KR20100085736A - Crystalline silicon photovoltaic device and thereof manufacturing method - Google Patents

Crystalline silicon photovoltaic device and thereof manufacturing method Download PDF

Info

Publication number
KR20100085736A
KR20100085736A KR1020090005178A KR20090005178A KR20100085736A KR 20100085736 A KR20100085736 A KR 20100085736A KR 1020090005178 A KR1020090005178 A KR 1020090005178A KR 20090005178 A KR20090005178 A KR 20090005178A KR 20100085736 A KR20100085736 A KR 20100085736A
Authority
KR
South Korea
Prior art keywords
solar cell
light
crystalline silicon
manufacturing
laser
Prior art date
Application number
KR1020090005178A
Other languages
Korean (ko)
Inventor
조은철
이원재
오훈
임종근
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to KR1020090005178A priority Critical patent/KR20100085736A/en
Publication of KR20100085736A publication Critical patent/KR20100085736A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: A crystalline silicon solar cell and a manufacturing method thereof are provided to increase the photoelectronic conversion efficiency by protecting a rear reflection structure with a protection layer to prevent the recombination of charges. CONSTITUTION: A protection layer(11) is formed on the front of a solar cell and is formed with an uneven shape to absorb all the regions of light. A BSF(13) and a rear reflective structure are formed on the rear of the solar cell and increase the photoelectronic conversion efficiency of the light formed on the front by reflecting the light of an infrared region.

Description

결정질 실리콘 태양전지 및 이의 제조방법{Crystalline silicon photovoltaic device and thereof manufacturing method}Crystalline silicon photovoltaic cell and manufacturing method thereof

본 발명은 결정질 실리콘 태양전지 및 이의 제조방법에 관한 것으로서, 특히 웨이퍼의 전면에 인을 도포하여 건조한 후 레이저를 이용하여 도포된 인을 선택적으로 확산시키는 Front laser dope 공정과; 웨이퍼의 후면에 붕소(boron)를 도포하여 건조한 후 레이저를 이용하여 도포된 붕소를 선택적으로 확산시키는 Rear laser dope 공정을 포함하여 구성하므로서, 태양전지의 전면에서는 빛의 모든 영역을 흡수하는 요철을 형성하고, 태양전지의 후면에서는 적외선 영역의 빛을 반사하여 전면에서 흡수된 빛의 광전변환효율을 높일 수 있도록 하며, 태양전지의 제조시간을 현저히 단축시킬 수 있도록 한 결정질 태양전지 및 이의 제조방법에 관한 것이다.The present invention relates to a crystalline silicon solar cell and a method for manufacturing the same, and in particular, a front laser dope process for selectively spreading the coated phosphorus using a laser after applying the phosphor on the front surface of the wafer and dried; It includes a rear laser dope process that selectively spreads boron by applying boron on the back of the wafer, and then dryes it, thereby forming irregularities on the front of the solar cell to absorb all areas of light. In addition, the rear surface of the solar cell reflects the light in the infrared region to increase the photoelectric conversion efficiency of the light absorbed from the front surface, and a crystalline solar cell and a method for manufacturing the same that can significantly shorten the manufacturing time of the solar cell will be.

호주 UNSW에서 개발된 단결정 실리콘 태양전지(PERL 태양전지)는 상당히 높은 효율을 보이는 것으로 알려지고 있으며, 그 PERL 태양전지를 도 1에 도시하였다.The monocrystalline silicon solar cell (PERL solar cell) developed by UNSW in Australia is known to show a very high efficiency, the PERL solar cell is shown in FIG.

도 1에 도시된 PERL 태양전지는 25%의 높은 변환효율을 보이며, 이러한 PERL 태양전지의 특징은 웨이퍼(1)의 전면에 인(Phosphorus)을 약하게 확산시킨 도핑 층(2)(emitter - 면저항 100ohm/sq 이상)을 형성하여 태양전지의 자외선-청색영역의 광응답 특성이 증대되도록 하였으며, 도핑된 실리콘 도핑층(2)과 금속전극의 접촉저항을 낮추기 위하여 도핑층(2)의 전면에 금속전극(3)이 형성되는 에미터(emitter)영역을 인으로 강하게 추가 도핑하여 접촉저항을 낮춰줌으로써 태양전지의 광변환효율을 증가시켰다.The PERL solar cell shown in FIG. 1 exhibits a high conversion efficiency of 25%, and the characteristic of such a PERL solar cell is a doping layer 2 (emitter-sheet resistance 100 ohm) in which phosphorus (Phosphorus) is weakly diffused on the front surface of the wafer 1. / sq or more) to increase the photoresponsiveness of the ultraviolet-blue region of the solar cell, and to reduce the contact resistance between the doped silicon doping layer 2 and the metal electrode, the metal electrode is formed on the front surface of the doping layer 2. The photoelectric conversion efficiency of the solar cell was increased by lowering the contact resistance by strongly doping the emitter region where (3) was formed with phosphorus.

이러한 것을 selective emitter라 한다.This is called selective emitter.

그러나, PERL 태양전지는 그 제조방법이 표면에칭에 사진식각공정 (Photolithography)과 금속 전극 형성에 진공증착공정을 이용하기 때문에 태양전지 제작시간이 길고 생산단가가 높은 문제점이 있다.However, PERL solar cells have a long solar cell manufacturing time and high production cost because the manufacturing method uses photolithography for surface etching and vacuum deposition for metal electrode formation.

상기와 같은 PERL 태양전지의 문제점을 해결하기 위해 호주 UNSW(University of New South Wales)에서는 도 2와 같은 태양전지를 개발하였다.In order to solve the problems of the PERL solar cell as described above, the Australian University of New South Wales (UNSW) has developed a solar cell as shown in FIG. 2.

도 2에 도시된 태양전지는 웨이퍼(1)에 고저항(100ohm/sq)의 에미터를 형성한 후 웨이퍼(1) 전면에 보호막(4)(Passivation)을 증착하고, 금속전극(12)을 형성시킬 부분에 인을 추가 도포한 후 레이저에 의하여 인을 확산시키며(laser doping), 인이 추가 확산된 표면의 높은 전기전도도를 이용하여 무전해 도금법(electroless plating)을 이용하여 태양전지의 전면전극(5)을 구성한 것이다.In the solar cell shown in FIG. 2, after forming an emitter of high resistance (100 ohm / sq) on the wafer 1, a passivation layer 4 is deposited on the entire surface of the wafer 1, and the metal electrode 12 is deposited. After further coating of phosphorus on the part to be formed, laser doping is carried out by laser, and the front electrode of solar cell is made by using electroless plating using high electrical conductivity of the surface where phosphorus is further diffused. (5) is configured.

그러나, 도 2와 같은 태양전지는 후면에 Al을 도포하고 열처리하여 Al-BSF(Back Surface Field)을 형성한다. Al-BSF는 장파장의 태양빛을 태양전지로 되돌리는 비율이 낮고, 도포된 Al과 실리콘의 열팽창계수가 달라 실리콘 기판이 휘는 문제가 발생하고 있었다.However, the solar cell as shown in FIG. 2 forms Al-BSF (Back Surface Field) by applying Al to the rear surface and performing heat treatment. Al-BSF has a low rate of returning long-wavelength sunlight to solar cells, and a problem arises in that the silicon substrate is bent due to different thermal expansion coefficients of Al and silicon.

따라서, 상기 문제점을 해결하기 위한 본 발명은 태양전지의 전면에서는 빛의 모든 영역을 흡수하는 요철을 형성하고, 태양전지의 후면에서는 적외선 영역의 빛을 반사하여 전면에서 흡수된 빛의 광전변환효율을 높일 수 있도록 하며, 태양전지의 제조시간을 현저히 단축시킬 수 있도록 한 결정질 태양전지 및 이의 제조방법을 제공함을 목적으로 한다.Accordingly, the present invention for solving the above problems is to form the unevenness to absorb all areas of the light on the front of the solar cell, the photoelectric conversion efficiency of the light absorbed from the front by reflecting the light of the infrared region in the back of the solar cell An object of the present invention is to provide a crystalline solar cell and a method for manufacturing the same, which can be increased and can significantly shorten the manufacturing time of the solar cell.

