KR20100093835A - Resin composition producing insulating material of a high voltage direct current cable for power transmission - Google Patents

Resin composition producing insulating material of a high voltage direct current cable for power transmission Download PDF

Info

Publication number
KR20100093835A
KR20100093835A KR1020090012940A KR20090012940A KR20100093835A KR 20100093835 A KR20100093835 A KR 20100093835A KR 1020090012940 A KR1020090012940 A KR 1020090012940A KR 20090012940 A KR20090012940 A KR 20090012940A KR 20100093835 A KR20100093835 A KR 20100093835A
Authority
KR
South Korea
Prior art keywords
direct current
resin composition
power transmission
high voltage
transmission
Prior art date
Application number
KR1020090012940A
Other languages
Korean (ko)
Inventor
박영호
남진호
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Priority to KR1020090012940A priority Critical patent/KR20100093835A/en
Publication of KR20100093835A publication Critical patent/KR20100093835A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Abstract

PURPOSE: A resin composition for manufacturing an insulation body of a high voltage direct current cable for a power transmission is provided to perform a stable high-voltage DC transmission. CONSTITUTION: A resin composition for manufacturing an insulation body of a high voltage direct current cable for a power transmission contains the following: 100 parts of base resin by weight including 80~95wt% of low-density polyethylene, and 5~20wt% of linear low-density polyethylene; and 1~5 parts of conductive polymer with the energy bandgap less than 1.5eV. The conductive polymer is poly(3,4-ethylenedioxythiophene).

Description

고압 직류 송전 케이블의 절연체 제조용 수지 조성물{RESIN COMPOSITION PRODUCING INSULATING MATERIAL OF A HIGH VOLTAGE DIRECT CURRENT CABLE FOR POWER TRANSMISSION}RESIN COMPOSITION PRODUCING INSULATING MATERIAL OF A HIGH VOLTAGE DIRECT CURRENT CABLE FOR POWER TRANSMISSION}

본 발명은 고압 직류 송전 케이블의 절연체 제조용 수지 조성물에 관한 것으로서, 더욱 상세하게는 고압 케이블 내의 공간전하 축적을 저감시키면서 뇌전압파괴특성을 개선시키기 위한 조성을 갖는 고압 직류 송전 케이블의 절연체 제조용 수지 조성물에 관한 것이다.The present invention relates to a resin composition for preparing an insulator of a high voltage direct current transmission cable, and more particularly, to a resin composition for preparing an insulator for a high voltage direct current transmission cable having a composition for reducing the accumulation of space charge in the high voltage cable and improving the lightning voltage breakdown characteristics. will be.

전력이란 전압과 전류의 곱에 비례하기 때문에 전력을 송전할 때 전압을 높이면 전류가 적게 되어 전선비가 경감되며, 똑같은 굵기의 전선이면 보다 많은 전력을 보낼 수 있게 된다. 따라서, 대용량과 장거리 송전이 요망되는 대형 전력계통에서는 전력손실의 감소, 건설용지 문제, 송전용량의 증대 등의 면에서 볼 때 송전전압을 높이는 고압송전이 필수적이라고 할 수 있다.Since power is proportional to the product of voltage and current, increasing the voltage at the time of power transmission reduces the current and reduces the wire ratio, and the wire of the same thickness can send more power. Therefore, in the large power system where large-capacity and long-distance transmission is desired, high-voltage transmission to increase the transmission voltage is essential in view of reduction of power loss, construction site problem, and increase of transmission capacity.

이렇게 고압의 전압으로 송전하기 위해서는 고압에 충분히 견딜 수 있는 송전선로나 변압기, 차단기 등의 연결기기에 대한 절연 기술이 필요하며, 코로나 잡음이나, 전파장애, 통신유도장애 등의 문제점도 제기되고 있으나 이들에 대한 보완 기술이 지속적으로 개발되고 있어서 이들에 대한 문제점도 점차 해결되고 있다.In order to transmit at high voltage, insulation technology for transmission equipment, transformer, and circuit breaker that can withstand high voltage is required. Also, problems such as corona noise, radio wave interference, and communication induction disturbance have been raised. As complementary technologies are being developed continuously, problems with them are gradually solved.

송전 방식에는 교류송전방식과 직류송전방식이 있다. 교류송전방식은 변압기를 사용해 쉽게 전압을 바꿀 수 있어 많이 쓰인다. 단상2선식, 단상3선식, 삼상3선식, 삼상4선식이 있다. 낮은 전압의 배전선에는 단상3선식을 주로 사용하고, 말단의 부하가 작은 부분에는 단상2선식을 사용한다. 또 대규모 수용가에는 삼상4선식이 좋고, 송전선에는 대용량의 전력을 효율적으로 보낼 수 있는 삼상3선식을 사용한다. 전기가 실용화된 초기에는 직류를 주로 사용했으나, 전압을 쉽게 높이고 낮출 수 있는 3상교류가 실용화됨에 따라 발전, 송전, 배전은 대부분 교류로 이루어지고 있다. There are two types of power transmission methods, an AC transmission method and a DC transmission method. AC power transmission method is used because it is easy to change the voltage using a transformer. Single phase 2-wire, single phase 3-wire, three phase 3-wire and three phase 4-wire are available. Single-phase three-wire type is mainly used for low voltage distribution lines, and single-phase two-wire type is used for parts with a small load at the end. Three-phase four-wire type is good for large-scale customers, and three-phase three-wire type can be efficiently used for transmission lines. In the early days when electricity was used, direct current was mainly used. However, as three-phase exchange, which can easily increase and decrease voltage, is used, power generation, transmission, and distribution are mostly made of alternating current.

직류송전방식은, 직류전압이나 전류로 전기 에너지를 보내는 것을 말한다. 원리는 먼저 송전 쪽의 교류전력을 적당한 전압으로 바꾸고 순변환장치로 직류로 변환한 뒤 송전선로를 통해 수전 쪽으로 보내면, 수전 쪽에서는 역변환장치로 직류전력을 다시 교류전력으로 변환하는 방식이다. 이 방식은 대용량의 전력을 장거리 수송하는 데 좋고 비동기 전력계통의 상호 연계가 가능하다는 장점이 있으나 변압이 어려운 탓에 이제까지는 주로 전압을 자유롭게 바꿀 수 있는 교류를 사용해왔다. 그러나 최근 들어 변환장치인 사이리스터의 성능이 향상됨에 따라 직류고전압을 얻을 수 있게 되었고, 또 장거리 송전이나 케이블 송전에는 직류가 교류보다 전력 손실이 적고 안정도가 높아 많이 이용되고 있다.The direct current transmission method refers to the transmission of electrical energy by direct current voltage or current. The principle is to convert the AC power on the transmission side to the appropriate voltage, convert it to direct current with the forward converter, and then send it to the faucet through the transmission line. On the receiving side, the DC power is converted back into AC power by the reverse converter. This method has the advantage of being able to transport large amounts of power over a long distance and to interconnect the asynchronous power system, but due to the difficulty in transforming, it has mainly used alternating current to change the voltage freely. However, in recent years, as the performance of the thyristors, which are converters, has been improved, DC high voltages have been obtained. In addition, DC has been widely used for long distance transmission or cable transmission because DC has less power loss and higher stability than AC.

즉, 직류 송전은 교류에 비교하여 장거리, 대용량 송전에 있어서, 절연체의 유전 손실이 없고, 충전 전류에 대한 무효분을 보상하기 위한 설비가 불필요하다. 또한 직류 송전은, 절연체의 절연 내압을 높고 안정하게 운전할 수 있는 등의 여러 가지 특징을 가지고 있다. 현재 직류 송전을 위한 고전압 직류 케이블은 절연유와 종이로 절연된 OF(Oil Filled) 케이블이 사용되고 있지만, 급유 설비 등의 유지 관리가 필요한 단점이 있다. 한편, 교류 송전용으로는 유지관리가 불필요한 가교 폴리에틸렌 케이블이 OF 케이블이나 MI(Mass Impregnated) 케이블에 비해 그 성능이 대등한 정도에 이를 정도로 관련 기술이 발전하고 있다.In other words, in the case of direct current transmission, there is no dielectric loss of the insulator in long distance and large capacity transmission compared with alternating current, and no facility for compensating for the invalidity to the charging current is unnecessary. Moreover, DC power transmission has various characteristics, such as being able to operate stably the insulation breakdown voltage of an insulator. Currently, high voltage DC cables for DC power transmission use an oil (OIL Filled) cable insulated with insulating oil and paper, but there is a disadvantage in that maintenance of oil supply facilities is required. On the other hand, related technologies have been developed such that crosslinked polyethylene cables, which require no maintenance for AC transmission, are comparable in performance to OF cables or MI (Mass Impregnated) cables.

