KR20100108106A - Preparation method of graphene sheets by the reduction of carbon monoxide - Google Patents

Preparation method of graphene sheets by the reduction of carbon monoxide Download PDF

Info

Publication number
KR20100108106A
KR20100108106A KR1020090026596A KR20090026596A KR20100108106A KR 20100108106 A KR20100108106 A KR 20100108106A KR 1020090026596 A KR1020090026596 A KR 1020090026596A KR 20090026596 A KR20090026596 A KR 20090026596A KR 20100108106 A KR20100108106 A KR 20100108106A
Authority
KR
South Korea
Prior art keywords
graphene sheet
carbon monoxide
manufacturing
aluminum sulfate
mixed gas
Prior art date
Application number
KR1020090026596A
Other languages
Korean (ko)
Other versions
KR101139598B1 (en
Inventor
정우식
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to KR1020090026596A priority Critical patent/KR101139598B1/en
Publication of KR20100108106A publication Critical patent/KR20100108106A/en
Application granted granted Critical
Publication of KR101139598B1 publication Critical patent/KR101139598B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE: A graphene sheet manufacturing method of a graphene sheet using the reduction reaction of carbon monoxide and a method thereof are provided to increase the manufacturing efficiency and simplify the graphene sheet used as an efficient semiconductor material. CONSTITUTION: A graphene sheet manufacturing method of a graphene sheet using the reduction reaction of carbon monoxide and a method thereof plasticizes the aluminum sulfate powder under the mixed gas atmosphere of the carbon monoxide. A manufacturing method of the graphene sheet comprises next steps. The mixed gas atmosphere of the argon and carbon monoxide aluminum sulfate powder is reacted. The aluminum sulfate powder is plasticized. The aluminum sulfate of non-reactive acid solution is added in the plasticized aluminum sulfate powder. The plasticity operates at a temperature of 900-1300 degrees for 5-15 hours.

Description

일산화탄소의 환원반응을 이용한 그라핀 시트의 제조방법{Preparation method of graphene sheets by the reduction of carbon monoxide}Preparation method of graphene sheets by reduction of carbon monoxide {Preparation method of graphene sheets by the reduction of carbon monoxide}

본 발명은 태양전지의 전극, 감지기, 리튬전지의 애노드 전극물질, 그리고 효율적인 제로 밴드갭 반도체 소재로 활용될 수 있는 그라핀 시트의 일산화탄소의 환원반응을 이용한 제조방법에 관한 것이다.The present invention relates to a manufacturing method using the carbon monoxide reduction reaction of the graphene sheet, which can be utilized as an electrode of a solar cell, a sensor, an anode electrode material of a lithium battery, and an efficient zero bandgap semiconductor material.

그라핀(graphene)은 2004년 Novoselov 및 Geim의 연구팀에 의해 처음 만든 것으로, sp2 결합 탄소원자로 이루어진 6각형 구조의 단층 2차원 구조체이다. Graphene was first created in 2004 by the team of Novoselov and Geim and is a monolayer two-dimensional structure of hexagonal structure consisting of sp 2 bonded carbon atoms.

그라핀 내의 전자들은 정지 질량이 없는 상대론적 입자처럼 행동하고 초속 약 1백만 미터의 속도로 움직이는데, 이 속도는 진공 중의 빛의 속도보다는 300 배 느린 것이지만 일반 도체나 반도체 내의 전자의 속도보다는 훨씬 빠른 것이다. 또한, 그라핀은 훌륭한 전도체이므로 고속 트랜지스터를 만들 수도 있다. The electrons in graphene behave like relativistic particles without static mass and move at about 1 million meters per second, which is 300 times slower than the speed of light in a vacuum, but much faster than the speed of electrons in a normal conductor or semiconductor. . In addition, graphene is a good conductor, making it possible to make high-speed transistors.

그라핀 시트는 앞으로 다양한 분야에 응용될 수 있지만 그것을 효과적으로 제조할 수 있는 방법은 아직까지 개발되어 있지 않은 실정이다. 그라핀 시트의 제조방법으로 지금까지 알려진 것으로는 벌크 흑연의 미세역학적인 개열법, 흑연 산 화-박리-환원법, 탄화실리콘의 초진공 흑연화반응(graphization) 등이 있는데, 아직까지 일산화탄소를 이용한 제조법은 알려져 있지 않다. Graphene sheet may be applied to various fields in the future, but a method for producing it effectively has not been developed yet. Known methods for producing graphene sheets include micromechanical cleavage of bulk graphite, graphite oxidation-peel-reduction, and ultra-vacuum graphitization of silicon carbide. Is not known.

본 발명의 목적은 간편하면서도 높은 효율로 양질의 그라핀 시트를 일산화탄소의 환원반응을 이용하여 제조하는 방법을 제공하는 데에 있다.An object of the present invention is to provide a method for producing a high quality graphene sheet using a reduction reaction of carbon monoxide in a simple and high efficiency.

상기 목적을 달성하기 위하여, 본 발명은 일산화탄소와 아르곤의 혼합 가스 분위기 하에서 황화알루미늄(Al2S3)을 소성시키는 것을 특징으로 하는 일산화탄소의 환원반응을 이용한 그라핀 시트의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a method for producing a graphene sheet using a carbon monoxide reduction reaction characterized in that the calcined aluminum sulfide (Al 2 S 3 ) in a mixed gas atmosphere of carbon monoxide and argon.

상기 제조방법은 황화알루미늄 분말을 일산화탄소와 아르곤의 혼합 가스 분위기 하에서 반응시키는 단계: 및 상기 반응을 거친 황화알루미늄 분말을 소성시키는 단계를 포함하여 이루어진다.The manufacturing method includes the step of reacting the aluminum sulfide powder under a mixed gas atmosphere of carbon monoxide and argon: and calcining the aluminum sulfide powder subjected to the reaction.

또한, 상기 제조방법은 소성된 분말에 산 용액을 첨가하여 미반응의 황화알루미늄을 제거하는 단계를 추가로 포함할 수 있다. 이때, 상기 산 용액으로는 묽은 염산 용액, 묽은 황산 용액, 묽은 인산 용액 등을 사용할 수 있다.In addition, the manufacturing method may further include the step of removing the unreacted aluminum sulfide by adding an acid solution to the calcined powder. At this time, a dilute hydrochloric acid solution, dilute sulfuric acid solution, dilute phosphoric acid solution, etc. may be used as the acid solution.

상기 소성은 900-1300℃의 온도에서 5-15 시간 동안 수행되는 것이 바람직하다. 만약, 소성온도가 상기 범위를 벗어나면 그라핀 시트가 생성되지 않거나 탄화알루미늄이 생성되는 문제가 야기될 수 있으며, 소성시간이 상기 범위를 벗어나면 그라핀 시트의 생성양이 적거나 탄화알루미늄이 생성되는 문제가 야기될 수 있다. The firing is preferably carried out for 5-15 hours at a temperature of 900-1300 ℃. If the firing temperature is outside the above range, the graphene sheet may not be produced or the aluminum carbide may be generated. If the firing time is outside the above range, the amount of the graphene sheet is less produced or aluminum carbide is produced. Can cause problems.

또한, 본 발명은 상기 제조방법에 따라 얻어진 그라핀 시트를 제공한다.The present invention also provides a graphene sheet obtained by the above production method.

그라핀 시트는 다음의 반응식 1에 나타낸 바와 같이 일산화탄소가 황화알루미늄과의 반응에 의해 기체상태의 탄소로 환원되며, 생성된 기체상태의 탄소가 그라핀 시트로 결정화됨으로써 제조된다.The graphene sheet is prepared by reducing carbon monoxide to gaseous carbon by reaction with aluminum sulfide, as shown in Scheme 1 below, and producing the gaseous carbon crystallized into a graphene sheet.

[반응식 1]Scheme 1

Al2S3(s) + 3 CO(g) -> Al2O3(s) + 3 C(g) + 3 S(g); C(g) -> 그라핀 시트(s)Al 2 S 3 (s) + 3 CO (g)-> Al 2 O 3 (s) + 3 C (g) + 3 S (g); C (g)-> Graphene Sheet (s)

이렇게 형성된 그라핀 시트의 특성은 X-선 회절(X-ray diffraction, XRD), 고분해능 투과전자현미경(high-resolution transmission electron microscopy, HRTEM) 및 라만 분광기를 이용하여 분석할 수 있으며, 본 발명의 그라핀 시트는 태양전지의 전극, 감지기, 리튬전지의 애노드 전극물질, 그리고 효율적인 제로 밴드갭 반도체 소재로 사용할 수 있다.The graphene sheet thus formed can be analyzed using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy. The pin sheet can be used as a solar cell electrode, a sensor, an anode electrode material of a lithium battery, and an efficient zero bandgap semiconductor material.

본 발명의 그라핀 시트의 제조방법을 이용하면, 태양전지의 전극, 감지기, 리튬전지의 애노드 전극물질, 그리고 효율적인 제로 밴드갭 반도체 소재로서의 용도로 사용할 수 있는 그라핀 시트를 간편하면서도 높은 효율로 제조할 수 있다.By using the method for producing a graphene sheet of the present invention, a graphene sheet which can be used as an electrode of a solar cell, a sensor, an anode electrode material of a lithium battery, and an efficient zero bandgap semiconductor material can be manufactured with a simple and high efficiency. can do.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the scope of the present invention is not limited to the following examples.

<실시예 1> 그라핀 시트의 제조 및 물성 검토Example 1 Preparation of Graphene Sheet and Examination of Physical Properties

황화알루미늄 분말(알드리치 케미칼, 98%)을 알루미나 도가니에 담아 내경이 36 mm인 알루미나 튜브에 넣고, 아르곤과 일산화탄소(10 부피%)의 혼합가스의 흐름 (200 ml/min의 유속)에서 반응온도까지 5℃/min의 속도로 승온하였다. Aluminum sulfide powder (Aldrich Chemical, 98%) is placed in an alumina crucible and placed in an alumina tube with an internal diameter of 36 mm, from the flow of a mixed gas of argon and carbon monoxide (10% by volume) to the reaction temperature. It heated up at the speed of 5 degree-C / min.

황화알루미늄 분말을 다양한 온도에서 10시간 동안 소성시키고, X-선 회절( PANalytical X'Pert PRO MPD X-ray diffractometer with Cu-Kα radiation operating at 40 kV and 30 mA), 고분해능 투과전자현미경(FEI Tecnai F20) 및 라만 분광기(Thermo Almega XR Raman spectrometer, excitation at 532 nm)에 의해 특성을 분석하였다.The aluminum sulfide powder was calcined at various temperatures for 10 hours, PANalytical X'Pert PRO MPD X-ray diffractometer with Cu-Kα radiation operating at 40 kV and 30 mA, high resolution transmission electron microscope (FEI Tecnai F20) And Raman spectroscopy (Thermo Almega XR Raman spectrometer, excitation at 532 nm).

도 1과 같이, 1200 ℃ 및 1300 ℃에서 얻어진 시료의 XRD 패턴을 보면 α-Al2O3 (JCPDS No. 46-1212)와 α-Al2S3 (JCPDS No. 47-1313)에 해당되는 회절피크 이외에 그라핀 시트로 여겨지는 회절피크가 나타났다. As shown in FIG. 1, XRD patterns of samples obtained at 1200 ° C. and 1300 ° C. correspond to α-Al 2 O 3 (JCPDS No. 46-1212) and α-Al 2 S 3 (JCPDS No. 47-1313). In addition to the diffraction peaks, a diffraction peak was regarded as a graphene sheet.

그라핀 시트의 존재를 확인하기 위하여, 1200 ℃에서 소성된 시료에 묽은 HCl 용액을 가해 미반응의 황화알루미늄을 제거하기 하고 얻은 검은 분말의 특징을 HRTEM로 분석하였다.In order to confirm the presence of the graphene sheet, a diluted HCl solution was added to the sample calcined at 1200 ° C. to remove unreacted aluminum sulfide, and the obtained black powder was analyzed by HRTEM.

도 2a에 도시된 바와 같이, 탄소의 형상이 평면 시트와 유사한 것으로 확인되어 검은 분말에서의 탄소는 그라핀 시트임을 알 수 있었다. 이러한 시트는 투명하고, 80 kV의 가속 전압의 전자빔 조사 하에서 손상되지 않았다. 도 2a의 이미지를 보면 그라핀 시트는 층수가 적어 접히고, 서로 감겨 있음을 알 수 있다.As shown in Figure 2a, the shape of the carbon is confirmed to be similar to the flat sheet, it can be seen that the carbon in the black powder is a graphene sheet. This sheet is transparent and intact under electron beam irradiation with an acceleration voltage of 80 kV. Looking at the image of Figure 2a it can be seen that the graphene sheet is folded with a small number of layers, and are wound together.

도 2b에 도시된 바와 같이, 다층의 그라핀 시트는 수십 내지 수백 평방 나노 미터의 크기로서 비단과 같이 접인 모양을 하고 있었다. 선택된 영역의 전자 회절(SAED) 패턴(도 2b 삽입도 참조)으로부터 그라핀 시트가 결정상임을 알 수 있었다.As shown in FIG. 2B, the multilayer graphene sheet had a size of several tens to several hundreds of square nanometers and was folded like silk. The electron diffraction (SAED) pattern of the selected area (see inset of FIG. 2B) showed that the graphene sheet was crystalline.

도 2c의 TEM 이미지를 보면 나노크기의 α-Al2O3 입자 주위를 다층의 그라핀 시트가 감싸고 있음을 알 수 있고, 도 2d를 보면 다층의 그라핀 시트가 질서정연하게 포개져 있음을 명확하게 관찰할 수 있다. 이웃한 그라핀 시트 층간의 간격은 0.34 nm이었는데, 이 값은 흑연에서의 층간 간격과 일치하였다.From the TEM image of FIG. 2C, it can be seen that the multilayer graphene sheet is wrapped around the nano-sized α-Al 2 O 3 particles, and it is clear from FIG. Can be observed. The spacing between adjacent graphene sheet layers was 0.34 nm, which is consistent with the interlayer spacing in graphite.

또한, HCl로 처리된 검은 분말의 라만 스펙트럼을 측정하였다. 도 3에 도시된 바와 같이 1575와 1350 cm-1의 피크는 각각 제 1차 G 및 D 선을 나타낸다. G와 D 선은 각각 탄소의 sp2 원자의 E2g 포논과 A1g 대칭의 κ-점 포논의 브리딩 모드(breathing mode)에 해당한다. 제 2차 G' 및 D' 선은 각각 3220와 2682 cm-1에 나타났다.In addition, the Raman spectrum of the black powder treated with HCl was measured. As shown in FIG. 3, the peaks of 1575 and 1350 cm −1 represent the primary G and D lines, respectively. The G and D lines correspond to the breathing mode of the E 2g phonon of the sp 2 atom of carbon and the κ-point phonon of A 1g symmetry, respectively. Secondary G 'and D' lines appeared at 3220 and 2682 cm -1 , respectively.

도 1에서 a와 b는 각각 1200 ℃와 1300 ℃의 혼합 가스 분위기 하에서 Al2S3의 소성에 의해 얻어진 분말의 XRD 패턴을 나타낸 것이고,In Figure 1 a and b show the XRD pattern of the powder obtained by firing of Al 2 S 3 in a mixed gas atmosphere of 1200 ℃ and 1300 ℃, respectively,

도 2에서 a와 b는 각각 본 발명에 따른 그라핀 시트의 저배율 TEM 이미지와고배율 TEM 이미지이고, b의 삽입도는 SAED 패턴을 나타낸 것이고,In Figure 2 a and b are the low magnification TEM image and high magnification TEM image of the graphene sheet according to the present invention, respectively, the insertion degree of b shows the SAED pattern,

도 2에서 c는 그라핀 시트 위에 있는 나노크기 α-Al2O3 입자를 나타낸 HRTEM 이미지이고,In Figure 2 c is an HRTEM image showing the nano-size α-Al 2 O 3 particles on the graphene sheet,

도 2에서 d는 여러 층의 그라핀 시트임을 보여 주는 가장자리의 이미지이고,In Figure 2 d is an image of the edge showing that the graphene sheet of several layers,

도 3은 1200 ℃의 혼합 가스 분위기에서 소성시킨 후 HCl로 처리한 후 얻어진 분말의 라만 스펙트럼이다. 3 is a Raman spectrum of a powder obtained after firing in a mixed gas atmosphere at 1200 ° C., followed by treatment with HCl.

Claims (5)

일산화탄소와 아르곤의 혼합 가스 분위기 하에서 황화알루미늄 분말을 소성시키는 것을 특징으로 하는 일산화탄소의 환원반응을 이용한 그라핀 시트의 제조방법.A method for producing a graphene sheet using a reduction reaction of carbon monoxide, characterized by firing aluminum sulfide powder in a mixed gas atmosphere of carbon monoxide and argon. 제 1항에 있어서, 상기 제조방법은 황화알루미늄 분말을 일산화탄소와 아르곤의 혼합 가스 분위기 하에서 반응시키는 단계; 및 상기 반응을 거친 황화알루미늄 분말을 소성시키는 단계를 포함하여 이루어지는 것을 특징으로 하는 일산화탄소의 환원반응을 이용한 그라핀 시트의 제조방법.The method of claim 1, wherein the manufacturing method comprises: reacting aluminum sulfide powder in a mixed gas atmosphere of carbon monoxide and argon; And calcining the aluminum sulfide powder which has undergone the above reaction. 제 2항에 있어서, 상기 제조방법은 소성된 황화알루미늄 분말에 산 용액을 첨가하여 미반응의 황화알루미늄을 제거하는 단계를 추가로 포함하여 이루어지는 것을 특징으로 하는 일산화탄소의 환원반응을 이용한 그라핀 시트의 제조방법.The method of claim 2, wherein the manufacturing method further comprises the step of removing the unreacted aluminum sulfide by adding an acid solution to the calcined aluminum sulfide powder of the graphene sheet using a carbon monoxide reduction reaction Manufacturing method. 제 2항 또는 제 3항에 있어서, 상기 소성은 900-1300℃의 온도에서 5-15 시간 동안 수행되는 것을 특징으로 하는 일산화탄소의 환원반응을 이용한 그라핀 시트의 제조방법.The method of claim 2 or 3, wherein the firing is performed for 5 to 15 hours at a temperature of 900-1300 ℃ graphene sheet production method using a carbon monoxide reduction reaction. 제 1항 내지 제 4항 중 어느 한 항의 제조방법에 따라 얻어진 그라핀 시트.The graphene sheet obtained by the manufacturing method of any one of Claims 1-4.
KR1020090026596A 2009-03-27 2009-03-27 Preparation method of graphene sheets by the reduction of carbon monoxide KR101139598B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090026596A KR101139598B1 (en) 2009-03-27 2009-03-27 Preparation method of graphene sheets by the reduction of carbon monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090026596A KR101139598B1 (en) 2009-03-27 2009-03-27 Preparation method of graphene sheets by the reduction of carbon monoxide

Publications (2)

Publication Number Publication Date
KR20100108106A true KR20100108106A (en) 2010-10-06
KR101139598B1 KR101139598B1 (en) 2012-04-27

Family

ID=43129730

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090026596A KR101139598B1 (en) 2009-03-27 2009-03-27 Preparation method of graphene sheets by the reduction of carbon monoxide

Country Status (1)

Country Link
KR (1) KR101139598B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101336540B1 (en) * 2011-02-17 2013-12-03 영남대학교 산학협력단 Alumina particles wrapped in graphene sheets, the manufacturing method thereof, alumina particles thereby, graphene-TiO2 paste, the manufacturing method of the graphene-TiO2 paste, the method for manufacturing dye-sensitized solar cell, and the dye-sensitized solar cell thereby
KR101461803B1 (en) * 2013-05-21 2014-11-13 주식회사 포스코 Graphene manufacturing method and manufacturing appratus
US9406513B2 (en) 2013-04-09 2016-08-02 Samsung Electronics Co., Ltd. Graphene laminate with band gap

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008120660A (en) * 2006-11-16 2008-05-29 Toshio Sugita Graphene sheet for producing carbon tube and graphene sheet for graphene sheet formed article

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101336540B1 (en) * 2011-02-17 2013-12-03 영남대학교 산학협력단 Alumina particles wrapped in graphene sheets, the manufacturing method thereof, alumina particles thereby, graphene-TiO2 paste, the manufacturing method of the graphene-TiO2 paste, the method for manufacturing dye-sensitized solar cell, and the dye-sensitized solar cell thereby
US9406513B2 (en) 2013-04-09 2016-08-02 Samsung Electronics Co., Ltd. Graphene laminate with band gap
KR101461803B1 (en) * 2013-05-21 2014-11-13 주식회사 포스코 Graphene manufacturing method and manufacturing appratus

Also Published As

Publication number Publication date
KR101139598B1 (en) 2012-04-27

Similar Documents

Publication Publication Date Title
Roy et al. Structure, properties and applications of two‐dimensional hexagonal boron nitride
Qian et al. Construction of graphdiyne nanowires with high-conductivity and mobility
Pakdel et al. A comprehensive analysis of the CVD growth of boron nitride nanotubes
Chen et al. Novel boron nitride hollow nanoribbons
Du et al. Potassium titanate nanowires: Structure, growth, and optical properties
KR100912807B1 (en) Method of fabrication for carbon nanotubes uniformly coated with Titanium dioxide
Xu et al. Synthesis, properties and applications of nanoscale nitrides, borides and carbides
Wang et al. Low-temperature vapor–solid growth and excellent field emission performance of highly oriented SnO2 nanorod arrays
Castillo-Martínez et al. High temperature structural transformations of few layer graphene nanoribbons obtained by unzipping carbon nanotubes
KR20120087486A (en) Graphene-Oxide Semiconductor Heterojunction Devices, and Production Method of the Same
Huang et al. Catalyst-assisted synthesis and growth mechanism of ultra-long single crystal α-Si 3 N 4 nanobelts with strong violet–blue luminescent properties
Chu et al. Hydrothermal synthesis of CdS microparticles–graphene hybrid and its optical properties
Yang Synthesis of γ-Al 2 O 3 nanowires through a boehmite precursor route
Shen et al. Synthesis and characterization of Bi2S3 faceted nanotube bundles
Kumar et al. Next generation 2D materials for anodes in battery applications
Qi et al. Preparation and characterization of SiC@ CNT coaxial nanocables using CNTs as a template
Li et al. SiO 2-sheathed InS nanowires and SiO 2 nanotubes
KR101139598B1 (en) Preparation method of graphene sheets by the reduction of carbon monoxide
Uddin et al. Graphene-like emerging 2D materials: recent progress, challenges and future outlook
Taguchi et al. Effect of surface treatment on photoluminescence of silicon carbide nanotubes
Xing et al. Hydrothermal synthesis and photoluminescent properties of stacked indium sulfide superstructures
Lähde et al. Synthesis of graphene-like carbon from agricultural side stream with magnesiothermic reduction coupled with atmospheric pressure induction annealing
Khan et al. Large-scale fabrication of metallic Zn nanowires by thermal evaporation
Zhao et al. Templateless hydrothermal synthesis of aligned ZnO nanorods
Qian et al. Inverted SiC nanoneedles grown on carbon fibers by a two-crucible method without catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150515

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170411

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180409

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190416

Year of fee payment: 8