KR20100096821A - Manufacturing method of bio-diesel fuel - Google Patents

Manufacturing method of bio-diesel fuel Download PDF

Info

Publication number
KR20100096821A
KR20100096821A KR1020090015882A KR20090015882A KR20100096821A KR 20100096821 A KR20100096821 A KR 20100096821A KR 1020090015882 A KR1020090015882 A KR 1020090015882A KR 20090015882 A KR20090015882 A KR 20090015882A KR 20100096821 A KR20100096821 A KR 20100096821A
Authority
KR
South Korea
Prior art keywords
biodiesel
slag
hours
cao
manufacturing
Prior art date
Application number
KR1020090015882A
Other languages
Korean (ko)
Inventor
조민호
손석규
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020090015882A priority Critical patent/KR20100096821A/en
Publication of KR20100096821A publication Critical patent/KR20100096821A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: A method for manufacturing biodiesel fuel is provided to reduce manufacturing costs of the biodiesel by recycling oxidized slag which is generated from a process of manufacturing an electric furnace and to prevent the generation of alkaline waste water without after-treatment. CONSTITUTION: A method for manufacturing biodiesel fuel includes a step of reacting triglyceride with methanol through transesterification by using oxidized slag of an electric furnace as a solid catalyst. The oxidized slag is thermally treated at 600-1000°C for 12-24 hours. The transesterification or esterification is performed for 6-9 hours. The oxidized slag is included in an amount of 50-150g per 100 mL of the triglyceride.

Description

바이오디젤 연료의 제조방법{Manufacturing Method of bio-diesel fuel}Manufacturing method of bio-diesel fuel

본 발명은 바이오디젤 연료의 제조방법에 관한 것으로, 더욱 상세하게는 전기로 제강공정 및 연주공정에서 발생하는 부산물인 슬래그를 촉매로 이용하는 바이오디젤 연료의 제조방법에 관한 것이다.The present invention relates to a method for producing biodiesel fuel, and more particularly, to a method for producing biodiesel fuel using slag as a by-product generated in an electric furnace steelmaking process and a regeneration process as a catalyst.

바이오디젤은 석유 기반인 경유의 대안으로 식물성 기름이나 동물성 지방과 같은 유지 또는 재생 가능한 자원을 바탕으로 제조된다. Biodiesel is an alternative to petroleum-based diesel, and is based on fats or oils such as vegetable oils or animal fats.

바이오디젤은 수산화나트륨(NaOH), 수산화칼륨(KOH)과 같은 강알칼리의 균질 촉매 하에서 알코올과 오일 또는 유지를 반응시키는 것에 의해 제조된다. Biodiesel is prepared by reacting an alcohol with an oil or an oil or fat under a homogeneous catalyst of strong alkalis such as sodium hydroxide (NaOH), potassium hydroxide (KOH).

이러한 바이오디젤은 경유와 물성이 유사하여 경유와 혼합하여 사용하거나 또는 경유를 대체하여 사용할 수 있으며, 연소시 공해가 적고 독성이 없어 대기오염을 방지할 수 있는 대체 연료로 각광받고 있다.Such biodiesel has similar properties as diesel oil, so it can be used in combination with diesel oil or used as a substitute for diesel oil, and it has been spotlighted as an alternative fuel that can prevent air pollution due to its low pollution and no toxicity during combustion.

그러나, 기존의 촉매를 이용하여 바이오디젤을 제조하는 경우에는 다음과 같은 문제점이 있다. However, when manufacturing biodiesel using the existing catalyst has the following problems.

즉, 연료로 사용되는 유지에 유리지방산이 있을 경우, 촉매에 의한 비누(Soap)화 반응이 일어날 수 있어 전처리를 통한 유리지방산을 제거해야 한다.That is, when there are free fatty acids in the fats and oils used as fuel, soap-catalytic reaction by catalyst may occur, and the free fatty acids should be removed through pretreatment.

그리고 바이오디젤 생산 후 세척수로 세척하여 비누성분을 제거해야하며, 이 과정에서 강알카리 폐수가 발생하므로 적절한 처리를 하여야 한다. 따라서 유리지방산의 함량이 높은 자원의 경우에는 전처리 및 후처리 공정이 발생되어 경제적인 바이오디젤 생산에 문제가 생길 수 있다. And after the production of biodiesel, it is necessary to wash with soapy water to remove soap components. In this process, strong alkaline wastewater is generated, so it must be properly treated. Therefore, in the case of a resource having a high content of free fatty acid, pre- and post-treatment processes may occur, which may cause problems in economical biodiesel production.

본 발명은 상기한 바와 같은 종래의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 알칼리 폐수를 발생시키지 않고, 생산 비용이 저렴하며 수율을 높일 수 있는 바이오디젤 연료의 제조방법을 제공하는 것이다. The present invention is to solve the conventional problems as described above, an object of the present invention is to provide a method for producing a biodiesel fuel that can increase the yield and low production cost without generating alkaline wastewater.

상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은 전기로의 산화슬래그를 바이오디젤 제조용 고체상 촉매로 사용하여 트리글리세라이드를 메탄올과 트랜스에스테르화(Tran-esterification) 반응시키는 공정을 포함한다.According to a feature of the present invention for achieving the above object, the present invention includes a process for transesterification of triglycerides with methanol using an oxide slag of an electric furnace as a solid catalyst for biodiesel production do.

전기로의 산화슬래그를 바이오디젤 제조용 고체상 촉매로 사용하여 트리글리세라이드를 메탄올과 에스테르화(esterification) 반응시키는 공정을 포함한다.The oxidation slag of the electric furnace is used as a solid catalyst for biodiesel production, and triglyceride is esterified with methanol.

상기 산화슬래그는 600~1000℃에서 12~24시간 열처리한다.The oxide slag is heat treated for 12 to 24 hours at 600 ~ 1000 ℃.

상기 트랜스에스테르화 또는 에스테르화 반응의 반응시간은 6~9시간이다.The reaction time of the transesterification or esterification reaction is 6 to 9 hours.

상기 산화슬래그는 트리글리세라이드 100mL당 50~150g이다. The oxide slag is 50 to 150 g per 100 mL of triglyceride.

본 발명은 바이오디젤 연료를 제조함에 있어 전기로 제강공정에서 발생되는 부산물인 산화슬래그를 재활용한다. 따라서 바이오디젤 연료의 제조비용을 절감할 수 있는 효과가 있다. The present invention recycles the oxide slag which is a by-product generated in the steelmaking process of electricity in manufacturing biodiesel fuel. Therefore, there is an effect that can reduce the manufacturing cost of biodiesel fuel.

또한, 본 발명은 산화슬래그에 함유된 CaO가 바이오디젤 연료의 제조를 위한 촉매로 사용된다. 따라서 알칼리 폐수를 발생시키지 않으므로 후처리 공정이 요구되지 않는 효과가 있다. In the present invention, CaO contained in the oxide slag is used as a catalyst for the production of biodiesel fuel. Therefore, since alkaline wastewater is not generated, an aftertreatment process is not required.

또한, 본 발명에서는 산화슬래그를 열처리한 후 바이오디젤 연료의 제조를 위한 촉매로 사용한다. 이는 산화슬래그 내의 CaO함량을 증가시키므로 바이오디젤 연료의 수율을 향상시킬 수 있는 효과가 있다. In addition, the present invention is used as a catalyst for the production of biodiesel fuel after the heat treatment of the oxide slag. This increases the CaO content in the oxide slag has the effect of improving the yield of biodiesel fuel.

이하 본 발명에 의한 바이오디젤 연료의 제조방법의 바람직한 실시예를 상세하게 설명한다. Hereinafter, a preferred embodiment of the method for producing a biodiesel fuel according to the present invention will be described in detail.

본 발명은 전기로의 산화슬래그를 바이오디젤 제조용 고체상 촉매로 사용하여 트리글리세라이드를 메탄올과 트랜스에스테르화(Tran-esterification) 반응 또는 에스테르화(esterification) 반응시키는 공정을 포함한다. The present invention includes a process of transesterification or esterification of triglyceride with methanol using the slag of an electric furnace as a solid catalyst for biodiesel production.

즉, 바이오디젤 연료를 제조함에 있어 전기로 제강공정에서 발생되는 부산물인 산화슬래그를 촉매로 활용하는 것이다. In other words, in the production of biodiesel fuel, the oxidation slag which is a by-product generated in the steelmaking process of an electric furnace is used as a catalyst.

전기로 제강공정에서는 제강톤당 13~17%의 양으로 부산물인 슬래그가 발생된다. 슬래그는 산화슬래그와 환원슬래그로 구분되는데 그 중 산화슬래그는 슬래그 총량의 약 7%를 차지한다. In the furnace steelmaking process, slag is generated as a by-product in an amount of 13 to 17% per ton of steelmaking. Slag is divided into oxidized slag and reduced slag, among which about 7% of the total slag.

산화슬래그의 성분비는 아래의 표 1과 같다. The composition ratio of the oxide slag is shown in Table 1 below.

성분ingredient SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 MgOMgO CaOCaO Na2ONa 2 O K2OK 2 O TiO2 TiO 2 MnOMnO P2O5 P 2 O 5 Cr2O3 Cr 2 O 3 함량
(wt%)
content
(wt%)
13.713.7 4.674.67 34.734.7 13.113.1 30.430.4 〈0.01<0.01 〈0.01<0.01 0.680.68 1.301.30 0.320.32 0.320.32

이와 같은 성분의 산화슬래그는 산화칼슘(CaO)의 함량이 30.4wt%로 높아 바이오디젤 연료 제조시 촉매제로서 활용이 가능하다. The slag oxide of such a component has a high content of calcium oxide (CaO) of 30.4 wt%, which can be utilized as a catalyst in biodiesel fuel production.

CaO는 글리세라이드와 메탄올의 트리에스테르화 반응 또는 에스테르화 반응을 촉진하면서도 알칼리 폐수를 발생시키지 않는다. 따라서 산화슬래그에 함유된 CaO의 품위가 중요하다. CaO promotes the esterification or esterification reaction of glycerides with methanol and does not generate alkaline wastewater. Therefore, the quality of CaO contained in the oxide slag is important.

통상, 산화슬래그에 함유된 CaO는 공기 중에 방치하면 수분과 이산화탄소를 흡수하여 수산화칼슘(Ca(OH)2)과 탄산칼슘(CaCO3)로 분해된다. 따라서 산화슬래그에 포함된 Ca(OH)2와 CaCO3를 CaO의 형태로 변화시킬 필요가 있다. In general, CaO contained in the oxide slag absorbs moisture and carbon dioxide when left in the air, and calcium hydroxide (Ca (OH) 2 ) and Decomposes into calcium carbonate (CaCO 3 ). Therefore, it is necessary to change Ca (OH) 2 and CaCO 3 contained in the oxide slag in the form of CaO.

Ca(OH)2와 CaCO3는 열을 가하면 열을 흡수하면서 동시에 CaO로 변환되는 반응을 한다. Ca (OH) 2 and CaCO 3 absorb heat and convert to CaO at the same time.

Ca(OH)2와 CaCO3가 CaO로 변환되는 반응식은 다음과 같다. The reaction formula for converting Ca (OH) 2 and CaCO 3 to CaO is as follows.

(1) Ca(OH)2 → CaO + H2O↑(1) Ca (OH) 2 → CaO + H 2 O ↑

(2) CaCO3 → CaO + CO2(2) CaCO 3 → CaO + CO 2

따라서 산화슬래그는 600~1000℃에서 12~24시간 열처리한 것을 사용한다. 이는 실험에 의해 산출된 것으로 600~1000℃에서 12~24시간 열처리하면 전체 산화슬래그 내 CaO의 함량이 증가하기 때문이다. Therefore, the oxide slag is heat-treated for 12 to 24 hours at 600 ~ 1000 ℃. This is because the content of CaO in the total oxide slag is increased by heat treatment at 600-1000 ° C. for 12-24 hours.

하지만 산화슬래그는 1000℃에서 24시간 열처리한 것을 사용하는 것이 가장 효율적이다. 이는 1000℃에서 24시간 열처리 한 산화슬래그의 CaO함량이 가장 높기 때문이다. However, it is most efficient to use oxide slag heat-treated at 1000 ° C for 24 hours. This is because the CaO content of the oxide slag heat-treated at 1000 ° C. for 24 hours is the highest.

이러한 CaO의 함량은 바이오디젤 연료의 수율에 영향을 미친다. 즉, 산화슬래그 내 CaO의 높은 함량은 바이오디젤 연료의 수율을 높인다. This CaO content affects the yield of biodiesel fuel. In other words, the high content of CaO in the oxide slag increases the yield of biodiesel fuel.

산화슬래그(CaO)를 바이오디젤 제조용 고체상 촉매로 사용하여 트리글리세라이드를 메탄올과 트랜스에스테르화(Tran-esterification) 반응 또는 에스테르화(esterification) 반응시키는 공정은 아래와 같다. A process of transesterifying or esterifying triglyceride with methanol using slag oxide (CaO) as a solid catalyst for biodiesel production is as follows.

