KR20100104057A - Polymer concrete composition recycling waste expended polystyrene as a shrinkage reducing agent, polymer concret and manufacturing method thereof - Google Patents

Polymer concrete composition recycling waste expended polystyrene as a shrinkage reducing agent, polymer concret and manufacturing method thereof Download PDF

Info

Publication number
KR20100104057A
KR20100104057A KR20090022198A KR20090022198A KR20100104057A KR 20100104057 A KR20100104057 A KR 20100104057A KR 20090022198 A KR20090022198 A KR 20090022198A KR 20090022198 A KR20090022198 A KR 20090022198A KR 20100104057 A KR20100104057 A KR 20100104057A
Authority
KR
South Korea
Prior art keywords
weight
parts
unsaturated polyester
polymer concrete
polymer
Prior art date
Application number
KR20090022198A
Other languages
Korean (ko)
Other versions
KR101159547B1 (en
Inventor
황의환
김진만
곽은구
Original Assignee
공주대학교 산학협력단
주식회사 계림폴리콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 공주대학교 산학협력단, 주식회사 계림폴리콘 filed Critical 공주대학교 산학협력단
Priority to KR20090022198A priority Critical patent/KR101159547B1/en
Publication of KR20100104057A publication Critical patent/KR20100104057A/en
Application granted granted Critical
Publication of KR101159547B1 publication Critical patent/KR101159547B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/18Waste materials; Refuse organic
    • C04B18/20Waste materials; Refuse organic from macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/26Carbonates
    • C04B14/28Carbonates of calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/08Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • C04B18/142Steelmaking slags, converter slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0076Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution
    • C04B20/008Micro- or nanosized fillers, e.g. micronised fillers with particle size smaller than that of the hydraulic binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/18Polyesters; Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/56Opacifiers
    • C04B2103/58Shrinkage reducing agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

PURPOSE: A polymer concrete composition recycling waste extended polystyrene as a shrinkage reducing agent, polymer concrete using the same, and a method for manufacturing the same are provided to recycle the waste extended polystyrene as a binder for a liquid resin-shaped composite. CONSTITUTION: A polymer concrete composition comprises a unsaturated polyester resin, 1-20 parts by weight of waste extended polystyrene, 10-50 parts by weight of a vinyl monomer, 150-1,200 parts by weight of quenching steel slag, 100-600 parts by weight of filler, and 100-1,200 parts by weight of thick aggregates based on 100 parts by weight of the unsaturated polyester resin. The unsaturated polyester resin is ortho unsaturated polyester having an average molecular weight of 1,000-10,000.

Description

폐발포폴리스타이렌을 수축저감재로 재활용한 폴리머 콘크리트 조성물, 이를 이용하는 폴리머 콘크리트 및 이의 제조방법{Polymer Concrete composition recycling waste expended polystyrene as a Shrinkage Reducing Agent, Polymer Concret and Manufacturing Method thereof}Polymer concrete composition recycling waste expended polystyrene as a Shrinkage Reducing Agent, Polymer Concret and Manufacturing Method

본 발명은 폴리머 콘크리트 조성물에 관한 것으로서, 구체적으로 폐발포폴리스타이렌을 수축저감재로 재활용하여 제조된 폴리머 콘크리트 조성물, 이를 이용하는 폴리머 콘크리트 및 이의 제조방법에 관한 것이다.The present invention relates to a polymer concrete composition, and more particularly, to a polymer concrete composition prepared by recycling waste foamed polystyrene as a shrinkage reducing material, a polymer concrete using the same, and a manufacturing method thereof.

산업의 발전에 따라 발생된 환경문제의 해결방안으로 폐기물의 처리, 리사이클 기술 개발이 시급하며, 특히 건설산업에서 배출된 폐기물은 그 규모에 있어서도 상당하다. 그 중 폐스티로폼, 즉 폐발포폴리스타이렌은 한 번 사용하면 팽창된 상태에서 폐기되기 때문에 산업폐기물처리 문제 중 하나로 지적되어 왔다. 이러한 폐발포폴리스타이렌의 리사이클에 관한 연구는 폐발포폴리스타이렌의 감용화 기술이나 1차 가공된 원료의 리사이클 용도 개발 등으로 제품의 대량소비가 예상되는 건축, 토목 분야에서의 용도 개발에 관한 연구가 활발히 이루어지고 있다. 폐발포폴리스타이렌의 건설재료로서의 연구는 분쇄기로 분쇄하여 건축용 보드 증량재, 시멘 트몰타르 및 콘크리트 등의 경량골재, 경량성 토재, 지표수의 배수매체 등에 응용되고 있다. As a solution to environmental problems generated by industrial development, it is urgent to develop waste treatment and recycling technologies, and in particular, the waste emitted from the construction industry is significant in size. Among them, waste styrofoam, that is, waste foam polystyrene, has been pointed out as one of the problems of industrial waste treatment because it is disposed of in an expanded state once used. Such research on recycling of foamed polystyrene has been actively conducted to develop applications in the construction and civil engineering fields where mass consumption of products is expected due to the reduction technology of waste foamed polystyrene and the development of recycling of primary processed raw materials. ought. The research on waste foamed polystyrene as a construction material has been pulverized by a pulverizer and applied to light weight aggregates such as building board extender, cement mortar and concrete, lightweight soil material, and drainage medium of surface water.

폐발포폴리스타이렌의 처리는 관리장소의 확보와 재생처리공장까지 수송비용의 절감을 위해 기계적으로 압축, 마찰열이나 외부가열에 의한 열수축 등의 방법에 의한 감용처리가 가장 많이 이루어지고 있다. 한편, 발포폴리스타이렌은 체적의 약 98%가 공기이고, 2%가 폴리머인 재료로서 적절한 용제를 이용하면 원래 체적의 1/20이하로 쉽게 용적을 감소할 수 있다. 이에, 폐발포폴리스타이렌의 감용처리를 위해 열수축을 할 경우 폴리스타이렌의 분자량 저하, 산화에 의한 품질의 저하 등의 큰 문제가 있으므로 감용제(減溶劑)로 용해하는 방법을 사용하면 상온 또는 약간 가온하는 정도로 감용할 수 있기 때문에 상기의 저하 문제가 방지될 수 있다. 폐폴리스타이렌의 감용제로서 비닐기를 갖고 있는 스타이렌 또는 메틸메타크릴레이트 등의 유기계 용제가 사용되고 있으며, 이러한 용제에 폴리스타이렌이 용해된 폴리스타이렌 용해액에서 폴리스타이렌을 재활용하기 위해서는 폴리스타이렌과 용제를 분리하는 증류과정이 필요하기 때문에 증류기술 문제와 함께 처리비용의 낭비가 초래된다. Waste foamed polystyrene is most frequently treated by mechanical compression, frictional heat, or heat shrinkage by external heating, in order to secure a management place and reduce transportation costs to the recycling plant. On the other hand, the expanded polystyrene can easily reduce the volume to less than 1/20 of the original volume by using a suitable solvent as a material of about 98% of the volume and 2% of the polymer. Therefore, when thermal contraction is performed for the treatment of waste foamed polystyrene, there is a big problem such as lowering the molecular weight of polystyrene and deterioration of quality due to oxidation. Since it can accept, the said fall problem can be prevented. Organic solvents such as styrene or methyl methacrylate having vinyl groups are used as a reducing agent for waste polystyrene, and in order to recycle polystyrene in a polystyrene solution in which polystyrene is dissolved, a distillation process of separating polystyrene and a solvent is required. Because of the necessity, there is a problem of distillation technique and waste of processing cost.

한편, 건설재료의 하나인 폴리머 콘크리트는 불포화폴리에스테르 수지를 중합하여 사용하는데, 이러한 불포화폴리에스테르 수지는 중합반응에 의해 경화할 때 체적수축이 일어나며, 체적수축과 함께 제품의 변형이 일어난다. 이에, 불포화폴리에스테르의 체적수축을 방지하기 위해 양생조건, 촉매, 촉진제 등의 첨가제 비율을 조절하거나 수축저감재를 혼입하게 된다. 특히, 폐발포폴리스타이렌을 폴리머 콘크 리트에 재활용하기 위해 불포화폴리에스테르 수지에 폐발포폴리스타이렌이 포함된 수축저감재를 혼입하여 사용할 수 있는데, 불포화폴리에스테르 수지에 수축저감재를 혼입하면 강도가 저하되는 문제가 있다.On the other hand, polymer concrete, which is one of construction materials, is used by polymerizing an unsaturated polyester resin. Such an unsaturated polyester resin undergoes volume shrinkage when cured by a polymerization reaction, and deformation of a product occurs with volume shrinkage. Thus, in order to prevent the volume shrinkage of the unsaturated polyester, curing conditions, catalysts, additive ratios such as accelerators or the like, or shrinkage reducing materials are incorporated. In particular, in order to recycle waste foamed polystyrene into polymer concrete, it is possible to use a shrinkage reducing material containing waste foamed polystyrene in an unsaturated polyester resin, but the strength decreases when the shrinkage reducing material is mixed in an unsaturated polyester resin. There is.

또한, 기존에는 불포화폴리에스테르수지와 수축저감재가 포함된 폴리머 결합재를 11중량%의 함량으로 사용하여 콘크리트의 강도를 유지하고 있다. 그러나, 이러한 폴리머 결합제 함량의 증가, 특히 불포화폴리에스테르는 상대적으로 고가이기에 이의 함량이 증대되면 콘크리트 비용의 상승이 초래되어 경제성이 저하되는 문제가 있다. In addition, the conventional polymer binder containing an unsaturated polyester resin and a shrinkage reducing material in an amount of 11% by weight to maintain the strength of the concrete. However, since the increase in the content of such a polymer binder, in particular unsaturated polyester is relatively expensive, the increase in the content thereof causes a rise in the cost of concrete, thereby lowering the economic efficiency.

상기와 같은 문제점을 해결하기 위하여 본 발명은 폐발포폴리스타이렌을 유기용제에 용해하여 분리하지 않은 그대로 상온중합 또는 열중합이 가능한 액상수지 형태의 폐발포폴리스타이렌 용액을 사용하는 폴리머 콘크리트 조성물을 제공하는 것이다.In order to solve the above problems, the present invention is to provide a polymer concrete composition using a waste foam polystyrene solution in the form of liquid resin capable of room temperature polymerization or thermal polymerization as it is not separated by dissolving the waste foam polystyrene in an organic solvent.

또한, 본 발명의 또 다른 목적은 폐발포폴리스타이렌이 포함된 수축저감재를 사용하고, 불포화폴리에스테르수지와 폐발포폴리스타이렌이 포함된 폴리머 결합재를 낮은 함량으로 사용하여도 우수한 강도를 나타내는 폴리머 콘크리트 및 이의 제조방법을 제공하는 것이다.In addition, another object of the present invention is to use a shrinkage reducing material containing waste foamed polystyrene, polymer concrete exhibiting excellent strength even when using a low content of a polymer binder containing unsaturated polyester resin and waste foamed polystyrene and its It is to provide a manufacturing method.

상기 목적을 달성하기 위해 본 발명은 불포화폴리에스테르 수지, 상기 불포 화폴리에스테르 수지 100중량부에 대하여 폐발포폴리스타이렌 1~20중량부, 비닐계 단량체 10~50중량부, 급냉제강슬래그 150~1,200중량부, 충전재 100~600중량부 및 굵은골재 100~1,200중량부를 포함하는 폴리머 콘크리트 조성물에 관한 것이다.In order to achieve the above object, the present invention is an unsaturated polyester resin, 1 to 20 parts by weight of waste foamed polystyrene, 10 to 50 parts by weight of vinyl monomer, 150 to 1,200 parts by weight of quenching steel slag, based on 100 parts by weight of the unsaturated polyester resin. Part, relates to a polymer concrete composition comprising 100 to 600 parts by weight of filler and 100 to 1,200 parts by weight of coarse aggregate.

또한, 본 발명은 폐발포폴리스타이렌을 비닐계 단량체에 용해하는 수축저감재 형성단계;상기 수축저감재에 불포화폴리에스테르 수지와 상기 불포화폴리에스테르 수지 100중량부에 대하여 첨가제 0.01~20중량부를 첨가하여 제조하는 폴리머 결합재 형성단계;상기 폴리머 결합재에 상기 불포화폴리에스테르 100중량부에 대하여 급냉제강슬래그 150~1,200중량부, 충전재 100~600중량부 및 굵은골재 100~1,200중량부를 혼합하는 복합재료 형성단계; 상기 복합재료를 15~30℃에서 5~30일간 굳히는 양생단계;를 포함하는 폴리머 콘크리트의 제조방법을 제공한다.In addition, the present invention is a shrinkage reducing material forming step of dissolving waste foamed polystyrene in a vinyl monomer; prepared by adding 0.01 to 20 parts by weight of an additive with respect to 100 parts by weight of an unsaturated polyester resin and the unsaturated polyester resin to the shrinkage reducing material Forming a polymer binder; a composite material forming step of mixing 150 to 1,200 parts by weight of a quenching steel slag, 100 to 600 parts by weight of a filler, and 100 to 1,200 parts by weight of coarse aggregate, based on 100 parts by weight of the unsaturated polyester; It provides a method for producing polymer concrete comprising; curing step of curing the composite material for 5 to 30 days at 15 ~ 30 ℃.

또한, 본 발명은 상기의 방법으로 제조된 폴리머 콘크리트를 제공한다.The present invention also provides a polymer concrete produced by the above method.

이하 본 발명에 대해 구체적으로 설명하고자 한다.Hereinafter, the present invention will be described in detail.