상기 목적 달성을 위한 본 발명 결정질 실리콘 태양전지는, 태양전지의 전면에는 빛의 모든 영역을 흡수하는 요철형태의 보호막을 형성하고, 태양전지의 후면에는 적외선 영역의 빛을 반사하여 전면에서 흡수된 빛의 광전변환효율을 높여주는 후면반사막(back surface reflector)을 포함한다.The crystalline silicon solar cell of the present invention for achieving the above object, the front surface of the solar cell to form a concave-convex protective film that absorbs all the areas of light, the rear of the solar cell reflects light in the infrared region absorbed light from the front It includes a back surface reflector to increase the photoelectric conversion efficiency of the.

그리고, 상기의 태양전지는 웨이퍼의 전면에 인을 포함한 용액을 도포하여 건조한 후 레이저를 이용하여 도포된 인을 선택적으로 확산시키는 Front laser dope 공정과; 웨이퍼의 후면에 붕소(boron)를 포함한 용액을 도포하여 건조한 후 레이저를 이용하여 도포된 붕소를 선택적으로 확산시키는 Rear laser dope 공정; 에 의해 그 제조가 이루어지는 것이다.In addition, the solar cell is a front laser dope process for selectively spreading the coated phosphorus using a laser after applying a solution containing phosphorus on the front surface of the wafer; A rear laser dope process in which a solution containing boron is applied to the back of the wafer and dried to selectively diffuse the applied boron using a laser; The manufacture is performed by this.

본 발명에 의하면, 웨이퍼의 전면에 인을 포함한 용액을 도포하여 건조한 후 레이저를 이용하여 도포된 인을 선택적으로 확산시키는 제 1 공정(Front laser dope)과, 웨이퍼의 후면에 붕소(boron)를 포함한 용액을 도포하여 건조한 후 레이저를 이용하여 도포된 붕소를 선택적으로 확산시키는 제 2 공정(Rear laser dope)을 포함하여 구성하므로서, 태양전지의 전면에서는 빛의 모든 영역을 흡수하는 요철을 형성하고, 태양전지의 후면에서는 적외선 영역의 빛을 반사하여 전면에서 흡수된 빛의 광전변환효율을 높일 수 있도록 한다.According to the present invention, a first process (Front laser dope) to selectively diffuse the coated phosphor using a laser after coating and drying the solution containing phosphorus on the front of the wafer, and boron (boron) on the back of the wafer After the solution is applied and dried, it comprises a second laser (Rear laser dope) to selectively diffuse the boron coated using a laser, forming a concave-convex on the front of the solar cell to absorb all areas of light, The rear of the battery reflects the light in the infrared region to increase the photoelectric conversion efficiency of the light absorbed from the front.

또한, 후면에 형성된 후면 반사구조는 후면에서 전하들의 재결합을 방지하는 보호막에 의해 보호되며, 이에따라 광전 변환 효율을 높이는 효과를 기대할 수 있다.In addition, the rear reflective structure formed on the rear surface is protected by a protective film that prevents recombination of charges on the rear surface, and thus an effect of increasing photoelectric conversion efficiency can be expected.

이하, 첨부된 도면 도 3 과 도 4 를 참조하여 본 발명의 바람직한 실시 예를 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings, FIGS. 3 and 4.

본 발명을 설명함에 있어서 정의되는 용어들은 본 발명에서의 기능을 고려하여 정의 내려진 것으로, 본 발명의 기술적 구성요소를 한정하는 의미로 이해되어서는 아니 될 것이다.The terms defined in describing the present invention have been defined in consideration of the functions of the present invention and should not be construed to limit the technical elements of the present invention.

본 발명의 태양전지는 도 3과 같이 구성된다.The solar cell of the present invention is configured as shown in FIG.

본 발명의 태양전지는 웨이퍼(1)의 전면에 빛의 모든 영역을 흡수하는 요철형태의 보호막(11)을 형성하고, 태양전지의 후면에는 적외선 영역의 빛을 반사하여 전면에서 흡수된 빛의 광전변환효율을 높여주는 국부적 BSF(13)(Local Back Surface Field)가 형성되며, 상기 보호막(11)에는 국부적으로 금속전극(12)이 형성된다.The solar cell of the present invention forms a protective film 11 having an uneven shape to absorb all regions of light on the front surface of the wafer 1, and reflects light in the infrared region on the rear surface of the solar cell to photoelectric light absorbed from the front surface. A local BSF 13 (Local Back Surface Field) is formed to increase conversion efficiency, and the metal layer 12 is locally formed on the passivation layer 11.

상기 국부적 BSF(13)는 웨이퍼(1)의 후면에 boron을 국부적으로 도포한 후 레이저를 이용하여 확산시켜 전류를 수집하는 BSF(13)를 형성한다.The local BSF 13 locally applies boron to the backside of the wafer 1 and then diffuses using a laser to form a BSF 13 that collects current.

이때, 국부적인 BSF(13) 외의 영역은 반사방지막과 도금된 금속에 의해 적외선 영역(1100nm)의 빛의 반사율을 높이는 구조가 된다.At this time, the region outside the local BSF 13 has a structure of increasing the reflectance of light in the infrared region (1100 nm) by the anti-reflection film and the plated metal.

즉, 태양전지의 전면은 빛의 모든 영역을 흡수하는 요철형태의 보호막(11)이 형성되고(texturing 공정), 태양전지의 후면은 적외선 영역의 빛을 반사하게 된다.That is, the front surface of the solar cell is formed with a protective film 11 of the concave-convex shape absorbing all the areas of light (texturing process), the rear surface of the solar cell is to reflect the light in the infrared region.

이러한 구조는 태양전지 내에서 전반사에 의해 흡수된 빛의 광전 변환효율을 높이는 효과를 기대할 수 있게 된다.This structure can be expected to increase the photoelectric conversion efficiency of the light absorbed by the total reflection in the solar cell.

본 발명은 상기한 태양전지를 보다 효율적으로 제조할 수 있는 제조방법을 제공하고자 하며, 도 4 의 순서도를 참조하여 그 제조방법을 설명하면 다음과 같다.The present invention is to provide a manufacturing method for manufacturing the above-described solar cell more efficiently, with reference to the flow chart of Figure 4 will be described as follows.

먼저, 웨이퍼(1)를 정밀검사한 후 웨이퍼(1)의 표면을 에칭 처리 및 텍스처링(texturing) 처리하여 요철형태의 표면을 형성하고, 에칭처리된 웨이퍼(1) 표면에 에미터를 확산시킨다.First, after inspecting the wafer 1 closely, the surface of the wafer 1 is etched and textured to form an uneven surface, and the emitter is diffused onto the etched wafer 1 surface.

다음으로, 웨이퍼(1)의 표면에 빛의 모든 영역을 흡수하는 보호막(11)을 형성한다.Next, the protective film 11 which absorbs all the areas of light is formed on the surface of the wafer 1.

다음으로, 보호막이 형성된 웨이퍼(1)의 전면에 인을 도포하여 건조한 후 레이저를 이용하여 도포된 인을 선택적으로 확산시키는 프론트 레이저 도프(Front laser dope)의 제 1 공정을 실시한다.Next, phosphorus is applied to the entire surface of the wafer 1 on which the protective film is formed, followed by a first step of front laser dope for selectively diffusing the coated phosphorus using a laser.

여기서, 레이저를 인산(Phosphoric acid)의 미세한 노즐을 따라 웨이퍼 표면 에 보내 가공하는 경우, 상기 인의 도포 및 건조과정은 생략된다.In this case, when the laser is sent to the surface of the wafer along with a fine nozzle of phosphoric acid (Phosphoric acid), the application and drying of the phosphor is omitted.

그리고, 웨이퍼의 후면에 붕소(boron)를 도포하여 건조한 후 레이저를 이용하여 도포된 붕소를 선택적으로 확산시키는 리어 레이저 도프(Rear laser dope)의 제 2 공정을 실시하여 웨이퍼(1)의 후면에 국부적 BSF(13)와 후면반사구조를 형성한다.In addition, a boron is applied to the rear surface of the wafer and dried, followed by a second process of a rear laser dope to selectively diffuse the applied boron using a laser to locally the rear surface of the wafer 1. A back reflection structure is formed with the BSF 13.

상기 설명에서 상기 Front laser dope와 Rear laser dope의 제 1,2 공정을 동시에 진행시킬 수 있는데, 그 동작을 설명하면, 웨이퍼(1)의 전면에 인을 도포하면서 후면에 붕소를 도포한 후 그 도포된 인과 붕소를 일괄적으로 건조시킨 후 건조된 인과 붕소를 레이저를 이용하여 선택적으로 확산시켜 보호막(11)과 BSF(13)를 동시에 형성한다.In the above description, the first and second processes of the front laser dope and the rear laser dope may be simultaneously carried out. When the operation is described, the boron is applied to the rear surface while the phosphor is applied to the front surface of the wafer 1 and then the application thereof. After the dried phosphorus and boron are collectively dried, the dried phosphorus and boron are selectively diffused using a laser to simultaneously form the protective film 11 and the BSF 13.

이러한 방법에 의해 태양전지의 제작시간을 현저히 단축시킬 수 있게 되는 것이다.By this method, the manufacturing time of the solar cell can be significantly shortened.

그리고, 인 또는 붕소의 도포 방법은 스프레이(spray), 스핀 코팅(spin coating), 스크린 프린팅(screen printing), 잉크젯 프린팅(inkjet printing) 등의 비진공(NON-Vacuum) 도포방법 중 어느 하나를 이용할 수 있다.In addition, the coating method of phosphorus or boron may be any one of non-vacuum coating methods such as spray, spin coating, screen printing, inkjet printing, and the like. Can be.

또한, 태양전지의 후면구조를 제조하기 위해 도금법에 의해 금속전극을 전면과 후면에 동시에 제조가 가능하나, 후면의 도금은 레이저 처리한 영역에서 전극형성이 시작되므로 후면의 전극형성 영역의 거리에 따라 후면의 커버리지(coverage)가 결정된다.In addition, in order to manufacture the back structure of the solar cell, it is possible to simultaneously manufacture the metal electrode on the front side and the rear side by the plating method, but since the backside plating starts the formation of the electrode in the laser-treated area, Coverage of the backside is determined.

필요시 후면에 얇게 알루미늄을 저가의 스크린 프린팅법에 의해 도포한 후 금속전극의 시드 레이어(seed layer)로 형성하여 후면구조를 달성할 수 있으며, 후면의 금속전극의 시드레이어는 진공증착에 의한 Ni, Ti 등의 금속을 포함한다.If necessary, a thin layer of aluminum is applied to the rear surface by a low-cost screen printing method and then formed as a seed layer of the metal electrode to achieve the rear structure, and the seed electrode of the rear metal electrode is formed by vacuum deposition. And metals such as Ti.

여기서, 금속전극의 형성은 전기도금(electroplating) 또는 무전해 도금(electroless plating)에 의해 가능하다.Here, the formation of the metal electrode is possible by electroplating or electroless plating.

도 1과 도 2는 종래 태양전지의 구조를 보인 도면.1 and 2 is a view showing the structure of a conventional solar cell.

도 3은 본 발명의 태양전지 구조를 보인 도면.3 is a view showing a solar cell structure of the present invention.

도 4는 본 발명의 제조과정을 보인 순서도.Figure 4 is a flow chart showing the manufacturing process of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1 : 웨이퍼, 11: 보호막,1: wafer, 11: protective film,

12: 금속전극, 13: BSF,12: metal electrode, 13: BSF,

Claims (4)

태양전지의 전면에는 빛의 모든 영역을 흡수하는 요철형태의 보호막을 형성하고, 상기 태양전지의 후면에는 적외선 영역의 빛을 반사하여 전면에서 흡수된 빛의 광전변환효율을 높여주는 BSF와 후면반사구조를 형성하는 것을 특징으로 하는 결정질 실리콘 태양전지.On the front of the solar cell is formed a protective film of the irregular shape absorbing all the areas of light, and the rear of the solar cell reflects the light of the infrared region to enhance the photoelectric conversion efficiency of the light absorbed from the front and rear reflection structure Crystalline silicon solar cell, characterized in that forming. 청구항 1의 결정질 실리콘 태양전지를 제조하는 방법에 있어서,In the method of manufacturing a crystalline silicon solar cell of claim 1, 웨이퍼의 전면에 인을 도포하여 건조한 후 레이저를 이용하여 도포된 인을 선택적으로 확산시키는 제 1 공정;Applying a phosphorus to the entire surface of the wafer to dry and selectively diffusing the coated phosphorus using a laser; 웨이퍼의 후면에 붕소를 도포하여 건조한 후 레이저를 이용하여 도포된 붕소를 선택적으로 확산시키는 제 2 공정; 을 포함하여 진행하는 것을 특징으로 하는 결정질 실리콘 태양전지의 제조방법.A second step of applying boron to the back side of the wafer to dry and selectively diffusing the applied boron using a laser; Method for producing a crystalline silicon solar cell, characterized in that including the progress. 제 2 항에 있어서, 상기 제 1 공정과 제 2 공정을 동시에 진행하는 것을 특징으로 하는 결정질 실리콘 태양전지의 제조방법.The method of manufacturing a crystalline silicon solar cell according to claim 2, wherein the first step and the second step are performed simultaneously. 제 2 항에 있어서, 인 또는 붕소의 도포 방법은 스프레이, 스핀 코팅(spin coating), 스크린 프린팅(screen printing), 잉크젯 프린팅(inkjet printing) 방법 중 어느 하나를 이용하는 것을 특징으로 하는 결정질 실리콘 태양전지의 제조방법.The crystalline silicon solar cell of claim 2, wherein the phosphorus or boron is applied by any one of spraying, spin coating, screen printing, and inkjet printing. Manufacturing method.
KR1020090005178A 2009-01-21 2009-01-21 Crystalline silicon photovoltaic device and thereof manufacturing method KR20100085736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090005178A KR20100085736A (en) 2009-01-21 2009-01-21 Crystalline silicon photovoltaic device and thereof manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090005178A KR20100085736A (en) 2009-01-21 2009-01-21 Crystalline silicon photovoltaic device and thereof manufacturing method

Publications (1)

Publication Number Publication Date
KR20100085736A true KR20100085736A (en) 2010-07-29

Family

ID=42644598

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090005178A KR20100085736A (en) 2009-01-21 2009-01-21 Crystalline silicon photovoltaic device and thereof manufacturing method

Country Status (1)

Country Link
KR (1) KR20100085736A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012092537A3 (en) * 2010-12-30 2012-11-22 Solexel, Inc. Laser processing methods for photovoltaic solar cells
KR20130073350A (en) * 2011-12-23 2013-07-03 엘지전자 주식회사 Method for manufacturing the same
US8637340B2 (en) 2004-11-30 2014-01-28 Solexel, Inc. Patterning of silicon oxide layers using pulsed laser ablation
US9419165B2 (en) 2006-10-09 2016-08-16 Solexel, Inc. Laser processing for high-efficiency thin crystalline silicon solar cell fabrication
US9455362B2 (en) 2007-10-06 2016-09-27 Solexel, Inc. Laser irradiation aluminum doping for monocrystalline silicon substrates
US9508886B2 (en) 2007-10-06 2016-11-29 Solexel, Inc. Method for making a crystalline silicon solar cell substrate utilizing flat top laser beam
US9583651B2 (en) 2011-12-26 2017-02-28 Solexel, Inc. Systems and methods for enhanced light trapping in solar cells

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8637340B2 (en) 2004-11-30 2014-01-28 Solexel, Inc. Patterning of silicon oxide layers using pulsed laser ablation
US9236510B2 (en) 2004-11-30 2016-01-12 Solexel, Inc. Patterning of silicon oxide layers using pulsed laser ablation
US9419165B2 (en) 2006-10-09 2016-08-16 Solexel, Inc. Laser processing for high-efficiency thin crystalline silicon solar cell fabrication
US9455362B2 (en) 2007-10-06 2016-09-27 Solexel, Inc. Laser irradiation aluminum doping for monocrystalline silicon substrates
US9508886B2 (en) 2007-10-06 2016-11-29 Solexel, Inc. Method for making a crystalline silicon solar cell substrate utilizing flat top laser beam
WO2012092537A3 (en) * 2010-12-30 2012-11-22 Solexel, Inc. Laser processing methods for photovoltaic solar cells
KR101384853B1 (en) * 2010-12-30 2014-04-16 솔렉셀, 인크. Laser processing methods for photovoltaic solar cells
KR20130073350A (en) * 2011-12-23 2013-07-03 엘지전자 주식회사 Method for manufacturing the same
US9583651B2 (en) 2011-12-26 2017-02-28 Solexel, Inc. Systems and methods for enhanced light trapping in solar cells

Similar Documents

Publication Publication Date Title
CA2682188C (en) Method for cleaning a solar cell surface opening made with a solar etch paste
CN102396073B (en) Photvoltaic device and manufacture method thereof
KR20100085736A (en) Crystalline silicon photovoltaic device and thereof manufacturing method
NL2009382C2 (en) Method for manufacturing a solar cell and solar cell obtained therewith.
Kulakci et al. Application of Si nanowires fabricated by metal-assisted etching to crystalline Si solar cells
US20130061926A1 (en) Solar cell element and method for producing the same, and solar cell module
KR20160090287A (en) Nanostructured silicon based solar cells and methods to produce nanostructured silicon based solar cells
JP2015073065A (en) Method for manufacturing solar cell
WO2016047564A1 (en) Solar cell element
JP5991945B2 (en) Solar cell and solar cell module
CN104201214A (en) Back-passivated solar battery and preparation method thereof
JP2017525136A (en) Passivation of the light-receiving surface of solar cells using crystalline silicon
KR20100068833A (en) Manufacturing method of solar cell and etching paste
US8927324B2 (en) Method for the production of a wafer-based, back-contacted heterojunction solar cell and heterojunction solar cell produced by the method
CN104362200A (en) Efficient crystalline silicon solar cell and production method thereof
CN104362209A (en) Crystalline silicon solar cell subjected to back polishing and preparation technology thereof
KR20120003732A (en) Solar cell
JP6430842B2 (en) Method for manufacturing solar cell element and method for manufacturing solar cell module
JP2014075505A (en) Photoelectric conversion device, process of manufacturing the same, and photoelectric conversion module
KR101406955B1 (en) Solar cell and method for manufacturing the same
CN104167460A (en) Manufacturing method of solar energy cell
KR950003951B1 (en) Manufacturing method of solar cell
KR101199213B1 (en) Bifacial Photovoltaic Localized Emitter Solar Cell and Method for Manufacturing Thereof
TWI491054B (en) Manufacturing method of solar cell
KR101173399B1 (en) Localized Emitter Solar Cell and Method for Manufacturing Thereof

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination