KR20100099089A - Process for preparing biodegradable polyol using plant oil - Google Patents

Process for preparing biodegradable polyol using plant oil Download PDF

Info

Publication number
KR20100099089A
KR20100099089A KR1020100081219A KR20100081219A KR20100099089A KR 20100099089 A KR20100099089 A KR 20100099089A KR 1020100081219 A KR1020100081219 A KR 1020100081219A KR 20100081219 A KR20100081219 A KR 20100081219A KR 20100099089 A KR20100099089 A KR 20100099089A
Authority
KR
South Korea
Prior art keywords
oil
polyol
glyceride
unsaturated fatty
biodegradable
Prior art date
Application number
KR1020100081219A
Other languages
Korean (ko)
Inventor
성태경
이준범
전병오
신석만
최길영
이인우
Original Assignee
주식회사 사조해표
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 사조해표 filed Critical 주식회사 사조해표
Priority to KR1020100081219A priority Critical patent/KR20100099089A/en
Publication of KR20100099089A publication Critical patent/KR20100099089A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0255Phosphorus containing compounds
    • B01J31/0257Phosphorus acids or phosphorus acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/31Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/02Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen
    • C07C69/22Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety
    • C07C69/33Esters of acyclic saturated monocarboxylic acids having the carboxyl group bound to an acyclic carbon atom or to hydrogen having three or more carbon atoms in the acid moiety esterified with hydroxy compounds having more than three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/02Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with glycerol
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/06Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils with glycerol

Abstract

PURPOSE: A method for manufacturing biodegradable polyols is provided to shorten chemical processes, to remarkably reduce heat energy consumption, and to effectively manufactured eco-friendly biodegradable polyols having improved reactivity using biological enzyme instead of metallic catalysts. CONSTITUTION: A method for manufacturing biodegradable polyols includes a step of adding methanol to epoxidized oil, which is manufactured by adding active oxygen to triglyceride vegetable oil, using phosphoric acid as a catalyst and a step of mixing and heating the added mixture. The methanol is added in an amount of 0.2-1.0 mol per one double bond of the epoxidized oil. The concentration of the phosphoric acid is 60-90%. A reaction temperature is 58-65 °C.

Description

식물성 유지를 이용한 생분해성 폴리올 제조방법{Process for preparing biodegradable polyol using plant oil}Process for preparing biodegradable polyol using plant oil

본 발명은 식물성 유지를 이용한 생분해성 폴리올 제조방법에 관한 것으로 더욱 상세하게는 불포화 지방산을 지닌 트리글리세라이드 식물성 유지에 활성산소를 부가하여 에폭시화 유지를 제조한 후 인산 산성 용액 하에서 메탄올을 첨가하여 트리글리세라이드 생분해성 폴리올을 제조하는 방법에 관한 것이다. 또한 본 발명은 불포화 지방산을 지닌 모노, 디, 트리-글리세라이드에 활성산소를 부가하여 에폭시화된 모노, 디, 트리-에폭시화 글리세라이드를 제조한 후 인산 산성 용액 하에서 메탄올을 첨가하여 모노, 디, 트리-생분해성 폴리올을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a biodegradable polyol using vegetable fats and oils, and more particularly, triglycerides by adding active oxygen to vegetable fats and oils having unsaturated fatty acids to prepare epoxidized fats and oils, and then adding triglycerides under acidic acid solution. A method for producing biodegradable polyols. The present invention also provides mono, di, tri-epoxylated glycerides by adding active oxygen to mono, di, tri-glycerides with unsaturated fatty acids, and then adds methanol under a phosphoric acid acid solution to mono, di, tri-glycerides. , A method for preparing a tri-biodegradable polyol.

에폭시화 대두유의 제조방법은 대한민국 특허공보 제1997-7143호 '에폭시화 대두유의 제조방법'에 개시된 바와 같이 대두유의 불포화 지방산 이중결합에 에폭시기를 부가하여 에폭시화 대두유를 제조하기 위해서 불포화 지방산 이중결합에 과산화수소수와 포름산의 혼합용액을 통해 수득된 과포름산에 인산 촉매를 첨가하여 에폭시화 대두유를 제조하는 방법이 개시되어 있다. 이때 인산은 촉매로 사용되며 대두유 100 중량부에 대해 1.0 내지 5.0 중량부를 사용한다. 과포름산은 활성산소를 발생시켜 불포화 지방산의 이중결합에 산소 원자를 부가시킴으로서 에폭시화 대두유를 제조하는 것이다.
A method for preparing epoxidized soybean oil is disclosed in Korean Patent Publication No. 1997-7143, "Method for Preparing Epoxidized Soybean Oil," in order to prepare an epoxidized soybean oil by adding an epoxy group to an unsaturated fatty acid double bond of soybean oil. A method for producing epoxidized soybean oil is disclosed by adding a phosphoric acid catalyst to perforic acid obtained through a mixed solution of hydrogen peroxide solution and formic acid. In this case, phosphoric acid is used as a catalyst and 1.0 to 5.0 parts by weight based on 100 parts by weight of soybean oil. Performic acid produces epoxidized soybean oil by generating active oxygen and adding oxygen atoms to double bonds of unsaturated fatty acids.

본 발명에서는 에폭시화 유지를 폴리올로 전환시키기 위해 메탄올을 반응 물질로 사용하고 촉매로서 인산을 투입한 후 교반 가열하여 폴리올을 합성한다. 또한 상기 반응에서 별도의 금속성 촉매를 사용하지 않는 특징을 지닌다.
In the present invention, in order to convert the epoxidized fats and oils into polyols, methanol is used as a reaction material, phosphoric acid is added as a catalyst, and then stirred and heated to synthesize a polyol. It also has the feature of not using a separate metallic catalyst in the reaction.

한편 낮은 온도에서 식물성 원료인 식용유지 또는 글리세롤을 부가한 후 효소를 이용하여 저온에서 폴리올을 제조하며 잔류하는 메탄올을 회수하여 재사용할 수 있고, 미반응된 유기물층도 분리 수세 감압건조 여과할 수 있는 것을 특징으로 하는 생분해성 폴리올의 제조방법에 관한 것이다.
Meanwhile, after adding vegetable oil or glycerol, which is a vegetable raw material, at low temperature, a polyol is produced at low temperature by using an enzyme, and the remaining methanol can be recovered and reused. It relates to a method for producing a biodegradable polyol characterized in that.

현재 폴리우레탄 산업에서는 석유화학 제품에서 얻어지는 에테르폴리올(ether polyol), 에스테르폴리올(ester polyol) 등의 범용 폴리올이 그 원료로 대부분 사용되고 있으며 최근 들어 원유가격의 상승과 환경적인 문제로 인해 폴리올을 대체하기 위한 연구들이 수행되고 있으며 이중 동식물성 유지를 사용하는 생화학적 방법에 의한 새로운 폴리올 개발의 진행이 진행되고 있다. 식물성 유지를 원료로 사용한 폴리올은 카길, 듀퐁, ADM사 등에서 일부 상업화에 성공하여 제품화되고 있으며 그 생산량이 점차 늘어나고 있다.
In the polyurethane industry, general-purpose polyols such as ether polyols and ester polyols obtained from petrochemical products are mostly used as raw materials, and recently, polyols have been replaced due to rising oil prices and environmental problems. Research is underway and the development of new polyols by biochemical methods using double animal and vegetable fats and oils is underway. Polyols using vegetable fats and oils have been commercialized by Cargill, DuPont, ADM, etc., and commercialized, and their production is gradually increasing.

일반적으로 동식물성 유지는 트리글리세라이드(triglyceride) 형태로 존재하며 트리글리세라이드 내에 다양한 지방산(fatty acid)이 포함되어 있어 지방산의 종류와 분포에 따라 폴리올을 합성하는 방법이 달라진다.
In general, animal and vegetable fats and oils are present in the form of triglycerides (triglyceride) and various fatty acids (fatty acid) are included in the triglyceride, so the method of synthesizing polyol depends on the type and distribution of fatty acids.

대두유, 아마인유, 팜유 등의 식물성 유지를 사용하여 폴리올을 합성하는 방법이 가장 활발하게 개발되고 있다. 즉 대두유나 팜유의 경우 식용유지에 결합된 지방산에는 수산기(hydroxyl group)가 없기 때문에 1차적으로 에폭시화(epoxidation) 및 개환반응(ring opening reaction) 또는 화학적 에스테르교환반응(trans-esterifiication) 등을 활용하여 수산기를 도입한다. 이때 반응성을 좋게 하기 위해 금속성 촉매를 사용하며, 관능기수를 증가하기 위해 다양한 원료를 사용하게 된다. 이중 에틸렌디아민, 트리에탄올아민, 에틸렌글리콜, 프로필렌글리콜 등과 같은 합성 또는 원유에서 유래되는 다가 아민류를 사용하게 된다.
The method for synthesizing polyols using vegetable fats and oils such as soybean oil, linseed oil and palm oil is most actively developed. In other words, in the case of soybean oil or palm oil, fatty acids bound to edible oil and fat have no hydroxyl group, and thus, primarily epoxidation, ring opening reaction, or chemical trans-esterifiication is used. To introduce a hydroxyl group. In this case, a metal catalyst is used to improve reactivity, and various raw materials are used to increase the number of functional groups. Among them, polyamines derived from synthetic or crude oil such as ethylenediamine, triethanolamine, ethylene glycol, propylene glycol, and the like are used.

이러한 기존의 제조방법은 100℃∼250℃의 높은 온도에서 반응해야 하므로 에너지 소비가 많을 뿐만 아니라, 색상이 암갈색으로 변하여 적용범위가 한정되며, 미 반응된 잔유물을 제거해야하는 문제점이 있으며, 생분해가 되지 않아 환경 오염의 문제점이 있으며 재생이 불가능한 단점이 있다.
Since the conventional manufacturing method has to react at a high temperature of 100 ℃ ~ 250 ℃ not only consumes a lot of energy, but also changes the color to dark brown, the scope of application is limited, there is a problem to remove the unreacted residue, there is no biodegradation There is a problem of environmental pollution and there is a disadvantage that can not be recycled.

본 발명에서는 이러한 문제점을 개선하기 연속적으로 재사용이 가능한 고정화 효소(리파아제)를 이용하여 자연환경에서 생분해가 용이한 식물성 유지를 원료로 하여 낮은 에너지를 사용하여 친환경적이고 환경 오염을 야기하지 않는 폴리올의 제조방법을 개발한 것이다.
In the present invention, a method for producing a polyol that is environmentally friendly and does not cause environmental pollution using low energy using vegetable oil which is easily biodegradable in a natural environment by using a reusable immobilized enzyme (lipase) that can be reused continuously. It is developed.

이에 따라 본 발명자들은 불포화 지방산을 지닌 식물성 유지를 에폭시화 유지로 전환시킨 후 인산 촉매 하에서 메탄올을 첨가하여 트리글리세라이드 생분해성 폴리올을 제조하거나 상기 트리글리세라이드 생분해성 폴리올의 낮은 하이드록시(OH)가를 개선하기 위해 트리글리세라이트 형태가 아닌 모노글리세라이드, 디글리세라이드 형태의 불포화 지방산에 활성산소를 부가하여 에폭시화된 모노, 디글리세라이드를 제조한 후 인산 촉매 하에서 메탄올을 첨가하여 모노, 디 생분해성 폴리올을 제조하는 방법을 개발함으로서 본 발명을 완성하게 된 것이다.
Accordingly, the present inventors have converted vegetable oils with unsaturated fatty acids to epoxidized oils and then added methanol under a phosphoric acid catalyst to produce triglyceride biodegradable polyols or to improve the low hydroxy value of the triglyceride biodegradable polyols. To prepare mono- and di-biodegradable polyols by adding active oxygen to monoglycerides and diglyceride-type unsaturated fatty acids, which are not triglycerides, to produce epoxidized mono and diglycerides, The present invention has been completed by developing a manufacturing method.

본 발명이 해결하려는 과제는 불포화 지방산을 지닌 식물성 유지를 에폭시화 유지로 전환시킨 후 인산 촉매 하에서 메탄올을 첨가하여 트리글리세라이드 생분해성 폴리올을 제조하거나 상기 트리글리세라이드 생분해성 폴리올의 낮은 하이드록시(OH)가를 개선하기 위해 트리글리세라이트 형태가 아닌 모노글리세라이드, 디글리세라이드 형태의 불포화 지방산에 활성산소를 부가하여 에폭시화된 모노, 디글리세라이드를 제조한 후 인산 촉매 하에서 메탄올을 첨가하여 모노, 디 생분해성 폴리올을 제조하는 방법을 개발코자 한 것이다.
The problem to be solved by the present invention is to convert the vegetable fats with unsaturated fatty acids to epoxidized fats and then to add methanol under a phosphoric acid catalyst to prepare a triglyceride biodegradable polyol or to lower the hydroxy value of the triglyceride biodegradable polyol For improvement, epoxidized mono and diglycerides are prepared by adding active oxygen to monoglycerides and diglyceride-type unsaturated fatty acids that are not triglycerides, and then mono, di-biodegradable by adding methanol under a phosphoric acid catalyst. To develop a method for producing a polyol.

본 발명의 목적은 불포화 지방산을 지닌 트리글리세라이드 식물성 유지에 활성산소를 부가하여 제조된 에폭시화 유지(2)에 인산을 촉매로 메탄올을 첨가 교반 가열하여 생분해성 폴리올(1)을 제조하는 방법을 제공하는 것이다:It is an object of the present invention to provide a method for producing a biodegradable polyol (1) by stirring and heating methanol with phosphoric acid as a catalyst to an epoxidized oil (2) prepared by adding active oxygen to a triglyceride vegetable oil having an unsaturated fatty acid. To:

Figure pat00001

Figure pat00001

또한 본 발명의 또다른 목적은 불포화 지방산을 지닌 모노, 디, 트리-글리세라이드(3a)에 활성산소를 부가하여 모노, 디, 트리-에폭시화 글리세라이드(2a)를 제조한 후 인산을 촉매로 메탄올을 첨가 교반 가열하여 생분해성 폴리올(1a)을 제조하는 방법을 제공하는 것이다:In addition, another object of the present invention is to prepare mono, di, tri-epoxylated glyceride (2a) by adding active oxygen to mono, di, tri-glyceride (3a) having an unsaturated fatty acid and then phosphoric acid as a catalyst It is to provide a method for producing a biodegradable polyol (1a) by adding and stirring methanol heating:

Figure pat00002

Figure pat00002

또한 상기 불포화 지방산을 지닌 모노, 디, 트리-글리세라이드(3a)는 불포화 지방산을 지닌 트리글리세라이드(5)를 리파아제로 분해시킨 불포화 지방산(4)과 글리세롤을 에스테르화 반응시켜 제조됨을 특징으로 한다.
In addition, the mono, di, tri-glyceride (3a) having the unsaturated fatty acid is characterized in that it is prepared by esterifying the unsaturated fatty acid (4) and glycerol, which is a triglyceride (5) having an unsaturated fatty acid with lipase.

또한 상기 메탄올 첨가량은 에폭시화 유지 이중결합 하나에 대해 0.2∼1.0 mol로 사용하고, 촉매로서 인산은 60∼90 농도%의 것을 사용하며 반응온도는 58℃∼65℃임을 특징으로 한다.
In addition, the amount of methanol added is 0.2 to 1.0 mol per one epoxidized oil and fat double bond, phosphoric acid is used as a catalyst of 60 to 90% by weight, the reaction temperature is characterized in that 58 ℃ ~ 65 ℃.

한편 본 발명의 또다른 목적은 상기 방법에 따라 제조된 생분해성 폴리올(1)은 관능기가 2.0∼4.50이며, 수산기가 130∼180 mg KOH/g, 분자량은 1,000∼1,200인 것을 특징으로 하는 생분해성 폴리올을 제공하는 것이다.
Meanwhile, another object of the present invention is that the biodegradable polyol (1) prepared according to the above method has a functional group of 2.0 to 4.50, a hydroxyl group of 130 to 180 mg KOH / g, and a molecular weight of 1,000 to 1,200. To provide a polyol.

또한 본 발명의 또다른 목적은 상기 방법에 따라 제조된 폴리올(1a)은 관능기가 3.5∼4.5이며 수산기가 372∼456 mg KOH/g 분자량은 300∼1.100 점도는 500∼1,000(cps)임을 특징으로 하는 생분해성 폴리올을 제공하는 것이다.
Another object of the present invention is that the polyol (1a) prepared according to the above method has a functional group of 3.5 to 4.5 and a hydroxyl group of 372 to 456 mg KOH / g molecular weight of 300 to 1.100 viscosity of 500 to 1,000 (cps) It is to provide a biodegradable polyol.

또한 상기 불포화 지방산을 지닌 글리세라이드는 대두유, 채종유, 피마자유, 팡가미아 유지, 캐쉬넛 유지에서 선택된 글리세라이드이고, 상기 글리세라이드의 조성은 트리글리세라이드 3∼10 중량%, 디글리세라이드 60∼85 중량% 및 모노글리세라이드 6∼35 중량%임을 특징으로 한다.
In addition, the glyceride having an unsaturated fatty acid is a glyceride selected from soybean oil, rapeseed oil, castor oil, pangamia oil, cashew oil fat, the composition of the glyceride is 3 to 10% by weight of triglycerides, 60 to 85% by weight of diglycerides And 6 to 35% by weight of monoglycerides.

본 발명의 효과는 식물성 유지를 원료로 이용하여 저온에서 에폭시화 유지를 경유한 폴리올로의 합성 및 효소반응을 이용하여 인터에스테르화 반응시켜 반응성이 높은 고관능기, 저점도, 다양한 OH가의 친환경적 생분해성 폴리올을 제공하는 것이다. 본 발명의 생분해성 폴리올 합성 방법은 종래의 생산방법보다 화학적 공정이 단축되고, 매우 낮은 열에너지의 소모 및 금속성 촉매 대신 생물학적 효소를 사용한 친환경적 생분해성 폴리올을 제조하는데 매우 효과적이다.
The effect of the present invention is the eco-friendly biodegradability of highly reactive, high-functional groups, low viscosity, and various OH values by using a vegetable oil as a raw material and interesterification reaction using a synthetic and enzymatic reaction with a polyol at low temperature through an epoxidation oil. To provide a polyol. The biodegradable polyol synthesis method of the present invention has a shorter chemical process than the conventional production method, is very effective in producing environmentally-friendly biodegradable polyols using very low heat energy and biological enzymes instead of metallic catalysts.

또한 본 발명의 방법에 따라 제조된 생분해성 폴리올은 기존 폴리올 제품에 비해 반응성이 개선되고 분해성 및 재활용성이 가능한 원료들을 사용하여 합성하였으므로 종래에 적용하기 어려웠던 가정용 용품의 수지 원료로 적용이 가능한 다양한 기능성 폴리올을 제공한다.
In addition, since the biodegradable polyol prepared according to the method of the present invention was synthesized using raw materials having improved reactivity and degradability and recyclability compared to conventional polyol products, various functionalities applicable to resin raw materials of household goods, which were difficult to apply in the past, It provides a polyol.

본 발명은 불포화 지방산을 지닌 트리글리세라이드 식물성 유지에 활성산소를 부가하여 제조된 에폭시화 유지(2)에 인산을 촉매로 메탄올을 첨가 교반 가열하여 생분해성 폴리올(1)을 제조하는 방법을 제공한다:The present invention provides a method for producing a biodegradable polyol (1) by stirring and heating methanol with phosphoric acid as a catalyst to an epoxidized oil (2) prepared by adding active oxygen to a triglyceride vegetable oil having an unsaturated fatty acid:

Figure pat00003

Figure pat00003

또한 본 발명은 불포화 지방산을 지닌 모노, 디, 트리-글리세라이드(3a)에 활성산소를 부가하여 모노, 디, 트리-에폭시화 글리세라이드(2a)를 제조한 후 인산을 촉매로 메탄올을 첨가 교반 가열하여 생분해성 폴리올(1a)을 제조하는 방법을 제공한다:In addition, the present invention is prepared by adding active oxygen to mono, di, tri-glyceride (3a) having an unsaturated fatty acid to prepare a mono, di, tri-epoxylated glyceride (2a), and then stirred with phosphoric acid as a catalyst There is provided a method of producing a biodegradable polyol 1a by heating:

Figure pat00004

Figure pat00004

이하 본 발명을 실시예를 통해 더욱 상세히 설명한다.
Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예 1) 생분해성 폴리올(1)의 제조방법
Example 1 Preparation of Biodegradable Polyol (1)

온도계, 환류 냉각기 및 교반기가 부착된 5 L 4구 플라스크에 에폭시화 유지 1,000 g(oxirane oxygen content 6.6%)을 투입하고 100∼120 rpm으로 교반하면서 58∼63℃에서 메탄올 및 인산의 양을 달리하여 6∼10시간 반응시키고 메탄올을 제거하여 생분해성 폴리올을 제조하였다. 제조한 폴리올의 산도, 수분, 점도, 색도 그리고 OH가를 분석하여 특성을 확인하였다.
Into a 5 L four-necked flask equipped with a thermometer, a reflux condenser and a stirrer, epoxidation holding 1,000 g (oxirane oxygen content 6.6%) was added and stirred at 100-120 rpm to vary the amount of methanol and phosphoric acid at 58-63 ° C. The reaction was carried out for 6 to 10 hours and methanol was removed to prepare a biodegradable polyol. The acidity, moisture, viscosity, chromaticity, and OH value of the prepared polyol were analyzed to confirm their properties.

구분division 실시예 1-1
(BIO-110)
Example 1-1
(BIO-110)
실시예 1-2
(BIO-111)
Example 1-2
(BIO-111)
실시예 1-3
(BIO-113)
Example 1-3
(BIO-113)
실시예 1-4
(BIO-115)
Example 1-4
(BIO-115)
실시예 1-5
(BIO-120)
Example 1-5
(BIO-120)
에폭시유지Epoxy holding 10001000 10001000 10001000 10001000 10001000 메탄올Methanol 580580 580580 580580 600600 620620 인산Phosphoric Acid 1010 11.511.5 1212 1313 7.57.5 산가
(mg KOH/g)
Acid
(mg KOH / g)
0.610.61 0.600.60 0.620.62 0.530.53 0.630.63
ColorColor 237237 213213 112112 130130 132132 수분(wt%)Moisture (wt%) 0.0380.038 0.040.04 0.200.20 0.070.07 0.070.07 점도(cps)Viscosity (cps) 2000∼22002000-2200 2400∼25002400-2500 4900∼52004900-5200 2550∼27752550 ~ 2775 2850∼30002850-3000 OH가OH 43∼4643-46 70∼7570-75 154∼160154-160 145∼150145-150 175∼180175 to 180

표 1에서 실시예 1에서 제조된 폴리올의 특성을 살펴본 결과 산가와 수분은 일정한 반면 인산의 첨가량 및 첨가방법에 따라 점도 및 OH가는 다양한 특성을 보였다. 특히 인산의 첨가방법에 따라 점도가 반응 정도가 달라지는데 에폭시유지와 메탄올을 혼합 전 인산을 첨가한 경우 인산이 촉매역할을 못해 반응이 진행되지 않아 색상이 진해지는 문제점이 발생하여 우레탄 제조에 큰 영향을 주는 OH가는 낮아지는 경향이 있었다.
As a result of examining the properties of the polyol prepared in Example 1 in Table 1, the viscosity and OH value showed various properties depending on the amount and method of adding phosphoric acid while the acid value and moisture were constant. In particular, the viscosity varies depending on the method of adding phosphoric acid. However, when phosphoric acid is added before mixing epoxy oil and methanol, phosphoric acid does not play a role as a catalyst. The OH tended to be lower.

그러나 에폭시 유지와 메탄올을 혼합 후 인산을 첨가하여 반응한 경우 43∼180의 다양한 OH가의 폴리올을 제조할 수 있었다. 상기 방법으로 제조된 폴리올은 BIO-113∼BIO-120과 같이 폴리올의 관능기 4∼4.5, 분자량 1,000∼1,200, OH가는 70∼180인 폴리올이다.
However, when the reaction was performed by adding phosphoric acid after mixing epoxy oil and methanol, various OH polyols of 43 to 180 could be prepared. The polyol prepared by the above method is a polyol having a functional group of 4 to 4.5, a molecular weight of 1,000 to 1,200, and an OH value of 70 to 180, such as BIO-113 to BIO-120.

(실시예 2) 생분해성 폴리올(1a)의 제조방법
Example 2 Preparation of Biodegradable Polyol (1a)

실시예 1-3 내지 1-5에서 제조한 폴리올 중 BIO-120을 원료로 하여 점도가 낮은 신규한 폴리올을 제조하기 위해 온도계, 환류 냉각기, 및 교반기가 부착된 5L 4구 플라스크에 대두유를 투입하고 100∼120 rpm으로 교반하면서 45±2℃에서 리파아제(1,3-specific)를 2∼3% 첨가하여 저 진공 상태에서 인터에스테르화 반응을 실시하여 생분해성 폴리올을 제조하였다. 제조한 폴리올의 산도, 수분, 점도, 색도 그리고 OH가를 분석하여 특성을 확인하였다.
Soybean oil was added to a 5L four-necked flask equipped with a thermometer, a reflux condenser, and a stirrer to prepare a novel polyol having a low viscosity using BIO-120 as a raw material of the polyols prepared in Examples 1-3 to 1-5. A biodegradable polyol was prepared by adding 2 to 3% of lipase (1,3-specific) at 45 ± 2 ° C. while stirring at 100 to 120 rpm to perform interesterification under low vacuum. The acidity, moisture, viscosity, chromaticity, and OH value of the prepared polyol were analyzed to confirm their properties.

구분division 실시예 2-1
(BIO-500)
Example 2-1
(BIO-500)
실시예 2-2
(BIO-550)
Example 2-2
(BIO-550)
실시예 2-3
(BIO-610)
Example 2-3
(BIO-610)
실시예 2-4
(BIO-611)
Example 2-4
(BIO-611)
실시예 2-5
(BIO-650)
Example 2-5
(BIO-650)
BIO-120BIO-120 500500 600600 700700 800800 900900 대두유Soybean oil 500500 400400 300300 200200 100100 산가
(mg KOH/g)
Acid
(mg KOH / g)
0.630.63 0.680.68 0.620.62 0.590.59 0.610.61
ColorColor 132132 128128 112112 109109 104104 수분(wt%)Moisture (wt%) 0.0350.035 0.040.04 0.0250.025 0.060.06 0.050.05 점도(cps)Viscosity (cps) 1000∼11101000-1111 1120∼12401120-1240 1720∼18501720-1850 2015∼22002015-2200 2500∼27002500-2700 OH가OH 75∼7875-78 93∼9593-95 115∼118115-118 130∼135130-135 145∼150145-150

표 2에서 실시예와 같이 각각의 반응결과 제조된 폴리올의 특성을 살펴본 결과 산가와 수분은 일정한 반면 반응온도 및 리파아제의 첨가량에 따라 점도 및 OH가는 다양한 특성을 보였다. BIO-500, BIO-550은 점도가 BIO-120에 비해 절반 이하로 낮아져 물성이 양호하였으며 관능기수는 2∼2.5로 새로운 폴리올을 얻었으나 미반응된 대두유가 남아 정제과정에서 제거하는 공정이 필요하였으며, 폴리올의 수율이 50∼60%로 낮아지는 경향을 보인 반면 BIO-611, BIO-650의 경우 90%이상 전환되었으며 분자량은 1,000∼1,200, 관능기는 2∼2.5, 점도는 2,000∼2,500인 폴리올을 제조하였다. 이러한 경향은 채종유, 아마인유, 팡가미아 유지 등 나머지 식물성 유지도 유사한 경향을 보였다.
As shown in Table 2, as a result of looking at the properties of the polyol prepared as a result of each reaction, the acid value and moisture were constant, while the viscosity and OH value showed various characteristics depending on the reaction temperature and the amount of lipase added. The viscosity of BIO-500 and BIO-550 is lower than half of BIO-120, so the physical properties are good. The functional group number is 2 ~ 2.5, and a new polyol is obtained. However, unreacted soybean oil remains and needs to be removed in the purification process. However, the yield of polyol tended to be lowered to 50-60%, while the BIO-611 and BIO-650 showed more than 90% conversion. Prepared. This trend was similar to the rest of vegetable oils such as oilseed oil, linseed oil, and pangamia oil.

(실시예 3) 생분해성 폴리올(1a)의 제조방법Example 3 Manufacturing Method of Biodegradable Polyol (1a)

온도계 및 교반기가 부착된 5L 4구 플라스크에 식물성유지인 대두유를 리파아제를 사용 글리세롤과 지방산으로 분해한 후 저진공 조건에서 반응하여 얻은 지방산에 효소인 NOVOZYME RMIM(1,3-특이적)을 사용하여 인터에스테르화 반응을 실시하였다. 효소의 투입량과 반응시간을 조절하여 표 3과 같은 조성물의 식물성 유지를 제조하였다.
In a 5L four-necked flask equipped with a thermometer and a stirrer, vegetable oil soybean oil was decomposed into glycerol and fatty acid using lipase and then reacted under low vacuum conditions using NOVOZYME RMIM (1,3-specific) enzyme. An interesterification reaction was performed. The vegetable oils and fats of the composition shown in Table 3 were prepared by adjusting the dose and reaction time of the enzyme.

구분division 실시예 3-1
(EBIO 80)
Example 3-1
(EBIO 80)
실시예 3-2
(EBIO 85)
Example 3-2
(EBIO 85)
실시예 3-3
(EBIO 90)
Example 3-3
(EBIO 90)
실시예 3-4
(EBIO 95)
Example 3-4
(EBIO 95)
트리글리세라이드Triglyceride 3.73.7 4.64.6 5.05.0 8.18.1 디글리세라이드Diglycerides 61.261.2 67.567.5 77.577.5 84.984.9 모노글리세라이드Monoglycerides 35.135.1 27.927.9 17.517.5 6.96.9 system 100100 100100 100100 100100

단위:%
unit:%

표 3의 식물성 유지(EBIO80∼95)를 원료로 하여 종래 발명으로 에폭시 유지를 제조한 후 각 에폭시 유지 1,000 g을 투입하고 100∼120 rpm으로 교반하면서 58∼63℃에서 메탄올 및 인산 순차적으로 투입하면서 6∼10시간 반응시키고 메탄올을 제거하여 생분해성 폴리올을 제조하였다. 시간경과별 합성되는 폴리올의 산도, 수분, 점도, 색도 그리고 OH가를 분석하였다.
The vegetable oils (EBIO80-95) of Table 3 were used as raw materials to prepare epoxy oils according to the present invention, and then 1,000 g of each epoxy oil was added and methanol and phosphoric acid were sequentially added at 58-63 ° C. while stirring at 100-120 rpm. The reaction was carried out for 6 to 10 hours and methanol was removed to prepare a biodegradable polyol. The acidity, moisture, viscosity, chromaticity and OH value of the polyol synthesized over time were analyzed.

구분division 실시예 3-5
(EBIO 810)
Example 3-5
(EBIO 810)
실시예 3-6
(EBIO 825)
Example 3-6
(EBIO 825)
실시예 3-7
(EBIO 827)
Example 3-7
(EBIO 827)
실시예 3-8
(EBIO 830)
Example 3-8
(EBIO 830)
EBIO 80EBIO 80 10001000 -- -- -- EBIO 85EBIO 85 -- 10001000 -- -- EBIO 90EBIO 90 -- -- 10001000 -- EBIO 95EBIO 95 -- -- -- 10001000 메탄올Methanol 620620 620620 620620 620620 인산Phosphoric Acid 7.57.5 7.57.5 7.57.5 7.57.5 산가
(mG KOH/g)
Acid
(mG KOH / g)
0.210.21 0.250.25 0.400.40 0.310.31
수분(wt%)Moisture (wt%) 0.050.05 0.030.03 0.050.05 0.040.04 점도(cps)Viscosity (cps) 830∼900830-900 850∼920850-920 900∼950900-950 910∼960910-960 OH가OH 456456 435435 405405 372372

효소반응 및 합성반응에 의해 제조한 폴리올은 관능기 3.8∼4.3, 수산기는 372∼456 mg KOH/g, 분자량은 300∼1,100으로, BIO-115∼BIO-650에 비해 수산기는 2배 이상 증가하였으며 분자량과 점도는 감소하는 경향을 보였다. Polyols prepared by enzymatic and synthetic reactions had functional groups of 3.8 to 4.3, hydroxyl groups of 372 to 456 mg KOH / g, molecular weights of 300 to 1,100, and more than double the hydroxyl groups compared to BIO-115 to BIO-650. And viscosity tended to decrease.

Claims (7)

불포화 지방산을 지닌 트리글리세라이드 식물성 유지에 활성산소를 부가하여 제조된 에폭시화 유지(2)에 인산을 촉매로 메탄올을 첨가 교반 가열하여 생분해성 폴리올(1)을 제조하는 방법
Figure pat00005

A method of producing a biodegradable polyol (1) by stirring and heating methanol with phosphoric acid as a catalyst to an epoxidized oil (2) prepared by adding active oxygen to a triglyceride vegetable oil having an unsaturated fatty acid.
Figure pat00005

불포화 지방산을 지닌 모노, 디, 트리-글리세라이드(3a)에 활성산소를 부가하여 모노, 디, 트리-에폭시화 글리세라이드(2a)를 제조한 후 인산을 촉매로 메탄올을 첨가 교반 가열하여 생분해성 폴리올(1a)을 제조하는 방법
Figure pat00006

After adding active oxygen to mono, di, tri-glyceride (3a) having an unsaturated fatty acid to prepare mono, di, tri-epoxylated glyceride (2a), biodegradable by adding and stirring methanol with phosphoric acid as a catalyst How to prepare polyol (1a)
Figure pat00006

제 2항에 있어서, 상기 불포화 지방산을 지닌 모노, 디, 트리-글리세라이드(3a)는 불포화 지방산을 지닌 트리글리세라이드(5)를 리파아제로 분해시킨 불포화 지방산(4)과 글리세롤을 에스테르화 반응시켜 제조됨을 특징으로 하는 생분해성 폴리올(1a)을 제조하는 방법
Figure pat00007

The mono, di, tri-glyceride (3a) having an unsaturated fatty acid is prepared by esterifying an unsaturated fatty acid (4) and glycerol obtained by decomposing triglyceride (5) having an unsaturated fatty acid with lipase. Method for producing a biodegradable polyol (1a) characterized in that
Figure pat00007

제 1항에 있어서, 상기 메탄올 첨가량은 에폭시화 유지 이중결합 하나에 대해 0.2∼1.0 mol로 사용하고, 촉매로서 인산은 60∼90 농도%의 것을 사용하며 반응온도는 58℃∼65℃임을 특징으로 하는 생분해성 폴리올(1)을 제조하는 방법
According to claim 1, wherein the amount of methanol is used in 0.2 to 1.0 mol per one epoxidized oil and fat double bond, phosphoric acid is used as a catalyst of 60 to 90% by weight and the reaction temperature is 58 ℃ to 65 ℃ Method for producing biodegradable polyol (1)
제 1항에 방법에 따라 제조된 생분해성 폴리올(1)은 관능기가 2.0∼4.50이며, 수산기가 130∼180 mg KOH/g, 분자량은 1,000∼1,200인 것을 특징으로 하는 생분해성 폴리올
The biodegradable polyol (1) prepared according to the method according to claim 1 has a functional group of 2.0 to 4.50, a hydroxyl group of 130 to 180 mg KOH / g, and a molecular weight of 1,000 to 1,200.
제 2항의 방법에 따라 제조된 폴리올(1a)은 관능기가 3.5∼4.5이며 수산기가 372∼456 mg KOH/g 분자량은 300∼1.100 점도는 500∼1,000(cps)임을 특징으로 하는 생분해성 폴리올
The polyol (1a) prepared according to the method of claim 2 has a functional group of 3.5 to 4.5 and a hydroxyl group of 372 to 456 mg KOH / g molecular weight of 300 to 1.100 viscosity of 500 to 1,000 (cps), characterized in that
제 2항에 있어서, 상기 불포화 지방산을 지닌 글리세라이드는 대두유, 채종유, 피마자유, 팡가미아 유지, 캐쉬넛 유지에서 선택된 글리세라이드이고, 상기 글리세라이드의 조성은 트리글리세라이드 3∼10 중량%, 디글리세라이드 60∼85 중량% 및 모노글리세라이드 6∼35 중량%임을 특징으로 하는 생분해성 폴리올의 제조방법
The glyceride of claim 2, wherein the glyceride having an unsaturated fatty acid is a glyceride selected from soybean oil, rapeseed oil, castor oil, pangamia oil, and cashew oil, and the composition of the glyceride is 3 to 10 wt% of triglyceride, diglyceride. Method for producing biodegradable polyol, characterized in that 60 to 85% by weight and 6 to 35% by weight monoglyceride
KR1020100081219A 2010-08-23 2010-08-23 Process for preparing biodegradable polyol using plant oil KR20100099089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100081219A KR20100099089A (en) 2010-08-23 2010-08-23 Process for preparing biodegradable polyol using plant oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100081219A KR20100099089A (en) 2010-08-23 2010-08-23 Process for preparing biodegradable polyol using plant oil

Publications (1)

Publication Number Publication Date
KR20100099089A true KR20100099089A (en) 2010-09-10

Family

ID=43005647

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100081219A KR20100099089A (en) 2010-08-23 2010-08-23 Process for preparing biodegradable polyol using plant oil

Country Status (1)

Country Link
KR (1) KR20100099089A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104892548A (en) * 2015-06-25 2015-09-09 中国石油大学(华东) Preparation method of novel green environmental-protection epoxidized soybean oil
KR101631606B1 (en) 2015-03-20 2016-06-17 동구산업(주) Preparing method for biopolyol from epoxidated-vegetable oil
CN110511815A (en) * 2019-08-29 2019-11-29 华南理工大学 A kind of Lignum Aquilariae Resinatum extract and the preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101631606B1 (en) 2015-03-20 2016-06-17 동구산업(주) Preparing method for biopolyol from epoxidated-vegetable oil
CN104892548A (en) * 2015-06-25 2015-09-09 中国石油大学(华东) Preparation method of novel green environmental-protection epoxidized soybean oil
CN110511815A (en) * 2019-08-29 2019-11-29 华南理工大学 A kind of Lignum Aquilariae Resinatum extract and the preparation method and application thereof

Similar Documents

Publication Publication Date Title
Metzger et al. Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification
Saurabh et al. Epoxidation of vegetable oils: a review
Sun et al. Enzymatic epoxidation of Sapindus mukorossi seed oil by perstearic acid optimized using response surface methodology
Lligadas et al. Plant oils as platform chemicals for polyurethane synthesis: current state-of-the-art
Li et al. Polyols and polyurethanes from vegetable oils and their derivatives
Uprety et al. Utilization of microbial oil obtained from crude glycerol for the production of polyol and its subsequent conversion to polyurethane foams
Malani et al. Polyols and polyurethanes from renewable sources: past, present and future—part 1: vegetable oils and lignocellulosic biomass
EP2574397B1 (en) Epoxidized 1,3-propanediol disoyate
CN101225415A (en) Process for preparing diglyceride by enzyme method in organic medium system
CA2806105C (en) Polyol synthesis from fatty acids and oils
US10301239B2 (en) Synthesis of polyols suitable for castor oil replacement
Lubguban et al. Soy-based polyols and polyurethanes
Samavi et al. Utilization of microbial oil from poplar wood hemicellulose prehydrolysate for the production of polyol using chemo-enzymatic epoxidation
KR20100099089A (en) Process for preparing biodegradable polyol using plant oil
Amelia et al. JURNAL REKAYASA PROSES
KR102172422B1 (en) A method of increasing the content of triglycerides having saturated fatty acids at the sn-2 position in vegetable oil and a method of converting triglyceride having an unsaturated fatty acid at the sn-2 position to triglyceride having a saturated fatty acid at the sn-2 position
Chin et al. Palm oil-based chemicals for sustainable development of petrochemical industries in Malaysia: progress, prospect, and challenges
KR101631606B1 (en) Preparing method for biopolyol from epoxidated-vegetable oil
US8399693B2 (en) Preparation of an active intermediate
US8541536B2 (en) Coupling method for providing high molecular weight natural oil polyol
Wu et al. Lipase-catalyzed modification of natural Sapium sebiferum oil-based polyol for synthesis of polyurethane with improved properties
CN107151680B (en) Tung oil-based polyol and preparation method thereof
Ji et al. Synthesis and characterization of epoxidized silkworm pupae oil and its application as polyvinyl chloride
CA2989691C (en) Method for polyol synthesis from triacylglyceride oils
CN113881717A (en) Preparation method of structural grease and structural grease prepared by same

Legal Events

Date Code Title Description
A201 Request for examination
E601 Decision to refuse application