추가 유지관리가 불필요하다는 장점으로 인해, 교류 송전용으로 이용되고 있는 가교 폴리에틸렌을 고압 직류 송전 케이블에 적용하는 시도가 이루어지고 있다. 그러나, 이는 고압 직류 송전 케이블로 이용하여 송전이 진행되면 케이블을 감싸고 있는 절연체의 온도가 상승할 때나 부극성 임펄스나 극성 반전이 이루어진 경우에그 절연 특성이 현저하게 저하되는 현상을 보이는 문제점이 발생되고 있다. 이는 무극성의 폴리에텔렌 또는 가교 폴리에텔렌 내에 일단의 전하가 포획되거나 방전되지 않으면서도 수명이 긴 공간 전하가 축적되기 때문인 것으로 알려져 있다. 따라서, 이러한 공간 전하의 증가 현상을 방지하기 위한 연구가 이루어지고 있다.Due to the advantage that no additional maintenance is required, attempts have been made to apply crosslinked polyethylene, which is used for alternating current transmission, to high pressure direct current transmission cables. However, when the power transmission is progressed by using a high-voltage DC power transmission cable, when the temperature of the insulator surrounding the cable rises, or when the negative impulse or polarity inversion is made, the problem that the insulation characteristic is significantly reduced occurs have. This is known to be due to the accumulation of long-lived space charges in a non-polar polyetherene or crosslinked polyethylene, without a single charge being trapped or discharged. Therefore, research has been made to prevent such an increase in space charge.

본 발명은, 전술한 바와 같은 문제점이 상존하는 가운데서 문제해결을 위한 다각적인 노력과 연구의 기술적 배경하에서, 그 결실로서 안출된 것이다.The present invention has been devised as a fruit under the technical background of various efforts and studies for solving the problems while the problems described above exist.

본 발명이 해결하고자 하는 과제는, 고압 직류 송전용 케이블 내에서 공간 전하 축적에 따른 문제를 해결하는 것이며, 상기와 같은 케이블 내의 공간 전하의 감소를 위해 전도성 고분자를 재료 조성물에 첨가하여 이루어진 고압 직류 송전 케이블의 절연체 제조용 수지 조성물을 제공함에 본 발명의 목적이 있다.The problem to be solved by the present invention is to solve the problem caused by the accumulation of space charge in the cable for high voltage direct current transmission, high pressure direct current power transmission made by adding a conductive polymer to the material composition to reduce the space charge in the cable as described above An object of the present invention is to provide a resin composition for insulator production of a cable.

본 발명의 과제 해결 수단으로 제공되는 고압 직류 송전 케이블의 절연체 제조용 수지 조성물은, 비중이 0.92g/㎤ 이하인 저밀도폴리에틸렌 80 내지 95 중량%와 비중이 0.91 내지 0.94g/㎤인 선형저밀도폴리에틸렌 5 내지 20 중량%가 혼합된 기본수지; 및 상기 기본수지 100 중량부에 대해, 1 내지 5 중량부의 전도성 고분자;를 포함하는 특징으로 한다.The resin composition for preparing an insulator of a high-voltage direct current transmission cable provided as a means for solving the problems of the present invention is 80 to 95% by weight of low density polyethylene having a specific gravity of 0.92 g / cm 3 or less and linear low density polyethylene having a specific gravity of 0.91 to 0.94 g / cm 3 to 20 Basic resin mixed with weight%; And 1 to 5 parts by weight of the conductive polymer, based on 100 parts by weight of the base resin.

이때, 상기 전도성 고분자로는, 폴리(3,4-에틸렌디옥시티오펜)이 사용되면 바람직하다. 한편, 상기 폴리(3,4-에틸렌디옥시티오펜)은 PEDOT이라 약하여 표현하기도 한다.At this time, it is preferable that poly (3,4-ethylenedioxythiophene) be used as the conductive polymer. Meanwhile, the poly (3,4-ethylenedioxythiophene) may be weakly expressed as PEDOT.

본 발명에 따르면, 고압 직류 송전 케이블 내의 공간전하 축적을 탁월하게 저하시키며 내전압특성을 개선하여, 고압 직류 송전을 안정적으로 수행할 수 있도록 한다.According to the present invention, the space charge accumulation in the high voltage direct current transmission cable is excellently reduced and the withstand voltage characteristics are improved, so that the high pressure direct current transmission is stably performed.

이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 설명하고, 발명에 대한 이해를 돕기 위해 첨부도면을 참조하여 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않아야 한다. 본 발명의 실시예들은 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to examples, and detailed description will be made with reference to the accompanying drawings in order to help understanding of the present invention. However, embodiments according to the present invention can be modified in many different forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. Embodiments of the present invention are provided to more fully describe the present invention to those skilled in the art.

본 발명은 절연 수지 조성물 내에 전도성 고분자를 분산시켜 공간 전하의 축적을 저감시키는 데 기술적 특징이 있다.The present invention has a technical feature in reducing the accumulation of space charge by dispersing the conductive polymer in the insulating resin composition.

종래의 고압 직류 송전 케이블은, 중심 도체, 상기 중심 도체를 감싸는 내부 반도전층, 상기 내부 반도전층을 감싸는 절연체층, 상기 절연체층을 감싸는 외부 반도전층, 상기 외부 반도전층을 감싸는 차폐층, 및 상기 차폐층을 감싸는 방식층으로 이루어져 있다.Conventional high voltage direct current transmission cable, the center conductor, the inner semiconducting layer surrounding the center conductor, the insulator layer surrounding the inner semiconducting layer, the outer semiconducting layer surrounding the insulator layer, the shielding layer surrounding the outer semiconducting layer, and the shielding It consists of an anticorrosive layer surrounding the layer.

본 발명의 과제 해결 수단으로 제공되는 고압 직류 송전 케이블의 절연체 제조용 수지 조성물은, 비중이 0.92g/㎤ 이하인 저밀도폴리에틸렌 80 내지 95 중량%와 비중이 0.91 내지 0.94g/㎤인 선형저밀도폴리에틸렌 5 내지 20 중량%가 혼합된 기본수지; 및 상기 기본수지 100 중량부에 대해, 1 내지 5 중량부의 에너지 금지대 폭이 1.5eV 이하인 전도성 고분자;를 포함하는 특징으로 한다.The resin composition for preparing an insulator of a high-voltage direct current transmission cable provided as a means for solving the problems of the present invention is 80 to 95% by weight of low density polyethylene having a specific gravity of 0.92 g / cm 3 or less and linear low density polyethylene having a specific gravity of 0.91 to 0.94 g / cm 3 to 20 Basic resin mixed with weight%; And 1 to 5 parts by weight of the energy inhibiting band width of 1.5 eV or less based on 100 parts by weight of the basic resin.

상기 기본수지 내의 선형저밀도폴리에틸렌 함량에 대한 수치범위와 관련하여, 이를 벗어나는 경우에는 내전압특성이 저하되어 바람직하지 못하다.With regard to the numerical range for the linear low density polyethylene content in the base resin, if it is out of this range, the breakdown voltage characteristic is lowered, which is not preferable.

상기 전도성 고분자의 함량에 대한 수치범위와 관련하여, 전도성 고분자를 첨가하지 않거나 그 하한에 미달하는 경우 이종의 공간전하가 많이 축적되거나, 균일한 분산성을 확보하기 어려워서 낮은 내전압 특성을 나타내어 바람직하지 못하며, 그 상한을 초과하면 공간전하 축적은 개선되나 과도한 함량으로 인해 부분적인 응집성 등의 분산성 문제로 체적저항 감소 및 낮은 내전압 특성을 보여주어 바람직 하지 못하다.Regarding the numerical range of the content of the conductive polymer, when the conductive polymer is not added or falls below the lower limit, a large amount of heterogeneous space charges are accumulated or it is difficult to ensure uniform dispersibility, which is not preferable because it exhibits low withstand voltage characteristics. However, if the upper limit is exceeded, the space charge accumulation is improved, but due to the excessive content, dispersibility problems such as partial cohesiveness may cause undesirable volume resistance and low withstand voltage characteristics.

이때, 상기 에너지 금지대 폭의 수치 조건을 만족하는 전도성 고분자로 PEDOT이 선택되어 이용되면 바람직하다. 종래의 전도성 고분자 폴리피롤이나 폴리티오펜의 경우에는 그 에너지 금지대 폭이 각각 2.5eV, 2.0eV로서 본 발명에서와 같은 DC 내전압 특성이 충분하게 발현되지 않아 바람직하지 못하다.In this case, PEDOT is preferably selected and used as a conductive polymer that satisfies the numerical condition of the energy ban band width. In the case of the conventional conductive polymer polypyrrole or polythiophene, the energy inhibiting band width is 2.5 eV and 2.0 eV, respectively, which is not preferable because the DC withstand voltage characteristics as in the present invention are not sufficiently expressed.

하기 표 1과 같이 구분설정된 실시예들(1~3)과 비교예들(1~5)의 조성을 갖는 수지 조성물을 이용하여, 180℃, 30분의 조건으로 열프레스에 의해 만들어진 시트로부터 시험 시편을 준비한 후, 공간전하량, DC내전압, 체적저항 등의 물성을 측정하여 하기 표 2에 나타내었다.By using the resin composition having the composition of Examples (1 to 3) and Comparative Examples (1 to 5) divided as shown in Table 1 below, the test specimen from the sheet made by hot pressing at 180 ℃, 30 minutes After the preparation, the physical properties such as the space charge amount, DC withstand voltage, volume resistance, etc. were measured and shown in Table 2 below.

구분
division
실시예(1~3)Example (1-3) 비교예(1~5)Comparative example (1-5)
1One 22 33 1One 22 33 44 55 LDPELDPE 9595 9090 8080 9090 9090 100100 7070 9090 LLDPELLDPE 55 1010 2020 1010 1010 -- 3030 1010 PEDOTPEDOT 2.52.5 2.52.5 2.52.5 -- 1010 2.52.5 2.52.5 -- 폴리피롤Polypyrrole -- -- -- -- -- -- -- 2.52.5 가교제Crosslinking agent 22 22 22 22 22 22 22 22

상기 표 1에서, LDPE는 저밀도폴리에틸렌을 나타내며, LLDPE는 선형저밀도폴리에틸렌을 나타내고, PEDOT는 폴리(3,4-에틸렌디옥시티오펜)을 나타내며, 가교제로는 2,5-디메틸-2,5디(터어셔리-부틸퍼옥시)-헥산이 상기 LDPE와 LLDPE로 혼합되어 이루어진 기본수지 100 중량부에 대비하여, 2 중량부의 함량으로 사용되었다. 상기 PEDOT은 전도성 고분자 성분으로 사용되었으며, 비교예 5는 실시예 2와 대비하여, PEDOT 대신 에너지 금지대 폭이 더 큰 폴리피롤이 사용되었다.In Table 1, LDPE represents low density polyethylene, LLDPE represents linear low density polyethylene, PEDOT represents poly (3,4-ethylenedioxythiophene), and 2,5-dimethyl-2,5 di ( Tertiary-butylperoxy) -hexane was used in an amount of 2 parts by weight relative to 100 parts by weight of the base resin formed by mixing the LDPE and LLDPE. The PEDOT was used as a conductive polymer component, and Comparative Example 5 used a polypyrrole having a larger energy restriction band in place of PEDOT in comparison with Example 2.

구분division 실시예(1~3)Example (1-3) 비교예(1~5)Comparative example (1-5) 1One 22 33 1One 22 33 44 55 공간저하량Space reduction 동++Dong ++ 동++Dong ++ 동++Dong ++ 이++++This ++++ 동+++Dong +++ 동++Dong ++ 동++Dong ++ 동++Dong ++ DC내전압(kV/㎜)DC breakdown voltage (kV / mm) 158158 160160 158158 130130 140140 138138 139139 150150 체적저항(Ω㎝)Volume resistance (Ω㎝) 1016 10 16 1016 10 16 1016 10 16 1015 10 15 1014 10 14 1016 10 16 1016 10 16 1016 10 16

상기 표 2에서, 공간전하량은 1㎜ 시트(sheet)에 40kV/㎜를 인가하기 전후에 펄스 정전 응력법(Pulsed Electro-Acoustic Method)에 의하여 측정하였으며, 축적 전하량의 양은 +의 수로 나타내었다.구체적으로 살펴보면, 상기 표 2의 공간전하량 항목에서 표기된 '동++' 또는 '동+++'에서 '동'은 전극의 극성과 동일한 동종전하(Homocharge) 주입으로 전하가 발생되었음을 나타내며, '+'의 갯수로서 축적 전하의 상대적인 양을 나타낸다. 따라서, '동++'과 '동+++'는 '동+'에 비하여 그 전하의 속성은 동일하지만 축적된 전하량이 각각 2배와 3배에 달함을 나타내고 있다. 한편, 공간전하 항목에서 '이+++'로 표기된 '이'의 의미는 전극의 극성과 반대 극성을 갖는 이종전하(Heterocharge)가 축적되었음을 나타낸다. 이는 불순물에 의해 전하 축적이 이루어졌음을 나타낸다. DC 내전압 특성은, 0.1㎜ 시트를 이용하여 90℃에서의 절연파괴시의 전압으로 측정하였다.체적저항은, 1㎜시트를 ASTM D 257 규격에 따라 측정하였다.In Table 2, the space charge amount was measured by a pulsed electro-acoustic method before and after applying 40kV / mm to a 1mm sheet, and the amount of accumulated charge was expressed as a number of +. Looking at, 'dong ++' or 'dong +++' denoted in the space charge amount item of Table 2 indicates that the charge was generated by the injection of homogenous charge (Homocharge) having the same polarity of the electrode, '+' It is the number of times, indicating the relative amount of accumulated charge. Thus, 'dong ++' and 'dong +++' indicate that the charge property is the same as that of 'dong +', but the accumulated charge amount is two and three times, respectively. On the other hand, the meaning of 'yi', denoted by '+ + +' in the space charge category, indicates that heterocharges having polarities opposite to those of the electrodes have been accumulated. This indicates that charge accumulation was caused by impurities. The DC withstand voltage characteristic was measured by the voltage at the time of insulation breakdown at 90 degreeC using a 0.1-mm sheet. The volume resistance measured the 1-mm sheet according to ASTMD257 standard.

상기 표 2에 나타난 결과로부터, 실시예들의 경우에는 축적된 공간 전하량이 비교예들에 비해 작거나 같은 수준에 불과함을 알 수 있으며, 특히 비교예 1, 2에 비하면 축적된 공간전하량이 2/3에 불과함을 알 수 있다. 모든 실시예들에서 절연체 내부에 외부 불순물이 존재하더라도 소량의 동종전하가 형성되며 내전압특성이 개선됨으로써 직류 송전 케이블의 안정성이 유지됨을 알수 있다. From the results shown in Table 2, in the case of the embodiment it can be seen that the amount of accumulated space charge is only the same or smaller than the comparative examples, in particular compared to Comparative Examples 1 and 2, the amount of accumulated space charge 2 / It can be seen that only three. In all embodiments, even if external impurities are present in the insulator, a small amount of homogeneous charge is formed and the withstand voltage characteristics are improved, and thus the stability of the DC power transmission cable is maintained.

이상에서 설명된 본 발명의 최적 실시예들이 개시되었다. 여기서 특정한 용어들이 사용되었으나, 이는 단지 당업자에게 본 발명을 상세히 설명하기 위한 목적에서 사용된 것이지 의미한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위해 사용된 것이 아니다.Optimal embodiments of the present invention described above have been disclosed. Although specific terms have been used herein, they are used only for the purpose of describing the present invention in detail to those skilled in the art and are not intended to limit the scope of the present invention as defined in the claims or the claims.

Claims (2)

비중이 0.92g/㎤ 이하인 저밀도폴리에틸렌 80 내지 95 중량%와 비중이 0.91 내지 0.94g/㎤인 선형저밀도폴리에틸렌 5 내지 20 중량%가 혼합된 기본수지; 및A basic resin in which 80 to 95 wt% of low density polyethylene having a specific gravity of 0.92 g / cm 3 or less and 5 to 20 wt% of linear low density polyethylene having a specific gravity of 0.91 to 0.94 g / cm 3 are mixed; And 상기 기본수지 100 중량부에 대해, 1 내지 5 중량부의 에너지 금지대폭이 1.5eV 이하인 전도성 고분자;를 포함하는 특징으로 하는 고압 직류 송전 케이블의 절연체 제조용 수지 조성물.1 to 5 parts by weight of the conductive polymer having an energy inhibiting band width of 1.5 eV or less with respect to 100 parts by weight of the basic resin; resin composition for manufacturing an insulator of a high-voltage direct-current transmission cable. 제1항에 있어서, The method of claim 1, 상기 전도성 고분자는, PEDOT 인것을 특징으로 하는 고압 송전 케이블의 절연체 제조용 수지 조성물.The conductive polymer is a resin composition for insulator production of a high-voltage power transmission cable, characterized in that the PEDOT.
KR1020090012940A 2009-02-17 2009-02-17 Resin composition producing insulating material of a high voltage direct current cable for power transmission KR20100093835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090012940A KR20100093835A (en) 2009-02-17 2009-02-17 Resin composition producing insulating material of a high voltage direct current cable for power transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090012940A KR20100093835A (en) 2009-02-17 2009-02-17 Resin composition producing insulating material of a high voltage direct current cable for power transmission

Publications (1)

Publication Number Publication Date
KR20100093835A true KR20100093835A (en) 2010-08-26

Family

ID=42758093

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090012940A KR20100093835A (en) 2009-02-17 2009-02-17 Resin composition producing insulating material of a high voltage direct current cable for power transmission

Country Status (1)

Country Link
KR (1) KR20100093835A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150124779A (en) * 2014-04-29 2015-11-06 롯데케미칼 주식회사 Semi-conductive Nano Compound Blend and Components for Power Cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150124779A (en) * 2014-04-29 2015-11-06 롯데케미칼 주식회사 Semi-conductive Nano Compound Blend and Components for Power Cable

Similar Documents

Publication Publication Date Title
KR101355572B1 (en) Extra high voltage cable
CN102290155B (en) Design method for insulation thickness of high-voltage cross-linked polyethylene direct current (DC) cable
US20160322129A1 (en) Electrical HV Transmission Power Cable
KR101409032B1 (en) Semicoductive Resin Composition for High Voltage Direct Current Power Cable Having Space Charge Accumulation Suppression
CN103980599A (en) Semiconductive shielding material for high-voltage direct-current cables and preparation method thereof
Zhou et al. Recyclable insulation material for HVDC cables in global energy interconnection
ATE277408T1 (en) INSULATION COMPOSITION FOR ELECTRICAL POWER CABLE
CN102957154A (en) Low-voltage reactive compensation control method
AU760355B2 (en) An electric dc-cable with an insulation system comprising an extruded polyethylene composition and a method for manufacturing such cable
Zhang et al. Non‐linear electrical conductivity of ethylene‐propylene‐diene monomer‐based composite dielectrics by tuning inorganic fillers
KR20100093835A (en) Resin composition producing insulating material of a high voltage direct current cable for power transmission
CN114835978B (en) Composite material of special insulated cable
CN106397916A (en) 110 DEG C self-limiting temperature electric tracing band
KR20110138958A (en) Insulation material composition for dc power cable and the dc power cable using the same
CN115403853B (en) Composite material for shielding direct-current/alternating-current high-voltage cable and preparation method thereof
CN201508707U (en) Control cable used for photovoltaic power station by sea
JPH05266723A (en) Dc power cable
CN111524640A (en) Insulated overhead cable
FI3033390T3 (en) Thermoplastic blend formulations for cable insulations
Chengyan et al. Cable Systems for HVDC Power Transmission
CN201413725Y (en) 110kv crosslinked polyethylene insulated power cable and below
CN112225969B (en) Direct-current cable insulating material and preparation method thereof
Duan Kabelové systémy pro vysokonapěťový stejnosměrný přenos
CN201298386Y (en) High temperature resistant anticorrosion frequency conversion cable
Wang et al. Simulation of Electrical Stresses on DC Cable system in a±800 kV LCC-UHVDC Transmission System

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination