KR20100112049A - Method for producing metal nano structures using ionic liquid - Google Patents

Method for producing metal nano structures using ionic liquid Download PDF

Info

Publication number
KR20100112049A
KR20100112049A KR1020090030599A KR20090030599A KR20100112049A KR 20100112049 A KR20100112049 A KR 20100112049A KR 1020090030599 A KR1020090030599 A KR 1020090030599A KR 20090030599 A KR20090030599 A KR 20090030599A KR 20100112049 A KR20100112049 A KR 20100112049A
Authority
KR
South Korea
Prior art keywords
ionic liquid
metal
anion
formula
organic
Prior art date
Application number
KR1020090030599A
Other languages
Korean (ko)
Other versions
KR101479788B1 (en
Inventor
광 석 서
종 은 김
태 영 김
Original Assignee
광 석 서
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광 석 서 filed Critical 광 석 서
Priority to KR20090030599A priority Critical patent/KR101479788B1/en
Priority to PCT/KR2010/002127 priority patent/WO2010117204A2/en
Priority to CN201080014483.0A priority patent/CN102369154B/en
Priority to US13/263,350 priority patent/US20120034129A1/en
Priority to JP2012504611A priority patent/JP6041138B2/en
Priority to TW099110948A priority patent/TW201100558A/en
Publication of KR20100112049A publication Critical patent/KR20100112049A/en
Application granted granted Critical
Publication of KR101479788B1 publication Critical patent/KR101479788B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F2009/245Reduction reaction in an Ionic Liquid [IL]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE: A method for manufacturing metal nanostructure is provided to uniformly produce metal structure of various forms using ionic liquid. CONSTITUTION: A method for manufacturing metal nanostructure comprises a step of mixing ionic liquid, metal salt and reduction solvent and reacting to form metal nanostructure of various shapes. A method for determining the form of metal nanostructure comprises: a step of forming one-dimensional structure such as nanowire using ionic liquid with anion of sulfide having alkylsulfate(RSO_4^-) or akylsulfonate(RSO_3^-); a step of forming three dimensional structure using an ionic liquid with anion of halides; and a step of forming octahedron structure in case of bromine anion(Br^-).

Description

이온성 액체를 이용한 금속 나노구조체의 제조방법{Method for producing metal nano structures using ionic liquid}Method for producing metal nano structures using ionic liquid

본 발명은 나노크기의 금속 나노구조체의 제조방법에 관한 것으로서, 보다 구체적으로는 금속염을 전구체로 하는 폴리올 환원반응에 있어 이온성 액체를 이용함으로써 큐빅 또는 팔면체 형상의 입자형태, 나노와이어 형태 등 다양한 형태의 금속 나노구조체를 균일하게 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a nano-sized metal nanostructure, and more specifically, by using an ionic liquid in the polyol reduction reaction using a metal salt as a precursor, various forms such as cubic or octahedral particles and nanowires The present invention relates to a method for uniformly preparing a metal nanostructure.

최근 평판디스플레이, 터치패널, 태양광 전지 등 여러 분야에 적용하기 위해 금속 나노입자의 합성에 관한 연구가 많이 진행되고 있다. 이들 금속나노입자는 투명 전극 또는 전도성 잉크 등 여러 분야에 적용될 수 있어 이들 금속 나노입자의 양산화 기술 발명이 필요하다. 이때 금속 나노입자의 형태는 전기전도도 등의 특성을 좌우하는 중요한 요소이기 때문에 금속 나노입자의 형태를 자유롭게 제어할 수 있는 기술의 발명이 필요하다.Recently, many researches have been conducted on the synthesis of metal nanoparticles for various fields such as flat panel displays, touch panels, and solar cells. Since these metal nanoparticles can be applied to various fields such as transparent electrodes or conductive inks, there is a need for an invention of mass production of these metal nanoparticles. At this time, since the shape of the metal nanoparticles is an important factor influencing the characteristics of the electrical conductivity and the like, an invention of a technology capable of freely controlling the shape of the metal nanoparticles is required.

최근 금속염 전구체를 에틸렌글리콜 등의 폴리올 환원제를 사용하여 금속나노구조체를 제조함에 있어 폴리비닐피롤리돈 등의 화합물을 함께 사용하면 와이어 형태의 금속구조체를 제조하는 기술이 보고된 바 있다. (Chem. Mater. 14, 4736- 4745). 상기 기술은 소위 폴리올 환원방법이라 명명되는데, 이 방법은 용액상의 금속 나노구조체를 비교적 용이하게 제조할 수 있는 장점이 있다. 그러나 상술한 방법에 의해 제조된 금속 나노구조체는 주로 와이어 형상을 가지기는 하지만 와이어 형상뿐만 아니라 다른 나노입자의 형상을 갖는 구조체가 혼재되어 있는 경우가 많으며, 반응 조건에 따라서 나노 구조체의 형태가 재현성 있게 제조되기 어렵다는 단점이 있다.Recently, when a metal salt precursor is prepared using a polyol reducing agent such as ethylene glycol, and a compound such as polyvinylpyrrolidone is used to prepare a metal nanostructure, a technique for producing a metal structure in the form of a wire has been reported. (Chem. Mater. 14, 4736-4745). The technique is called a polyol reduction method, and this method has an advantage that it is relatively easy to prepare a solution-shaped metal nanostructure. However, the metal nanostructures prepared by the above-described methods are often wire-shaped, but in many cases, the structure having the shape of other nanoparticles as well as the wire shape is mixed, and the shape of the nano-structure is reproducible depending on the reaction conditions. There is a disadvantage of being difficult.

따라서 금속 나노구조체를 제조하는 데 있어, 최종 생성물이 와이어 형상, 큐빅 형상, 또는 팔면체 형상 등 금속 나노구조체의 형상을 균일하면서 자유롭게 제어할 수 있는 기술의 발명이 필요하다.Therefore, in the manufacture of metal nanostructures, there is a need for the invention of a technology in which the final product can uniformly and freely control the shape of the metal nanostructures such as wire shape, cubic shape, or octahedral shape.

본 발명의 목적은 이온성 액체를 이용하여 다양한 형상의 금속 나노구조체를 자유롭게 선택하여 균일하게 제조할 수 있도록 하는 방법을 제공하는 것이다. 즉, 본 발명을 이용하여 금속염을 전구체로 하는 폴리올 환원 반응에 있어, 와이어 형상, 큐빅 형상, 팔면체 형상 등 다양한 형상의 금속 나노구조체를 균일하면서도 자유롭게 제조할 수 있다.It is an object of the present invention to provide a method of freely selecting and uniformly preparing metal nanostructures of various shapes using an ionic liquid. That is, in the polyol reduction reaction using a metal salt as a precursor using the present invention, metal nanostructures having various shapes such as wire shape, cubic shape, and octahedral shape can be uniformly and freely produced.

본 발명이 이루고자 하는 과제들은 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problem to be achieved by the present invention is not limited to the above-mentioned problem, another task that is not mentioned will be clearly understood by those skilled in the art from the following description.

위와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 이온성 액체, 금속염 및 환원용매를 혼합, 반응시킴으로써 다양한 형상의 금속 나노구조체를 제조하는 방법이다.In order to achieve the object of the present invention as described above, the present invention is a method for producing a metal nanostructure of various shapes by mixing and reacting an ionic liquid, a metal salt and a reducing solvent.

또한 본 발명은 이온성 액체, 금속염 및 환원용매를 혼합, 반응시킴으로써 상기 이온성 액체를 구성하는 양이온 및 음이온의 화학적 결합 구조에 의해 금속 나노구조체의 형상 구조가 결정되는 것을 특징으로 한다.In addition, the present invention is characterized in that the shape structure of the metal nanostructure is determined by the chemical bonding structure of the cation and anion constituting the ionic liquid by mixing and reacting the ionic liquid, the metal salt and the reducing solvent.

또한 본 발명은 이온성 액체, 금속염 및 환원용매를 혼합, 반응시킴으로써 금속 나노구조체를 제조하는 방법에 있어서, 이온성 액체에 의해 금속 나노구조체가 1차원, 2차원 또는 3차원 형상을 포함하는 다양한 구조를 가지도록 하는 것을 특징으로 한다.In addition, the present invention is a method for producing a metal nanostructure by mixing and reacting an ionic liquid, a metal salt and a reducing solvent, wherein the metal nanostructure by the ionic liquid various structures including a one-dimensional, two-dimensional or three-dimensional shape Characterized in that to have.

본 발명에서는 금속염을 전구체의 폴리올 환원반응 시 이온성 액체를 이용하고 이때 이온성 액체의 음이온 성분을 달리하여 금속 나노입자의 형상을 변화시키는 방법을 사용하였다.In the present invention, a method of changing the shape of the metal nanoparticles by using an ionic liquid in the polyol reduction reaction of the precursor of the metal salt and changing the anion component of the ionic liquid.

본 발명은 이온성 액체, 금속염 및 환원용매를 혼합, 반응시킴으로써 폴리올 환원반응으로 통해 금속입자를 제조함에 있어, 이온성 액체의 음이온의 종류를 달리하여 각기 다른 형상의 금속 나노입자를 제조함을 특징으로 한다.The present invention is to prepare a metal particle through a polyol reduction reaction by mixing and reacting an ionic liquid, a metal salt and a reducing solvent, to prepare metal nanoparticles of different shapes by different kinds of anions of the ionic liquid. It is done.

상기 금속염은 AgNO3, Ag(CH3COO)2, AgClO4, Au(ClO4)3, PdCl2, NaPdCl4, PtCl2 , SnCl4, HAuCl4, FeCl2, FeCl3, Fe(CH3COO)2, CoCl2, K4Fe(CN)6, K4Co(CN)6, K4Mn(CN)6, K2CO3등 대부분의 금속 양이온 및 유기 또는 무기 음이온으로 이루어진 것으로서, 어느 특정 금속 원소에 한정되지 않고 대부분의 금속염을 사용할 수 있다. 상기 금속염은 환원 반응을 통해 은, 금, 팔라듐, 주석, 철, 코발트 등 해당 금속 나노입자로 변환된다.The metal salt is AgNO 3 , Ag (CH 3 COO) 2 , AgClO 4 , Au (ClO 4 ) 3 , PdCl 2 , NaPdCl 4 , PtCl 2 , SnCl 4 , HAuCl 4 , FeCl 2 , FeCl 3 , Fe (CH 3 COO ) 2 , CoCl 2 , K 4 Fe (CN) 6 , K 4 Co (CN) 6 , K 4 Mn (CN) 6, K 2 CO 3, including most metal cations and organic or inorganic anions, Most metal salts can be used without being limited to metal elements. The metal salt is converted into the corresponding metal nanoparticles such as silver, gold, palladium, tin, iron, and cobalt through a reduction reaction.

상기 환원 용매는 금속염을 용해시킬 수 있는 극성용매로서 분자 내에 히드록시기를 적어도 2개 이상 가지는 다이올, 폴리올 또는 글리콜등의 용매를 말한다. 이의 구체적인 예로는 에틸렌 글리콜, 1,2-프로필렌글리콜, 1,3-프로필렌글리콜, 글리세린, 글리세롤, 폴리에틸렌글리콜, 폴리프로필렌글리콜 등이 있다. 상기 폴리 올 환원 용매는 금속염의 환원반응을 유도하여 금속원소를 생성하게 하는 역할을 한다.The reducing solvent is a polar solvent capable of dissolving a metal salt, and refers to a solvent such as diol, polyol, or glycol having at least two hydroxyl groups in a molecule. Specific examples thereof include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, glycerin, glycerol, polyethylene glycol, polypropylene glycol, and the like. The polyol reducing solvent serves to induce a reduction reaction of the metal salt to generate metal elements.

상기 이온성 액체는 유기 양이온 및 유기 또는 무기 음이온으로 구성된 화합물로서 하기 화학식 1a의 이미다졸리움계 이온성 액체 및/또는 하기 화학식 1b의 피리디늄계 이온성 액체인 것을 특징으로 한다.The ionic liquid is a compound composed of an organic cation and an organic or inorganic anion, and is characterized in that it is an imidazolium ionic liquid of Formula 1a and / or a pyridinium ionic liquid of Formula 1b.

Figure 112009021268484-PAT00001
Figure 112009021268484-PAT00001

상기 화학식 1a에서 R1 및 R2 는 동일하거나 또는 상이하며, 수소 또는 탄소수 1 내지 16의 탄화수소기를 나타내고, 헤테로원자를 포함할 수도 있다. 또한 X-는 이온성 액체의 음이온을 나타낸다. R 1 in Chemical Formula 1a And R 2 are the same or different and represent hydrogen or a hydrocarbon group of 1 to 16 carbon atoms, and may include a heteroatom. And X represents an anion of an ionic liquid.

Figure 112009021268484-PAT00002
Figure 112009021268484-PAT00002

상기 화학식 1b에서 R3 및 R4 는 동일하거나 또는 상이하며, 수소 또는 탄소 수 1 내지 16의 탄화수소기를 나타내고, 헤테로원자를 포함할 수도 있다. 또한 X-는 이온성 액체의 음이온을 나타낸다. R 3 in Formula 1b And R 4, which is the same or different, represents hydrogen or a hydrocarbon group having 1 to 16 carbon atoms, and may include a heteroatom. And X represents an anion of an ionic liquid.

상기 화학식 1a로 나타낸 이미다졸리움 이온성 액체의 양이온의 예를 구체적으로 들면, 1,3-다이메틸이미다졸륨, 1,3-다이에틸이미다졸륨, 1-에틸-3-메틸이미다졸륨, 1-부틸-3-메틸이미다졸륨, 1-헥실-3-메틸이미다졸륨, 1-옥틸-3-메틸이미다졸륨, 1-데실-3-메틸이미다졸륨, 1-도데실-3-메틸이미다졸륨,1-테트라데실-3-메틸이미다졸륨,등이 있으며, 상기 화학식 1b로 나타낸 피리디늄계 이온성 액체 양이온의 예로는 1-메틸피리디늄, 1-에틸피리디늄, 1-부틸피리디늄, 1-에틸-3-메틸피리디늄, 1-부틸-3-메틸피리디늄, 1-헥실-3-메틸피리디늄, 1-부틸-3,4-디메틸피리디늄등이 있다. Specific examples of the cation of the imidazolium ionic liquid represented by the formula (1a) include 1,3-dimethylimidazolium, 1,3-diethylimidazolium, 1-ethyl-3-methylimidazolium , 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium, 1-octyl-3-methylimidazolium, 1-decyl-3-methylimidazolium, 1-dodecyl- 3-methylimidazolium, 1-tetradecyl-3-methylimidazolium, and the like. Examples of the pyridinium-based ionic liquid cation represented by Formula 1b include 1-methylpyridinium, 1-ethylpyridinium, 1-butylpyridinium, 1-ethyl-3-methylpyridinium, 1-butyl-3-methylpyridinium, 1-hexyl-3-methylpyridinium, 1-butyl-3,4-dimethylpyridinium .

또한 본 발명의 이온성 액체 양이온은 화학식 1a 또는 화학식 1b로 나타나는 단분자 형태의 이온성 액체뿐만 아니라 고분자 형태의 이온성 액체를 포함하는 것으로서, 예를 들면 폴리(1-비닐-3-알킬이미다졸리움), 폴리(1-비닐-피리디늄), 폴리(1-비닐-알킬피리디늄), 폴리(1-알릴-3-알킬이미다졸륨), 폴리(1-(메트)아크릴로일록시-3-알킬이미다졸륨)등이 있으며, 어느 특정 화합물에 한정되지 않는다. In addition, the ionic liquid cation of the present invention includes not only the ionic liquid of the monomolecular form represented by the formula (1a) or the formula (1b) but also the ionic liquid of the polymer form, for example, poly (1-vinyl-3-alkylimide). Jolium), poly (1-vinyl-pyridinium), poly (1-vinyl-alkylpyridinium), poly (1-allyl-3-alkylimidazolium), poly (1- (meth) acryloyloxy- 3-alkylimidazolium), and the like, and are not limited to any particular compound.

상기 단분자 또는 고분자형태의 이온성 액체는 유기 또는 무기 음이온을 가 지며, 예를 들면 Br-, Cl-, I-, BF4 -, PF6 -, ClO4 -, NO3 -, AlCl4 -, Al2Cl7 -, AsF6 -, SbF6 -, CH3COO-, CF3COO-, CH3SO3 -, C2H5SO3 -, CH3SO4 -, C2H5SO4 -, CF3SO3 -, (CF3SO2)2N-, (CF3SO2)3C-, (CF3CF2SO2)2N-, C4F9SO3 -, C3F7COO-, (CF3SO2)(CF3CO)N-등이 있으며, 어느 특정 화합물에 한정되지 않는다.The monomolecular or ionic liquid in a polymer form becomes an organic or inorganic anion, for example, Br -, Cl -, I - , BF 4 -, PF 6 -, ClO 4 -, NO 3 -, AlCl 4 - , Al 2 Cl 7 -, AsF 6 -, SbF 6 -, CH 3 COO -, CF 3 COO -, CH 3 SO 3 -, C 2 H 5 SO 3 -, CH 3 SO 4 -, C 2 H 5 SO 4 -, CF 3 SO 3 - , (CF 3 SO 2) 2 N -, (CF 3 SO 2) 3 C -, (CF 3 CF 2 SO 2) 2 N -, C 4 F 9 SO 3 -, C 3 F 7 COO -, (CF 3 SO 2) (CF 3 CO) N - and the like, and is not limited to any particular compound.

상기 단분자 또는 고분자 형태의 이온성 액체는 양이온 및 음이온의 조합에 따라 다양한 물리적, 화학적 특성을 갖는 구성이 가능한데, 바람직하게는 금속염 및 환원용매와 상용성이 높은 것으로 선택하는 것이 유리하다. 상기 이온성 액체는 금속염이 폴리올 환원반응에 의해 금속원소로 변환될 때 금속이온 또는 금속원소와 화학적 상호작용을 함으로써 금속원소가 일차원, 이차원, 또는 삼차원적인 성장을 할 수 있도록 도와주는 역할을 하게 되어 최종적으로 균일한 형상을 갖는 금속 입자가 만들어진다.The ionic liquid in the form of a single molecule or a polymer can be configured with various physical and chemical properties depending on the combination of cations and anions. Preferably, the ionic liquid has a high compatibility with metal salts and reducing solvents. The ionic liquid serves to help the metal element to grow one-dimensional, two-dimensional or three-dimensional by chemically interacting with the metal ion or the metal element when the metal salt is converted into the metal element by the polyol reduction reaction. Finally, metal particles having a uniform shape are produced.

특히 상기 이온성 액체의 음이온 성분이 최종적으로 제조된 금속 나노입자의 형상을 좌우하는데, 예를 들어 알킬설페이트(RSO4 -)나 알킬설포네이트(RSO3 -)와 같은 황화합물의 음이온을 가진 이온성 액체를 사용하면 주로 일차원적인 성장을 하여 나노와이어 형상의 금속 구조체가 제조되며, 할라이드(Halide)계 음이온을 가진 이 온성 액체를 사용하면 주로 삼차원적인 성장을 하여 염소 음이온 (Cl-)의 경우 큐브형태, 브롬 음이온 (Br-)의 경우 팔면체의 입자 형상의 금속구조체가 제조된다. 이온성 액체의 음이온 성분에 따라 각기 다른 형상의 금속나노입자를 선택적으로 제조할 수 있다. 최종적인 나노구조체의 형상은 반응 초기 단계에서 금속나노입자와 이온성 액체간의 상호작용에 의해 금속나노입자의 성장방향이 달라지기 때문으로, 이 단계에서 특히 이온성 액체의 음이온이 중요한 역할을 하게 된다. 즉, 반응초기에 먼저 금속염이 환원용매에 의해 먼저 금속 나노입자가 형성되고, 금속 나노입자와 이온성 액체의 음이온 (Cl-, Br-, CH3SO4-)과 상호작용하면서 일정방향의 성장을 도와주게 되어 다양한 형상의 금속 나노구조체를 제조할 수 있게 된다.In particular, the anion component of the ionic liquid determines the shape of the finally prepared metal nanoparticles, for example, an ionic having an anion of a sulfur compound such as alkyl sulfate (RSO 4 ) or alkyl sulfonate (RSO 3 ). using a liquid when in a primarily one-dimensional growth is made of the metal structure of the nanowire shape, halide (halide) based If with an anion using ionic liquids three-dimensional to the growth chlorine negative ions (Cl -), mainly when the form of a cube In the case of the bromine anion (Br ), a metal structure having an octahedral particle shape is prepared. According to the anion component of the ionic liquid, metal nanoparticles having different shapes can be selectively produced. The final shape of the nanostructures is that the growth direction of the metal nanoparticles is changed by the interaction between the metal nanoparticles and the ionic liquid in the initial stage of the reaction, so the anion of the ionic liquid plays an important role in this step. . That is, at the beginning of the reaction, metal salts are first formed by the reducing solvent, and metal nanoparticles are formed first, and the metal nanoparticles interact with the anions (Cl-, Br-, CH3SO4-) of the ionic liquid to help growth in a certain direction. The metal nanostructures of various shapes can be manufactured.

본 발명의 대표적인 예로서 나노와이어 형상을 가지는 금속 나노구조체를 제조하는 구체적인 방법은 다음과 같다. 먼저 상기의 금속염, 환원 용매 및 황화물 음이온으로 이루어진 이온성 액체를 적정비율로 혼합하여 상온에서 일정시간 교반한다. 균일한 혼합이 이루어지면 상기 혼합물의 반응온도를 섭씨 150-200 도로 올려 반응을 지속함으로써 금속 나노와이어가 제조되어진다. 이에 따라 제조된 금속 나노와이어는 나노입자 형상은 거의 없으며, 평균 직경이 0.01내지 0.1 미크론, 평균 길이가 5 내지 100 미크론인 나노와이어 형상을 갖는다. 상기의 과정에서 나노와이어의 형상을 갖도록 하기 위해서는 각 성분의 혼합비율을 적절하게 조절하는 것이 필요한데, 이는 환원용매에 대해 금속염 0.01 내지 1 몰농도 및 이온성 액체 (고분자 형태의 이온성 액체인 경우에는 반복단위 기준으로) 0.001 내지 1 몰농도로 유지하는 것이 바람직하다. 상기 농도에 있어 하한치 이하를 사용하면 농도가 너무 낮아 생성되는 금속와이어의 함량이 너무 낮아지거나 이온성 액체의 함량이 너무 낮아 금속 나노와이어 생성이 잘 안되어 불리하다. 반면에, 금속염의 농도가 1 몰 이상이면 금속염의 함량이 너무 높아 생성된 금속입자가 서로 달라붙거나 입자 크기가 커지는 단점이 있어 불리하거나, 또는 이온성 액체의 함량이 1 몰 이상이 되면 전체 용액의 점도가 너무 높아져 금속 나노와이어 합성이 어려워져 오히려 불리하다.As a representative example of the present invention, a specific method of manufacturing a metal nanostructure having a nanowire shape is as follows. First, the ionic liquid consisting of the metal salt, the reducing solvent and the sulfide anion is mixed at an appropriate ratio and stirred at room temperature for a certain time. When uniform mixing is achieved, the metal nanowires are manufactured by continuing the reaction by raising the reaction temperature of the mixture to 150-200 degrees Celsius. The metal nanowires thus prepared have almost no nanoparticle shape, and have a nanowire shape having an average diameter of 0.01 to 0.1 micron and an average length of 5 to 100 microns. In order to have the shape of the nanowire in the above process, it is necessary to properly control the mixing ratio of each component, which is 0.01 to 1 molar concentration of the metal salt and the ionic liquid (in the case of the polymer type ionic liquid) It is preferable to maintain the concentration in the range of 0.001 to 1 molar. If the concentration is less than the lower limit, the concentration is too low, the content of the metal wire produced is too low, or the content of the ionic liquid is too low, it is disadvantageous that the production of metal nanowire is not good. On the other hand, if the concentration of the metal salt is 1 mol or more, the content of the metal salt is so high that the resulting metal particles stick to each other or the particle size is disadvantageous, or if the content of the ionic liquid is 1 mol or more, the total solution Too high a viscosity of the metal nanowires synthesis is difficult and rather disadvantageous.

전술한 방법과 동일한 방법을 사용하면서 음이온이 다른 이온성 액체를 사용하면 큐빅 형상의 금속 나노입자 또는 팔면체 형상의 금속 나노입자를 균일하면서 안정적으로 합성할 수 있다.By using the same method as described above and using an ionic liquid having different anions, it is possible to uniformly and stably synthesize the cubic metal nanoparticles or the octahedral metal nanoparticles.

본 발명의 이온성 액체, 금속염 및 환원용매를 혼합, 반응함으로써 다양한 형상의 금속 나노구조체를 제조하는 방법에 있어, 금속 나노구조체의 형상 및 크기를 더욱 효과적으로 제어하기 위하여 하기 화학식 2a의 질소화합물 또는 화학식 2b의 황화합물을 첨가제로서 추가하는 것이 가능하며, 이 때 상기 화합물의 함량범위는 금속염 100 중량부를 기준으로 0.1 내지 100 중량부로 하는 것이 바람직하다. 이들 화합물의 농도가 0.1 중량부 이하이면 형상 및 크기 제어 효과가 미미하고, 100 중량부 이상이면 나노구조체의 형상이 변화하는 부작용이 발생하여 오히려 불 리하다.In the method for producing metal nanostructures of various shapes by mixing and reacting the ionic liquid, the metal salt, and the reducing solvent of the present invention, in order to more effectively control the shape and size of the metal nanostructures, the nitrogen compound of Formula 2a or It is possible to add the sulfur compound of 2b as an additive, wherein the content range of the compound is preferably 0.1 to 100 parts by weight based on 100 parts by weight of the metal salt. When the concentration of these compounds is 0.1 parts by weight or less, the shape and size control effects are insignificant, and when 100 parts by weight or more, side effects of changing the shape of the nanostructures are rather undesired.

Figure 112009021268484-PAT00003
Figure 112009021268484-PAT00003

여기서, R5, R6, R7 및 R8은 동일하거나 또는 상이하며, 탄소수 1 내지 20의 탄화수소기를 나타내고, 헤테로 원자를 포함할 수 도 있다. 또한 Y-는 유기 또는 무기 음이온을 나타낸다.Here, R 5 , R 6 , R 7 and R 8 are the same or different, represent a hydrocarbon group having 1 to 20 carbon atoms, and may include a hetero atom. And Y represents an organic or inorganic anion.

Figure 112009021268484-PAT00004
Figure 112009021268484-PAT00004

여기서, R은 단분자 또는 고분자형태의 탄화수소기를 나타내고, 헤테로원자를 포함할 수도 있다. 또한 Y-는 유기 또는 무기 음이온을 나타낸다.Here, R represents a hydrocarbon group in the form of a single molecule or a polymer, and may include a heteroatom. And Y represents an organic or inorganic anion.

상기 화학식 2a로 나타낸 질소 화합물의 예로는 테트라부틸암모늄 클로라이드, 세틸트리메틸암모늄 브로마이드, 테트라부틸포스포늄 클로라이드등을 포함하 며, 상기 화학식 2b로 나타낸 황화합물의 예로는 소디움도데실설페이트, 도데실벤젠설포네이트, 폴리스티렌설포네이트, 폴리(소디움-4-스티렌설포네이트) 등이 있다. Examples of the nitrogen compound represented by Formula 2a include tetrabutylammonium chloride, cetyltrimethylammonium bromide, tetrabutylphosphonium chloride, and the like. Examples of the sulfur compound represented by Formula 2b include sodium dodecyl sulfate and dodecylbenzenesulfonate. , Polystyrenesulfonate, poly (sodium-4-styrenesulfonate), and the like.

본 발명의 기술을 사용하면 이온성 액체, 금속염 및 환원용매를 혼합, 반응시킴으로써 다양한 형상의 금속 나노구조체를 제조할 수 있다.Using the techniques of the present invention, metal nanostructures of various shapes can be prepared by mixing and reacting ionic liquids, metal salts and reducing solvents.

또한 금속염을 전구체로 하는 폴리올 환원 반응에 있어, 음이온의 종류가 다른 이온성 액체를 선택적으로 사용하면 형상이 각기 다른 금속 나노입자를 선택적으로 재현성있게 제조할 수 있어 효과적이다.In addition, in the polyol reduction reaction using a metal salt as a precursor, by selectively using an ionic liquid having a different kind of anion, metal nanoparticles having different shapes can be selectively and reproducibly produced.

이하 본 발명의 내용을 실시예를 통해 구체적으로 설명하고자 하나, 하기 실시예는 본 발명을 설명하기 위한 예시일 뿐 본 발명의 권리범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the following Examples are merely illustrative for describing the present invention and do not limit the scope of the present invention.