Figure 112009011759376-PAT00001
Figure 112009011759376-PAT00001

위의 반응식과 같이 열처리한 산화슬래그 촉매하에서 글리세라이드와 메탄올을 반응시키면 트랜스에스테르화 또는 에스테르화 반응에 의해 바이오디젤이 제조된다. 이때 부산물로 제조되는 글리세린은 알코올 합성연료로 사용된다. 그리고, 글리세라이드는 지방산과 글리세롤의 에스터 결합 화합물을 지칭한다. When glyceride and methanol are reacted under the heat treatment slag catalyst as in the above scheme, biodiesel is prepared by transesterification or esterification. In this case, glycerin produced as a by-product is used as alcohol synthetic fuel. And glycerides refer to ester binding compounds of fatty acids and glycerol.

트랜스에스테르화 또는 에스테르화 반응시간은 6~9시간 동안 유지하는 것이 바람직하다. 이는 도 1에서 확인되는 바와 같이, 반응시간이 6시간 미만이면 바이 오디젤의 수율이 50% 이상 확보되기 어렵기 때문이다. 그리고 반응시간의 상한치는 효율측면에서 9시간으로 설정한다. 여기서, 트랜스에스테르화 또는 에스테르화 반응시간은 산화슬래그 촉매하에 트리글리세라이트와 메탄올의 반응시간과 동일한 의미이다. The transesterification or esterification reaction time is preferably maintained for 6-9 hours. This is because, as shown in FIG. 1, when the reaction time is less than 6 hours, the yield of biodiesel is hardly secured by 50% or more. The upper limit of the reaction time is set to 9 hours in terms of efficiency. Here, the transesterification or esterification reaction time has the same meaning as the reaction time of triglyceride and methanol under an oxide slag catalyst.

산화슬래그는 트리글리세라이드 100mL당 50~150g을 사용한다. 산화슬래그는 트리글리세라이드 100mL당 50g 미만으로 사용하면 바이오디젤의 수율이 50% 이상 확보되지 않고, 트리글리세라이드 100mL당 150g을 초과하면 과량사용으로 인해 컴팩트한 설비의 구현이 어렵다. 즉, 설비가 커지거나 후처리가 필요한 문제점이 발생한다. Oxide slag is used 50 ~ 150g per 100mL of triglyceride. Oxide slag is less than 50g per 100mL triglyceride yield is not more than 50% yield of biodiesel, and if it exceeds 150g per 100mL triglyceride it is difficult to implement a compact installation due to overuse. That is, a problem arises that the equipment is large or needs post-treatment.

이하, 본 발명의 이래를 돕고자 바이오디젤 연료의 제조방법을 실시예를 통해 설명하기로 한다. Hereinafter, a method for producing a biodiesel fuel will be described through examples to help the present invention.

[실시예1]Example 1

산화슬래그에 함유된 Ca(OH)2와 CaCO3를 CaO로 변환시키기 위해 열처리를 실시하되, 열처리 온도와 시간을 변화시키면서 열처리하여 산화슬래그에 함유된 CaO 성분을 측정하였다. In order to convert Ca (OH) 2 and CaCO 3 contained in the oxide slag into CaO, heat treatment was performed, and the CaO component contained in the oxide slag was measured by changing the heat treatment temperature and time.

열처리 조건에 따른 산화슬래그의 CaO 성분변화는 아래의 표 2와 같다. CaO component changes of the oxide slag according to the heat treatment conditions are shown in Table 2 below.

구분division CaO함량(wt%)CaO content (wt%) 온도
(℃)
Temperature
(℃)
비교예Comparative example 300300 600600 10001000

시간
(hr)

time
(hr)
00 30.430.4 31.231.2 34.634.6 35.635.6
66 -- 32.132.1 34.834.8 37.137.1 1212 -- 33.033.0 36.336.3 39.339.3 2424 -- 32.932.9 36.136.1 41.041.0

[위 표에서 비교예는 열처리를 하지 않았을 경우 산화슬래그에 함유된 CaO의 함량이다.][Comparative example in the above table is the content of CaO contained in the oxide slag without heat treatment.]

위 표를 보면 열처리 온도가 높고 열처리 시간을 증가시킬수록 CaO의 함량은 증가되었으며 1000℃에서 24시간 열처리한 산화슬래그의 경우 CaO의 함량이 가장 많이 증가하였음을 알 수 있다. The above table shows that the higher the annealing temperature and the higher annealing time, the higher the CaO content and the most increased CaO content in the oxide slag heat-treated at 1000 ° C for 24 hours.

[실시예 2][Example 2]

표 1의 결과를 토대로 1000℃에서 24시간 열처리한 산화슬래그를 50g, 트리글리세라이드 100mL, 메탄올 40g을 60℃에서 1시간, 2시간, 3시간, 6시간, 9시간으로 달리하여 반응시켜 바이오디젤의 수율을 측정하였다. Based on the results of Table 1, 50g, triglyceride 100mL and methanol 40g were heat-treated at 1000 ° C. for 24 hours at 60 ° C. for 1 hour, 2 hours, 3 hours, 6 hours, and 9 hours. Yield was measured.

그리고, 본 발명의 실시예와 비교를 위해 열처리를 하지 않은 산화슬래그 50g, 트리글리세라이드 100mL, 메탄올 40g을 60℃에서 6시간 반응시켜 바이오디젤 의 수율을 측정하였다.In addition, the yield of biodiesel was measured by reacting 50 g of untreated heat treatment slag, triglyceride 100 mL, and methanol 40 g at 60 ° C. for 6 hours for comparison with Examples of the present invention.

도 1에 도시된 바에 의하면, 열처리를 하지 않은 산화슬래그를 촉매로 사용하여 바이오디젤을 제조한 경우 바이오디젤의 수율이 2%에 불과하였다. As shown in FIG. 1, the biodiesel yield was only 2% when the biodiesel was prepared using the untreated heat treatment slag as a catalyst.

그리고, 1000℃에서 24시간 열처리한 산화슬래그를 사용하였을 경우에는 3시간까지는 바이오디젤의 수율이 비교적 낮았으나 6시간, 9시간으로 반응시간을 증가시켰을 경우에는 바이오디젤의 수율이 56%, 82%에 달했다. In the case of using an oxide slag heat-treated at 1000 ° C. for 24 hours, the yield of biodiesel was relatively low up to 3 hours, but when the reaction time was increased to 6 hours and 9 hours, the yield of biodiesel was 56% and 82%. Reached.

이는 열처리로 인해 산화슬래그에 포함된 Ca(OH)2와 CaCO3가 분해되어 CaO로 변환되면서 전체 산화슬래그에 함유된 CaO의 함량이 증가되었기 때문이다. This is because Ca (OH) 2 and CaCO 3 contained in the oxide slag are decomposed and converted into CaO due to the heat treatment, thereby increasing the content of CaO contained in the entire oxide slag.

이에 따라, 산화슬래그를 600~1000℃온도범위에서 12~24시간 동안 열처리한 후, 글리세라이드와 메탄올을 반응시 촉매로 사용하면 바이오디젤의 수율을 향상시킬 수 있음을 알 수 있다. Accordingly, after the oxide slag is heat-treated for 12 to 24 hours at 600 ~ 1000 ℃ temperature range, it can be seen that the use of glyceride and methanol as a catalyst in the reaction can improve the yield of biodiesel.

이와 같은 본 발명의 기본적인 기술적 사상의 범주 내에서, 당업계의 통상의 지식을 가진 자에게 있어서는 다른 많은 변형이 가능함은 물론이고, 본 발명의 권리범위는 첨부한 특허청구 범위에 기초하여 해석되어야 할 것이다. Within the scope of the basic technical idea of the present invention, many other modifications are possible to those skilled in the art, and the scope of the present invention should be interpreted based on the appended claims. will be.

도 1은 산화슬래그 촉매 반응시간에 따른 바이오디젤의 수율을 나타낸 그래프.1 is a graph showing the yield of biodiesel according to the reaction time of the slag oxide catalyst.

Claims (5)

전기로의 산화슬래그를 바이오디젤 제조용 고체상 촉매로 사용하여 트리글리세라이드를 메탄올과 트랜스에스테르화(Tran-esterification) 반응시키는 공정을 포함하는 것을 특징으로 하는 바이오디젤 연료의 제조방법.A method for producing a biodiesel fuel, comprising a step of transesterifying triglyceride with methanol using an oxidized slag of an electric furnace as a solid catalyst for biodiesel production. 전기로의 산화슬래그를 바이오디젤 제조용 고체상 촉매로 사용하여 트리글리세라이드를 메탄올과 에스테르화(esterification) 반응시키는 공정을 포함하는 것을 특징으로 하는 바이오디젤 연료의 제조방법.A method for producing a biodiesel fuel, comprising the step of esterifying a triglyceride with methanol using an oxidized slag of an electric furnace as a solid catalyst for biodiesel production. 청구항 1 또는 청구항 2에 있어서, The method according to claim 1 or 2, 상기 산화슬래그는 600~1000℃에서 12~24시간 열처리한 것을 특징으로 하는 바이오디젤 연료의 제조방법.The oxide slag is a biodiesel fuel production method characterized in that the heat treatment for 12 to 24 hours at 600 ~ 1000 ℃. 청구항 3에 있어서, The method according to claim 3, 상기 트랜스에스테르화 또는 에스테르화 반응의 반응시간은 6~9시간인 것을 특징으로 하는 바이오디젤 연료의 제조방법.The reaction time of the transesterification or esterification reaction is a method for producing a biodiesel fuel, characterized in that 6 to 9 hours. 청구항 1 또는 청구항 2에 있어서, The method according to claim 1 or 2, 상기 산화슬래그는 트리글리세라이드 100mL당 50~150g인 것을 특징으로 하는 바이오디젤 연료의 제조방법.The oxide slag is a method for producing a biodiesel fuel, characterized in that 50 ~ 150g per 100mL of triglycerides.
KR1020090015882A 2009-02-25 2009-02-25 Manufacturing method of bio-diesel fuel KR20100096821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090015882A KR20100096821A (en) 2009-02-25 2009-02-25 Manufacturing method of bio-diesel fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090015882A KR20100096821A (en) 2009-02-25 2009-02-25 Manufacturing method of bio-diesel fuel

Publications (1)

Publication Number Publication Date
KR20100096821A true KR20100096821A (en) 2010-09-02

Family

ID=43004307

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090015882A KR20100096821A (en) 2009-02-25 2009-02-25 Manufacturing method of bio-diesel fuel

Country Status (1)

Country Link
KR (1) KR20100096821A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101312514B1 (en) * 2011-03-31 2013-10-01 재단법인 포항산업과학연구원 Method for manufacturing bio-diesel using slag-catalyst
CN112264052A (en) * 2020-10-20 2021-01-26 华北理工大学 Catalyst and method for preparing biodiesel by using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101312514B1 (en) * 2011-03-31 2013-10-01 재단법인 포항산업과학연구원 Method for manufacturing bio-diesel using slag-catalyst
CN112264052A (en) * 2020-10-20 2021-01-26 华北理工大学 Catalyst and method for preparing biodiesel by using same

Similar Documents

Publication Publication Date Title
RU2428460C2 (en) Hydrocarbon fuel obtaining method
EP1670882B1 (en) Purification of biodiesel with adsorbent materials
Basumatary Transesterification with heterogeneous catalyst in production of biodiesel: A Review
EP1711588B1 (en) Improved process for preparing fatty acid alkylesters for use as a biodiesel
JP5964327B2 (en) Improved process for producing fatty acid alkyl esters (biodiesel) from triglyceride oils by using environmentally friendly solid base catalysts
CN101880603A (en) Method for preparing low condensation point biodiesel from high acid value oil
EP2159212B1 (en) Method for purification of glycerol from biodiesel production
KR20100096821A (en) Manufacturing method of bio-diesel fuel
KR20170043906A (en) Method for Conversing from High Acid Value Fatty Acid to Bio Fuel Oil or Biodiesel
Xiao et al. First generation biodiesel
TWI486433B (en) Method for preparing biodiesel
KR101285828B1 (en) Method for pre-treating a biodiesel feedstock oil
CN113444538B (en) Method for desulfurizing illegal cooking oil through thermochemical pretreatment of copper nitrate
Simpen et al. Optimizing reaction conditions of biodiesel production from waste cooking oil using green solid catalyst
KR101694699B1 (en) Heterogeneous solid acid catalyst using biochar derived biomass and preparing method thereof
KR20120025682A (en) Green oil energy recycling system from oil seeds
WO2009061169A1 (en) An improved process to produce biodiesel
MX2022011587A (en) Process for converting biosourced triglycerides into a single-phase composition containing fatty acid ester and related uses as biofuel or lubricant.
JP5282951B2 (en) Method for producing fatty acid alkyl ester
JP2011099009A (en) Method for producing fatty acid ester
WO2018226088A1 (en) Solid acid catalyst and solid base catalyst for biofuel and method thereof
JP2009203346A (en) Easy oil decomposition reaction method
SG139562A1 (en) Biofuel(s)
CN104226349A (en) Preparation method for solid base catalyst
CN104258883A (en) Preparation method of solid base catalyst

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application