coating Materials, Surface Treatments, and Screening Techniques for Tribological Applications—Part 1: Coating Materials and Surface Treatments
Fan et al. Optimization of the HVOF spray deposition of Ni3Al coatings on stainless steel
Zhu et al. Thermal spray of cemented carbide coatings in off-angle spraying: correlations between process, coating features/characteristics and performance
Xing et al. Abrasive wear behavior of cast iron coatings plasma-sprayed at different mild steel substrate temperatures
Rao et al. Erosion behaviour of HVOF sprayed SiC-WC-Cr3C2 multilayer coating on 304 stainless steel
Zhu et al. Titanium carbonitride thick coating prepared by plasma spray synthesis and its tribological properties

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application