<실시예1>Example 1

둥근바닥 플라스크에 AgNO3를 에틸렌글리콜에 0.1 몰농도로 녹인 용액 50 밀리리터와 1-부틸-3-메틸이미다졸리움 메틸설페이트를 에틸렌글리콜에 0.15 몰농도로 녹인 용액 50 밀리리터를 혼합하였다. 상기 혼합용액은 섭씨 160도에서 60분간 교반하면서 반응시켰으며, 이후 온도를 다시 상온으로 냉각하였다. 상기 용액을 1 미크론의 기공을 가진 필터로 여과한 후, 전자주사현미경으로 관찰한 결과 도 1에 나타낸 바와 같이 나노와이어가 형성됨을 확인하였다. 나노와이어의 직경은 약 220 나노미터이었으며, 길이는 약 7 미크론으로 관찰되었다.In a round bottom flask, 50 milliliters of a solution of AgNO 3 dissolved in 0.1 mol of ethylene glycol and 50 milliliters of a solution of 1-butyl-3-methylimidazolium methyl sulfate in 0.15 mol of ethylene glycol was mixed. The mixed solution was reacted with stirring for 60 minutes at 160 degrees Celsius, and then cooled again to room temperature. The solution was filtered through a filter having a pore size of 1 micron, and observed with an electron scanning microscope to confirm that nanowires were formed as shown in FIG. 1. The diameter of the nanowires was about 220 nanometers and the length was observed to be about 7 microns.

<실시예 2><Example 2>

둥근바닥 플라스크에 AgNO3를 1,3-프로필렌글리콜에 0.2 몰농도로 녹인 용액 10 밀리리터와 1-에틸-3-메틸이미다졸리움 메틸설페이트를 1,3-프로필렌글리콜에 0.3 몰농도로 녹인 용액 10 밀리리터를 혼합하였다. 상기 혼합용액은 섭씨 100도의 온도에서 약 30분간 교반하여 반응시켰으며, 이후 온도를 상온으로 냉각하였다. 상기 용액을 1 미크론의 기공을 가진 필터로 여과한 후, 전자주사현미경으로 관찰한 결과 직경이 약 180 나노미터, 길이가 약 10 미크론의 나노와이어가 형성됨을 확인하였다.10 mL solution of AgNO 3 dissolved in 0.2 mol of 1,3-propylene glycol in a round bottom flask 10 mL solution of 0.3 mL of 1-ethyl-3-methylimidazolium methyl sulfate dissolved in 1,3-propylene glycol Milliliters were mixed. The mixed solution was reacted by stirring for about 30 minutes at a temperature of 100 degrees Celsius, and then cooled to room temperature. The solution was filtered through a filter having a pore size of 1 micron, and observed with an electron scanning microscope to confirm that nanowires of about 180 nanometers in diameter and about 10 microns in length were formed.

<실시예 3> <Example 3>

둥근바닥 플라스크에 AgNO3를 1,2-프로필렌글리콜에 0.2 몰농도로 녹인 용액 10 밀리리터와 1-에틸-3-메틸이미다졸리움 메틸설페이트를 1,3-프로필렌글리콜에 0.3 몰농도로 녹인 용액 10 밀리리터를 혼합한 후, 첨가한 AgNO3 중량 대비 1% 양의 소디움도데실설페이트를 첨가하였다. 상기 혼합용액은 섭씨 100도의 온도에서 약 30분간 교반하여 반응시켰으며, 이후 온도를 상온으로 냉각하였다. 상기 용액을 1 미크론의 기공을 가진 필터로 여과한 후, 전자주사현미경으로 관찰한 결과 직경이 약 80 나노미터, 길이가 약 10 미크론의 나노와이어가 형성됨을 확인하였다.10 mL of a solution of AgNO 3 dissolved in 1,2-propylene glycol in a round-bottomed flask 10 mL of 0.3 mL of 1-ethyl-3-methylimidazolium methyl sulfate in 1,3-propylene glycol After milliliters were mixed, sodium dodecyl sulfate was added in an amount of 1% by weight of the added AgNO 3 . The mixed solution was reacted by stirring for about 30 minutes at a temperature of 100 degrees Celsius, and then cooled to room temperature. The solution was filtered through a filter having a pore size of 1 micron, and observed with an electron scanning microscope to confirm that nanowires of about 80 nanometers in diameter and about 10 microns in length were formed.

<실시예 4><Example 4>

실시예 4는 이온성 액체로서 1-에틸-3-메틸피리디늄 메틸설페이트를 사용한 것을 제외하고는 실시예 1과 동일한 방법에 의해 금속 나노구조체를 제조하였다. 상기 용액을 1 미크론의 기공을 가진 필터로 여과한 후, 전자주사현미경으로 관찰한 결과 나노와이어가 형성됨을 확인하였다. 나노와이어의 직경은 약 320 나노미터이었으며, 길이는 약 5 미크론으로 관찰되었다.Example 4 A metal nanostructure was prepared in the same manner as in Example 1, except that 1-ethyl-3-methylpyridinium methyl sulfate was used as the ionic liquid. The solution was filtered through a filter having a pore size of 1 micron, and observed with an electron scanning microscope to confirm that nanowires were formed. The diameter of the nanowires was about 320 nanometers and the length was observed to be about 5 microns.

<실시예 5><Example 5>

실시예 5는 이온성 액체로서 1-부틸-3-메틸이미다졸리움 클로라이드를 사용한 것을 제외하고는 실시예 1과 동일한 방법에 의해 금속 나노구조체를 제조하였다. 최종적으로 생성된 반응용매를 0.2 미크론 크기의 테프론필터로 여과한 후, 전자주사현미경으로 관찰한 결과 도 2에 나타낸 바와 같이 약 400 나노미터의 큐브형상을 갖는 은 나노입자가 형성됨을 확인하였다.Example 5 was a metal nanostructure was prepared in the same manner as in Example 1, except that 1-butyl-3-methylimidazolium chloride was used as the ionic liquid. Finally, the resulting reaction solvent was filtered through a 0.2 micron Teflon filter, and then observed with an electron scanning microscope. As shown in FIG. 2, silver nanoparticles having a cube shape of about 400 nanometers were formed.

<실시예 6><Example 6>

실시예 6는 이온성 액체로서 1-부틸-3-메틸이미다졸리움 브로마이드를 사용한 것을 제외하고는 실시예 1과 동일한 방법에 의해 금속 구조체를 제조하였다. 최종적으로 생성된 반응용매를 1 미크론 필터로 여과한 후, 전자주사현미경으로 관찰한 결과 도 3에 나타낸 바와 같이 약 5 미크론의 팔면체 형상을 갖는 은 입자가 형성됨을 확인하였다.Example 6 A metal structure was prepared in the same manner as in Example 1 except that 1-butyl-3-methylimidazolium bromide was used as the ionic liquid. Finally, the resultant reaction solvent was filtered through a 1 micron filter, and then observed with an electron scanning microscope to confirm that silver particles having an octahedral shape of about 5 microns were formed as shown in FIG. 3.

도1 내지 도3은 본 발명에 따라 제조된 금속 나노구조체를 보여주는 사진들이다.1 to 3 are photographs showing metal nanostructures prepared according to the present invention.

Claims (13)

이온성 액체, 금속염 및 환원용매를 혼합, 반응시킴으로써 다양한 형상의 금속 나노구조체를 제조하는 금속 나노구조체 제조방법.Metal nanostructure manufacturing method for producing metal nanostructures of various shapes by mixing and reacting an ionic liquid, a metal salt and a reducing solvent. 제1항에 있어서, 상기 이온성 액체를 구성하는 양이온 및 음이온의 화학적 결합 구조에 의해 금속 나노구조체의 형상 구조가 결정되는 것을 특징으로 하는 금속 나노구조체 제조방법.The method of claim 1, wherein the shape structure of the metal nanostructure is determined by the chemical bonding structure of the cation and anion constituting the ionic liquid. 제2항에 있어서, 상기 이온성 액체를 구성하는 음이온 성분이 알킬설페이트(RSO4 -)나 알킬설포네이트(RSO3 -)를 포함하는 황화합물의 음이온을 가진 이온성 액체를 사용하여 나노와이어 형태와 같은 1차원 형상의 구조를, 할라이드(Halide)계 음이온을 가진 이온성 액체를 사용하여 3차원 형상의 구조를, 염소 음이온 (Cl-)의 경우 큐브형태 구조를, 그리고 브롬 음이온 (Br-)의 경우 팔면체의 입자 형상의 구조를, 가지도록 하는 것을 특징으로 하는 금속 나노구조체 제조방법.The method of claim 2, wherein the ionic alkyl sulfate anionic components constituting the liquid with nanowires form by using an ionic liquid with an anion of a sulfur compound containing a (RSO 4 - -) or alkyl sulfonate (RSO 3) of the structure of such a one-dimensional shape, halide (halide) type anion by using an ionic liquid with a structure of three-dimensional shape, a chlorine anion (Cl - -) the form of a cube structure, and bromine anions (Br) for Method for producing a metal nanostructure, characterized in that to have an octahedral particle structure. 제3항에 있어서, 상기 이온성 액체는 유기 양이온 및 유기 또는 무기 음이온으로 구성된 화합물로서 단분자 형태이거나 또는 고분자 형태임을 특징으로 하는 금속 나노구조체 제조방법.The method of claim 3, wherein the ionic liquid is a compound composed of an organic cation and an organic or inorganic anion and is in the form of a single molecule or a polymer. 제4항에 있어서, 상기 이온성 액체는 유기 양이온 및 유기 또는 무기 음이온으로 구성된 화합물로서 단분자 형태이거나 또는 고분자 형태임을 특징으로 하는 금속 나노구조체 제조방법.The method of claim 4, wherein the ionic liquid is a compound composed of an organic cation and an organic or inorganic anion and is in the form of a single molecule or a polymer. 제5항에 있어서, 상기 이온성 액체의 양이온으로는 하기 화학식 1a의 이미다졸리움계 양이온, 하기 화학식 1b의 피리디늄계 양이온을 포함하는 것으로서 단분자 형태 이거나 또는 고분자 형태임을 특징으로 하는 금속 나노구조체 제조방법.[Claim 6] The metal nanostructure of claim 5, wherein the cation of the ionic liquid includes an imidazolium-based cation of Formula 1a and a pyridinium-based cation of Formula 1b. Manufacturing method. <화학식 1a><Formula 1a>
Figure 112009021268484-PAT00005
Figure 112009021268484-PAT00005
상기 화학식 1a에서 R1 및 R2 는 동일하거나 또는 상이하며, 수소 또는 탄소수 1 내지 16의 탄화수소기를 나타내고, 헤테로원자를 포함할 수도 있다. 또한 X-는 이온성 액체의 음이온을 나타낸다. R 1 in Chemical Formula 1a And R 2 are the same or different and represent hydrogen or a hydrocarbon group of 1 to 16 carbon atoms, and may include a heteroatom. And X represents an anion of an ionic liquid. <화학식 1b><Formula 1b>
Figure 112009021268484-PAT00006
Figure 112009021268484-PAT00006
상기 화학식 1b에서 R3 및 R4 는 동일하거나 또는 상이하며, 수소 또는 탄소수 1 내지 16의 탄화수소기를 나타내고, 헤테로원자를 포함할 수도 있다. 또한 X-는 이온성 액체의 음이온을 나타낸다. R 3 in Formula 1b And R 4 are the same or different and represent hydrogen or a hydrocarbon group of 1 to 16 carbon atoms, and may include a heteroatom. And X represents an anion of an ionic liquid.
제5항에 있어서, 상기 이온성 액체의 음이온으로는 The method of claim 5, wherein the anion of the ionic liquid is Br-, Cl-, I-, BF4 -, PF6 -, ClO4 -, NO3 -, AlCl4 -, Al2Cl7 -, AsF6 -, SbF6 -, CH3COO-, CF3COO-, CH3SO3 -, C2H5SO3 -, CH3SO4 -, C2H5SO4 -, CF3SO3 -, (CF3SO2)2N-, (CF3SO2)3C-, (CF3CF2SO2)2N-, C4F9SO3 -, C3F7COO-, (CF3SO2)(CF3CO)N-을 포함하는 것임을 특징으로 하는 금속 나노구조체 제조방법. Br -, Cl -, I - , BF 4 -, PF 6 -, ClO 4 -, NO 3 -, AlCl 4 -, Al 2 Cl 7 -, AsF 6 -, SbF 6 -, CH 3 COO -, CF 3 COO -, CH 3 SO 3 - , C 2 H 5 SO 3 -, CH 3 SO 4 -, C 2 H 5 SO 4 -, CF 3 SO 3 -, (CF 3 SO 2) 2 N -, (CF 3 SO 2) 3 C -, ( CF 3 CF 2 SO 2) 2 N -, C 4 F 9 SO 3 -, C 3 F 7 COO -, (CF 3 SO 2) (CF 3 CO) N - containing Method for producing a metal nanostructure, characterized in that. 제1항에 있어서, 상기 금속염은 금속 양이온 및 유기 또는 무기 음이온으로 이루어진 것으로서 AgNO3, Ag(CH3COO)2, AgClO4, Au(ClO4)3, PdCl2, NaPdCl4, PtCl2 , SnCl4, HAuCl4, FeCl2, FeCl3, Fe(CH3COO)2, CoCl2, K4Fe(CN)6, K4Co(CN)6, K4Mn(CN)6, K2CO3 를 포함하는 것임을 특징으로 하는 금속 나노구조체 제조방법.The method of claim 1, wherein the metal salt is composed of a metal cation and an organic or inorganic anion, AgNO 3 , Ag (CH 3 COO) 2 , AgClO 4 , Au (ClO 4 ) 3 , PdCl 2 , NaPdCl 4 , PtCl 2 , SnCl 4 , HAuCl 4 , FeCl 2 , FeCl 3 , Fe (CH 3 COO) 2 , CoCl 2 , K 4 Fe (CN) 6 , K 4 Co (CN) 6 , K 4 Mn (CN) 6, K 2 CO 3 Metal nanostructures manufacturing method characterized in that it comprises a. 제1항에 있어서, 환원용매는 분자내에 히드록시기를 적어도 2개 이상 가지는 다이올, 폴리올 또는 글리콜등의 용매로서 에틸렌 글리콜, 1,2-프로필렌글리콜, 1,3-프로필렌글리콜, 글리세린, 글리세롤, 폴리에틸렌글리콜, 폴리프로필렌글리콜을 포함하는 것임을 특징으로 하는 금속 나노구조체 제조방법.The method of claim 1, wherein the reducing solvent is a solvent such as diol, polyol or glycol having at least two hydroxyl groups in the molecule, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, glycerin, glycerol, polyethylene Method for producing a metal nanostructure, characterized in that containing glycol, polypropylene glycol. 제1항에 있어서, 이온성 액체, 금속염 및 환원 용매의 혼합비율은 환원용매에 대해 금속염 0.01 내지 1 몰농도 및 이온성 액체 (고분자 형태의 이온성 액체인 경우에는 반복단위 기준으로) 0.001 내지 1 몰농도을 특징으로 하는 금속 나노구조체 제조방법.The method of claim 1, wherein the mixing ratio of the ionic liquid, the metal salt and the reducing solvent is 0.01 to 1 molar concentration of the metal salt and the ionic liquid (based on the repeating unit in the case of the polymer type ionic liquid) relative to the reducing solvent. Metal nanostructure manufacturing method characterized by the molarity. 제1항 내지 제10항 중 어느 한 항에 있어서, 이온성 액체, 금속염 및 환원용매 이외에 하기 화학식 2a의 질소화합물 및 화학식 2b의 황화합물을 추가로 포함하는 것을 특징으로 하는 금속 나노구조체 제조방법.The method according to any one of claims 1 to 10, further comprising a nitrogen compound of Formula 2a and a sulfur compound of Formula 2b in addition to an ionic liquid, a metal salt, and a reducing solvent. <화학식 2a><Formula 2a>
Figure 112009021268484-PAT00007
Figure 112009021268484-PAT00007
여기서, R5, R6, R7 및 R8은 동일하거나 또는 상이하며, 탄소수 1 내지 20의 탄화수소기를 나타내고, 헤테로 원자를 포함할 수 도 있다. 또한 Y-는 유기 또는 무기 음이온을 나타낸다.Here, R 5 , R 6 , R 7 and R 8 are the same or different, represent a hydrocarbon group having 1 to 20 carbon atoms, and may include a hetero atom. And Y represents an organic or inorganic anion. <화학식 2b> <Formula 2b>
Figure 112009021268484-PAT00008
Figure 112009021268484-PAT00008
여기서, R은 단분자 또는 고분자형태의 탄화수소기를 나타내고, 헤테로원자를 포함할 수도 있다. 또한 Y-는 유기 또는 무기 음이온을 나타낸다.Here, R represents a hydrocarbon group in the form of a single molecule or a polymer, and may include a heteroatom. And Y represents an organic or inorganic anion.
제11항에 있어서, 상기 질소화합물 및 황화합물의 농도가 금속염 100 중량부를 기준으로 0.1 내지 100 중량부임을 특징으로 하는 금속 나노구조체 제조방법.12. The method of claim 11, wherein the concentration of the nitrogen compound and the sulfur compound is 0.1 to 100 parts by weight based on 100 parts by weight of the metal salt. 제1항 내지 제10항의 방법을 이용하여 제조된 금속 나노구조체.Metal nanostructures prepared using the method of claim 1 to claim 10.
KR20090030599A 2009-04-08 2009-04-08 Method for producing metal nano structures using ionic liquid KR101479788B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR20090030599A KR101479788B1 (en) 2009-04-08 2009-04-08 Method for producing metal nano structures using ionic liquid
PCT/KR2010/002127 WO2010117204A2 (en) 2009-04-08 2010-04-07 Production method for a metal nanostructure using an ionic liquid
CN201080014483.0A CN102369154B (en) 2009-04-08 2010-04-07 Production method for a metal nanostructure using an ionic liquid
US13/263,350 US20120034129A1 (en) 2009-04-08 2010-04-07 Production method for a metal nanostructure using an ionic liquid
JP2012504611A JP6041138B2 (en) 2009-04-08 2010-04-07 Method for producing metal nanostructure using ionic liquid
TW099110948A TW201100558A (en) 2009-04-08 2010-04-08 Method of forming metal nanostructure using ionic liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20090030599A KR101479788B1 (en) 2009-04-08 2009-04-08 Method for producing metal nano structures using ionic liquid

Publications (2)

Publication Number Publication Date
KR20100112049A true KR20100112049A (en) 2010-10-18
KR101479788B1 KR101479788B1 (en) 2015-01-06

Family

ID=42936716

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20090030599A KR101479788B1 (en) 2009-04-08 2009-04-08 Method for producing metal nano structures using ionic liquid

Country Status (6)

Country Link
US (1) US20120034129A1 (en)
JP (1) JP6041138B2 (en)
KR (1) KR101479788B1 (en)
CN (1) CN102369154B (en)
TW (1) TW201100558A (en)
WO (1) WO2010117204A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102672194A (en) * 2012-01-04 2012-09-19 河南科技大学 Method for preparing gold nanoparticles by polymer ionic liquid
KR101309525B1 (en) * 2011-12-26 2013-09-24 전북대학교산학협력단 Metal-ionic liquid hybrid thin film and method for preparing the same
KR101372657B1 (en) * 2013-09-26 2014-03-11 금오공과대학교 산학협력단 Process for preparing palladium nanoparticles by non-aqueous electrolysis
WO2014092501A1 (en) * 2012-12-14 2014-06-19 인스콘테크 (주) Method for manufacturing silver nanowires using copolymer capping agents
WO2014092220A1 (en) * 2012-12-14 2014-06-19 솔로테크 주식회사 Method for manufacturing silver nanowires using ionic liquid
KR20180060756A (en) * 2016-11-29 2018-06-07 경희대학교 산학협력단 Method for manufacturing silver nanocube-particles and silver nanocube-particles manufactured by the same
KR20210028928A (en) 2019-09-05 2021-03-15 주식회사 하이코스킨 Manufacturing method of gold nanorods

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5838771B2 (en) * 2010-12-09 2016-01-06 住友化学株式会社 Manufacturing method of metal nanowire
AU2011342379A1 (en) * 2010-12-17 2013-07-25 University Of South Australia Extraction of gold
JP5861480B2 (en) * 2011-02-07 2016-02-16 住友化学株式会社 Manufacturing method of metal nanowire
US9095903B2 (en) * 2012-01-23 2015-08-04 Carestream Health, Inc. Nanowire ring preparation methods, compositions, and articles
JP5867124B2 (en) * 2012-02-06 2016-02-24 住友化学株式会社 Manufacturing method of metal nanowire
US9920207B2 (en) * 2012-06-22 2018-03-20 C3Nano Inc. Metal nanostructured networks and transparent conductive material
US10029916B2 (en) 2012-06-22 2018-07-24 C3Nano Inc. Metal nanowire networks and transparent conductive material
US10020807B2 (en) 2013-02-26 2018-07-10 C3Nano Inc. Fused metal nanostructured networks, fusing solutions with reducing agents and methods for forming metal networks
CN103469264B (en) * 2013-09-16 2015-10-21 中国电子科技集团公司第三十八研究所 Electroplating deposition prepares the method for nanocrystalline structure gold-tin alloy coating
US11274223B2 (en) 2013-11-22 2022-03-15 C3 Nano, Inc. Transparent conductive coatings based on metal nanowires and polymer binders, solution processing thereof, and patterning approaches
CN103769600B (en) * 2014-01-14 2016-04-13 南昌大学 A kind of preparation method of surperficial high dispersive noble metal high miller index surface nano particle
US11343911B1 (en) 2014-04-11 2022-05-24 C3 Nano, Inc. Formable transparent conductive films with metal nanowires
US9183968B1 (en) 2014-07-31 2015-11-10 C3Nano Inc. Metal nanowire inks for the formation of transparent conductive films with fused networks
CN105439203B (en) * 2014-09-25 2017-09-22 中国科学院大连化学物理研究所 A kind of surface amphiphilic nano molybdenum disulfide hydrogenation catalyst and preparation method and application
CN104690294B (en) * 2015-03-27 2017-04-05 严锋 The preparation method of high length-diameter ratio nano silver wire and the nano silver wire prepared with the method
CN105316953B (en) * 2015-11-04 2018-02-13 长安大学 One kind attachment SnS2The preparation method and applications of textile
WO2017217628A1 (en) 2016-06-14 2017-12-21 충남대학교산학협력단 Method for producing metal nanoparticle-polymer composite thin film
CN106493386A (en) * 2016-11-03 2017-03-15 国家纳米科学中心 The octahedral shape Nanoalloy of octahedra Nanoalloy and porous, Preparation Method And The Use
CN108161020A (en) * 2016-12-13 2018-06-15 中国科学院光电技术研究所 A kind of octahedral preparation method of gold nano
CN106953103B (en) * 2017-03-08 2019-04-09 济南大学 A kind of monocrystalline gold@platinum nucleocapsid octahedron nanoparticle controllable method for preparing based on seed epitaxial growth
US9850420B1 (en) 2017-05-23 2017-12-26 King Saud University Composition and method for enhanced oil recovery
CN108031860B (en) * 2017-12-04 2021-04-06 浙江工业大学 Preparation method of nano gold triangular plate
CN108359809B (en) * 2018-04-27 2021-01-15 连云港笃翔化工有限公司 Method for recovering palladium chloride from waste palladium catalyst

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7585349B2 (en) * 2002-12-09 2009-09-08 The University Of Washington Methods of nanostructure formation and shape selection
US7247723B2 (en) * 2004-11-24 2007-07-24 3M Innovative Properties Company Metallic chromonic compounds
US7582330B2 (en) * 2004-11-24 2009-09-01 3M Innovative Properties Counsel Method for making metallic nanostructures
JP2006265713A (en) * 2005-03-25 2006-10-05 Mitsubishi Chemicals Corp Method for producing metal acicular body-containing metal particulate
US7547347B2 (en) * 2005-05-13 2009-06-16 University Of Rochester Synthesis of nano-materials in ionic liquids
CN100496819C (en) * 2005-10-18 2009-06-10 河南大学 Reduced preparation method for metal nanometer particle using hydroxy ion liquid
CN102554261B (en) * 2005-11-10 2014-08-13 住友金属矿山株式会社 Indium nanowire, oxide nanowire, conductive oxide nanowire and manufacturing methods thereof
RU2404024C2 (en) * 2006-01-17 2010-11-20 Ппг Индастриз Огайо, Инк. Method of producing particles by vapour deposition in ion fluid
US20080003130A1 (en) * 2006-02-01 2008-01-03 University Of Washington Methods for production of silver nanostructures
JP4852751B2 (en) * 2006-03-10 2012-01-11 国立大学法人九州大学 Manufacturing method of metal nanowire
TWI397446B (en) * 2006-06-21 2013-06-01 Cambrios Technologies Corp Methods of controlling nanostructure formations and shapes
JPWO2009063744A1 (en) * 2007-11-16 2011-03-31 コニカミノルタホールディングス株式会社 Method for producing metal nanowire, metal nanowire and transparent conductor
WO2009080522A1 (en) * 2007-12-19 2009-07-02 Universität Potsdam Synthesis of au, pd, pt or ag nano- or microcrystals via reduction of metal salts by cellulose in the ionic liquid 1-butyl-3-methyl imidazolium chloride
US7922787B2 (en) * 2008-02-02 2011-04-12 Seashell Technology, Llc Methods for the production of silver nanowires
KR101089299B1 (en) * 2008-11-18 2011-12-02 광 석 서 Method for producing metal nanowire using ionic liquid

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101309525B1 (en) * 2011-12-26 2013-09-24 전북대학교산학협력단 Metal-ionic liquid hybrid thin film and method for preparing the same
CN102672194A (en) * 2012-01-04 2012-09-19 河南科技大学 Method for preparing gold nanoparticles by polymer ionic liquid
WO2014092501A1 (en) * 2012-12-14 2014-06-19 인스콘테크 (주) Method for manufacturing silver nanowires using copolymer capping agents
WO2014092220A1 (en) * 2012-12-14 2014-06-19 솔로테크 주식회사 Method for manufacturing silver nanowires using ionic liquid
KR101448361B1 (en) * 2012-12-14 2014-10-14 인스콘테크(주) Method for producing silver nanowires using copolymer capping agents
KR101372657B1 (en) * 2013-09-26 2014-03-11 금오공과대학교 산학협력단 Process for preparing palladium nanoparticles by non-aqueous electrolysis
WO2015046685A1 (en) * 2013-09-26 2015-04-02 금오공과대학교 산학협력단 Process for preparing palladium nanoparticles by non-aqueous electrolysis
KR20180060756A (en) * 2016-11-29 2018-06-07 경희대학교 산학협력단 Method for manufacturing silver nanocube-particles and silver nanocube-particles manufactured by the same
KR20210028928A (en) 2019-09-05 2021-03-15 주식회사 하이코스킨 Manufacturing method of gold nanorods

Also Published As

Publication number Publication date
TW201100558A (en) 2011-01-01
US20120034129A1 (en) 2012-02-09
JP2012523499A (en) 2012-10-04
WO2010117204A2 (en) 2010-10-14
CN102369154A (en) 2012-03-07
KR101479788B1 (en) 2015-01-06
JP6041138B2 (en) 2016-12-07
CN102369154B (en) 2015-02-18
WO2010117204A3 (en) 2011-01-20

Similar Documents

Publication Publication Date Title
KR101479788B1 (en) Method for producing metal nano structures using ionic liquid
KR101089299B1 (en) Method for producing metal nanowire using ionic liquid
Ghosh et al. The many “facets” of halide ions in the chemistry of colloidal inorganic nanocrystals
TWI476160B (en) Method for preparing silver nanowire
US10195670B2 (en) Methods of controlling nanostructure formations and shapes
Chen et al. Silver nanoparticles capped by oleylamine: formation, growth, and self-organization
Zhou et al. Synthesis of highly crystalline silver dendrites microscale nanostructures by electrodeposition
US10226822B2 (en) Method for preparing metal nanoparticles using a multi-functional polymer and a reducing agent
Wang et al. Controlled synthesis of V-shaped SnO2 nanorods
Huang et al. Growth of Cu nanobelt and Ag belt-like materials by surfactant-assisted galvanic reductions
Haidar et al. Tailoring the shape of anisotropic core–shell Au–Ag nanoparticles in dimethyl sulfoxide
Imura et al. Neuron-shaped gold nanocrystals and two-dimensional dendritic gold nanowires fabricated by use of a long-chain amidoamine derivative
Sun et al. A green method for synthesis of silver nanodendrites
KR101842763B1 (en) preparation method of copper nano-structures
Wen et al. Synthesis of palladium nanodendrites using a mixture of cationic and anionic surfactants
Jiang et al. Preparation and characterization of dendritic silver nanoparticles
Chen et al. Chemical preparation of special-shaped metal nanomaterials through encapsulation or inducement in soft solution
KR101368404B1 (en) Metal nanoparticles and method for preparing the same
Jo et al. Synthesis of small diameter silver nanowires via a magnetic-ionic-liquid-assisted polyol process
Janssen et al. Separating Growth from Nucleation for Facile Control over the Size and Shape of Palladium Nanocrystals
Knecht et al. Employing high-resolution materials characterization to understand the effects of Pd nanoparticle structure on their activity as catalysts for olefin hydrogenation
Liu et al. Fabrication of silver nanowires via a β-cyclodextrin-derived soft template
KR101307973B1 (en) Mass Production Method of Ag NanoWire
Sow et al. Noncubic to Cubic Structural Transformation in Au Microcrystallites by Oxidative Etching
Min et al. Seeded growth of gold-based nanostructures regulated by controlled doping

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180928

Year of fee payment: 4

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20190325

Year of fee payment: 5