KR20100094965A - Development of low-cost media for mass culture of spirulina - Google Patents

Development of low-cost media for mass culture of spirulina Download PDF

Info

Publication number
KR20100094965A
KR20100094965A KR1020100075116A KR20100075116A KR20100094965A KR 20100094965 A KR20100094965 A KR 20100094965A KR 1020100075116 A KR1020100075116 A KR 1020100075116A KR 20100075116 A KR20100075116 A KR 20100075116A KR 20100094965 A KR20100094965 A KR 20100094965A
Authority
KR
South Korea
Prior art keywords
spirulina
medium
bioenergy
biomass
urine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
KR1020100075116A
Other languages
Korean (ko)
Inventor
최창원
Original Assignee
최창원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최창원 filed Critical 최창원
Priority to KR1020100075116A priority Critical patent/KR20100094965A/en
Publication of KR20100094965A publication Critical patent/KR20100094965A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 바이오에너지를 생산할 수 있는 미세조류 스피룰리나(Spirulina)의 바이오매스를 증가시킬 수 있는 경제적인 배지 조성물 및 최적 배양조건 확립에 관한 것이다. 보다 구체적으로 본 발명은 인간의 소변을 영양배지로 활용하여 최적 배양조건을 확립하여 스피룰리나의 바이오매스 및 구성분의 함량을 증대시키고자 한다. 이를 통해 배양된 스피룰리나를 수확하고 마쇄하여 바이오디젤의 원료인 지질 및 바이오에탄올의 원료인 탄수화물을 생산할 수 있다. 따라서, 인간의 소변은 미세조류를 배양하여 바이오에너지 생산을 위한 경제적인 배지로서 활용될 수 있다.The present invention relates to the establishment of an economical medium composition and optimal culture conditions capable of increasing the biomass of microalgae Spirulina capable of producing bioenergy. More specifically, the present invention aims to increase the content of biomass and constituents of spirulina by establishing optimal culture conditions by utilizing human urine as a nutrient medium. Through this, cultured spirulina can be harvested and crushed to produce carbohydrates, which are the raw materials of biodiesel and lipids. Therefore, human urine can be utilized as an economical medium for bioenergy production by culturing microalgae.

Description

바이오에너지 자원인 스피룰리나 대량생산을 위한 경제적 배지 개발{Development of low-cost media for mass culture of Spirulina} Development of economic medium for mass production of bioenergy resource spirulina {Development of low-cost media for mass culture of Spirulina}

본 발명은 바이오에너지를 생산할 수 있는 미세조류 스피룰리나(Spirulina)의 바이오매스를 증가시킬 수 있는 경제적인 배지 조성물 및 최적 배양조건 확립에 관한 것이다.
The present invention relates to the establishment of an economical medium composition and optimal culture conditions capable of increasing the biomass of microalgae Spirulina capable of producing bioenergy.

(1) 바이오에너지 (1) bioenergy

태양광을 이용하여 광합성되는 유기물 및 유기물을 소비하여 생성되는 바이오매스(Biomass)는 에너지원으로 활용될 수 있다. 바이오매스는 재생이 가능하며 환경친화적인 대체에너지로서 고갈의 문제가 전혀 없다. 만일 식물(특히 곡물)을 원료로 사용하여 바이오에너지를 생산할 경우 식량 및 사료문제와 경합할 수 있는 상황이 발생할 수 있으나, 남조류나 녹조류를 사용할 경우 전혀 문제가 없다. 남조류 및 녹조류는 식물보다 값싼 원료이며 바이오에탄올, 바이오디젤, 바이오수소를 생산할 수 있는 천연자원이다.
Biomass generated by consuming organic matter and photosynthesis using sunlight can be utilized as an energy source. Biomass is a renewable and environmentally friendly alternative energy that has no problem of exhaustion. If bioenergy is produced using plants (especially grains) as raw materials, there may be a situation where there may be competition with food and feed problems, but there is no problem when using algae or green algae. Cyanobacteria and green algae are cheaper than plants and are a natural resource for bioethanol, biodiesel and biohydrogen.

전세계적으로 바이오에너지 생산에 관한 자원과 기술개발에 대한 관심이 고조되고 있다. 세계 바이오에탄올 생산량은 2000년 이후 연평균 20%대의 증가율을 보이고 있으며 브라질과 미국의 생산량이 전세계 생산량의 대부분을 차지하고 있다. 미국의 경우 2017년까지 휘발유 소비를 20% 줄이고 바이오에탄올 사용을 점차 확대하여 2030년까지 평균 5%의 성장률을 기대하고 있으며 (Energy Information Administration, 2007년), 브라질의 경우에도 전용생산 시설을 확대하고 있다. 교토의정서 이후 주요 선진국의 대체에너지 사용량 중에서 바이오에너지의 비율은 30-50%로 증가하고 있으며, EU시장의 경우 연간 50%의 증가세를 보이고 있다. 2005년 EU에서 생산된 바이오에너지는 391.4만 톤으로 2004년에 비해 65.8% 증가했으며, 2020년까지 바이오에너지가 차지하는 수송연료시장 점유율을 10%대로 확대할 계획이다. 일본의 경우 2005년 말 기준 바이오에탄올의 생산량은 30 ㎘/년, 그리고 바이오디젤은 400-5000 ㎘/년에 불과했으나 2030년까지 수송부문 석유의존도의 80%를 목표로 설정하고 있다.
There is a growing interest in the development of resources and technologies related to bioenergy production around the world. Global bioethanol production has been growing at an average annual rate of 20% since 2000, and Brazil and the United States account for most of the world production. In the US, we expect gasoline consumption to decrease by 20% by 20% and bioethanol use gradually by 2017, with an average growth rate of 5% by 2030 (Energy Information Administration, 2007). have. Since the Kyoto Protocol, the share of bioenergy among major advanced countries' alternative energy consumption has increased to 30-50%, and the EU market has shown an annual increase of 50%. In 2005, bioenergy produced in the EU was 391.4 million tons, an increase of 65.8% from 2004, and by 2020, the company plans to increase its share of the transportation fuel market to 10%. In Japan, the production of bioethanol was 30 kW / year at the end of 2005 and 400-5000 kW / year of biodiesel, but by 2030, 80% of the oil dependence on the transport sector is set.

국내의 경우 국내 대체에너지 사용량의 3.7% (2005년 기준)에 불과했으나 이후 지속적으로 증가하여 2030년까지 20%의 시장점유율을 예상하고 있다. 현재 바이오디젤이 국내 바이오연료 중 가장 주목을 받고 있는데, 생산업체로 등록한 기업은 현재 모두 16 개이며 연간 생산량이 40만 톤에 불과한 실정이다. 기존의 바이오디젤 생산기업은 대부분 중소기업이었으나 2007년에 SK 케미컬과 애경유화 등 대기업이 생산업체 허가 획득하여 참여하고 있기 때문에 향후 생산량이 확대될 것으로 기대된다. 현재 바이오에탄올의 보급전망은 불투명한데, 저장과 유통 인프라 구축비용 및 원료수입 문제로 연료용으로 사용된 실적이 없다. 따라서 향후 바이오에탄올 생산기술 확보와 보급이 절대적으로 필요하다. 국내 산업의 가장 큰 문제점은 바이오에너지 원료의 높은 해외 의존도이다. 현재 국내원료 공급이 거의 전무하여 국제 원료가격 급변화에 무방비 상태이다. 최근 전세계의 바이오에너지에 대한 관심증가로 식물성 오일 가격 급등하고 있으며, 유채류, 대두, 옥수수와 같은 일부 원료를 재배하더라도 토지, 임금, 노동력 부족으로 경제성이 전혀 없다. 따라서 바이오에너지 대체 원료의 개발이 매우 필요하다.
In Korea, the market accounted for only 3.7% of domestic alternative energy use (as of 2005). Currently, biodiesel is attracting the most attention among domestic biofuels. Currently, 16 companies are registered as producers, and the annual output is only 400,000 tons. Most of the existing biodiesel producers were small and medium-sized enterprises, but in 2007, large companies such as SK Chemicals and Aekyung Petrochemical are obtaining and participating in the producers. The current outlook for bioethanol is opaque, and there is no record of it being used for fuel due to storage and distribution infrastructure construction costs and raw material import issues. Therefore, it is absolutely necessary to secure and disseminate bioethanol production technology in the future. The biggest problem of the domestic industry is the high overseas dependence of bioenergy raw materials. At present, there is almost no domestic raw material supply, which is defenseless against sudden changes in international raw material prices. Recently, vegetable oil prices are soaring due to increasing interest in bioenergy around the world. Even if some raw materials such as rapeseed, soybean and corn are grown, there is no economic feasibility due to lack of land, wages and labor. Therefore, the development of bioenergy alternative raw materials is very necessary.

(2) 가격 (2) price

현재 수산양식된 미세조류 난노크로롭시스(nannochloropsis)의 도매가격은 1톤 당 18,000 (US)달러이고, 수산양식된 Chlorella Vulgaris 소매가격은 1톤 당 36,000 (US)달러이다. 상기와 같은 판매가는 남조 및 녹조류를 식량, 사료, 바이오에너지 원천으로 활용할 수 있기때문에 고가로 책정되고 있다. 따라서 산업체에서는 남조 및 녹조류를 생산하기 위한 경제적인 대량시스템 구축 경쟁이 심화되고 있다.
Currently, the wholesale price of aquaculture microalga Nannochloropsis is $ 18,000 (US) per tonne and the retail price of aquaculture Chlorella Vulgaris is $ 36,000 (US) per tonne. The selling price is set at a high price because it can be used as a source of food, feed, and bio-energy of southern algae and green algae. As a result, the competition for the establishment of economic mass system for producing algae and green algae is intensifying.

(3) 스피룰리나(3) spirulina

미국 NASA에서 우주인을 위한 이상적인 식량으로 제시한 바 있는 스피룰리나는 인체에 필요한 단백질(Protein), 비타민(Vitamins A-E), 불포화지방산(Polyunsaturated fatty acids), 다당류(Polysaccharides) 및 필수 미네랄 (Calcium, Iron, Sodium Magnesium, Zinc 등)을 풍부히 함유하고 있다. 스피룰리나는 광에너지를 생체 에너지로 전환하여 생존하는 단세포 생물로서 다양한 환경에 분포하며, 탄소를 흡수하여 고등식물보다 더 많은 산소 배출한다. 또한 동물사료로 활용시 가축 육질의 홍색화 및 가금류 난황의 황색화를 촉진시키는 천연색소 카로티노이드 함유하고 있으며, 기존 동물사료에 첨가되는 항생제, 성장촉진제 및 화학제의 오남용 방지할 수 있는 대체 천연성분도 함유하고 있다. 따라서 동물사료로 활용시 성장촉진, 성적 성숙 및 번식력을 증강시킬 수 있는 생균으로서 알려져 있다. 스피룰리나는 고체 및 액체배지에서 배양이 가능하나, 국내의 경우 대량배양 시설이 부족하고 생산 단가 등 경제성의 문제로 인해 현재 뉴질랜드, 미국 중국, 대만 등으로부터 전량 수입하고 있는 실정이다.
Spirulina, suggested by NASA as an ideal food for astronauts, contains proteins, vitamins (AE), polyunsaturated fatty acids, polysaccharides, and essential minerals (Calcium, Iron, Sodium). Magnesium, Zinc, etc.) are abundant. Spirulina is a living, single-celled organism that converts light energy into bioenergy and is distributed in a variety of environments, absorbing carbon and releasing more oxygen than higher plants. It also contains natural pigment carotenoids that promote redness of livestock meat and yellowing of poultry egg yolk when used as animal feed, and also contains alternative natural ingredients that can prevent misuse of antibiotics, growth promoters and chemicals added to existing animal feed. Doing. Therefore, when used as an animal feed is known as live bacteria that can enhance growth promotion, sexual maturity and fertility. Spirulina can be cultivated in solid and liquid media, but in Korea, it is currently imported from New Zealand, the US, China and Taiwan due to lack of mass culture facilities and economic problems such as production cost.

이에 본 발명자들은 바이오에너지를 효과적으로 생산할 수 있는 스피룰리나의 배지 조성물을 개발하던 중 사람의 노폐물이 경제적인 대량생산 배지로 활용할 가치가 있음을 알아내어 본 발명을 완성하였다.
Accordingly, the present inventors have completed the present invention by finding out that human waste is valuable as an economical mass production medium while developing a spirulina medium composition capable of effectively producing bioenergy.

상기와 같은 목적을 달성하기 위해서, 본 발명은 무기물질인 N, P, K가 풍부하게 함유되어 있는 사람의 생리 노폐물인 소변(human urine)을 이용하여 미세조류의 성장 및 함유 단백질, 지질, 탄수화물의 변화를 측정하고자 한다. 이를 통해 영양 재활용의 개념을 목적으로 미세조류 배양 및 바이오에너지 생산을 위한 경제적인 배지로서의 활용 가능성을 타진하고자 한다. 이하 본 발명의 해결 수단을 더 상세히 설명한다.
In order to achieve the above object, the present invention is the growth of microalgae and containing proteins, lipids, carbohydrates using urine (human urine), which is a physiological waste of humans rich in minerals N, P, K We want to measure the change in. Through this, we will explore the possibility of using as an economical medium for microalgae cultivation and bioenergy production for the purpose of nutrition recycling. Hereinafter, the solution of the present invention will be described in more detail.

이에 본 발명은 인간의 소변을 영양배지로 활용하여 스피룰리나를 배양한 후 수확하고 세포를 마쇄하여 바이오디젤의 원료인 지질 함량 및 바이오에탄올의 원료인 탄수화물 함량의 변화를 측정하였다.
Therefore, the present invention was used to cultivate spirulina using human urine as a nutrient medium, harvested and crushed cells to measure the change in lipid content as a raw material of biodiesel and carbohydrate content as a raw material of bioethanol.

본 과제에서는 1/200배로 희석한 소변을 배지로 이용하여 스피룰리나를 배양하고 바이오에너지의 원료인 총지질 함량 및 총탄수화물 함량을 생산하였다. 따라서 사람의 노폐물인 소변은 미세조류의 대량생산을 위한 경제적인 영양배지로 유용하게 사용될 수 있다. 이하 본 발명의 구체적 방법을 실시예를 들어 상세히 설명한다. 그러나 본 발명의 권리범위는 하기 실시예에 한정되는 것은 아니다.
In this project, spirulina was cultivated using 1 / 200-fold diluted urine as a medium, and total lipid content and total carbohydrate content, which are raw materials of bioenergy, were produced. Thus, urine, a waste product of humans, can be usefully used as an economic nutrition medium for mass production of microalgae. Hereinafter, the specific method of the present invention will be described in detail with reference to Examples. However, the scope of the present invention is not limited to the following examples.

