KR20100110524A - Vitrification solutions and loading solutions applicable for droplet-vitrification procedures - Google Patents
Vitrification solutions and loading solutions applicable for droplet-vitrification procedures Download PDFInfo
- Publication number
- KR20100110524A KR20100110524A KR1020090028897A KR20090028897A KR20100110524A KR 20100110524 A KR20100110524 A KR 20100110524A KR 1020090028897 A KR1020090028897 A KR 1020090028897A KR 20090028897 A KR20090028897 A KR 20090028897A KR 20100110524 A KR20100110524 A KR 20100110524A
- Authority
- KR
- South Korea
- Prior art keywords
- solution
- sucrose
- glycerol
- vitrification
- solutions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000004017 vitrification Methods 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims description 33
- 239000002577 cryoprotective agent Substances 0.000 claims abstract description 32
- 239000000203 mixture Substances 0.000 claims abstract description 28
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 303
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 102
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 102
- 229930006000 Sucrose Natural products 0.000 claims description 102
- 239000005720 sucrose Substances 0.000 claims description 102
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 87
- 240000002234 Allium sativum Species 0.000 abstract description 41
- 235000004611 garlic Nutrition 0.000 abstract description 41
- 238000005138 cryopreservation Methods 0.000 abstract description 37
- 230000008929 regeneration Effects 0.000 abstract description 34
- 238000011069 regeneration method Methods 0.000 abstract description 34
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 28
- 230000004083 survival effect Effects 0.000 abstract description 28
- 235000007516 Chrysanthemum Nutrition 0.000 abstract description 18
- 238000004321 preservation Methods 0.000 abstract description 18
- 239000007788 liquid Substances 0.000 abstract description 14
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 14
- 241000196324 Embryophyta Species 0.000 abstract description 10
- 235000015097 nutrients Nutrition 0.000 abstract description 10
- 230000007774 longterm Effects 0.000 abstract description 9
- 230000002068 genetic effect Effects 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract description 7
- 108090000623 proteins and genes Proteins 0.000 abstract description 5
- 238000004806 packaging method and process Methods 0.000 abstract description 3
- 244000189548 Chrysanthemum x morifolium Species 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 194
- 238000007710 freezing Methods 0.000 description 26
- 238000006297 dehydration reaction Methods 0.000 description 25
- 230000008014 freezing Effects 0.000 description 25
- 230000018044 dehydration Effects 0.000 description 24
- 238000010257 thawing Methods 0.000 description 22
- 241000723353 Chrysanthemum Species 0.000 description 17
- 238000010790 dilution Methods 0.000 description 13
- 239000012895 dilution Substances 0.000 description 13
- 238000001816 cooling Methods 0.000 description 12
- 230000008569 process Effects 0.000 description 12
- 210000004027 cell Anatomy 0.000 description 11
- 239000000523 sample Substances 0.000 description 11
- IYETZZCWLLUHIJ-UTONKHPSSA-N selegiline hydrochloride Chemical compound [Cl-].C#CC[NH+](C)[C@H](C)CC1=CC=CC=C1 IYETZZCWLLUHIJ-UTONKHPSSA-N 0.000 description 9
- 231100000419 toxicity Toxicity 0.000 description 9
- 230000001988 toxicity Effects 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000011084 recovery Methods 0.000 description 5
- 231100000331 toxic Toxicity 0.000 description 5
- 230000002588 toxic effect Effects 0.000 description 5
- 101150027068 DEGS1 gene Proteins 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 210000000805 cytoplasm Anatomy 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 239000003223 protective agent Substances 0.000 description 4
- 210000001519 tissue Anatomy 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 210000000170 cell membrane Anatomy 0.000 description 3
- BTVWZWFKMIUSGS-UHFFFAOYSA-N dimethylethyleneglycol Natural products CC(C)(O)CO BTVWZWFKMIUSGS-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 230000003204 osmotic effect Effects 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 230000008092 positive effect Effects 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 206010020649 Hyperkeratosis Diseases 0.000 description 2
- 244000061456 Solanum tuberosum Species 0.000 description 2
- 235000002595 Solanum tuberosum Nutrition 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000007707 calorimetry Methods 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000011814 protection agent Substances 0.000 description 2
- 239000010902 straw Substances 0.000 description 2
- 238000002076 thermal analysis method Methods 0.000 description 2
- 244000016163 Allium sibiricum Species 0.000 description 1
- 244000003416 Asparagus officinalis Species 0.000 description 1
- 235000005340 Asparagus officinalis Nutrition 0.000 description 1
- 241000207199 Citrus Species 0.000 description 1
- 240000008790 Musa x paradisiaca Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 244000195452 Wasabia japonica Species 0.000 description 1
- 235000000760 Wasabia japonica Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000021015 bananas Nutrition 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000012472 biological sample Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 231100000045 chemical toxicity Toxicity 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 230000008723 osmotic stress Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 230000002633 protecting effect Effects 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 239000000052 vinegar Substances 0.000 description 1
- 235000021419 vinegar Nutrition 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N3/00—Preservation of plants or parts thereof, e.g. inhibiting evaporation, improvement of the appearance of leaves or protection against physical influences such as UV radiation using chemical compositions; Grafting wax
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23B—PRESERVATION OF FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES; CHEMICAL RIPENING OF FRUIT OR VEGETABLES
- A23B7/00—Preservation of fruit or vegetables; Chemical ripening of fruit or vegetables
- A23B7/02—Dehydrating; Subsequent reconstitution
- A23B7/024—Freeze-drying, i.e. cryodesiccation or lyophilisation
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23B—PRESERVATION OF FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES; CHEMICAL RIPENING OF FRUIT OR VEGETABLES
- A23B7/00—Preservation of fruit or vegetables; Chemical ripening of fruit or vegetables
- A23B7/04—Freezing; Subsequent thawing; Cooling
- A23B7/05—Freezing; Subsequent thawing; Cooling with addition of chemicals or treatment with chemicals other than cryogenics, before or during cooling, e.g. in the form of an ice coating or frozen block
- A23B7/055—Freezing; Subsequent thawing; Cooling with addition of chemicals or treatment with chemicals other than cryogenics, before or during cooling, e.g. in the form of an ice coating or frozen block with direct contact between the food and the chemical, e.g. liquid N2, at cryogenic temperature
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Polymers & Plastics (AREA)
- General Health & Medical Sciences (AREA)
- Food Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Plant Pathology (AREA)
- Agronomy & Crop Science (AREA)
- Toxicology (AREA)
- Dentistry (AREA)
- Environmental Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
본 발명은 영양체 유전자원을 액체 질소를 이용하여 초저온 동결보존하는데 있어서 필수적인 동결보호제 혼합액 유리화 용액과 로딩 용액의 조성물에 관한 것이다.The present invention relates to a composition of a cryoprotectant mixture vitrification solution and loading solution which is essential for cryogenic preservation of nutrient gene sources using liquid nitrogen.
본 발명에 따르면 액체 질소를 이용하여, 마늘, 국화 등 영양체 유전자원을 액체 질소의 초저온에 동결보존하는 데 있어서 동결보존 후의 생존에 필수불가결한 동결보호제 유리화 용액과 로딩 용액을 개발함으로써, 동결보존 후 생존율과 재생률을 향상시킴은 물론 다양한 식물 종에 걸쳐서 광범위한 재료에 적용가능한 범용 동결보호제 혼합용액으로서 활용도가 높음. 포장보존시 소실되기 쉬운 영양체의 장기보존을 통해 우량품종 등 유전자원을 장기보존함으로써 유전자원 및 종자산업분야에 널리 활용될 수 있다.According to the present invention, cryopreservation by developing a cryoprotectant vitrification solution and loading solution which is indispensable for survival after cryopreservation in cryopreservation of nutrient gene sources such as garlic and chrysanthemum at cryogenic temperature of liquid nitrogen using liquid nitrogen It is widely used as a general purpose cryoprotectant mixture solution that can improve post survival and regeneration rate and can be applied to a wide range of materials across various plant species. Long-term preservation of genetic resources such as high-quality varieties through long-term preservation of nutrients that are easily lost during packaging preservation can be widely used in the genetic resources and seed industries.
Description
본 발명은 영양체 유전자원을 액체 질소를 이용하여 초저온 동결보존하는데 있어서 필수적인 동결보호제 혼합액 유리화 용액과 로딩 용액의 조성물에 관한 것이다.The present invention relates to a composition of a cryoprotectant mixture vitrification solution and loading solution which is essential for cryogenic preservation of nutrient gene sources using liquid nitrogen.
농업 유전자원의 보존 방법으로 가장 많이 사용되어온 종자번식 자원(예: 벼 등)에 대한 보존은 건조방식으로 수분을 최소화시킨 후 냉동저장하여 그 기간을 연장하였으나 영양번식 자원(예: 마늘 등)은 자연상태에서 건조하면 활력을 상실하므로, 작기마다 포장증식 및 저장을 통해 유지 갱신해야 하므로 유지비용이 많이 들고, 병리적·생리적 퇴화, 기상재해 등으로 인한 소실 및 유전적 침식의 위험에 노출되어 있어서 이들에 대한 장기적, 안정적, 효과적인 보존 연구가 시급한 실정이며 초저온 동결보존법이 이들 자원의 유일한 장기보존법으로 인식되어 왔다(IPGRI). 미국, 독일 등 일부 선진국과 국제감자연구소(CIP) 등 국제기관에서는 유리화법을 이용한 동결보존기술이 일부 작물에 실용화되었고, 최근 국내에서도 마 늘, 감자 유전자원의 동결보존 실용화가 추진되고 있는 등 실용화 사례는 전 세계적으로 증가하고 있다. Preservation of seed propagation resources (e.g. rice, etc.), which has been used the most as a method of preserving agricultural genetic resources, has been extended by minimizing moisture after freezing and drying them, but nutrition propagation resources (e.g. garlic, etc.) Dryness in the natural state loses its vitality, so it must be maintained and renewed through packaging growth and storage every little time, and it is expensive to maintain, and is exposed to the risk of loss and genetic erosion due to pathological and physiological degradation and meteorological disasters. Long-term, stable, and effective conservation studies are urgently needed, and cryogenic cryopreservation has been recognized as the only long-term preservation of these resources (IPGRI). In some developed countries such as the US and Germany, and international institutions such as the International Potato Research Institute (CIP), the cryopreservation technology using vitrification has been applied to some crops. Cases are increasing worldwide.
마늘, 국화 등 이른바 영양체는 씨앗으로 번식하지 않고 영양체로 번식하기 때문에 저장고에서 장기저장을 할 수 없고 매 작기마다 포장에 심어서 수확 저장 후 다시 심는 등 유지관리 비용이 많이 들고 생리적·병리적 퇴화 등으로 인해 우량한 품종 등 유전자원이 소실될 위험이 상존하고 있다. 독일에서 마늘 유전자원의 포장 보존시 매년 1.5%의 자원이 소실되었다는 보고도 있다 (Keller et al., 2008).So-called nutrients such as garlic and chrysanthemum do not multiply as seeds, but because they grow as nutrients, they cannot be stored for a long time in the cellar. There is a risk that genetic resources, such as superior varieties, will be lost. It is also reported that 1.5% of the resources are lost each year in the conservation of garlic genetic resources in Germany (Keller et al., 2008).
식물조직의 동결보존기술은 전통적인 방법인 완속동결(2단계 동결)법에 의해 현탁배양세포와 같이 미세한 세포주에 주로 이용되었으나, 유리화(vitrification)법이 시도되면서 (Fahy, Cryobiology, 1984) 주류를 이루게 되었고, 특히 신초와 같이 비교적 큰 조직에서도 캘러스 형성 등 지체기를 거치지 않고 재생 식물체를 획득할 수가 있게 되었다. 초저온동결보존법이 영양체나 난저장종자 (recalcitrant seed)의 장기보존을 위한 유일한 옵션이 인식되어 왔고, 근래에 감자, 바나나 등 기내 유식물에서도 동결보존의 대규모 이행사례가 알려지고 있고 전 세계적으로 확대되고 있다.Cryopreservation techniques of plant tissues were mainly used in micro cell lines such as suspension culture cells by slow freezing (two-step freezing) method, but the vitrification method was tried (Fahy, Cryobiology, 1984). In particular, relatively large tissues, such as shoots, can obtain regenerated plants without undergoing retardation such as callus formation. Cryogenic preservation has been recognized as the only option for long-term preservation of nutrients and recalcitrant seeds. Recently, large-scale implementations of cryopreservation have been known in inflight seedlings such as potatoes and bananas. have.
작은 방울-유리화법(droplet-vitrification method)은 기존에 알려진 작은방울-동결법(droplet-freezing)과 용액에 기반을 둔 유리화(vitrification)법의 장점을 혼합한 형태의 기술로서 본 개발자들에 의해 감자, 마늘 등에서 개발된 바 있고, 세계적으로도 각광받고 있는 신기술이다. 이 보존법의 가장 큰 장점은 냉각 및 해동 속도를 향상시켜서 재생률을 높이는 데 있다고 할 수 있는데, 기존의 유리화법에서는 크라리어 바이알에 용액과 시료를 넣어서 냉각 및 해동시키는데 반하여, 이 방법에서는 탈수시킨 시료를 작은 알루미늄 호일 스트립 위에 얹어서 액체 질소에 직접 냉각시키고, 언로딩 용액에 직접 담가서 해동시킨다. 냉각 및 해동속도는 시료의 재생률을 좌우하는 주요 요인 중의 하나인데, 냉각과정에서 유리화가 불완전하게 일어날 경우에는 특히, 해동속도가 빨라야만 탈유리화(de-vitrification)를 막을 수 있다. 이를 위해 체적이 큰 크라이어 바이알 대신 가늘고 체적이 적은 스투로우, open-pulled straw, 그리드(grid) 등을 사용하게 되는데, 이들은 크기가 작은 시료에만 적용할 수 있고, 보존관리가 다소 불편하며 가격이 비싼 단점이 있다. 이에 비해 알루미늄 호일을 이용할 경우 쉽고 저렴하게 열전달을 빠르고 균일하게 할 수 있다.The droplet-vitrification method combines the advantages of the known droplet-freezing and solution-based vitrification methods. It has been developed in the field of garlic and garlic, and it is a new technology that is in the spotlight worldwide. The main advantage of this preservation method is to increase the regeneration rate by improving the cooling and thawing speed. In the conventional vitrification method, the solution and the sample are cooled and thawed by adding the solution and the sample to the carrier vial. It is placed on a small strip of aluminum foil, cooled directly with liquid nitrogen, immersed directly in the unloading solution and thawed. The rate of cooling and thawing is one of the major factors in determining the regeneration rate of the sample. In the case of incomplete vitrification during the cooling process, de-vitrification can be prevented only when the thawing speed is high. For this purpose, instead of bulky cry vials, thin, low volume straws, open-pulled straws, grids, etc. are used, which can be applied only to small samples, which are somewhat inconvenient to maintain and costly. There is an expensive disadvantage. In contrast, when aluminum foil is used, heat transfer can be performed quickly and uniformly easily and inexpensively.
지금까지 유리화 용액 등 동결보호제에 대한 반응은 식물의 종, 품종 등에 따라 차이가 크고 동결보존 후 재생률에 있어서도 큰 차이가 있어서 동결보존법을 대규모로 실용화하기 위해서는 재생률에 가장 영향을 주는 요인 중의 하나인 적합한 유리화 용액의 선발이 선결과제이다. 작은 방울-유리화법의 개발로 인해 어느 정도 재생률의 향상은 가져왔으나 다양한 종에 걸쳐서 광범위한 재료에 적용 가능한 저독성·고효율의 적합한 유리화 용액과 로딩 용액을 필요로 하고 있다. Until now, the response to cryoprotectant such as vitrification solution varies greatly depending on the species and varieties of plants, and there is also a big difference in the regeneration rate after cryopreservation, which is one of the most influential factors for regeneration rate in order to realize the practical application of cryopreservation on a large scale. Selection of the vitrification solution is a priority. The development of the droplet-vitrification method has resulted in some improvement in regeneration rate, but it requires a low viability and high efficiency suitable vitrification solution and loading solution applicable to a wide range of materials across a wide variety of species.
유리화법에 기초한 동결보존 프로토콜에서는 동결하기 전에 샘플 속에 있는 얼 수 있는 거의 모든 물을 제거하는 탈수과정이 성공의 열쇠로 인식되어 왔다(Block, 2003; Dussert et al., 2001; Engelmann, 2000). 따라서 유리화 과정은 액체 질소에 침지하기 이전에 고농도의 동결보호제 혼합액(유리화 용액, vitrification solution)에 의한 탈수(dehydration)를 수반한다. 적합한 유리화 용액의 적용은 유리화법에 기초한 과정에서 동결보존의 성패를 결정짓는 핵심 요소이다. 왜냐하면, 유리화 용액의 조성과 그 용액에서의 탈수시간이 동결보존한 신초의 재생률에 가장 영향 있는 요인이기 때문이다(Kim et al., 2006a). In cryopreservation protocols based on vitrification, a dehydration process that removes almost all frozen water in a sample before freezing has been recognized as the key to success (Block, 2003; Dussert et al., 2001; Engelmann, 2000). The vitrification process therefore involves dehydration with a high concentration of cryoprotectant mixture (vitrification solution) before immersion in liquid nitrogen. Application of a suitable vitrification solution is a key factor in determining the success or failure of cryopreservation in a vitrification-based process. This is because the composition of the vitrification solution and the dehydration time in the solution are the most influential factors in the regeneration rate of cryopreserved shoots (Kim et al., 2006a).
동결보호제(cryoprotectant)는 결빙형성을 억제함으로써 세포나 조직을 보호하는 역할을 하는 물질들로서 유리화법(vitrification method)에 기반을 둔 동결보존의 경우 대개 40-60% 이상의 고농도의 동결보호제 혼합액을 사용하게 되는데 보통은 몇 가지 종류의 침투성과 비침투성 보호제를 혼합하여 사용한다. 동결보호제는 생물 샘플에의 침투성에 따라 구분을 하는데, Tao & Li(1986)의 분류에 따르면 글리세롤, 디메칠설폭사이드, 에칠렌글리콜 등과 같은 분자량이 작아서 세포벽과 원형질막을 다 통과하는 1그룹, 슈크로스는 세포벽은 통과하나 원형질막은 통과하지 못하는 2그룹으로 분류되는데, 일반적으로 슈크로스는 폴리에칠렌그리콜 등과 함께 분자량이 많아서 세포 내부에까지 침투하지 못하고 세포 간극 또는 용액에 머물러서 삼투압에 의한 탈수를 유발하는 비침투성 보호제로 분류되어 왔다. Cryoprotectants are substances that act to protect cells or tissues by inhibiting freezing formation. For cryopreservation based on the vitrification method, a high concentration of cryoprotectant is usually used. Usually several types of permeable and non-invasive protective agents are used in combination. Cryoprotectants are classified according to their permeability to biological samples. According to Tao & Li (1986) classification, sucrose, a group of sucrose that crosses cell walls and plasma membranes due to small molecular weight such as glycerol, dimethyl sulfoxide and ethylene glycol. Is classified into two groups that pass through the cell wall but do not pass through the plasma membrane. In general, sucrose has a high molecular weight together with polyethylene glycol, which does not penetrate inside the cell, and stays in the cell gap or solution to induce dehydration by osmotic pressure. It has been classified as a protective agent.
유리화 용액은 유리전이온도(Tg) 이하의 온도까지 세포 간 또는 세포 내에 결빙형성이 되지 않고 완속으로 냉각할 수 있는 수용액 상의 동결보호제 혼합액으로서 냉각 및 해동과정에 결빙형성을 피해서 무정형의 유리상태를 유지시켜준다(Fahy et al., 1987). 샘플을 탈수시키기 위해, 독성을 경감시키기 위해, 그리고 잔여 물 분자의 결빙형성으로부터 세포를 보호하기 위해, 유리화 용액은 보통 침투 성 동결보호제와 비침투성 동결보호제의 혼합액으로 구성된다. 전통적인 저온생물학 연구에서는 결빙장해로부터 세포를 보호하기 위해 디메칠설폭사이드나 글리세롤 같은 침투성 동결보호제의 사용을 추천해왔으나, 슈크로스와 같은 비침투성 동결보호제가 쥐 정자를 보호하는데 침투성 보호제보다 더 효과적이었다(Sztein et al., 2001). The vitrification solution is a freeze protection agent mixture in an aqueous solution that can be cooled slowly to the temperature below the glass transition temperature (Tg) without freezing between cells or within the cells, and maintains an amorphous glass state by avoiding freezing during cooling and thawing. (Fahy et al., 1987). In order to dehydrate the sample, to reduce toxicity, and to protect the cells from freezing of residual water molecules, the vitrification solution usually consists of a mixture of a permeable cryoprotectant and a non-invasive cryoprotectant. Traditional cryobiological studies have recommended the use of permeable cryoprotectants such as dimethylsulfoxide or glycerol to protect cells from freezing disorders, but noninvasive cryoprotectants such as sucrose were more effective than permeability protectors for protecting mouse sperm. (Sztein et al., 2001).
식물의 동결보존에 사용된 유리화 용액은 Steponkus 그룹(1993), Towill 그룹(1990), Sakai 그룹(1990; 1993) 등이 보고한 바 있으나, Sakai 등에 의해 시트러스 캘러스를 동결하기 위해 고안된 PVS2(30% 글리세롤 + 15% 디메칠설폭사이드 + 15% 에칠렌글리콜 + 0.4M 슈크로스, Sakai et al., 1990)는 200종/품종 이상의 신초 동결에 적용되는 등 가장 널리 사용되어왔다(Sakai and Engelmann, 2007). 한편, 구근류와 같이 비교적 크기가 크고 탈수에 대한 저항성이 강한 일부 식물의 경우에는 PVS3(50% 글리세롤 + 50% 슈크로스, Nishizawa et al., 1993)이 더 높은 생존율을 보이기도 하는데, PVS3용액은 와사비(Matsumoto et al., 1995), 아스파라거스 (Nishizawa et al., 1993), 마늘 (Makowska et al., 1999; Kim et al., 2004a) 등에 사용되었다. The vitrification solution used for cryopreservation of plants has been reported by Steponkus Group (1993), Towill Group (1990), Sakai Group (1990; 1993), but PVS2 (30%) designed to freeze citrus callus by Sakai et al. Glycerol + 15% Dimethylsulfoxide + 15% Ethylene Glycol + 0.4M Sucrose, Sakai et al., 1990) has been the most widely used, as it is applied to freezing over 200 species / cultivars (Sakai and Engelmann, 2007) . On the other hand, PVS3 (50% glycerol + 50% sucrose, Nishizawa et al., 1993) has higher survival rates for some plants, such as bulbs, which are relatively large and resistant to dehydration. (Matsumoto et al., 1995), asparagus (Nishizawa et al., 1993), garlic (Makowska et al., 1999; Kim et al., 2004a) and the like.
기존에 널리 이용된 PVS2는 독성이 강한 고독성의 보호제가 다량 함유되어 있어서 충분한 시간 동안 탈수를 시킬 수가 없으므로 주로 시료의 크기가 1~2mm 이하의 작은 시료에만 적용이 가능하고, 구경 등 크기가 2~3mm 이상 되는 시료에서는 매우 낮은 재생율을 보여 왔다 (Kim et al., 2004; Makowska et al., 1999). PVS2 용액의 독성 때문에 이 용액에 노출할 수 있는 탈수시간이 짧은 관계로 글리세롤, 디메칠설폭사이드, 에칠렌글리콜, 슈크로스 등 구성 동결보호제들이 신초 세포의 세포질로 침투해 들어갈 시간이 충분치 않아서 삼투작용만 할 것으로 인식되었다 (Sakai, 2000; Sakai et al., 1990; Steponkus et al., 1992). Fahy 등(2004)은 동결보호제 독성이 복잡하고 공간적으로 확대된 생물조직에 있어서 성공적인 유리화에 가장 큰 장벽이 된다고 하였다. 따라서 독성의 성격이 생화학적인지 삼투압인지를 분별해내는 일은 적절한 독성감소방법을 찾는데 필수적이며, 독성은 주로 비침투성의 동결보호제보다는 침투성 보호제에 좌우된다고 알려졌다 (Fahy et al., 1984; 1990). PVS2, which is widely used in the past, contains a large amount of highly toxic and highly toxic protective agent, so it cannot be dehydrated for a sufficient time, so it is mainly applicable only to small samples having a size of 1 ~ 2mm or less, Samples over 3 mm have been shown to have very low regeneration (Kim et al., 2004; Makowska et al., 1999). Due to the toxicity of PVS2 solution, the dehydration time that can be exposed to this solution is short, so that constituent cryoprotectants such as glycerol, dimethyl sulfoxide, ethylene glycol, and sucrose do not have enough time to penetrate into the cytoplasm of shoot cells. (Sakai, 2000; Sakai et al., 1990; Steponkus et al., 1992). Fahy et al. (2004) found that cryoprotectant toxicity is the greatest barrier to successful vitrification in complex and spatially expanded biological tissues. Therefore, discriminating whether the nature of toxicity is biochemical or osmotic is essential for finding an appropriate method of reducing toxicity, and it is known that toxicity depends mainly on permeability protection agent rather than non-invasive cryoprotectant (Fahy et al., 1984; 1990).
유리화에 기반을 둔 동결보존과정에서는 샘플로부터 얼 수 있는 대부분 또는 모든 수분을 제거하기 위해서 액체 질소에 침지하기 전에 고농도의 동결보호제 혼합액인 유리화 용액에서 시료를 탈수시키게 되는데, 이 고농도의 유리화 용액에의 직접 노출로 인한 독성장해를 극복하기 위해 탈수처리 이전에 사용하는 비교적 저농도의 동결보호제 용액이 로딩 용액이다. 식물의 동결보존을 위한 로딩 용액으로는 유리화 용액인 PVS2용액의 20-60% 희석액을 단계적으로 처리하는 방법이 이용되기도 하고(Sakai et al., 1990; Towill and Jarret, 1992; Sarkar and Naik, 1998), 와사비에서는 0.5M 글리세롤 + 0.3M 슈크로스에 아침까지 배양하는 경우(Matsumoto et al., 1998)도 있으나 대부분은 Nishizawa 등(1993)과 Matsumoto 등(1994)이 사용했던 2M 글리세롤 + 0.4M 슈크로스 용액이 널리 사용되어왔다.The cryopreservation process based on vitrification dehydrates the sample in a vitrified solution, a high concentration of cryoprotectant mixture, before immersion in liquid nitrogen to remove most or all of the water that can freeze from the sample. The loading solution is a relatively low concentration of cryoprotectant solution used prior to dehydration to overcome the toxic effects of direct exposure. As a loading solution for cryopreservation of plants, a stepwise treatment of 20-60% dilution of the vitrification solution PVS2 solution is used (Sakai et al., 1990; Towill and Jarret, 1992; Sarkar and Naik, 1998). In wasabi, 0.5M glycerol + 0.3M sucrose was incubated until morning (Matsumoto et al., 1998), but most of them were 2M glycerol + 0.4M shoe used by Nishizawa et al. (1993) and Matsumoto et al. (1994). Cross solution has been widely used.
동결보호제 로딩 처리는 유리화 용액에서의 탈수과정에서 발생하는 장해를 최소화하는데 우선적으로 기여하는데, 세포막과 단백질의 탈수로 유도되는 불안정 화를 방지한다. 또한, 로딩과정은 세포질의 용액농도를 증가시켜서 액체 질소에 담그는 동안 세포질을 유리화시키는데도 기여한다 (Steponkus et al., 1992). Nishizawa 등(1993)도 로딩 처리가 동결-탈수에 대한 저항성 또는 탈수 저항성을 유도하는데 효과가 있다고 하였다. 짧은 로딩 처리시간 동안 세포는 상당한 탈수에 의해 원형질 분리가 일어나지만, 세포질 안으로는 글리세롤의 침투는 거의 일어나지 않았다 (Matsumoto 등, 1998).Lyoprotectant loading treatment primarily contributes to minimizing the disturbances that occur during dehydration in vitrified solutions, which prevent destabilization induced by dehydration of cell membranes and proteins. The loading process also increases the solution concentration of the cytoplasm and also contributes to the vitrification of the cytoplasm during immersion in liquid nitrogen (Steponkus et al., 1992). Nishizawa et al. (1993) also found that loading treatment was effective in inducing freeze-dehydration resistance or dehydration resistance. During the short loading treatment cells were proliferated in plasma by significant dehydration, but little penetration of glycerol into the cytoplasm (Matsumoto et al., 1998).
본 발명은 마늘, 국화 등 영양체를 액체 질소(-196℃)를 이용하여 효과적으로 장기보존할 수 있는 방법을 개발하고자 동결보존 후의 생존율에 가장 영향을 미치는 요인 중 하나인 동결보호제를 개발코자 노력하여, 다양한 식물 종에 걸쳐서 광범위하게 적용 가능한 동결보호제 혼합액 유리화 용액들과 로딩 용액들을 제공하고자 한다. The present invention is trying to develop a cryoprotectant which is one of the most influential factors for survival after cryopreservation in order to develop a method for effectively long-term preservation of nutrients such as garlic and chrysanthemum by using liquid nitrogen (-196 ℃) In addition, the present invention seeks to provide cryoprotectant mixed liquor vitrification solutions and loading solutions that are widely applicable across a variety of plant species.
상기 과제를 해결하기 위하여 본 발명은 작은 방울-유리화법에 적합한 동결보호제로서 하기 표에서 선택된 어느 하나의 유리화 용액을 제공한다. In order to solve the above problems, the present invention provides any vitrification solution selected from the following table as a cryoprotectant suitable for the small-drop vitrification method.
한편, 본 발명은 작은 방울-유리화법에 적합한 동결보호제로서 하기 표에서 선택된 어느 하나의 로딩 용액을 제공한다. On the other hand, the present invention provides a loading solution of any one selected from the following table as a cryoprotectant suitable for the small droplet vitrification method.
(%, w/v)Loading solution composition
(%, w / v)
본 발명은 종래에 알려진 PVS2(A1)나 PVS3(B1)로부터 글리세롤과 슈크로스의 농도를 증감하는 등 조성을 변화시켜 글리세롤+디메칠설폭사이드+에칠렌그리콜+슈크로스로 구성된 A계열 용액과 글리세롤+슈크로스로 구성된 B계열용액 등 유리화 용액의 조성을 고안하였고, 로딩 용액은 글리세롤과 슈크로스로 구성된 30%-45% 용액을 고안하여서 각 용액의 물리화학적 특성을 분석하고 이를 마늘, 국화 등 모델작물에 적용하였다. 이 용액들의 열 특성을 분석하기 위해 시차주사열량계(Differential Scanning Calorimetry)를 이용하였는데, 용액 자체의 열 특성과 로딩 용액 및 유리화 용액에서 배양한 마늘 및 국화 시료의 열 특성을 비교하고, 동결보존 후의 재생율 등과의 비교분석을 통해 용액의 효용성을 검토하였다. The present invention is to change the composition of glycerol and sucrose from the known PVS2 (A1) or PVS3 (B1) by changing the composition, such as glycerol + dimethyl sulfoxide + ethylene glycol + sucrose A solution and glycerol + The composition of vitrification solution such as B-series solution composed of sucrose was devised, and the loading solution was devised 30% -45% solution composed of glycerol and sucrose to analyze the physicochemical characteristics of each solution and applied it to model crops such as garlic and chrysanthemum. Applied. Differential Scanning Calorimetry was used to analyze the thermal properties of these solutions.The thermal properties of the solutions themselves were compared with those of garlic and chrysanthemum samples incubated in the loading and vitrification solutions. The effectiveness of the solution was examined through comparative analysis.
동결보존과정에서 나타나는 장해는 주로 액체 질소에 냉각 및 해동시키는 동안에 동결보호제의 독성에 의해 그리고 직접적인 결빙형성에 의해 발생하는데, 결빙형성을 억제하기 위해서는 적합한 동결보호제의 선발이 필요조건이고, 냉각 및 해동속도 또한 생존율에 현저한 영향을 미친다. 본 발명에서는 알루미늄 호일 조각에 시료를 얹어서 액체 질소에 급속 냉각시켜서 액체 질소가 들어있는 동결바이알(cryovial)에 보존하고, 해동 시에는 바이알에서 꺼낸 호일을 37~40℃로 데운 언로딩 용액(0.8M 슈크로스)에 침지함으로써 냉각 및 해동속도를 향상시킴으로써 생 존율을 안정적으로 높일 수 있었다. Disorders in the cryopreservation process are mainly caused by the toxicity of the cryoprotectant during direct cooling and thawing with liquid nitrogen and by direct freezing formation. To prevent freezing formation, selection of a suitable cryoprotectant is necessary. Speed also has a significant impact on survival. In the present invention, the sample is placed on a piece of aluminum foil and rapidly cooled in liquid nitrogen to be stored in a cryovial containing liquid nitrogen, and during thawing, the unloading solution (0.8M) is heated to 37-40 ° C. By immersing in sucrose, the survival rate can be stably increased by improving the cooling and thawing speed.
본 발명에 따르면, 액체 질소를 이용하여, 마늘, 국화 등 영양체 유전자원을 액체 질소의 초저온에 동결보존하는 데 있어서 동결보존 후의 생존에 필수불가결한 동결보호제 유리화 용액과 로딩 용액을 개발하여 이를 실재 마늘, 국화 등 영양체 신초의 동결보존에 적용함으로써 장기보존할 수 있는 방법을 제공한다. According to the present invention, in the cryopreservation of nutrient gene sources such as garlic and chrysanthemum at the cryogenic temperature of liquid nitrogen using liquid nitrogen, a cryoprotectant vitrification solution and a loading solution which are indispensable for survival after cryopreservation have been developed. It provides a method for long-term preservation by applying to cryopreservation of nutrient shoots such as garlic and chrysanthemum.
본 발명의 유리화 용액과 로딩 용액은 다양한 식물 종에 걸쳐서 광범위한 재료에 적용가능한 범용 동결보호제 혼합용액으로서 활용도가 높고, 국화에 적용한 작은 방울-유리화법에 의한 국화의 장기보존방법은 생존율과 재생율을 향상시킴으로써 포장에서 소실되기 쉬운 우량품종 등 유전자원을 장기보존함으로써 유전자원 및 종자산업분야에 널리 활용될 수 있을 것이다.The vitrification solution and loading solution of the present invention are highly applicable as a general purpose cryoprotectant mixture solution applicable to a wide range of materials across various plant species, and the long-term preservation method of chrysanthemum by small droplet-vitrification method applied to chrysanthemum improves survival rate and regeneration rate. By long-term preservation of genetic resources such as high-quality varieties that are easily lost in the packaging, it will be widely used in the genetic resources and seed industry.
실시예Example 1: 작은 방울- 1: small drops 유리화법에Vitrification 적합한 유리화 용액( Suitable vitrification solution ( vitrificationvitrification solutionsolution ) 선발) Selection
기존에 식물에 널리 이용된 PVS2용액(30% 글리세롤 + 15% 디메칠썰폭사이드 + 15% 에칠렌글리콜 + 0.4M 슈크로스)는 독성이 강한 디메칠썰폭사이드와 에칠렌글리콜 등 고독성의 보호제를 다량 함유하고 있기 때문에 충분한 시간 동안 탈수를 시킬 수가 없어서 시료의 크기가 1~2mm 이하의 작은 시료에만 적용이 가능하고, 구경 등 크기가 2~3mm 이상 되는 시료에서는 매우 낮은 재생율을 보여 왔다. 한편, PVS3용액은 독성이 약하고 삼투스트레스에 강한 재료에 사용할 수는 있으나 농도가 너무 높아서 건조저항성이 약한 재료에는 사용이 어려웠다. PVS2 solution (30% glycerol + 15% dimethylsulfoxide + 15% ethylene glycol + 0.4M sucrose), widely used in plants, contains a large amount of highly toxic protective agents such as dimethylsulfoxide and ethylene glycol, which are highly toxic. Therefore, dehydration can not be performed for a sufficient time, so the sample size can be applied only to small samples of 1 ~ 2mm or less, and the sample having a size of 2 ~ 3mm or more, such as aperture, has shown very low regeneration rate. On the other hand, PVS3 solution can be used for weak toxicity and strong osmotic stress, but its concentration is too high, making it difficult to use for materials with low dry resistance.
이런 단점을 보완하기 위해 PVS2용액의 글리세롤과 슈크로스의 양을 증가시킨 용액을 조제함으로써 화학적 독성은 증가시키지 않으면서도 짧은 시간 동안에 충분한 탈수를 시킴으로써 재생율을 향상시키면서 광범위한 대상 재료에 적용할 수 있는 일련의 유리화 용액을 선발하였다. PVS3는 글리세롤과 슈크로스의 농도를 낮추어 건조저항성이 낮은 재료에서도 적용할 수 있도록 하였다. 표1은 이들 유리화 용액의 조성표이다.To compensate for this drawback, a solution that increases the amount of glycerol and sucrose in PVS2 solution is formulated to provide sufficient dehydration in a short period of time without increasing chemical toxicity, thereby improving regeneration rate and applying a wide range of materials to a wide range of target materials. Vitrification solution was selected. PVS3 lowers the concentration of glycerol and sucrose so that it can be applied to materials with low dry resistance. Table 1 is a composition table of these vitrification solutions.
[표1] 유리화 용액의 조성표Table 1 Composition of Vitrification Solution
※Con. : control 용액(기존 용액) ※ Con. : control solution (existing solution)
실시예Example 2: 유리화 용액 2: vitrification solution 의of 특성 characteristic
선발된 유리화 용액의 성능을 분석하기 위해 유리화 용액 80% 희석액들의 흡열열량 (Ensol), A계열 유리화 용액에 30분 또는 B계열 유리화 용액에 150분 탈수 한 마늘 신초의 흡열열량 (Ensam) 및 수분함량(MC)을 조사하였다(표 2). To analyze the performance of the selected vitrification solution, the endothermic heat of the 80% dilution of the vitrification solution (Ensol), the endothermic heat (Ensam) and water content of garlic shoots dehydrated for 30 minutes in the A-based vitrification solution or 150 minutes in the B-based vitrification solution. (MC) was investigated (Table 2).
[표 2] 유리화 용액 80% 희석액들의 흡열열량 (Ensol), A계열 용액에 30분 또는 B계열용액에 150분 탈수 한 마늘 신초의 흡열열량 (Ensam) 및 수분함량[Table 2] Endothermic heat of 80% dilution of vitrification solution (Ensol), endothermic heat (Ensam) and water content of garlic shoots dehydrated for 30 minutes in A-based solution or 150 minutes in B-based solution
(%)TC
(%)
(%)GSC
(%)
(%)GC
(%)
(%)SC
(%)
(%)DEGS
(%)
(%)DEC
(%)
(J/g FW)Ensol
(J / g FW)
(J/g FW)Ensam
(J / g FW)
(%)MC
(%)
A2
A3
A4
A5
A7
A8
A9
A10
B1
B2
B3
B4
B5A1
A2
A3
A4
A5
A7
A8
A9
A10
B1
B2
B3
B4
B5
90
90
90
85
90
85
85
85
100
90
90
90
8073.7
90
90
90
85
90
85
85
85
100
90
90
90
80
60
60
60
55
70
55
45
55
100
90
90
90
8043.7
60
60
60
55
70
55
45
55
100
90
90
90
80
42.5
37.5
32.5
35
37.5
30
30
40
50
50
45
40
4030
42.5
37.5
32.5
35
37.5
30
30
40
50
50
45
40
40
17.5
22.5
27.5
20
32.5
25
15
15
50
40
45
50
4013.7
17.5
22.5
27.5
20
32.5
25
15
15
50
40
45
50
40
50
50
50
54.5
28.6
54.5
88.9
54.5
0
0
0
0
068.6
50
50
50
54.5
28.6
54.5
88.9
54.5
0
0
0
0
0
30
30
30
30
20
30
40
30
0
0
0
0
030
30
30
30
30
20
30
40
30
0
0
0
0
0
-0.0±0.0a
-0.3±0.1a
-1.6±0.3ab
-2.9±2.4ab
-4.2±1.4ab
-2.1±0.5ab
-0.0±0.0a
-2.0±0.6ab
-6.9±1.5b
-31.1±5.4c
-42.1±1.4e
-40.9±0.8e
-48.3±8.9f-35.9 ± 1.8d
-0.0 ± 0.0a
-0.3 ± 0.1a
-1.6 ± 0.3ab
-2.9 ± 2.4ab
-4.2 ± 1.4ab
-2.1 ± 0.5ab
-0.0 ± 0.0a
-2.0 ± 0.6ab
-6.9 ± 1.5b
-31.1 ± 5.4c
-42.1 ± 1.4e
-40.9 ± 0.8e
-48.3 ± 8.9f
-15.4±8.8
-3.1±6.6
-14.7±14.9
-10.3±8.3
-19.7±13.8
-8.8±7.5
-6.8±8.1
-13.1±12.5
-3.3±6.6
-1.5±2.5
-4.4±4.8
-2.9±2.2
-12.2±10.3-16.7 ± 16.1
-15.4 ± 8.8
-3.1 ± 6.6
-14.7 ± 14.9
-10.3 ± 8.3
-19.7 ± 13.8
-8.8 ± 7.5
-6.8 ± 8.1
-13.1 ± 12.5
-3.3 ± 6.6
-1.5 ± 2.5
-4.4 ± 4.8
-2.9 ± 2.2
-12.2 ± 10.3
62.0±2.4b
60.8±1.9b
60.1±1.1bc
62.1±1.5b
57.0±2.3c
60.9±3.4b
63.5±2.4b
62.8±3.3b
37.6±1.9e
40.4±2.2e
39.7±1.5e
40.9±2.1e
45.2±1.7d67.0 ± 3.0a
62.0 ± 2.4b
60.8 ± 1.9b
60.1 ± 1.1bc
62.1 ± 1.5b
57.0 ± 2.3c
60.9 ± 3.4b
63.5 ± 2.4b
62.8 ± 3.3b
37.6 ± 1.9e
40.4 ± 2.2e
39.7 ± 1.5e
40.9 ± 2.1e
45.2 ± 1.7d
(VS, vitrification solution; TC, total concentration; GSC, glycerol + sucrose concentration; GC, glycerol concentration; SC, sucrose concentration; DEGS, % of DMSO + EG to glycerol + sucrose; DEC, DMSO + EG concentration; Ensol, endothermic enthalpies of 80 %-diluted vitrification solutions tested; Ensam, endothermic enthalpies of garlic shoots dehydrated with PVS2 and variants for 30 min or with PVS3 and variants for 150 min MC, moisture content of dehydrated garlic shoots)(VS, vitrification solution; TC, total concentration; GSC, glycerol + sucrose concentration; GC, glycerol concentration; SC, sucrose concentration; DEGS,% of DMSO + EG to glycerol + sucrose; DEC, DMSO + EG concentration; Ensol, endothermic enthalpies of 80% -diluted vitrification solutions tested; Ensam, endothermic enthalpies of garlic shoots dehydrated with PVS2 and variants for 30 min or with PVS3 and variants for 150 min MC, moisture content of dehydrated garlic shoots)
유리화 용액들에서 탈수한 마늘 신초의 수분함량과 80% 희석액들의 열량은 용액 간에 고도로 유의한 차이(P < 0.0001)가 있으나, 용액들에서 탈수한 마늘 신초의 열량(Ensam)은 용액 간에 유의성이 인정되지 않았다. 유리화 용액들의 TC, GSC, GC, SC, DEGS, DEC 등 모든 파라미터들이 MC, Ensol, and Ensam 등에 고도로 유의한 차이(P < 0.0001)를 나타낸 것으로 보아 용액의 디자인은 적절한 것으로 판단된다. MC와 Ensol간에는 고도의 유의성(P < 0.001)이 인정되었다 (상관계수 -0.59). 마늘 신초의 수분함량은 0.3M sucrose 고체 배지에서 전배양 후 84.1%, 2M glycerol + 0.6M sucrose 용액에서 40분 로딩 후 72.1%로 감소하였고, 유리화 용액들에 탈수 후에는 37.6-67.0%로 감소하였다.The moisture content of dehydrated garlic shoots and the calorie content of 80% diluents in vitrified solutions differed significantly between the solutions (P <0.0001), while the calories of dehydrated garlic shoots (Ensam) in the solutions were significant between the solutions. It wasn't. All the parameters of TC, GSC, GC, SC, DEGS, DEC, etc. of the vitrification solutions showed a highly significant difference (P <0.0001) in MC, Ensol, and Ensam, etc., so the design of the solution is considered appropriate. High significance (P <0.001) was found between MC and Ensol (correlation coefficient -0.59). The water content of garlic shoots decreased to 84.1% after pre-culture in 0.3M sucrose solid medium, to 72.1% after 40 min loading in 2M glycerol + 0.6M sucrose solution, and to 37.6-67.0% after dehydration in vitrified solutions. .
1차 열량분석에서 선발된 유리화 용액 A3의 성능을 비교하기 위해 A3 용액(글리세롤 37.5% + 디메칠설폭사이드 15 % + 에칠렌글리콜 15% + 슈크로스 22.5%, w/v)을 희석비율별로 열량분석을 한 결과 67-100% A3용액은 냉각과정에서의 발열반응은 발생하지 않았으나, 해동과정에서는 80-100% A3용액에서만 열량이 발생하지 않았다 (도 1a, 1b). 이는 곧 67-80% A3 용액에서 안정화가 안 된 유리결정이 해동과정에 재결빙이 일어난 것을 보여주고 있다. 냉각과정에서 B1용액(글리세롤 50% + 슈크로스 50%, w/v, PVS3)은 A1과 비슷한 경향을 보여주어 결빙억제능력이 비슷하였다. 해동과정에는 80% B1용액은 상당한 흡열 피크 (-5.75 J/g FW)가 나타난 반면, 80% A3용액은 미미한 피크(-0.02 J/g FW)를 보여 결빙억제능력이 다소 우수하였다 (도 2a, 2b). Calorimetric analysis of A3 solution (glycerol 37.5% + dimethylsulfoxide 15% +
A3용액의 농도가 0%에서 80%까지 증가함에 따라 흡열피크의 onset temperature (개시온도)는 2.7℃에서 -43℃로 직선적으로 감소하였는데 (P < 0.01), 50% A3용액과 70% A3용액의 개시온도는 각각 -27.1℃와 -43.0℃로써 B1용액의 -20.6℃와 -35.7℃보다 낮은 것으로 보아 A3용액이 B1용액에 비해 다소 우수하였다(도 3a, 3b).As the concentration of A3 solution increased from 0% to 80%, the onset temperature of endothermic peak decreased linearly from 2.7 ℃ to -43 ℃ (P <0.01), 50% A3 solution and 70% A3 solution. The onset temperature of -27.1 ℃ and -43.0 ℃ was lower than -20.6 ℃ and -35.7 ℃ of B1 solution, respectively, A3 solution was slightly better than B1 solution (Fig. 3a, 3b).
유리화 용액들의 결빙억제능력을 비교하기 위해 유리화 용액 80% 희석액들을 이용하여 열 분석을 한 결과, 모두 80% 희석액들에서 냉각과정에서는 발열 피크가 감지되지 않았다(도 4). 해동과정에서는 A계열 용액(A2-A10)이 모두 B계열 용액들(B1-B5)보다도 낮은 흡열피크를 나타냈는데, A계열 용액들에서는 0(A2, A9)~4 J/g FW(A7)의 흡열피크가 관찰되었으나, 원래의 PVS2 용액(A1)에서는 37 J/g FW의 피크가 관찰되었다. PVS2 변이용액들 중 글리세롤 농도를 높인 용액(A2 and A3)들이 슈크로스 농도를 높인 용액(A4)보다 결빙형성 억제에 더 효과적이었고, 디메칠설폭사이드와 에칠렌글리콜의 농도를 높인 용액(A9)이 글리세롤을 높인 용액(A10)보다 더 효과적이었다.Thermal analysis using
B계열 용액들 중에서는 원래의 PVS3(B1)용액이 8 J/g FW의 열량을 보이었지만 PVS3 변형용액들은 31-48 J/g FW의 비교적 큰 피크를 보였다.Among the B-based solutions, the original PVS3 (B1) solution showed 8 J / g FW calories, while the PVS3 modified solutions showed relatively large peaks of 31-48 J / g FW.
PVS2와 그 변형용액들에 30분씩 또는 PVS3와 그 변형용액들에 150분씩 탈수시킨 마늘 신초에 대해 열 분석을 한 결과(도 5), 80% 희석액들에서의 결과와 반대로 PVS3와 변형용액들이 PVS2와 변형용액들보다도 마늘 신초의 결빙형성 억제에 더 효과적이었다. 이런 결과는 PVS3와 변형용액에서 탈수시킨 신초의 수분함량(37.6-45.2%)이 PVS2와 변형용액에서 탈수시킨 신초의 수분함량(60.1-67.0%)보다 낮은데 기인한 것으로 판단된다. PVS2와 그 변형용액 중에서는 (디메칠설폭사이드와 에칠렌글리콜 농도를 증가시킨) A9용액 < (글리세롤과 슈크로스를 균형적으로 증가시킨) A3와 A5용액 순으로 가장 작은 흡열피크가 관찰되었다.Thermal analysis of garlic shoots dehydrated with PVS2 and its modified solutions for 30 minutes or PVS3 and its modified solutions for 150 minutes (Fig. 5) showed that PVS3 and modified solutions showed opposite PVS2 and 80% dilution results. It was more effective in inhibiting freezing formation of garlic shoots than in and modified solutions. These results were attributed to the fact that the moisture content of shoots dehydrated in PVS3 and modified solution (37.6-45.2%) was lower than the moisture content (60.1-67.0%) of shoots dehydrated in PVS2 and modified solution. Among PVS2 and its modified solutions, the smallest endothermic peak was observed in the order of A9 solution (increased dimethyl sulfoxide and ethylene glycol concentration) <A3 and A5 solution (balanced increase in glycerol and sucrose).
실시예Example 3: 선발한 유리화 용액 3: selected vitrification solution 의of 마늘 garlic 신초에의In the beginning 적용 apply
탈수 후의 생존율과 재생율은 두 그룹간에 유의한 차이가 없었으나, B계열의 용액들이 A계열의 용액들보다 동결보존 후 생존율과 재생율이 높았다(도 6). A계열용액(A2-A10)에 탈수시킨 신초의 동결보존 후 생존율과 재생율은 PVS2 보다도 높았다. 80% 희석액에서 피크가 나오지 않았고, 마늘 신초의 탈수시 미세한 피크를 보였던 A9용액은 동결보존 후 61.6%의 생존율과 56.2% 재생율을 보였다. 반면에 디메칠설폭사이드와 에칠렌글리콜의 농도를 줄인 A7용액은 탈수 후 커다란 피크를 보였음에도 불구하고(-19.7 J/g FW) 동결보존 후에는 더 높은 재생율을 보였다. 더욱이 PVS2 변형액들(85-90%)보다도 낮은 농도인 80% 용액인 B5용액은 PVS2 변형액들보다 유의하게(P < 0.0001) 높은 생존율과 재생율을 보였다. 냉각과 해동과정에서의 결빙형성에 의한 동결장해뿐만 아니라 PVS2 및 변형액들의 독성 때문에 동결보존 후 재생율이 저하된 것으로 보인다. Survival and regeneration rate after dehydration were not significantly different between the two groups, but the solutions of the B-series showed higher survival and regeneration rate after cryopreservation than the solutions of the A-series (FIG. 6). Survival and regeneration rate after cryopreservation of shoots dehydrated in solution A (A2-A10) were higher than those of PVS2. There was no peak at 80% dilution and A9 solution showed fine peak when dehydrated garlic shoots showed 61.6% survival and 56.2% regeneration after cryopreservation. On the other hand, A7 solution with dimethylsulfoxide and ethylene glycol concentrations showed a higher regeneration rate after cryopreservation, despite a large peak after dehydration (-19.7 J / g FW). Furthermore, the B5 solution, 80% solution lower than the PVS2 modifications (85-90%), showed significantly higher survival and regeneration rate than the PVS2 modifications (P <0.0001). The recovery rate after freezing preservation seems to be lowered due to the toxicity of PVS2 and the modified solution, as well as the freezing failure due to freezing formation during cooling and thawing.
유리화 용액의 파라미터들 중에서 TC(총 농도)와 GSC(글리세롤+슈크로스 농도)가 동결보존한 마늘 신초의 생존율과 재생율에 유의한(P < 0.0001) 영향을 미쳤는데, 이는 80-100%에 이르는 고농도의 글리세롤+슈크로스 농도가 충분한 양의 동결보호제 침투와 충분한 탈수를 가능케 해서 재생율을 증가시킨 결과라고 판단된다.Among the parameters of the vitrification solution, TC (total concentration) and GSC (glycerol + sucrose concentration) had a significant (P <0.0001) effect on the survival and regeneration rate of cryopreserved garlic shoots, reaching 80-100%. The high concentration of glycerol + sucrose is thought to be the result of increased regeneration rate by allowing sufficient amount of cryoprotectant penetration and sufficient dehydration.
다양한 VS로 탈수처리된 마늘 신초의 수분함량은 동결보존된 시료들의 생존과 재생율에 영향을 주었다(P < 0.01). 탈수된 신초의 열량은 동결보존 전(LN-) (P < 0.05)과 후(LN+) (P < 0.001) 모든 시료들의 생존과 재생에 영향을 미쳤다. The moisture content of garlic shoots dehydrated with various VSs affected the survival and regeneration rate of cryopreserved samples (P <0.01). The calories of dehydrated shoots affected the survival and regeneration of all samples before (LN−) (P <0.05) and after (LN +) (P <0.001) cryopreservation.
선발된 동결보호제 유리화 용액들을 마늘 소인편 신초에 적용했을 때 용액의 파라미터 간의 관계는 도 7과 같다. 다양한 유리화 용액에 탈수시킨 신초의 수분함량은 동결보존한 신초의 생존율(r= -0.82) 및 재생율(r= -0.79)과 부의 상관을 나타냈는데 이는 시료의 탈수 정도가 성공적인 동결보존의 적절한 지표인 셈이다. GSC는 동결보존한 샘플의 재생율과 잘 일치하였다. PVS2 변형액(A2-A10)들이 PVS3 변형액들(B2-B5)보다 결빙억제 능력은 뛰어나지만 PVS3 변형액들에 탈수처리한 마늘 신초들이 PVS2 변형액들에 탈수처리한 경우보다 더 결빙형성이 억제되었다.The relationship between the parameters of the solution when the selected cryoprotectant vitrification solutions were applied to garlic small leaf shoots is shown in FIG. 7. The moisture content of shoots dehydrated in various vitrification solutions was negatively correlated with the survival rate (r = -0.82) and regeneration rate (r = -0.79) of cryopreserved shoots, indicating that the degree of dehydration of the sample is an appropriate indicator of successful cryopreservation. It is. GSC was in good agreement with the regeneration rate of the cryopreserved samples. PVS2 strains (A2-A10) are more resistant to freezing than PVS3 strains (B2-B5), but garlic shoots dehydrated with PVS3 strains are more dehydrated than PVS2 strains. Suppressed.
실시예Example 4: 작은 방울- 4: small drops 유리화법에Vitrification 적합한 유리화 용액 Suitable vitrification solution 의of 국화에의 적용 Application to chrysanthemum
국화 신초에서 동결보존 전후의(LN(-)와 LN(+)) 생존율과 재생율은 VS의 농도와 조성에 따라 마늘보다도 더 다양하였다(도 8). 고농도(32.5%-50.0%)의 슈크로스는 동결보존한 시료의 회복에 긍정적인 영향을 주었다. PVS3와 그 변형용액들에서 글리세롤과 슈크로스의 균형이 동결보존 시료의 재생에 긍정적인 영향을 주었고, 고농도의 글리세롤이 고농도의 슈크로스보다 더 효과적이었다. Survival and regeneration rates before and after cryopreservation (LN (-) and LN (+)) in chrysanthemum shoots were more varied than garlic depending on the concentration and composition of VS (Figure 8). Sucrose at high concentrations (32.5% -50.0%) had a positive effect on the recovery of cryopreserved samples. The balance of glycerol and sucrose in PVS3 and its modified solutions had a positive effect on the regeneration of cryopreserved samples, and higher concentrations of glycerol were more effective than high concentrations of sucrose.
PVS2와 그 변형용액들에서 VS의 DEGS와 DEC가 증가했을 때 동결보존 전후에 국화 신초의 생존율과 재생율이 감소하였다. DMSO와 EG가 감소한 A7은 PVS2 변형용액 중에서 동결보존 전후에 높은 회복을 보여주었다. 반면에 A9(DMSO와 EG증가)는 동결보존처리 전에서 최하위의 회복력을 나타내었고, 결국 동결보존 처리 후에는 회복력이 0이었다. 이 결과로 보아 국화신초는 DMSO, EG, 글리세롤과 같은 침투성 동결보호제들에 매우 민감하였다.As the DEGS and DEC of VS were increased in PVS2 and its modified solutions, the survival and regeneration rates of chrysanthemum shoots decreased before and after cryopreservation. A7 with decreased DMSO and EG showed high recovery before and after cryopreservation in PVS2 modified solution. On the other hand, A9 (increase in DMSO and EG) showed the lowest resilience before cryopreservation treatment. As a result, chrysanthemum was very sensitive to permeable cryoprotectants such as DMSO, EG and glycerol.
실시예Example 5: 작은 방울- 5: small drops 유리화법에Vitrification 적합한 로딩 용액 선발 Selection of suitable loading solution
작은 방울-유리화법에 의한 초저온동결보존을 위해는 고농도 동결보호제 용액에서의 탈수과정이 필수적인데, 고농도용액으로 인한 탈수 쇼크를 경감하기 위해 한 단계 낮은 농도의 용액에서 동결보호제 침투 및 완만한 탈수를 유도하는 데 이때 사용하는 용액을 로딩(loading)용액이라 한다. 로딩 용액으로 사용되어온 1M 글리세롤(glycerol) + 0.8M 슈크로스(sucrose), 2M 글리세롤(glycerol) + 0.4M 슈크로스(sucrose)보다 생존율을 향상시키면서 광범위한 대상의 재료에 적용할 수 있는 일련의 로딩 용액을 선발하였다(표 3). Dehydration in high concentration cryoprotectant solution is essential for cryogenic preservation by small-drop vitrification method. In order to alleviate dehydration shock caused by high concentration solution, cryoprotectant infiltration and gentle dehydration are performed in one level of low concentration solution. The solution used at the time of induction is called a loading solution. A series of loading solutions that can be applied to a wide range of materials with improved survival compared to 1M glycerol + 0.8M sucrose, 2M glycerol + 0.4M sucrose, which has been used as a loading solution Was selected (Table 3).
[표 3] 로딩 용액의 조성표Table 3 Composition of Loading Solution
※Con. : control 용액(기존 용액) ※ Con. : control solution (existing solution)
이들 용액을 시차주사열량계(differential scanning calorimetry)를 이용하여 동결보호효과를 조사하였는데, 열량계 스캐닝 조건은 25℃에서 -85℃까지 10℃/분 속도로 냉각, 2분간 정지 후 10℃/분 속도로 해동하면서 발열량과 흡열량을 측정하였다(표4, 도 9, 도 10).The freezing protection effect of these solutions was investigated using differential scanning calorimetry.The calorimeter scanning conditions were cooled at 10 ° C / min from 25 ° C to -85 ° C, stopped for 2 minutes, and then at 10 ° C / min. While thawing, the calorific value and the endothermic amount were measured (Table 4, FIG. 9, FIG. 10).
[표 4] 로딩 용액의 농도 및 글리세롤/슈크로스 비율 등 조성에 따른 로딩 용액의 삼투압, 로딩 용액의 흡열 열량, 각각의 로딩 용액에서 40분씩 배양한 마늘 신초의 흡열 열량[Table 4] The osmotic pressure of the loading solution according to the concentration of the loading solution and the glycerol / sucrose ratio, the endothermic heat of the loading solution, the endothermic heat of garlic shoots incubated for 40 minutes in each loading solution
(% w/v)TC
(% w / v)
(%)GSR
(%)
(Osmol)Osm
(Osmol)
(J/g FW)Ensol
(J / g FW)
(J/g FW)Onsol
(J / g FW)
(J/g FW)Ensam
(J / g FW)
C2
C3
C4
C6
C7
C8
C9C1
C2
C3
C4
C6
C7
C8
C9
40.7
30.0
35.0
40.0
32.1
40.1
45.033.2
40.7
30.0
35.0
40.0
32.1
40.1
45.0
82.7
100.0
100.0
100.0
134.3
134.5
100.038.4
82.7
100.0
100.0
100.0
134.3
134.5
100.0
1.44±0.01c
1.16±0.02e
1.39±0.01c
1.58±0.01b
1.25±0.00d
1.60±0.00b
1.83±0.04a0.92 ± 0.06f
1.44 ± 0.01c
1.16 ± 0.02e
1.39 ± 0.01c
1.58 ± 0.01b
1.25 ± 0.00d
1.60 ± 0.00b
1.83 ± 0.04a
-117.9±6.0b
-149.4±7.3d
-134.2±5.9c
-122.7±4.4b
-139.9±7.0c
-116.1±3.1b
-100.2±4.4a-137.6 ± 3.4c
-117.9 ± 6.0b
-149.4 ± 7.3d
-134.2 ± 5.9c
-122.7 ± 4.4b
-139.9 ± 7.0c
-116.1 ± 3.1b
-100.2 ± 4.4a
-16.8±0.2d
-12.9±0.4a
-15.2±0.4c
-17.5±0.4de
-14.2±0.5b
-17.9±0.5e
-20.1±0.5f-12.8 ± 0.1a
-16.8 ± 0.2d
-12.9 ± 0.4a
-15.2 ± 0.4c
-17.5 ± 0.4de
-14.2 ± 0.5b
-17.9 ± 0.5e
-20.1 ± 0.5f
-148.2±7.8b
-194.5±4.1e
-165.2±6.7c
-149.7±2.4b
-174.2±7.6d
-170.9±7.0d
-129.7±5.2a-193.0 ± 3.7e
-148.2 ± 7.8b
-194.5 ± 4.1e
-165.2 ± 6.7c
-149.7 ± 2.4b
-174.2 ± 7.6d
-170.9 ± 7.0d
-129.7 ± 5.2a
(LS, loading solutions TC, total concentration; GSR, % of glycerol concentration to sucrose concentration; Osm, osmolarity (osmol) of 50 %-diluted LSS Ensol, endothermic enthalpies of LS tested; Onsol, onset temperature of recrystallization of the LS tested; Ensam, endothermic enthalpies of garlic shoots apices loaded with LS for 40 min; MC, moisture content of garlic shoot apices loaded with LS for 40 min)(LS, loading solutions TC, total concentration; GSR,% of glycerol concentration to sucrose concentration; Osm, osmolarity (osmol) of 50% -diluted LSS Ensol, endothermic enthalpies of LS tested; Onsol, onset temperature of recrystallization of the LS tested ; Ensam, endothermic enthalpies of garlic shoots apices loaded with LS for 40 min; MC, moisture content of garlic shoot apices loaded with LS for 40 min)
이들 로딩 용액들을 실재 마늘과 국화 신초에 적용하여 동결보존 전후의 생존율과 재생률을 조사하여 유망한 용액을 선정하였다 (도 11, 12, 13a, 13b). 로딩 용액 자체의 결빙억제능력은 글리세롤과 슈크로스의 조성비율보다는 농도에 의해 결정되었으며, 농도가 높은 C2(2M 글리세롤 + 0.65M 슈크로스), C8(2.5M 글리세롤 + 0.5M 슈크로스), C6(2M 글리세롤 + 0.5M 슈크로스) 순으로 동결보호 효과가 우수하였다.These loading solutions were applied to real garlic and chrysanthemum shoots to select promising solutions by examining the survival and regeneration rates before and after cryopreservation (FIGS. 11, 12, 13a, and 13b). The freezing capacity of the loading solution itself was determined by the concentration rather than the composition ratio of glycerol and sucrose, and high concentrations of C2 (2M glycerol + 0.65M sucrose), C8 (2.5M glycerol + 0.5M sucrose), C6 ( 2M glycerol + 0.5M sucrose) was excellent in the freeze protection effect.
실시예Example 6: 작은 방울- 6: small drops 유리화법에Vitrification 적합한 로딩 용액 Suitable loading solution 의of 마늘에의 적용 Application to garlic
로딩 처리는 마늘신초에서 동결보존 전에는 생존과 재생에 영향을 미치지 않았다. 동결보존 후에는 로딩 용액에 침지하지 않았던 것들은 84.5%의 생존율과 82.7%의 재생율 보였는데, 이것은 명백히 로딩 처리한 시료(생존율 98.9-100%, 재생율 98.5-100%)보다 낮았다(P < 0.0001). 마늘 신초를 다양한 로딩 용액에 처리 후 동결보존한 결과, 생존율과 재생율에 유의한 차이가 없었다. 이러한 경과는 로딩 처리는 시험 된 로딩 용액 사이에서 어떤 선호도가 없이 다양한 농도범위의 로딩 용액에의 처리가 동결보존한 마늘 신초의 회복에 긍정적인 영향을 끼친다는 것을 의미한다. Loading treatment did not affect survival and regeneration before cryopreservation in garlic shoots. Those that were not immersed in the loading solution after cryopreservation showed a survival rate of 84.5% and a regeneration rate of 82.7%, which was clearly lower than the samples that were loaded (survival rate 98.9-100%, regeneration rate 98.5-100%) (P <0.0001). After freezing and storing garlic shoots in various loading solutions, there was no significant difference in survival and regeneration rates. This process means that the loading treatment has a positive effect on the recovery of cryopreserved garlic shoots with various concentrations of loading solutions without any preference between the tested loading solutions.
실시예Example 7: 작은 방울- 7: small drops 유리화법에Vitrification 적합한 로딩 용액 Suitable loading solution 의of 국화에의 적용 Application to chrysanthemum
이들 로딩 용액을 실재 국화 측아의 동결보존에 적용한 결과, 동결보존 전과 후 모두 PVS3의 35% 희석액인 C4(1.9M 글리세롤 + 0.51M 슈크로스)가 가장 높은 생존율 및 재생률을 나타냈고(도 18), PVS3의 40% 희석액인 C6(2.17M 글리세롤 + 0.58M 슈크로스)가 그 뒤를 이었다. 이들 용액은 글리세롤과 슈크로스가 동일 중량비를 이루고 있다. Application of these loading solutions to cryopreservation of real chrysanthemum buds revealed that C4 (1.9M glycerol + 0.51M sucrose), 35% dilution of PVS3, before and after cryopreservation had the highest survival and regeneration rates (FIG. 18). This was followed by C6 (2.17M glycerol + 0.58M sucrose), a 40% dilution of PVS3. These solutions have the same weight ratio of glycerol and sucrose.
이러한 결과를 활용하면 로딩 용액을 별도로 조제할 필요가 없이 PVS3 용액을 35% 내외로 희석시켜서 사용함으로써 기존의 로딩 용액보다도 높은 재생률을 획득할 수 있을 것이다.By utilizing these results, it is possible to obtain a higher regeneration rate than the conventional loading solution by diluting the PVS3 solution to around 35% without having to prepare a loading solution separately.