우선, 본 발명은 폐발포폴리스타이렌을 비닐계 단량체에 용해하는 수축저감재 형성단계를 진행하여 폐발포폴리스타이렌이 비닐계 단량체에 용해된 용액의 형태로 수축저감재를 형성할 수 있다. 기존의 폐발포폴리스타이렌은 체적의 감용을 위해 용제에 용해한 후, 용제를 분리하여 사용하였으나, 본 발명에서 사용되는 폐발포폴리스타이렌은 비닐계 단량체인 중합성 용매에 용해하여 폴리스타이렌을 용제에서 분리하지 않고, 폐발포폴리스타이렌 용액의 형태로 사용하여 제조공정의 용이성을 제공할 수 있다. 이 때 폐발포폴리스타이렌을 용해하는데 사용하는 비닐계 단량체는 이중결합을 가진 중합성 용매인 비닐계 단량체라면 어떤 것이든 사용가능하 며, 스타이렌, 메틸메타크릴레이트 및 이들의 혼합물로 이루어진 단량체에서 선택될 수 있다. 특히 스타이렌은 폐발포폴리스타이렌의 원료로 사용되고 있으므로 폐발포폴리스타이렌의 효과적인 감용제로 사용할 수 있으며, 후술할 촉매, 가교제 또는 촉진제를 첨가하여 폴리머 결합재를 제조 시 상온경화성을 나타낼 수 있어 에너지 절감에 기여하는 장점이 있다. 상기 폐발포폴리스타이렌의 함량은 후술할 불포화폴리에스테르 수지 100중량부에 대하여 1~20중량부로 포함될 수 있는데, 본 발명에서 폐발포폴리스타이렌의 함량이 1중량부미만인 경우, 수축저감재의 저감효과가 낮아지고 또 이후 폐발포폴리스타이렌과 함께 폴리머 결합재를 형성하게 되는 불포화폴리에스테르 수지의 함량이 상대적으로 많아져 원료의 원가상승이 초래된다. 한편, 폐발포폴리스타이렌의 함량이 20중량부를 초과하면, 폐발포폴리스타이렌의 비닐계 단량체에 대한 균일한 용해가 어렵고 점도가 지나치게 높아져 작업성이 현저히 떨어지게 된다. 또한, 본 발명에서는 수축저감재로서 폐발포폴리스타이렌을 사용하여 강도저하 없이도 원가절감 효과를 나타낼 수 있다.First, the present invention proceeds to the step of forming a shrinkage reducing material for dissolving waste foamed polystyrene in a vinyl monomer, thereby forming a shrinkage reducing material in the form of a solution in which waste foamed polystyrene is dissolved in a vinyl monomer. Conventional waste foamed polystyrene was dissolved in a solvent for volume reduction, and then used by separating the solvent. The waste foamed polystyrene used in the present invention was dissolved in a polymerizable solvent which is a vinyl monomer, and thus polystyrene was not separated from the solvent. It can be used in the form of waste foamed polystyrene solution to provide ease of manufacturing process. In this case, the vinyl monomer used to dissolve the waste foam polystyrene can be used as long as it is a vinyl monomer which is a polymerizable solvent having a double bond, and is selected from monomers composed of styrene, methyl methacrylate and mixtures thereof. Can be. In particular, since styrene is used as a raw material of waste foamed polystyrene, it can be used as an effective reducing agent of waste foamed polystyrene, and by adding a catalyst, a crosslinking agent, or an accelerator, which will be described later, it can exhibit room temperature curing property when producing a polymer binder, contributing to energy saving. There is an advantage. The waste foamed polystyrene may be included in an amount of 1 to 20 parts by weight based on 100 parts by weight of the unsaturated polyester resin to be described later. In the present invention, when the content of the waste foamed polystyrene is less than 1 part by weight, the effect of reducing the shrinkage reducing material is lowered. In addition, since the content of the unsaturated polyester resin which forms a polymer binder together with the waste foam polystyrene is relatively increased, the cost of raw materials is increased. On the other hand, when the content of the waste foamed polystyrene exceeds 20 parts by weight, it is difficult to uniformly dissolve in the vinyl monomer of the waste foamed polystyrene and the viscosity becomes too high, and workability is remarkably deteriorated. In addition, in the present invention, by using the waste foam polystyrene as a shrinkage reducing material, it is possible to exhibit a cost reduction effect without reducing the strength.

상기와 같이 제조된 수축저감재에 불포화폴리에스테르 수지 100중량부와 상기 불포화폴리에스테르 100중량부에 대하여 첨가제 0.01~20중량부를 첨가하여 제조하는 폴리머 결합재 형성단계를 진행할 수 있다. 상기 불포화폴리에스테르 수지는 조성물 간의 결합을 위해 중량평균분자량 1,000~10,000인 오르토 불포화폴리에스테르인 것을 사용하는 것이 좋으며, 중량평균분자량 2,000~3,000인 오르토프탈산염계 불포화폴리에스테르인 것이 더욱 바람직하다. 상기 첨가제로서, 촉매, 가교제, 촉진제 또는 이들의 혼합물이 포함되어 본 발명의 각 조성물을 결합하여 콘크리트로 제조시 강도를 부여해주는 폴리머 결합재를 형성할 수 있다. 상기 촉진제와 가교제는 폴리머 결합재의 결합을 높이고, 상온경화속도의 향상과 더불어 콘크리트로 제조 시 강도의 상승에 영향을 미칠 수 있다. 상기 촉매, 가교제, 촉진제로 특별히 제한되지는 않지만, 상기 촉매는 메틸에틸케톤퍼옥사이드이고, 가교제는 트리메티롤프로판트리메틸아크릴레이트이고, 촉진제는 옥텐산코발트를 사용할 수 있다. The polymer binder forming step may be performed by adding 100 parts by weight of an unsaturated polyester resin and 0.01 to 20 parts by weight of an additive based on 100 parts by weight of the unsaturated polyester to the shrinkage reducing material prepared as described above. The unsaturated polyester resin is preferably used for the ortho unsaturated polyester having a weight average molecular weight of 1,000 to 10,000 for bonding between the compositions, more preferably an orthophthalate-based unsaturated polyester having a weight average molecular weight of 2,000 to 3,000. As the additive, a catalyst, a crosslinking agent, an accelerator, or a mixture thereof may be included to form a polymer binder that combines each composition of the present invention to impart strength when manufactured from concrete. The accelerator and the crosslinking agent may increase the bonding of the polymer binder, and may increase the strength at the time of manufacturing the concrete together with the improvement of the curing rate at room temperature. Although it does not specifically limit as said catalyst, a crosslinking agent, and an accelerator, The said catalyst is methyl ethyl ketone peroxide, a crosslinking agent is a trimetholol propane trimethylacrylate, and an accelerator can use cobalt octenate.

한편, 본 발명은 폴리머 결합재 5~10중량%, 충전재 10~30중량%, 급냉제강슬래그 20~60중량% 및 굵은 골재 10~60중량%를 포함하는 폴리머 콘크리트 조성물로서, 상기 폴리머 결합재는 불포화폴리에스테르 수지 60~80중량%와 수축저감재 20~40중량%로 이루어지고, 상기 수축저감재는 폐발포폴리스타이렌 20~50중량%와 비닐계 단량체 50~80중량%로 이루어진 폴리머 콘크리트 조성물을 제공할 수 있다. 구체적으로 본 발명에서는 상기 폴리머 결합재를 7~8중량%를 사용하여 우수한 강도를 나타낼 수 있다. On the other hand, the present invention is a polymer concrete composition comprising 5 to 10% by weight of the polymer binder, 10 to 30% by weight filler, 20 to 60% by weight quenching steel slag and 10 to 60% by weight coarse aggregate, wherein the polymer binder is unsaturated poly 60 to 80% by weight of the ester resin and 20 to 40% by weight of the shrinkage reducing material, the shrinkage reducing material can provide a polymer concrete composition consisting of 20 to 50% by weight waste foamed polystyrene and 50 to 80% by weight of the vinyl monomer. have. Specifically, in the present invention, 7 to 8% by weight of the polymer binder can be used to exhibit excellent strength.

본 발명에서는 상기와 같이 제조된 폐폴리스타이렌과 불포화폴리에스테르 수지가 포함된 폴리머 결합재의 함량을 전체 조성물 내에 10중량%이하로 사용하여, 기존의 10중량%초과 사용하여 제조된 콘크리트에 비해, 콘크리트를 구성하는 각 조성물 간의 결합성과 가사시간, 초기 강도발현를 부여할 수 있으며, 우수한 강도를 나타낼 수 있다. In the present invention, by using the content of the polymer binder containing the waste polystyrene and the unsaturated polyester resin prepared as described above in less than 10% by weight in the total composition, compared to the concrete produced by using more than 10% by weight of conventional concrete, The composition, the pot life, the initial strength expression can be given between the composition, it can exhibit excellent strength.

상기와 같이 제조된 폴리머 결합재에 상기 불포화폴리에스테르 100중량부에 대하여 급냉제강슬래그 150~1,200중량부, 충전재 100~600중량부 및 굵은골재 100~1,200중량부를 혼합하는 복합재료 형성단계를 진행할 수 있다. 본 발명에서는 콘크리트의 강도 부여를 위해 잔골재 및 굵은골재의 일부로서 급냉제강슬래그 150~1,200중량부를 사용하여 폴리머 결합재의 함량을 현저하게 줄이고도 콘크리트의 강도를 우수하게 유지시킬 수 있다. 상기 급냉제강슬래그를 150중량부 미만으로 사용하면, 콘크리트 제조 시 폴리머 결합재의 첨가량이 증가될 우려가 있으며, 1,200중량부를 초과하면, 각 콘크리트 조성물간 최밀충전의 형성이 어려워 결합력이 낮아지고, 초과량 만큼의 경제적 효과가 나타나지 않는다. 또한, 기존의 잔골재로서 해사(바다모래)를 사용해왔으나, 해사를 콘크리트에 적용 시 철골의 부식 방지를 위해 염분이 0.1%이하가 되도록 조절하여 사용하는 번거로움이 있었으나, 본 발명의 급냉제강슬래그를 상기 범위로 사용함으로써, 급냉제강슬래그의 별다른 처리 없이 그대로 사용하는 사용상의 용이성이 제공되고, 콘크리트의 강도 또한 탁월하게 상승시킬 수 있다. 더불어, 전체 조성물 내에 폴리머 결합재인 불포화폴리에스테르의 함량을 줄이고도 콘크리트의 강도 향상과 더불어 원가절감 효과를 제공할 수 있다. 상기 급냉제강슬래그는 평균입경 0.3~1.2mm로 구형의 것이 좋다. 상기 급냉제강슬래그의 평균입경이 상기 범위를 벗어나면 최밀충전이 어려워 콘크리트 강도의 저하가 나타날 수 있다. A composite material forming step of mixing 150-1,200 parts by weight of quenching steel slag, 100-600 parts by weight of filler and 100-1,200 parts by weight of coarse aggregate, may be performed on the polymer binder prepared as described above with respect to 100 parts by weight of the unsaturated polyester. . In the present invention, by using 150 ~ 1,200 parts by weight of quenching steel slag as part of fine aggregate and coarse aggregate to give strength of concrete, it is possible to keep the strength of concrete excellently by significantly reducing the content of polymer binder. If the quenching steel slag is used in less than 150 parts by weight, there is a fear that the amount of the polymer binder added during the manufacture of concrete, and if it exceeds 1,200 parts by weight, it is difficult to form the closest filling between the concrete composition, the bonding strength is lowered, the excess amount There is no economic effect. In addition, although sea sand (sea sand) has been used as the existing fine aggregate, there has been a hassle to adjust the salt to be less than 0.1% to prevent corrosion of steel when applied to concrete, but the quenched steel slag of the present invention By using it in the said range, the ease of use of using it as it is without a special treatment of a quenching steel slag is provided, and the strength of concrete can also be raised outstandingly. In addition, it is possible to reduce the content of unsaturated polyester as a polymer binder in the overall composition and provide a cost reduction effect as well as the strength of concrete. The quenching steel slag is preferably a sphere having an average particle diameter of 0.3 ~ 1.2mm. If the average particle diameter of the quenching steel slag is out of the above range, it may be difficult to close the filling, resulting in a decrease in concrete strength.

본 발명에서 복합재료를 형성하는 상기 충전재는 평균입경 10~50㎛의 중질탄산칼슘인 것이 각 조성물간 충전을 높이는데 좋으며, 상기 굵은골재는 평균입경 5~8mm의 쇄석을 사용할 수 있다. 상기 충전재 또는 굵은골재의 크기의 범위를 벗어나면 충전성이 낮아져 콘크리트 제조 시 강도가 낮아질 우려가 있다.In the present invention, the filler to form a composite material is a heavy calcium carbonate having an average particle diameter of 10 ~ 50㎛ good to increase the filling between the composition, the coarse aggregate may use a crushed stone having an average particle diameter of 5 ~ 8mm. Outside the range of the size of the filler or coarse aggregate, the filling property is lowered, there is a fear that the strength during concrete production.

상기 형성된 복합재료를 15~30℃에서 5~30일간 굳히는 양생단계;를 진행하여 본 발명의 우수한 강도를 유지하는 폴리머 콘크리트가 완성될 수 있다. 상기 양생 온도는 더욱 상승시키지 않고도 상기 상온에 가까운 온도 범위에서 진행하므로 제조상의 용이성이 제공되며, 5~30일 정도의 단시간 내에 경화가 이루어져 압축강도및 휨강도가 우수한 콘크리트가 제조될 수 있다. Curing step of solidifying the formed composite material at 15 ~ 30 ℃ for 5 to 30 days; proceed to the polymer concrete to maintain the excellent strength of the present invention can be completed. Since the curing temperature proceeds in a temperature range close to the room temperature without further raising, the ease of manufacture is provided, and curing can be made in a short time of about 5 to 30 days to produce concrete having excellent compressive strength and flexural strength.

상술한 바와 같이 본 발명은 폐발포폴리스타이렌을 액상수지 형태의 복합재료용 결합재로 폴리머 콘크리트 조성물에 이용할 수 있는 재활용 효과가 있다.As described above, the present invention has a recycling effect of using waste foamed polystyrene as a binder for a composite material in the form of a liquid resin.

또한, 본 발명의 폴리머 콘크리트는 폐발포폴리스타이렌을 유기용제에 용해하여 분리하지 않은 그대로의 폐발포폴리스타이렌 용액 상태로 사용하여 용매의 분리 없이도 적용이 용이하고 효율적이며, 상온경화가 가능한 효과가 있다.In addition, the polymer concrete of the present invention is used in the state of the waste foam polystyrene solution as it is not separated by dissolving the waste foam polystyrene in an organic solvent, it is easy to apply, efficient and effective at room temperature curing without separation of the solvent.

또한, 본 발명의 폴리머 콘크리트 조성물에 급냉제강슬래스를 사용하고, 수축저감재로 폐폴리스타이렌을 사용함으로써, 불포화폴리에스테르 수지를 포함하는 폴리머 결합재의 사용량을 현저하게 줄이고도 우수한 강도 향상과 더불어 원가절감 효과가 있다.In addition, by using a quenching steel slab in the polymer concrete composition of the present invention and using waste polystyrene as a shrinkage reducing material, it is possible to significantly reduce the amount of the polymer binder containing an unsaturated polyester resin and to improve the strength and cost. It works.

본 발명의 폴리머 콘크리트는 보통 콘크리트에 비하여 수밀성, 내구성, 내약품성, 내마모성 및 내충격성이 매우 우수하여 바닥재, 포장재, 방수재, 보수재, 방식재, 접착재 및 각종 프리캐스트 제품 등에 적용될 수 있다.The polymer concrete of the present invention has excellent water tightness, durability, chemical resistance, abrasion resistance, and impact resistance compared to ordinary concrete, and can be applied to flooring, packaging, waterproofing, repairing, anticorrosive, adhesive, and various precast products.

실시예 1Example 1

스타이렌 단량체 17.5g에 폐폴리스타이렌 7.5g을 용해하여 수축저감재를 제 조하였다. 여기에 중량평균분자량 2,500인 오르토-불포화폴리에스테르 수지 100g, 메틸에틸케톤퍼옥사이드 1.5g, 옥텐산코발트 0.5g, 트리메티롤프로판트리메틸아크릴레이트 5g을 첨가하여 폴리머 결합재를 형성하였다. 상기 폴리머 결합재에 프리-CaO함량이 0.05중량%로 함유된 0.7mm의 급냉제강슬래그 357.2g, 평균입경 32㎛인 중질탄산칼슘 357.2g, 6.5mm인 쇄석 946.6g을 첨가하여 복합재료를 형성하였다. 상기 형성된 복합재료를 Φ10×20의 원형금형에 넣고 23℃에서 14일간 양생하여 폴리머 콘크리트로 공시체를 제조하였다.7.5g of waste polystyrene was dissolved in 17.5g of styrene monomer to prepare a shrinkage reducing material. 100 g of ortho-unsaturated polyester resin having a weight average molecular weight of 2,500, 1.5 g of methyl ethyl ketone peroxide, 0.5 g of octal acid cobalt, and 5 g of trimetholpropane trimethyl acrylate were added to form a polymer binder. To the polymer binder, a composite material was formed by adding 357.2 g of a 0.7 mm quench steel slag containing 0.05 wt% of pre-CaO, 357.2 g of heavy calcium carbonate having an average particle diameter of 32 µm, and 946.6 g of crushed stone having a thickness of 6.5 mm. The formed composite material was placed in a circular mold of 10 × 20 and cured at 23 ° C. for 14 days to prepare a specimen from polymer concrete.

실시예 2~20Examples 2-20

표 1의 함량이 되도록 복합재료를 형성하여 실시예 1의 방법과 동일하게 실시하여 폴리머 콘크리트 공시체를 제조하였다.The composite material was formed to the content of Table 1 and was carried out in the same manner as in Example 1 to prepare a polymer concrete specimen.

비교예 1Comparative Example 1

급냉제강슬래그 대신 모래(주문진산 표준사(standard sand))를 사용하는 것을 제외하고, 표 1의 함량이 되도록 형성하여 실시예 1의 방법과 동일하게 실시하여 폴리머 콘크리트 공시체를 제조하였다.Except for using sand (standard sand ordered sand) instead of the quench steel slag, was formed to the content of Table 1 and carried out in the same manner as in Example 1 to prepare a polymer concrete specimen.

[표 1]TABLE 1

Figure 112009015750315-PAT00001
Figure 112009015750315-PAT00001

1)PB : 고분자 결합재 (Polymer binder(UPR 80%+PS 20%)) 1) PB: Polymer binder (UPR 80% + PS 20%)

2)RCSS : 급냉제강슬래그(Rapid-chilled steel slag) 2) RCSS : Rapid-chilled steel slag

3)MEKPO : 메틸에틸케톤퍼옥사이드(Methylethylketonperoxide) 3) MEKPO: Methylethylketonperoxide

4)CoOc : 옥텐산코발트(Cobaltoctoate) 4) CoOc: Cobaltoctoate

5)PS : 수축저감재 (Polystyrene(스타이렌 단량체 (Styrene) 70%+폐발포폴리스타이렌(EPS) 30%)) 5) PS: Shrinkage Reducing Material (Polystyrene (Styrene 70% + Waste Foam Polystyrene (EPS) 30%))

6)모래: 주문진산 표준사(standard sand) 6) sand: standard sand

상기와 같이 제조된 폴리머 콘크리트에 대해 하기의 방법으로 측정된 물성을 표 2에 나타내었다.Table 2 shows the physical properties measured by the following method for the polymer concrete prepared as described above.

* 시험방법* Test Methods

1) 압축강도1) compressive strength

KS F 2481(폴리에스테르 레진콘크리트의 압축강도 시험방법)에 준하여 측정하였으며, 20ㅁ2℃에서 14일간 상온에서 양생하여 강도를 측정하였다.It was measured according to KS F 2481 (Test method for compressive strength of polyester resin concrete), and cured at 20 ㅁ 2 ℃ for 14 days at room temperature to measure the strength.

2) 휨강도2) flexural strength

KS F 2408 콘크리트의 휨강도 시험방법(단순보의 3등분점 하중법)에 준하여 측정하였다.It was measured according to the flexural strength test method (three-point loading method of simple beams) of KS F 2408 concrete.

3) 주사현미경 (SEM;Scanning Electron microscope)3) Scanning Electron Microscope (SEM)

모델명 S-3400N (Hitachi 사)으로 폴리머 콘크리트 표면을 측정하였다.The polymer concrete surface was measured by model name S-3400N (Hitachi Co., Ltd.).

[표 2]TABLE 2

Figure 112009015750315-PAT00002
Figure 112009015750315-PAT00002

표 2의 결과로 보아, 본 발명은 생산단가에 가장 큰 영향을 주는 폴리머 결합재의 첨가량을 최소화시키기 위하여 잔골재와 굵은골재의 일부를 급냉제강슬래그로 대체하였고 또한 폴리머 콘크리트의 수축률을 감소시켜 제품의 체적안정성을 유지하기 위하여 폐스티로폼을 스티렌모노머에 용해시켜 제조한 수축저감재를 폴리머 결합재에 20%대체하여 사용함으로서 폴리머 결합재의 사용량을 27.3% 절감할 수 있음을 확인하였다. 실시예 8의 경우, 폴리머 콘크리트 공시체(폴리머 결합재 8%, 급 냉 제강슬래그 40%)의 압축강도는 979㎏f/㎠로 나타나고 있다. 이때의 공시체 제작에 사용한 폴리머 결합재의 생산원가를 계산하면 일반적인 폴리머 콘크리트의 제조에 사용된 생산원가에 비하여 12.7% 절감할 수 있다(표 3참조).As a result of Table 2, in order to minimize the addition amount of the polymer binder which has the greatest influence on the production cost, the present invention replaced some of the fine aggregate and the coarse aggregate with the quenching steel slag and also reduced the shrinkage rate of the polymer concrete to reduce the volume of the product. In order to maintain stability, it was confirmed that by using 20% of the shrinkage reducing agent prepared by dissolving the waste styrofoam in the styrene monomer, the polymer binder was used to reduce the amount of the polymer binder used by 27.3%. In the case of Example 8, the compressive strength of the polymer concrete specimen (polymer binder 8%, quenching steel slag 40%) is shown as 979 kg f / ㎠. Calculating the production cost of the polymer binder used in the specimen fabrication at this time can save 12.7% compared to the production cost used for the manufacture of general polymer concrete (see Table 3).

반면, 비교예 1의 폴리머 콘크리트의 배합비는 폴리머 결합재 11%, 충전재 20%, 모래 20%, 굵은골재 49% 정도로 구성되어 있으며 압축강도는 950㎏f/㎠ 이었으나, 휨강도가 150㎏f/㎠로 낮게 나타났다.On the other hand, the mixing ratio of the polymer concrete of Comparative Example 1 is composed of 11% polymer binder, 20% filler, 20% sand, 49% coarse aggregate, the compressive strength was 950㎏ f / ㎠, but the bending strength is 150㎏ f / ㎠ Appeared low.

[표 3] 기존제품과 개발제품의 원가비교[Table 3] Cost Comparison of Existing and Developing Products

Figure 112009015750315-PAT00003
Figure 112009015750315-PAT00003

도 1은 본 발명의 바람직한 일실시예에 따른 폴리머 콘크리트의 압축강도 측정 결과의 비교그래프이다.1 is a comparative graph of the measurement results of compressive strength of polymer concrete according to an embodiment of the present invention.

도 1을 참조하면, 본 발명에서는 폴리머 결합재의 첨가량이 10%일 경우 압축 강도가 가장 낮게 나타났고, 8% 첨가할 경우 가장 높게 나타났다. 폴리머 결합재의 첨가량이 높은 공시체(10%)가 폴리머 결합재의 첨가량이 낮은 공시체(8%)에 비하여 압축강도가 낮게 나타나는 이유는 급냉제강슬래그가 구형으로 최밀충전이 형성되었고 또한 표면이 매끄럽기 때문에 표면이 거칠은 잔골재나 굵은 골재에 비하여 비표면적이 적어 소요되는 폴리머 결합재의 량이 적기 때문에 나타나는 것으로 폴리머 결합재의 첨가량을 낮추어도 우수한 강도를 나타냄을 확인할 수 있다.Referring to FIG. 1, in the present invention, the compressive strength is the lowest when the amount of the polymer binder is 10%, and the highest when the polymer binder is added 8%. The reason why the compressive strength was lower than that of the high added amount of the polymer binder (10%) compared to the low added amount of the polymer binder (8%) was because the quenching steel slag was spherical, and the surface was smooth. Compared with the coarse fine aggregate or the coarse aggregate, the specific surface area is smaller and the amount of the polymer binder is required. Therefore, it can be confirmed that excellent strength is obtained even if the addition amount of the polymer binder is reduced.

또한, 폴리머 결합재 첨가량 7%에서는 사용한 충전재와 골재를 충분히 적셔주지 못하기 때문에 작업성이 떨어지고 강도 또한 저하된다. 또한, 폴리머 결합재 첨가량 9% 이상에서는 공시체를 제작할 때 폴리머 결합재의 첨가량이 과다하여 재료분리 현상이 일어나 폴리머 결합재가 공시체의 표면에 떠오르는 현상을 관찰할 수 있으므로 9% 초과사용은 불가함을 확인하였다. 폴리머 결합재 8%를 첨가하는 경우에도 급냉제강슬래그와 굵은 골재의 첨가율이 각각 40%와 32%일 때 최적배합이 형성되어 압축강도가 최대로 높게 나타났다.In addition, at 7% of the polymer binder added amount, since the used filler and aggregate are not sufficiently wetted, workability is reduced and strength is also reduced. In addition, when the amount of the polymer binder was added at 9% or more, the amount of addition of the polymer binder was excessive when the specimen was prepared, so that the phenomenon of separation of the polymer binder was observed on the surface of the specimen. Even when 8% of the polymer binder was added, the optimum mixture was formed when the quenching steel slag and the coarse aggregate were added at 40% and 32%, respectively, resulting in the highest compressive strength.

도 2는 본 발명의 바람직한 일실시예에 따른 폴리머 콘크리트의 휨강도 측정결과의 비교그래프이다.Figure 2 is a comparison graph of the bending strength measurement results of polymer concrete according to an embodiment of the present invention.

도 2를 참조하면, 도 2의 휨강도 실험결과에서도 도 1의 압축강도 실험결과와 같이 대체적으로 폴리머 결합재 8% 공시체의 휨강도가 가장 높게 나타났고, 10% 공시체의 휨강도가 가장 낮게 나타났다. 그러나 폴리머 결합재 7%와 9% 공시체의 강도는 압축강도와 다른 결과를 보여주고 있다. 또한 휨강도에서는 압축강도와 달리 급냉 제강슬래그의 대체율이 증가될수록 폴리머 결합재의 첨가율에 관계없이 증 가되는 현상을 볼 수 있다. 이러한 현상은 보통의 골재에 비하여 급냉제강슬래그가 인성이 크기 때문이다. 비교예 1의 폴리머 콘크리트의 휨강도는 150㎏f/㎠ 로 나타났으나, 본 발명의 실시예 8은 폴리머 결합재 8%, 급냉제강슬래그 대체율 40% 이상에서 175㎏f/㎠ 이상의 휨강도가 높게 발현되는 것을 알 수 있다.Referring to FIG. 2, in the bending strength test results of FIG. 2, as shown in the compressive strength test results of FIG. 1, the bending strength of the 8% specimen of the polymer binder was generally the highest, and the bending strength of the 10% specimen was the lowest. However, the strengths of 7% and 9% polymer binders differed from compressive strengths. In addition, the flexural strength, unlike the compressive strength, increases as the replacement rate of the quenched steel slag increases regardless of the addition rate of the polymer binder. This is because the quenching steel slag is more tough than ordinary aggregates. Although the bending strength of the polymer concrete of Comparative Example 1 was 150 kg f / ㎠, Example 8 of the present invention exhibits a high bending strength of 175 kg f / cm 2 or more at 8% of the polymer binder and 40% or more of the quench steel slag replacement rate. It can be seen that.

도 3은 본 발명의 바람직한 일실시예에 따른 급냉제강슬래그의 주사전자현미경(SEM) 사진이다. 도 3을 참조하면, 급냉제강슬래그가 구형으로 표면이 매끄러움을 알 수 있다.3 is a scanning electron microscope (SEM) photograph of a quenching steel slag according to a preferred embodiment of the present invention. Referring to FIG. 3, it can be seen that the surface of the quench steel slag is spherical.

도 4는 본 발명의 실시예 8에 따른 폴리머 콘크리트 공시체의 표면을 조사한 주사전자현미경 사진이다. 도 4를 참조하면, 폴리머 결합재와 탄산칼슘 충전재 및 잔골재가 완전히 융착되어 co-matrix 상으로 이루어진 것을 관찰할 수 있다.4 is a scanning electron micrograph of the surface of the polymer concrete specimen according to Example 8 of the present invention. Referring to FIG. 4, it can be observed that the polymer binder, calcium carbonate filler and fine aggregate are completely fused to form a co-matrix phase.

도 5는 본 발명의 실시예 8에 따른 폴리머 콘크리트 공시체의 파단면을 조사한 주사전자현미경 사진이다. 도 5를 참조하면 파단면에 급냉제강슬래그가 폴리머 결합재 매트릭스에 의하여 견고하게 융착되어 있는 것을 관찰할 수 있다.5 is a scanning electron micrograph of the fracture surface of the polymer concrete specimen according to Example 8 of the present invention. Referring to FIG. 5, it can be observed that the quench steel slag is firmly fused to the fracture surface by the polymer binder matrix.

따라서, 본 발명의 폴리머 콘크리트는 폐발포폴리스타이렌이 재활용되어 사용될 수 있고, 이러한 폐폴리스타이렌이 포함된 폴리머 결합재를 8중량%의 낮은 함량으로 사용하여도 우수한 강도를 나타내었으며, 특히 골재로서 급냉제강슬래그가 폴리머 콘크리트 조성물 내에 견고하게 결합되어 있는 것으로 보아 탁월한 압축강도 또는 휨강도를 나타냄을 확인할 수 있다.Therefore, the polymer concrete of the present invention can be recycled and used waste foamed polystyrene, and even when using the polymer binder containing the waste polystyrene in a low content of 8% by weight, the quenching steel slag is particularly used as aggregate. It can be seen that it shows an excellent compressive strength or flexural strength because it is firmly bonded in the polymer concrete composition.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.The present invention described above is not limited to the above-described embodiment and the accompanying drawings, and various substitutions, modifications, and changes are possible within the scope without departing from the technical spirit of the present invention. It will be evident to those who have knowledge of.

도 1은 본 발명의 바람직한 일실시예에 따른 폴리머 콘크리트의 압축강도 측정 결과의 비교그래프.1 is a comparative graph of the measurement results of compressive strength of polymer concrete according to an embodiment of the present invention.

도 2는 본 발명의 바람직한 일실시예에 따른 폴리머 콘크리트의 휨강도 측정결과의 비교그래프.Figure 2 is a comparison graph of the bending strength measurement results of the polymer concrete according to an embodiment of the present invention.

도 3은 본 발명의 바람직한 일실시예에 따른 급냉제강슬래그의 주사전자현미경(SEM) 사진.Figure 3 is a scanning electron microscope (SEM) photograph of the quenching steel slag according to an embodiment of the present invention.

도 4는 본 발명의 실시예 8에 따른 폴리머 콘크리트 공시체의 표면을 조사한 주사전자현미경 사진.Figure 4 is a scanning electron micrograph of the surface of the polymer concrete specimen in accordance with Example 8 of the present invention.

도 5는 본 발명의 실시예 8에 따른 폴리머 콘크리트 공시체의 파단면을 조사한 주사전자현미경 사진.5 is a scanning electron micrograph of the fracture surface of the polymer concrete specimen according to Example 8 of the present invention.

Claims (14)

불포화폴리에스테르 수지, 상기 불포화폴리에스테르 수지 100중량부에 대하여 폐발포폴리스타이렌 1~20중량부, 비닐계 단량체 10~50중량부, 급냉제강슬래그 150~1,200중량부, 충전재 100~600중량부 및 굵은골재 100~1,200중량부를 포함하는 폴리머 콘크리트 조성물.Unsaturated polyester resin, 1 to 20 parts by weight of waste foamed polystyrene, 10 to 50 parts by weight of vinyl monomer, 150 to 1,200 parts by weight of quenching steel slag, 100 to 600 parts by weight of filler and coarse based on 100 parts by weight of the unsaturated polyester resin Polymer concrete composition comprising 100 to 1,200 parts by weight of aggregate. 제1항에 있어서,The method of claim 1, 상기 불포화폴리에스테르 수지는 중량평균분자량 1,000~10,000인 오르토 불포화폴리에스테르인 폴리머 콘크리트 조성물.The unsaturated polyester resin is a polymer concrete composition is an ortho unsaturated polyester having a weight average molecular weight of 1,000 ~ 10,000. 제1항에 있어서,The method of claim 1, 상기 비닐계 단량체는 스타이렌, 메틸메타크릴레이트 및 이들의 혼합물로 이루어진 군에서 선택되는 단량체인 폴리머 콘크리트 조성물.The vinyl monomer is a polymer concrete composition is a monomer selected from the group consisting of styrene, methyl methacrylate and mixtures thereof. 제1항에 있어서,The method of claim 1, 상기 충전재는 평균입경 10~50㎛의 중질탄산칼슘인 폴리머 콘크리트 조성물.The filler is a polymer concrete composition of heavy calcium carbonate having an average particle diameter of 10 ~ 50㎛. 제1항에 있어서,The method of claim 1, 상기 급냉제강슬래그는 평균입경 0.3~1.2mm인 폴리머 콘크리트 조성물.The quenching steel slag is a polymer concrete composition having an average particle diameter of 0.3 ~ 1.2mm. 제1항에 있어서,The method of claim 1, 상기 굵은골재는 평균입경 5~8mm의 쇄석인 폴리머 콘크리트 조성물.The coarse aggregate is a polymer concrete composition of crushed stone having an average particle diameter of 5 ~ 8mm. 폐발포폴리스타이렌을 비닐계 단량체에 용해하는 수축저감재 형성단계;Shrinkage reducing material forming step of dissolving the waste foam polystyrene in the vinyl monomer; 상기 수축저감재에 불포화폴리에스테르 수지와 상기 불포화폴리에스테르 수지 100중량부에 대하여 첨가제 0.01~20중량부를 첨가하여 제조하는 폴리머 결합재 형성단계;Forming a polymer binder by adding 0.01 to 20 parts by weight of an additive based on 100 parts by weight of an unsaturated polyester resin and the unsaturated polyester resin to the shrinkage reducing material; 상기 폴리머 결합재에 상기 불포화폴리에스테르 100중량부에 대하여 급냉제강슬래그 150~1,200중량부, 충전재 100~600중량부 및 굵은골재 100~1,200중량부를 혼합하는 복합재료 형성단계; A composite material forming step of mixing 150 to 1,200 parts by weight of quenching steel slag, 100 to 600 parts by weight of filler and 100 to 1,200 parts by weight of coarse aggregate, to the polymer binder with respect to 100 parts by weight of the unsaturated polyester; 상기 복합재료를 15~30℃에서 5~30일간 굳히는 양생단계;Curing step of solidifying the composite material at 15 ~ 30 ℃ 5-30 days; 를 포함하는 폴리머 콘크리트의 제조방법.Method for producing a polymer concrete comprising a. 제7항에 있어서,The method of claim 7, wherein 상기 폐발포폴리스타이렌과 비닐계 단량체의 함량은 불포화폴리에스테르 수지 100중량부에 대하여 폐발포폴리스타이렌 1~20중량부, 비닐계 단량체 10~50중량부로 포함되는 폴리머 콘크리트의 제조방법.The content of the waste foamed polystyrene and the vinyl monomer is 1 to 20 parts by weight of waste foamed polystyrene and 10 to 50 parts by weight of the vinyl monomer with respect to 100 parts by weight of unsaturated polyester resin. 제7항에 있어서,The method of claim 7, wherein 상기 불포화폴리에스테르 수지는 중량평균분자량 1,000~10,000인 오르토 불포화폴리에스테르인 폴리머 콘크리트 조성물.The unsaturated polyester resin is a polymer concrete composition is an ortho unsaturated polyester having a weight average molecular weight of 1,000 ~ 10,000. 제7항에 있어서,The method of claim 7, wherein 상기 첨가제는 촉매, 가교제, 촉진제 또는 이들의 혼합물이 포함되고, 상기 촉매는 메틸에틸케톤퍼옥사이드이고, 가교제는 트리메티롤프로판트리메틸아크릴레이트이고, 촉진제는 옥텐산코발트인 폴리머 콘크리트의 제조방법.The additive includes a catalyst, a crosslinking agent, an accelerator or a mixture thereof, the catalyst is methyl ethyl ketone peroxide, the crosslinking agent is trimetholol propane trimethyl acrylate, and the promoter is cobalt octenate. 제7항에 있어서,The method of claim 7, wherein 상기 비닐계 단량체는 스타이렌, 메틸메타크릴레이트 및 이들의 혼합물로 이루어진 군에서 선택되는 단량체인 폴리머 콘크리트의 제조방법.The vinyl monomer is a method for producing polymer concrete is a monomer selected from the group consisting of styrene, methyl methacrylate and mixtures thereof. 제7항에 있어서,The method of claim 7, wherein 상기 충전재는 평균입경 10~50㎛의 중질탄산칼슘인 폴리머 콘크리트의 제조방법.The filler is a method for producing polymer concrete of heavy calcium carbonate having an average particle diameter of 10 ~ 50㎛. 제7항에 있어서,The method of claim 7, wherein 상기 급냉제강슬래그는 평균입경 0.3~1.2mm이고, 상기 굵은골재는 평균입경 5~8mm인 쇄석인 폴리머 콘크리트의 제조방법.The quenching steel slag is an average particle diameter of 0.3 ~ 1.2mm, the coarse aggregate is a method of producing polymer concrete of crushed stone having an average particle diameter of 5 ~ 8mm. 제7항 내지 제13항 중 어느 한 항의 방법으로 제조된 폴리머 콘크리트.Polymer concrete produced by the method of claim 7.
KR20090022198A 2009-03-16 2009-03-16 Polymer Concrete composition recycling waste expended polystyrene as a Shrinkage Reducing Agent, Polymer Concret and Manufacturing Method thereof KR101159547B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20090022198A KR101159547B1 (en) 2009-03-16 2009-03-16 Polymer Concrete composition recycling waste expended polystyrene as a Shrinkage Reducing Agent, Polymer Concret and Manufacturing Method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20090022198A KR101159547B1 (en) 2009-03-16 2009-03-16 Polymer Concrete composition recycling waste expended polystyrene as a Shrinkage Reducing Agent, Polymer Concret and Manufacturing Method thereof

Publications (2)

Publication Number Publication Date
KR20100104057A true KR20100104057A (en) 2010-09-29
KR101159547B1 KR101159547B1 (en) 2012-06-26

Family

ID=43008354

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20090022198A KR101159547B1 (en) 2009-03-16 2009-03-16 Polymer Concrete composition recycling waste expended polystyrene as a Shrinkage Reducing Agent, Polymer Concret and Manufacturing Method thereof

Country Status (1)

Country Link
KR (1) KR101159547B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101042702B1 (en) * 2011-03-30 2011-06-20 김태진 Polymer Concrete Manhole Composition Using Copper Slag Fine Aggregate
KR101288024B1 (en) * 2011-06-29 2013-07-22 주식회사 계림폴리콘 The polymer concrete composition containing rapid-cooled steel slag as filler and fine aggregate and the manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI673369B (en) * 2017-11-27 2019-10-01 戴文慶 Manufacture method of mortar fine aggregates, and mortar composition having the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3609352B2 (en) 2001-05-23 2005-01-12 独立行政法人科学技術振興機構 Composite material
GB0116318D0 (en) 2001-07-03 2001-08-29 4 The Environment Ltd Processing of waste materials
JP4061230B2 (en) * 2003-04-11 2008-03-12 独立行政法人科学技術振興機構 Composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101042702B1 (en) * 2011-03-30 2011-06-20 김태진 Polymer Concrete Manhole Composition Using Copper Slag Fine Aggregate
KR101288024B1 (en) * 2011-06-29 2013-07-22 주식회사 계림폴리콘 The polymer concrete composition containing rapid-cooled steel slag as filler and fine aggregate and the manufacturing method thereof

Also Published As

Publication number Publication date
KR101159547B1 (en) 2012-06-26

Similar Documents

Publication Publication Date Title
Gao et al. Unsaturated polyester resin concrete: A review
Mahdi et al. Strength characteristics of polymer mortar and concrete using different compositions of resins derived from post-consumer PET bottles
Kumar A review on epoxy and polyester based polymer concrete and exploration of polyfurfuryl alcohol as polymer concrete
Martinez-Barrera et al. Polymer concretes: a description and methods for modification and improvement
JP2008208334A (en) Composition of polymer concrete
Sivakumar Effect of polymer modification on mechanical and structural properties of concrete–an experimental investigation
CN109592990B (en) Cementitious foamed concrete and preparation method thereof
KR101159547B1 (en) Polymer Concrete composition recycling waste expended polystyrene as a Shrinkage Reducing Agent, Polymer Concret and Manufacturing Method thereof
Taha et al. Polymer concrete
US4115336A (en) Stable aqueous polyester-monomer emulsions
Jonsung et al. Sustainable concrete technology
US4204988A (en) Method of forming a product for use as a concrete substitute
KR101214936B1 (en) The polymer concrete composition containing fly ash and rapid-cooled steel slag and the manufacturing method thereof
KR101149746B1 (en) Resin Composition for Block Including Bottom Ash and the Block
KR102445706B1 (en) Rapid setting pavement composition, method for manufacturing the same and construction method using the same
KR101852957B1 (en) Composition for hardening soil, wastes, sea sand or desert sand, and hardening composition comprising the same
KR20220156749A (en) Surface protection material composition for neutralizing concrete structure and preventing salt damage and surface repair method of concrete structure using the same
JPH04255709A (en) Synthetic resin composition for polymer concrete
KR100386969B1 (en) The method for manufacturing and Unsaturated Polyester Mortar
KR101288024B1 (en) The polymer concrete composition containing rapid-cooled steel slag as filler and fine aggregate and the manufacturing method thereof
KR20140122499A (en) Unsaturated polyester resin for Polymer Concrete using PET by-product, and the manufacturing method
KR101983072B1 (en) Hardening composition for fast-curing
KR100394465B1 (en) A binder composition comprising waste expanded polystyrene solution, a polymer composite material using it and a method for preparing a hardened product
KR100580597B1 (en) Piti recycled polymer concrete composition using high-performance nanomaterial and manufacturing method thereof
KR101983076B1 (en) High-elasticity hardening composition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150609

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160225

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170308

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180409

Year of fee payment: 7