소변배지의 농도, 배양온도 및 첨가물별 성장곡선Urine Medium Concentration, Culture Temperature and Additive Growth Curves

{실시예} {Example}

1. 합성배지와 스피룰리나 접종 및 배양1. Inoculation and culture of synthetic medium and spirulina

본 실험의 대조구인 표준(SOT)배지(일명: Zarrouk's Medium)의 조성은 하기와 같다. The composition of the control (SOT) medium (aka Zarrouk's Medium) of the experiment is as follows.

NaHCO3 18.0g, NaNO3 2.5g, K2HPO4 0.5g, K2SO4 1.0g, NaCl 1.0g, CaCl2 0.04g, Na2EDTA 0.08g, MgSO4 7H2O 0.2 g, FeSO4 7H2O 0.01g, 미량원소 (TE) 1.0 mL (pH 8.2, 1 mM NaOH로 적정)
NaHCO 3 18.0g, NaNO 3 2.5g, K 2 HPO 4 0.5g, K 2 SO 4 1.0g, NaCl 1.0g, CaCl 2 0.04g, Na 2 EDTA 0.08g, MgSO 4 7H 2 O 0.2 g, FeSO 4 7H 0.01 g 2 O, 1.0 mL of trace elements (TE) (pH 8.2, titrated with 1 mM NaOH)

상기에 포함된 TE (g/L)의 조성은 하기와 같다The composition of TE (g / L) contained above is as follows.

H3BO3 2.86, (NH4)6Mo7O24 0.02, MnCl2 4H2O 1.8, Cu2SO4 0.08, ZnSO4 7H2O 0.22
H 3 BO 3 2.86, (NH 4 ) 6 Mo 7 O 24 0.02, MnCl 2 4H 2 O 1.8, Cu 2 SO 4 0.08, ZnSO 4 7H 2 O 0.22

상기 표준배지에 스피룰리나를 접종한 농도는 0.05g/L-0.01g/200ml 였으며, 18 rpm으로 진탕배양하였다.
The standard medium was inoculated with spirulina at 0.05 g / L-0.01 g / 200 ml and shaken at 18 rpm.

상기 표준배지에서 배양온도(culture temperature)는 스피룰리나 성장 속도에 직접적 영향을 미치는데, 표준배지에서는 20℃부터 성장을 시작하고 37℃ 이상 고온에서는 세포가 사멸한다. 본 연구에서는 바이오매스, 단백질, 지질 및 탄수화물 농도에 영향을 미치는 온도를 결정하기 위해 30℃ 및 35℃에서 배양하였다.
In the standard medium, the culture temperature directly affects the spirulina growth rate. In the standard medium, the growth starts at 20 ° C., and at 37 ° C. or higher, the cells die. In this study, cultures were conducted at 30 ° C and 35 ° C to determine the temperature at which biomass, protein, lipid and carbohydrate concentrations were affected.

2. 바이오매스(Biomass) 측정2. Biomass Measurement

건물중(dry weight)은 Vonshak 등의 방법 (1982)을 이용하였다. 건물중 (g/L)의 OD 670 nm 값을 측정하여 standard curve를 작성한 후 각 처리 시료의 OD 값을 측정하여 비교하고 성장곡선을 결정하였다.
Dry weight was used by Vonshak et al. (1982). OD 670 nm of dry weight (g / L) was measured to make a standard curve, and then measured and compared the OD value of each treated sample and the growth curve was determined.

상기의 방법으로 표준배지의 pH 변화(8.0, 8.5, 9.0, 9.5, 10.0, 10.5. 11.0)에 따른 스피룰리나의 성장과 바이오매스의 변화를 측정한 실험결과는 다음과 같다. 배양온도 30°C의 경우 pH 8.5에서 최대 성장률을 보였으며 (건물중 635.3 mg), pH 8.0에서 건물중 590.2 mg으로 다음으로 높았다 (도1 및 표3). 대체로 pH가 강한 염기성일수록 성장률이 감소하였으며 pH 11에서는 세포가 사멸하였다.
Experimental results of measuring the growth of spirulina and the change of biomass according to the pH change of standard medium (8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0) are as follows. Incubation temperature of 30 ° C showed the maximum growth rate at pH 8.5 (635.3 mg in the building), the next highest value of 590.2 mg in dry matter at pH 8.0 (Fig. 1 and Table 3). In general, the stronger the pH, the lower the growth rate. At pH 11, the cells died.

배양온도 35°C의 경우에는 pH 8.0에서 최대 성장률을 보였으며 (건물중 445.3 mg), 다음으로 9.0 및 9.5의 순서였다 (도2 및 표4). 배양온도 30°C 보다 온도에 스트레스를 많이 받기 때문에 평균성장률은 감소하였고 pH 10.0 이상에서 세포가 사멸조짐을 보였다.
In the case of the culture temperature of 35 ° C. showed a maximum growth rate at pH 8.0 (445.3 mg in the building), followed by 9.0 and 9.5 (Fig. 2 and Table 4). The average growth rate decreased due to the stress higher than the incubation temperature of 30 ° C, and the cells were killed at pH above 10.0.

상기 표준배지에서 스피룰리나의 성장에 필요한 적정 광도(light intensity)를 결정하기 위하여 형광등 40 W를 1200-3000 lux 범주에서 12시간-명/ 12시간-암 사이클 검정한 결과 3000 lux에서 스피룰리나가 최대 성장을 보였다. 광조명이 너무 낮으면 photo-limitation, 너무 높으면 photo-inhibition을 보였다.
In order to determine the appropriate light intensity required for the growth of spirulina in the standard medium, a fluorescence 40W was tested in a 12-hour / 12-hour-cycle cycle in the 1200-3000 lux range and the maximum growth of spirulina was achieved at 3000 lux. Seemed. Too low light showed photo-limitation and too high photo-inhibition.

3. 노폐물 재활용 배지의 희석비율 및 성장3. Dilution Ratio and Growth of Waste Recycling Medium

성인의 24시간 소변을 수집하여 1/100, 1/150, 1/200 희석하여 배지로 활용하여 실험하였다. 실험 결과, 배양온도 30℃에서 소변 원액을 1/200로 희석한 배지에서 성장한 스피룰리나가 건물중 465.3 mg으로 가장 높은 성장률을 보였다 (도3 및 표5). 그러나 배양온도 30℃에서 소변 원액 1/100-1/50로 희석한 배지에서는 독성 때문에 세포가 성장하지 못하고 사멸하였다. 배양온도 30℃에서 소변에 VitB12를 첨가하면 오히려 성장률이 억제되었다. 배양온도 35℃에서 희석액 1/200과 VitB12를 첨가한 희석액 1/200은 약간 성장했으나 배양 후 9일에 세포가 사멸의 조짐이 보여 실험에 사용할 수 없었다 (도4 및 표5).
Urine was collected for 24 hours in adults to dilute 1/100, 1/150, 1/200 was used as a medium experiment. As a result, spirulina grown in medium diluted 1/200 of the urine stock at 30 ° C. showed the highest growth rate of 465.3 mg in dry matter (FIG. 3 and Table 5). However, in the medium diluted with 1 / 100-1 / 50 of the urine stock solution at the culture temperature of 30 ° C, cells did not grow and died due to toxicity. Growth rate was inhibited by adding VitB12 to urine at 30 ° C incubation temperature. The dilution 1/200 and the dilution 1/200 added with VitB12 were slightly grown at the culture temperature of 35 ° C., but the cells showed signs of death 9 days after the culture, and thus could not be used in the experiment (FIG. 4 and Table 5).

따라서 소변 원액을 1/200로 희석하는 것이 스피룰리나 성장에 가장 효과적인 희석 비율로 판명되었다. 상기의 결과를 비교하면 배양온도 30°C 및 표준배지(pH 8.5)에서 배양된 스피룰리나 건물중의 73.2% 수준으로 감소되었으나, 배양온도 35°C 및 표준배지(pH 8.0)의 건물중 보다는 4.5% 증가되었다. 표준배지(pH 8.5) 및 배양온도 30°C에서 배양한 스피룰리나에 비해 다소 성장률은 감소하였으나 경제성 측면에서 배지로서 활용가치가 입증되었다. Therefore, diluting the urine stock solution to 1/200 proved to be the most effective dilution rate for spirulina growth. Comparing the above results, it was reduced to 73.2% of spirulina cultivated at 30 ° C and standard medium (pH 8.5), but 4.5% higher than that of 35 ° C and standard medium (pH 8.0). Increased. The growth rate was slightly lower than that of spirulina grown at the standard medium (pH 8.5) and the culture temperature of 30 ° C.

4. 바이오매스 구성분 측정4. Determination of Biomass Components

① 총단백질(total protein) 함량은 Lowry 방법으로 측정하였다. 수확된 스피룰리나 시료 (10 mg/ml)를 분쇄한여 추출액 250 μl [Spirulina 5 μl (50 μg) + 145 μl 증류수]와 800 μl Reagent (A+B+C)를 반응시킨 후 실온에서 20분간 처리하였다. 상기 반응액에 100 μl Folin-Ciocalteau`s Phenol reagent 첨가하고 실온에서 1시간 처리한 후 흡광치 560 nm에서 분광광도계 (spectrophotometer)로 OD 값을 측정하였다.
① Total protein content was measured by Lowry method. Crushed harvested spirulina sample (10 mg / ml) was reacted with 250 μl [Spirulina 5 μl (50 μg) + 145 μl distilled water] and 800 μl Reagent (A + B + C) for 20 minutes at room temperature. It was. 100 μl Folin-Ciocalteau`s Phenol reagent was added to the reaction solution, and the resultant was treated at room temperature for 1 hour, and the OD value was measured at a light absorption value of 560 nm by using a spectrophotometer.

총단백질 함량 측정을 위한 반응시약 Reagent for determination of total protein content Reagent A: 2% Na2CO3/0.1N NaOH
B: 1g CuSO4·5H2O/100ml 증류수
C: 2g C4H4KNaO6·4H20/100ml 증류수
Reagent A: 2% Na 2 CO 3 /0.1N NaOH
B: 1g CuSO 4 5H 2 O / 100ml Distilled Water
C: 2g C 4 H 4 KNaO 6 4H 2 0 / 100ml distilled water
A (12.25 ml) +
B (125 μl) +
C (125 μl)
A (12.25 ml) +
B (125 μl) +
C (125 μl)
Folin-Ciocalteau`s Phenol reagent
Folin-Ciocalteau`s Phenol reagent
증류수와 희석 ( 1 : 1 )
Dilution with distilled water (1: 1)
Standard (0.1% BSA)
Standard (0.1% BSA)

상기 표준배지의 pH 변화(8.0, 8.5, 9.0, 9.5, 10.0, 10.5. 11.0)에 따른 스피룰리나의 총단백질의 변화를 측정한 실험결과는 다음과 같다. 배양온도 30℃의 경우 pH 8.0으로 적정한 표준배지에서 성장한 스피룰리나가 73.91%로 최대 단백질 함량을 보였다 (도5 및 표3). 성장률과 비슷하게 pH가 높을수록 단백질 함량은 감소하였다. 배양온도 35℃에서도 pH 8.0으로 적정한 표준배지에서 78.11%로 최대 단백질 함량을 보였고 (30℃보다 4.2%증가함), pH 9.5 (67.68%)에서도 30℃에서 보다 14.19% 증가하였다 (도5 및 표4).
Experimental results of measuring the change of total protein of spirulina according to the pH change of the standard medium (8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0) are as follows. At cultivation temperature 30 ℃ spirulina grown in a suitable standard medium at pH 8.0 showed a maximum protein content of 73.91% (Fig. 5 and Table 3). Similar to growth rate, the higher the pH, the lower the protein content. The maximum protein content was 78.11% in the standard medium titrated at pH 8.0 at 35 ° C (4.2% increase over 30 ° C) and 14.19% increase at 30 ° C even at pH 9.5 (67.68%) (Figure 5 and table). 4).

상기에 제시된 노폐물 재활용 배지의 실험 결과에서는 배양온도 30℃ 및 소변 희석액 1/150에서 성장한 스피룰리나가 61.91%(건물중 118.9 mg)로 최대 단백질함량을 보였다. 한편, 1/200 희석액에서는 52.66%, 1/200희석액+vitB12는 52.62%로 비슷하였다 (도6 및 표5).
Experimental results of the waste recycling medium presented above showed a maximum protein content of 61.91% (118.9 mg in the building) of spirulina grown at a culture temperature of 30 ° C. and a urine dilution 1/150. On the other hand, 52.66%, 1/200 diluent + vitB12 was 52.62% in 1/200 dilution (Fig. 6 and Table 5).

② 총지질(total lipid) 함량은 sulfo-phospho-vanillin 방법으로 측정하였다. 상기 방법을 간단히 묘사하면 다음과 같다. 수확된 스피룰리나(10 mg/ml)를 분쇄하고 추출액 200 μl [스피룰리나 100 μl (1 mg) + 100 ml 증류수]와 750 μl 유기용매(1:2, CHCl3: MeOH)를 혼합한 후 vortexing을 실시하였다. CHCl3 250 μl를 첨가하고 vortexing한 후 1,000 rpm에서 5분 원심분리하고 상등액을 새 튜브로 옮겨 건조시킨 후 500 μl 황산(concentrated) 을 첨가하고 vortexing을 실시하였다. 100℃에서 10분 간 가열한 튜브를 얼음에 냉각시킨 후 실온에 처리하였다. 100 μl 반응액을 새 튜브로 옮긴 후 900 μl phospho-vanillin 첨가하고 실온에서 30분간 휘저어 색이 형성되면 530 nm에서 흡광치를 측정하였다.
② Total lipid content was measured by sulfo-phospho-vanillin method. A brief description of the method follows. Pulverized harvested spirulina (10 mg / ml) was mixed with 200 μl [100 μl of spirulina (1 mg) + 100 ml distilled water] and 750 μl organic solvent (1: 2, CHCl 3 : MeOH) and then vortexed. It was. 250 μl of CHCl 3 was added, vortexed, centrifuged at 1,000 rpm for 5 minutes, the supernatant was transferred to a new tube, dried, and 500 μl of sulfuric acid (concentrated) was added and vortexed. The tube heated at 100 ° C. for 10 minutes was cooled on ice and then treated at room temperature. 100 μl of the reaction solution was transferred to a new tube, 900 μl of phospho-vanillin was added, and the resultant was stirred at room temperature for 30 minutes to form a color. The absorbance at 530 nm was measured.

상기의 방법으로 총지질 함량을 측정한 결과는 다음과 같다. The result of measuring the total lipid content by the above method is as follows.

배양 온도 30℃ 및 표준배지(pH 8.0)에서 성장한 스피룰리나의 총지질함량 9.51%가 최대지질함량으로 측정되었고 (도7 및 표3), 배양온도 35℃ 및 pH 9.5에서 7.71%로 가장 높은 지질함량을 보였다 (도7 및 표4). 따라서 배양온도 30℃ 및 표준배지(pH 8.0)가 지질함량을 증가시키는 가장 효율적인 배지로 판명되었다.
The total lipid content of spirulina grown at 30 ° C. and standard medium (pH 8.0) was measured as the maximum lipid content (Fig. 7 and Table 3). The highest lipid content was 7.71% at 35 ° C. and pH 9.5. (Figure 7 and Table 4). Therefore, the culture temperature of 30 ℃ and standard medium (pH 8.0) was found to be the most efficient medium to increase the lipid content.

상기에 제시된 노폐물 재활용 배지의 실험 결과에서는 배양온도 30℃에서 희석액 1/200에서 성장한 스피룰리나가 8.9%로 가장 많은 총지질함량을 보였다 (도8 및 표5). 이 측정치는 배양 온도 30℃ 및 표준배지(pH 8.0)에서 성장한 스피룰리나의 총지질함량보다 0.61% 감소하였으나, 배양온도 35℃ 및 표준배지(pH 9.5) 보다는 1.19% 증가하였다.
Experimental results of the waste recycling medium presented above showed the highest total lipid content, 8.9% of spirulina grown in dilution 1/200 at the incubation temperature of 30 ° C (Fig. 8 and Table 5). This measurement was 0.61% lower than the total lipid content of spirulina grown at 30 ° C. and standard medium (pH 8.0), but 1.19% higher than 35 ° C. and standard medium (pH 9.5).

③ 총탄수화물(total carbohydrate) 함량 측정은 Anthrone 방법 (Osborne and Voogt, 1978)으로 수행하였다. 상기 방법을 간단히 묘사하면 다음과 같다. 수확된 스피룰리나(10 mg/ml)를 분쇄하여 추출액 500 μl (spirulina 5 mg)와 2% sodium sulfate 200 μl를 혼합한 후 13,00 rpm에서 5분간 원심분리한다. 상등액(supernatant) 100 μl를 15 ml 튜브로 옮긴 후 Anthrone 용액 2 ml를 첨가하고 100℃에서 12분 가열하였다. 얼음에 처리후 흡광치 625 nm 측정하였다. ③ Total carbohydrate content was measured by Anthrone method (Osborne and Voogt, 1978). A brief description of the method follows. The harvested spirulina (10 mg / ml) was ground and mixed with 500 μl of extract (spirulina 5 mg) and 200 μl of 2% sodium sulfate, followed by centrifugation at 13,00 rpm for 5 minutes. 100 μl of the supernatant was transferred to a 15 ml tube, then 2 ml of Anthrone solution was added and heated at 100 ° C. for 12 minutes. After treatment with ice, the absorbance was measured at 625 nm.

총탄수화물 함량 측정을 위한 반응시약 Reagents for Determination of Total Carbohydrate Content % sodium sulfate% sodium sulfate
0.2 % Anthrone solution
0.2% Anthrone solution
12 mg Anthrone + 5 ml sulfuric acid + 1 ml 증류수
12 mg Anthrone + 5 ml sulfuric acid + 1 ml distilled water
Standard (0.1% glucose)
Standard (0.1% glucose)

상기의 방법으로 총탄수화물 함량을 측정한 결과는 다음과 같다. The result of measuring the total carbohydrate content by the above method is as follows.

배양 온도 30℃ 및 표준배지(pH 10.0)에서 성장한 스피룰리나가 가장 높은 탄수화물 함량(3.09%)을 함유했으나 (도9 및 표3), 배양 온도 35℃ 및 표준배지(pH 8.5)에서 보다 높은 탄수화물 함량(4.62%)을 함유한 것으로 측정되었다 (도9 및 표4). 따라서 표준배지의 경우 배양온도 35℃가 최적온도로 관찰되었다.
Spirulina grown at 30 ° C incubation temperature and standard medium (pH 10.0) contained the highest carbohydrate content (3.09%) (Figure 9 and Table 3), but higher carbohydrate content at culture temperature 35 ° C and standard medium (pH 8.5) (4.62%) was determined to contain (Figure 9 and Table 4). Therefore, in the case of standard medium, the culture temperature of 35 ℃ was observed as the optimum temperature.

상기에 제시된 노폐물 재활용 배지의 실험 결과에서는 배양온도 30℃에서 희석액 1/200에서 성장한 스피룰리나가 7.88%로 가장 높은 총탄수화물 함량을 보였다 (도10 및 표5). 이 측정치는 표준배지에서의 최대 함량보다도 1.7배 큰 값이다. 따라서 스피룰리나의 총탄수화물 함량을 증가시키는 최적의 배지는 사람의 소변을 1/200로 희석한 것이 효율적이다.
Experimental results of the waste recycling medium presented above showed the highest total carbohydrate content of 7.88% in spirulina grown in diluent 1/200 at 30 ° C. (FIG. 10 and Table 5). This measurement is 1.7 times larger than the maximum content in the standard medium. Therefore, the optimal medium for increasing the total carbohydrate content of spirulina is effective in diluting 1/200 human urine.

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

Figure pat00003
Figure pat00003

해당사항 없음None

Claims (2)

인간의 소변을 영양배지로 활용하여 미세조류를 배양하는 기술
Technology to cultivate microalgae using human urine as nutrient medium
제 1항에 있어서, 스피룰리나를 배양할 수 있는 소변의 희석배율 및 최적 배양온도













According to claim 1, Dilution ratio and optimal culture temperature of urine capable of culturing spirulina













KR1020100075116A 2010-08-04 2010-08-04 Development of low-cost media for mass culture of spirulina Ceased KR20100094965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100075116A KR20100094965A (en) 2010-08-04 2010-08-04 Development of low-cost media for mass culture of spirulina

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100075116A KR20100094965A (en) 2010-08-04 2010-08-04 Development of low-cost media for mass culture of spirulina

Publications (1)

Publication Number Publication Date
KR20100094965A true KR20100094965A (en) 2010-08-27

Family

ID=42758827

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100075116A Ceased KR20100094965A (en) 2010-08-04 2010-08-04 Development of low-cost media for mass culture of spirulina

Country Status (1)

Country Link
KR (1) KR20100094965A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101495640B1 (en) * 2014-09-29 2015-02-26 한국해양과학기술원 Novel leptolyngbya koreensis kiost-1 and a method of producing biomass using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101495640B1 (en) * 2014-09-29 2015-02-26 한국해양과학기술원 Novel leptolyngbya koreensis kiost-1 and a method of producing biomass using it

Similar Documents

Publication Publication Date Title
Ramaraj et al. Cultivation of green microalga, Chlorella vulgaris for biogas purification
Kong et al. Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture
JP6414904B2 (en) Process for the production of microalgae, cyanobacteria and their metabolites
CN102229889B (en) A strain of chlorella and its cultivation method and application
Borges et al. Spirulina sp. LEB-18 culture using effluent from the anaerobic digestion
US20150252391A1 (en) Method using microalgae for high-efficiency production of astaxanthin
Swain et al. Enhanced lipid production in Tetraselmis sp. by two stage process optimization using simulated dairy wastewater as feedstock
Patthawaro et al. Production of single cell protein from manure as animal feed by using photosynthetic bacteria
CN101705190A (en) Chlorella sorokiniana CS-01 and culture method thereof for producing grease
Rahman et al. Green biorefinery of fresh cattail for microalgal culture and ethanol production
Jiang et al. Filamentous cyanobacteria triples oil production in seawater-based medium supplemented with industrial waste: monosodium glutamate residue
CN103284029A (en) Selenium enriched rhodopseudomonas palustris preparation and preparation method thereof
Sukumaran et al. Potential of fresh POME as a growth medium in mass production of Arthrospira platensis
Agwa et al. Utilization of poultry waste for the cultivation of Chlorella sp. for biomass and lipid production
Sipaúba-Tavares et al. Growth of Haematococcus pluvialis Flotow in alternative media
Zhao et al. Effects of trophic modes, carbon sources, and salinity on the cell growth and lipid accumulation of tropic ocean oilgae strain Desmodesmus sp. WC08
Oliveira et al. Integrated use of microalgal biomass of Choricystis minor var. minor: a promising model for production of biodiesel and aquafeeds
Abdulsamad et al. Cost effective cultivation and biomass production of green microalga Desmodesmus subspicatus MB. 23 in NPK fertilizer medium
CN106554976B (en) Method for producing microalgae grease by using monoraphidium
Lim et al. Use of an extremophile red microalga (Galdieria sulphuraria) to produce phycocyanin from tangerine peel waste
CN103392933B (en) Full-balanced ultrafine pellet feed for stichopus japonicus larva
CN102911872B (en) Scenedesmus sp. strain and application thereof
Badar et al. Growth evaluation of microalgae isolated from palm oil mill effluent in synthetic media
Sipaúba-Tavares et al. Aquaculture biological waste as culture medium to cultivation of Ankistrodesmus gracilis (Reinsch) Korshikov
WO2012065545A1 (en) Microalgae culturing method for oil and lutein rapid accumulation

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20100804

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20120103

Patent event code: PE09021S01D

E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20120802

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20120103

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I