도 1a, 1b는 유리화 용액 A3용액 희석액(0-100%액)들의 농도에 따른 냉각과정(도 1a)에서와 해동과정(도 1b)에서의 열량(J/g FW) 변화를 나타내는 그래프이다((열량계 스캐닝 조건: 25℃에서 -85℃까지 10℃/분 속도로 냉각, 2분간 정지 후 10℃/분 속도로 해동)).1A and 1B are graphs showing the change in calories (J / g FW) during the cooling process (FIG. 1A) and the thawing process (FIG. 1B) according to the concentration of the dilute solution of the vitrification solution A3 solution (0-100% solution). (Calorimeter scanning conditions: cooled at 10 ° C./minute from 25 ° C. to −85 ° C., thawed at 10 ° C./min after stopping for 2 minutes)).
도 2a, 2b는 유리화 용액 B1용액 희석액(0-100%액)들의 농도에 따른 냉각과정(도 2a)에서와 해동과정(도 2b)에서의 열량(J/g FW) 변화를 나타내는 그래프이다. 2A and 2B are graphs showing the change in calories (J / g FW) during the cooling process (FIG. 2A) and the thawing process (FIG. 2B) according to the concentration of the vitrification solution B1 solution dilutions (0-100% solution).
도 3a는 유리화 용액 A3용액 희석액들(0-100%), 도3b는 B1용액 희석액들(0-100%)의 농도에 따른 해동과정에서의 개시온도(℃) 변화를 나타내는 그래프이다. Figure 3a is a graph showing the change in starting temperature (° C) during the thawing process according to the concentration of the vitrification solution A3 solution dilutions (0-100%), B1 solution dilutions (0-100%).
도 4는 유리화 용액 80% 희석액들의 해동과정에서의 열량(J/g FW)을 나타내는 그래프이다. Figure 4 is a graph showing the calories (J / g FW) during the thawing of the 80% dilution of the vitrification solution.
도 5는 PVS2와 변형용액들에 30분씩 또는 PVS3와 변형용액들에 150분씩 탈수시킨 마늘 소인편 신초의 해동과정에서의 흡열 열량(J/g FW)을 나타내는 그래프이다. FIG. 5 is a graph showing the endothermic heat (J / g FW) during thawing of garlic vinegar dehydrated for 30 minutes in PVS2 and modified solutions or 150 minutes in PVS3 and modified solutions.
도 6은 PVS2와 변형용액들(A계열)에 30분씩 또는 PVS3와 변형용액들(B계열)에 150분씩 탈수시킨 마늘 소인편 신초의 동결보존 전(LN-)과 후(LN+)의 생존율(surv)과 재생율(rege)을 나타낸다. Figure 6 shows the survival rates before (LN-) and after (LN +) freezing preservation of garlic small leaf shoots dehydrated for 30 minutes in PVS2 and modified solutions (series A) or 150 minutes in PVS3 and modified solutions (series B). surv) and refresh rate.
도 7은 유리화 용액들의 glycerol+sucrose 농도(gsr), 유리화 용액 80% 희석액들의 열량(ensol)과 A계열 용액에 30분 또는 B계열용액에 150분간 탈수처리한 마 늘 신초의 수분함량(mc) 및 열량(ensam), 이들 용액에 탈수처리 후 동결보존 전(LN-)과 후(LN+)의 마늘 신초의 재생율(rege)을 나타낸다.Figure 7 shows the concentration of glycerol + sucrose (gsr) in vitrification solutions, calorie (ensol) in 80% dilutions of vitrification solution, and water content (mc) of garlic after dehydration for 30 minutes in A-based solution or 150 minutes in B-based solution. And ensam, the regeneration of garlic shoots before (LN−) and after (LN +) cryopreservation after dehydration in these solutions.
도 8은 PVS2와 변형용액들(A계열)에 30분씩 또는 PVS3와 변형용액들(B계열)에 60분씩 탈수시킨 국화 신초의 동결보존 전(LN_)과 후(LN+)의 생존율(surv)과 재생율(rege)을 나타낸다.Figure 8 shows the survival rate (surv) before and after cryopreservation (LN_) and after (LN +) of chrysanthemum shoots dehydrated with PVS2 and modified solutions (series A) for 30 minutes or with PVS3 and modified solutions (series B) for 60 minutes. The refresh rate is shown.
도 9는 로딩 용액의 해동과정에서의 열량분석(결빙형성에 의한 흡열량)을 나타낸다.9 shows calorimetry (endothermic amount due to freezing formation) during thawing of a loading solution.
도 10은 로딩 용액의 해동과정에서의 재결빙 개시온도를 나타낸다. 10 shows the refreezing start temperature during thawing of the loading solution.
도 11은 로딩 용액에 40분간 로딩 처리한 마늘 신초의 해동과정에서의 열량(J/gFW)을 나타낸다. FIG. 11 shows the calories (J / gFW) during thawing of garlic shoots loaded with a loading solution for 40 minutes.
도 12는 로딩 용액 C3, C4 및 C6에 40분간 로딩 처리한 처리단계별(전배양, 로딩, 탈수) 마늘 신초의 해동과정에서의 열량(J/gFW)을 나타낸다. Figure 12 shows the calories (J / gFW) during the thawing process of garlic shoots for each treatment step (pre-culture, loading, dehydration) loaded for 40 minutes in the loading solution C3, C4 and C6.
도 13a는 로딩 용액에 따른 국화 측아의 동결보존 전(LN-), 도 13b는 후(LN+)의 생존율(surv) 및 재생율(rege)을 나타낸다. FIG. 13A shows the preservation (rev) and recovery (LN +) of the chrysanthemum buds before loading (LN−), and FIG.
Claims (2)
(%, w/v)Loading solution composition
(%, w / v)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090028897A KR20100110524A (en) | 2009-04-03 | 2009-04-03 | Vitrification solutions and loading solutions applicable for droplet-vitrification procedures |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090028897A KR20100110524A (en) | 2009-04-03 | 2009-04-03 | Vitrification solutions and loading solutions applicable for droplet-vitrification procedures |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20100110524A true KR20100110524A (en) | 2010-10-13 |
Family
ID=43131108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090028897A Ceased KR20100110524A (en) | 2009-04-03 | 2009-04-03 | Vitrification solutions and loading solutions applicable for droplet-vitrification procedures |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20100110524A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104904707A (en) * | 2015-05-29 | 2015-09-16 | 广州赛莱拉干细胞科技股份有限公司 | Composition, application of composition, vitrification cryopreserved agent of placenta and preparation method |
-
2009
- 2009-04-03 KR KR1020090028897A patent/KR20100110524A/en not_active Ceased
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104904707A (en) * | 2015-05-29 | 2015-09-16 | 广州赛莱拉干细胞科技股份有限公司 | Composition, application of composition, vitrification cryopreserved agent of placenta and preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | Development of alternative plant vitrification solutions in droplet-vitrification procedures | |
Matsumoto | Cryopreservation of plant genetic resources: conventional and new methods | |
Yang et al. | Low‐temperature conditioning induces chilling tolerance in ‘Hayward’kiwifruit by enhancing antioxidant enzyme activity and regulating en‐dogenous hormones levels | |
Lemoine et al. | Hot air treatment delays senescence and maintains quality of fresh-cut broccoli florets during refrigerated storage | |
CN105517435B (en) | Antimicrobial compound and composition | |
Biermann et al. | Differential Thermal Analysis and Freezing Injury in Cold Hardy Blueberry Flower Buds1 | |
Bunya-atichart et al. | Postharvest physiology of Curcuma alismatifolia flowers | |
KR20100110525A (en) | Cryopreservation methods for chrysanthemum shoot tips | |
Walters et al. | Cryopreservation of recalcitrant (ie desiccation-sensitive) seeds | |
Tripathi et al. | Effect of seed moisture and packing material on viability and vigour of onion seed | |
Bruňáková et al. | Dehydration status of ABA-treated and cold-acclimated Hypericum perforatum L. shoot tips subjected to cryopreservation | |
KR20100129409A (en) | Anti-softening agent and fruit softening method | |
Anushma et al. | Pollen storage studies in date palm (Phoenix dactylifera L.) | |
Aslamarz et al. | Supercooling and cold-hardiness of acclimated and deacclimated buds and stems of Persian walnut cultivars and selections | |
Ballesteros et al. | Calorimetric properties of water and triacylglycerols in fern spores relating to storage at cryogenic temperatures | |
KR20100110524A (en) | Vitrification solutions and loading solutions applicable for droplet-vitrification procedures | |
Lu et al. | Recovery of Populus tremuloides seedlings following severe drought causing total leaf mortality and extreme stem embolism | |
Cho et al. | Cryopreservation of Citrus madurensis embryonic axes by encapsulation-dehydration | |
Zhang et al. | Low-temperature storage and cryopreservation of grapefruit (Citrus paradisi Macfad.) seeds | |
Mumford et al. | Germination and liquid nitrogen storage of cassava seed | |
Reed | Choosing and applying cryopreservation protocols to new plant species or tissues | |
CN108208149B (en) | Application of polyamine decomposition inhibitor aminoguanidine in fruit preservation and using method | |
Kuo et al. | Ethyl acetate produced by Ceratocystis paradoxa and C. adiposum and its role in the inhibition of the germination of sugarcane buds | |
Narwal et al. | Exogenous Calcium Enhances Osmotic Regulation, Photosynthetic Machinery and Stomatal Characteristics in Banana Under Dehydration Stress | |
Yao et al. | Relative importance of seed drying rate, desiccation Tolerance, and cryotolerance for the conservation of Ardisia elliptica, A. brunnescens and A. virens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20090403 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20110120 Patent event code: PE09021S01D |
|
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20110405 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20110120 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |