KR20100082172A - Method for forming copper interconnection layer - Google Patents
Method for forming copper interconnection layer Download PDFInfo
- Publication number
- KR20100082172A KR20100082172A KR1020090001531A KR20090001531A KR20100082172A KR 20100082172 A KR20100082172 A KR 20100082172A KR 1020090001531 A KR1020090001531 A KR 1020090001531A KR 20090001531 A KR20090001531 A KR 20090001531A KR 20100082172 A KR20100082172 A KR 20100082172A
- Authority
- KR
- South Korea
- Prior art keywords
- copper
- ruthenium
- electroless plating
- agent
- diffusion barrier
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1803—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/18—Pretreatment of the material to be coated
- C23C18/1803—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
- C23C18/1824—Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/31—Coating with metals
- C23C18/38—Coating with copper
- C23C18/40—Coating with copper using reducing agents
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C18/00—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
- C23C18/16—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
- C23C18/52—Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemically Coating (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
본 발명은 구리배선 형성방법에 관한 것으로, 전처리 공정으로 확산방지막에 씨앗층을 형성하는 구리배선 형성방법에 관한 것이다. The present invention relates to a copper wiring forming method, and to a copper wiring forming method for forming a seed layer in the diffusion barrier film by a pretreatment step.
점차 금속 배선 공정에 있어서 선폭이 감소함에 따라, 전해 도금을 위한 더 얇고 연속적인 씨앗층의 필요성은 더욱 커지고 있다. 기존의 물리 기상 증착법을 통한 씨앗층의 형성에서는, 취약한 단차도포성으로 인해 상부 혹은 패턴의 바닥 부위에 비해서 측면 벽면에 형성되는 씨앗층의 두께가 얇아지므로, 매우 얇은 두께의 씨앗층에서는 씨앗층의 연속성이 위협받기에 이르렀다. 따라서 형성과정에서부터 매우 우수한 단차도포성을 가지는 다양한 금속 박막 형성 기술이 활발히 연구되고 있는데, 여기에는 무전해 도금, 화학기상증착, 원자층기상증착 등이 있다. Increasingly, as line widths are reduced in metallization processes, the need for thinner, continuous seed layers for electroplating is growing. In the formation of the seed layer by conventional physical vapor deposition, the thickness of the seed layer formed on the side wall surface becomes thinner than the top or the bottom of the pattern due to the weak step coating property. Continuity is threatened. Therefore, various metal thin film forming technologies having very high step coverage from the formation process are actively researched, including electroless plating, chemical vapor deposition, and atomic layer vapor deposition.
이 중에서 무전해 도금은 표면에 촉매를 형성시킨 후 그 촉매 표면에서 금속 이온을 용액 내에 함께 존재하는 환원제를 이용해 환원시키는 화학적 반응으로서, 우수한 단차도포성 및 대면적의 기판에서 우수한 두께의 균일함 등 그 다양한 장점 으로 인해 활발히 연구되어 왔다. 그러나 이러한 무전해 도금을 개시하기 위해서는 무전해 도금의 촉매로 작용할 수 있는 특정한 촉매 물질들을 미리 기판에 형성시켜야 한다는 문제가 있다. 일반적으로 반도체 공정의 금속 배선에서 씨앗층 형성의 기판으로 사용되는 확산방지막의 경우, 현재의 탄탈룸 등은 무전해 도금에 대해 전혀 촉매 활성을 가지지 않으며, 이로 인해 추가적인 촉매 물질의 형성이 반드시 요구되어 왔다. Among these, electroless plating is a chemical reaction that forms a catalyst on the surface and then reduces metal ions on the surface of the catalyst using a reducing agent coexisting in the solution, and has excellent step spreadability and excellent thickness uniformity on a large-area substrate. Its various advantages have been actively studied. However, in order to initiate such electroless plating, there is a problem in that specific catalyst materials that can act as a catalyst for electroless plating must be formed in advance on the substrate. In general, in the case of the diffusion barrier film used as the substrate for forming the seed layer in the metal wiring of the semiconductor process, the current tantalum and the like do not have any catalytic activity against the electroless plating, and therefore, the formation of additional catalyst material has been required. .
기존에 가장 활발하게 이용되어 온 팔라듐 촉매화 과정의 경우, 다양한 화학적 과정을 통해 불연속적인 촉매 입자층을 표면에 형성시키고, 이러한 촉매 입자로부터 무전해 도금을 유도하였다. 그러나 이 경우 촉매 입자의 밀도와 크기가 얇은 박막의 형성에 있어서 중요한 제약 조건으로 작용하여 왔으며, 기판과 촉매 물질 사이의 계면에너지, 그리고 촉매화 과정 자체의 복잡한 화학적 메커니즘으로 인해 촉매층의 크기와 밀도 조절에 많은 어려움이 있어 왔다. In the case of the most actively used palladium catalysis process, discontinuous catalyst particle layers were formed on the surface through various chemical processes, and electroless plating was induced from these catalyst particles. However, in this case, the density and size of the catalyst particles have been an important constraint in the formation of thin films, and the interfacial energy between the substrate and the catalyst material and the complicated chemical mechanism of the catalysis process itself control the size and density of the catalyst layer. There have been many difficulties.
한편, 향후 탄탈을 대체할 만한 확산방지막으로 연구되고 있는 물질 중의 하나로 루테늄이 있다. 루테늄의 경우, 화학적기상증착이나 원자층기상증착 등을 통해 매우 얇은 박막을 고단차 패턴에서도 쉽게 형성할 수 있으며, 적절한 확산방지 성능을 가지고, 무엇보다 구리 박막과의 우수한 접착성으로 초기 입자형성단계에서 높은 밀도를 가지게 되므로 루테늄 위에서 직접 전해도금을 통해 구리 박막을 형성할 수 있다는 장점을 가진다. 그러나 상대적으로 높은 루테늄의 전기저항으로 인해 대면적의 웨이퍼 표면에서 도금 양의 불균일성이 나타날 수 있으며, 직접 전해도금을 통하더라도 초기의 입자 형성으로 인한 3차원적인 성장으로 인해 형성할 수 있 는 박막의 최소 두께에 제약이 존재하게 된다. Meanwhile, ruthenium is one of the materials being studied as a diffusion barrier to replace tantalum in the future. In the case of ruthenium, very thin thin films can be easily formed even in high-difference patterns through chemical vapor deposition or atomic layer vapor deposition, and have an appropriate diffusion preventing performance and above all, an initial particle formation step with excellent adhesion to copper thin films. Since it has a high density at, the copper thin film can be formed through electroplating directly on ruthenium. However, due to the relatively high electrical resistance of ruthenium, nonuniformity of plating amount may appear on the wafer surface of large area, and even thin film can be formed by three-dimensional growth due to initial particle formation even by direct electroplating. There is a constraint on the minimum thickness.
따라서 루테늄을 촉매로 이용해 구리 무전해 도금을 표면에 직접 시행하여 이를 씨앗층으로 이용하고자 하는 연구가 있어 왔다. 그러나 루테늄을 촉매로 이용한 무전해 도금은 아직 활발한 연구가 진행되지 않고 있으며, 기존의 구리 무전해 도금 용액에 대해서는 루테늄이 도금 반응을 개시하기 위한 촉매 활성을 가지지 않는 것으로 알려져 있다. 또한, 루테늄은 공기 중에서 매우 얇은 자연 산화막을 형성하는 것으로 알려져 있으며, 이러한 자연 산화막의 존재는 형성되는 구리막과의 계면에너지를 높여서 접착력을 저하시키고, 초기 입자 생성 단계에서의 입자 밀도를 감소시키는 것으로 알려져 있다. 따라서 현재까지의 많은 연구에서는 루테늄의 자연 산화막을 외부에서의 전류 인가를 통해 강제로 환원시키는 공정을 추가로 필요로 하였다. Therefore, there has been a study to use copper electroless plating directly on the surface using ruthenium as a catalyst to use it as a seed layer. However, electroless plating using ruthenium as a catalyst has not been actively studied, and it is known that ruthenium does not have catalytic activity for initiating a plating reaction with respect to a conventional copper electroless plating solution. In addition, ruthenium is known to form a very thin natural oxide film in the air, the presence of such a natural oxide film is to increase the interfacial energy with the copper film to be formed to reduce the adhesion, and to reduce the particle density in the initial particle formation step Known. Therefore, many studies to date have further required a process of forcibly reducing ruthenium's natural oxide film through external current application.
따라서 본 발명이 해결하고자 하는 과제는, 연속적인 씨앗층을 형성하여 쉽고 간단하게 얇은 구리 금속 박막을 형성할 수 있는 구리배선 형성방법을 제공하는 데 있다.Therefore, the problem to be solved by the present invention is to provide a method for forming a copper wiring that can easily and simply form a thin copper metal thin film by forming a continuous seed layer.
상기 과제를 달성하기 위한 본 발명에 따른 구리배선 형성방법은: 구리염과 환원제와 착물형성제와 pH 조절제를 포함하는 수용액으로 기판에 형성된 확산방지막 상의 산화막을 제거하고 상기 확산방지막 상에 구리 이온을 환원시키는 단계와; 상기 구리 이온이 환원된 상기 확산방지막 상에 구리층을 형성하는 단계를 포함하는 것을 특징으로 한다.Copper wiring forming method according to the present invention for achieving the above object is: an aqueous solution containing a copper salt, a reducing agent, a complex forming agent and a pH adjusting agent to remove the oxide film on the diffusion barrier formed on the substrate and copper ions on the diffusion barrier Reducing; And forming a copper layer on the diffusion barrier layer in which the copper ions are reduced.
이 때, 상기 확산방지막은 루테늄으로 형성되고, 상기 구리층은 전해 도금 또는 무전해 도금으로 형성하는 것을 특징으로 한다.At this time, the diffusion barrier is formed of ruthenium, the copper layer is characterized in that the electroplating or electroless plating.
또한, 상기 구리염은 황산구리 5수화물이며, 상기 pH 조절제는 NaOH, KOH, Tetramethylammonium hydroxide (TMAH) 또는 H3BO3 이고, 상기 착물형성제는 구연산염 또는 구연산염 수화물을 포함하는 화합물이며, 상기 환원제는 NaH2PO2, NH4H2PO2, KH2PO2 및 양이온과 차인산 이온의 염으로 이루어진 환원제 중에서 선택된 적어도 어느 하나인 것을 특징으로 한다.In addition, the copper salt is copper sulfate pentahydrate, the pH adjusting agent is NaOH, KOH, Tetramethylammonium hydroxide (TMAH) or H 3 BO 3 , the complexing agent is a compound containing citrate or citrate hydrate, the reducing agent is NaH 2 PO 2 , NH 4 H 2 PO 2 , KH 2 PO 2 It is characterized in that at least any one selected from a reducing agent consisting of salts of cations and hypophosphate ions.
나아가, 상기 수용액의 온도는 50~90℃이며, pH는 8~12인 것을 특징으로 한다.Further, the temperature of the aqueous solution is 50 ~ 90 ℃, characterized in that the pH is 8-12.
본 발명에 의하면, 얇고 연속적인 씨앗층 혹은 금속 박막을 루테늄과 같은 확산방지막 위에 형성할 수 있으므로, 종래의 물리 기상 증착을 이용한 씨앗층 형성에서 나타날 수 있는 패턴 측벽(side wall)에서의 씨앗층 연속성 문제를 해결할 수 있고, 전해 도금 또는 무전해 도금을 루테늄 박막 표면에 직접 수행할 수 있으 며, 화학적 방법을 이용해 전처리를 진행하므로 전해도금에 비해 대면적 기판에서의 공정에 활용도가 크다.According to the present invention, since a thin and continuous seed layer or a thin metal film can be formed on the diffusion barrier such as ruthenium, the seed layer continuity at the pattern side wall which can be seen in the seed layer formation using conventional physical vapor deposition. The problem can be solved, electrolytic plating or electroless plating can be performed directly on the surface of the ruthenium thin film, and since the pretreatment is performed using a chemical method, it is more useful for processing on a large-area substrate than electroplating.
이하에서, 본 발명의 바람직한 실시예를 첨부한 도면들을 참조하여 상세히 설명한다. 아래의 실시예는 본 발명의 내용을 이해하기 위해 제시된 것일 뿐이며 당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상 내에서 많은 변형이 가능할 것이다. 따라서 본 발명의 권리범위가 이러한 실시예에 한정되는 것으로 해석돼서는 안 된다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following examples are only presented to understand the content of the present invention, and those skilled in the art will be capable of many modifications within the technical spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited to these embodiments.
먼저, Si 기판 위에 물리 기상 증착을 통해 확산방지막으로서 루테늄을 500Å 두께로 성장시키고, 루테늄 표면에 형성된 산화막을 제거하고 구리 이온으로 환원시키기 위하여 루테늄 표면을 전처리한다. 이 때, 전처리 수용액의 구성 및 공정조건은 아래의 표 1과 같다.First, the ruthenium is grown to a thickness of 500 으로서 as a diffusion barrier film through physical vapor deposition on the Si substrate, and the ruthenium surface is pretreated to remove the oxide film formed on the ruthenium surface and reduce it to copper ions. At this time, the constitution and process conditions of the pretreatment aqueous solution are shown in Table 1 below.
pH regulator
즉, 본 발명은 환원제로 차인산 이온(hypophosphite: H2PO2 -)을 이용하여 초기에 산화막의 제거와 매우 얇은 구리 박막의 형성을 동시에 진행한 다음, 이러한 표면에 무전해 도금을 진행하여 얇고 연속적인 박막을 형성하는 것이다. 차인산 이온은 많은 무전해 도금에서 환원제로 이용되고 있는 물질로, 아래 반응식과 같은 반응 경로를 통해 전자를 방출하여 금속 이온을 환원시킨다. That is, the present invention provides primary phosphate ions as the reducing agent: - thin, the process proceeds to the using the progress in the formation of a very thin copper film to the removal of the oxide film on the initial at the same time, and then electroless plating on this surface (hypophosphite H 2 PO 2) To form a continuous thin film. Hypophosphate ions are materials that are used as reducing agents in many electroless platings and reduce metal ions by releasing electrons through reaction paths such as
H2PO2 - + H2O -> H2PO3 - + 2H+ + 2e- H 2 PO 2 - + H 2 O -> H 2 PO 3 - + 2H + + 2e -
이러한 차인산 이온은 코발트, 금 등 많은 무전해 도금에서 환원제로 이용되고 있으며, 이는 상기 반응이 금속 표면을 촉매로 하여 가속되기 때문이다. 그러나 차인산 이온은 루테늄 표면에서는 무전해 도금 반응에 대해 활성을 가지지만 구리 표면에서는 무전해 도금에 대해 활성을 가지지 않는 것으로 알려져 있다. 따라서 루테늄 표면에서 차인산 이온의 산화 반응을 통해 전극의 전위가 음극 쪽으로 이동하여 구리 이온이 표면에서 환원되더라도, 표면의 구리는 더 이상 촉매로서 작용할 수 없으므로, 형성할 수 있는 구리의 표면 덮임률에는 한계가 존재하게 된다. 또한 이로 인해 이미 형성된 구리 표면 위에서의 연속적인 무전해 도금 반응이 나타나지 않아서, 추가적인 입자의 성장 반응을 억제하고 가급적 얇은 막의 형성을 유도할 수 있다. 이러한 특성을 통해 구리막을 표면에 매우 얇게 형성한 후 이를 이후의 무전해 도금의 촉매로 이용하는 것이다.These hypophosphate ions are used as reducing agents in many electroless platings, such as cobalt and gold, because the reaction is accelerated by using a metal surface as a catalyst. However, it is known that hypophosphite ions have activity on electroless plating reactions on ruthenium surfaces but not on electroless plating on copper surfaces. Therefore, even though the potential of the electrode shifts toward the cathode through the oxidation reaction of the diphosphate ions on the ruthenium surface, the copper on the surface can no longer act as a catalyst. There will be limits. This also results in no continuous electroless plating reaction on the already formed copper surface, which can suppress further particle growth reactions and possibly lead to the formation of thin films. Through this property, the copper film is formed very thin on the surface and then used as a catalyst for subsequent electroless plating.
루테늄 표면의 전처리는 루테늄 확산방지막이 형성된 기판을 70℃로 유지한 수용액 내에 10분간 침지시킴으로써 이루어진다. 전처리 과정을 통하여 루테늄 상의 산화막이 제거되고, 루테늄 표면이 구리 이온으로 환원된다.Pretreatment of the ruthenium surface is performed by immersing the substrate on which the ruthenium diffusion barrier film is formed in an aqueous solution maintained at 70 ° C for 10 minutes. The pretreatment process removes the oxide film on ruthenium and reduces the ruthenium surface to copper ions.
전처리 과정을 거친 기판을 탈이온수로 세정한 후 다시 구리 무전해 도금 용액 또는 구리 전해 도금 용액에 침지하여 구리 이온이 환원된 루테늄 박막 상에 구리층, 즉 구리 박막층을 형성한다.The pretreated substrate is washed with deionized water and then immersed in a copper electroless plating solution or a copper electrolytic plating solution to form a copper layer, that is, a copper thin film layer on a ruthenium thin film in which copper ions are reduced.
아래의 표 2는 구리 무전해 도금 용액의 조성을 나타낸 것이다.Table 2 below shows the composition of the copper electroless plating solution.
tetraacetic acid)EDTA (ethylenediamine-
tetraacetic acid)
도 1은 본 발명의 실시예에 따라 루테늄 표면을 전처리한 후 무전해 도금을 진행한 경우의 루테늄 표면의 면저항을 나타낸 그래프이고, 도 2는 본 발명의 실시예에 따라 형성된 구리 박막 표면과 단면의 전자현미경 사진이다.1 is a graph showing the sheet resistance of the ruthenium surface when the ruthenium surface is subjected to electroless plating after the pretreatment of the ruthenium surface according to the embodiment of the present invention, and FIG. Electron micrograph.
도 1을 참조하면, 구리가 루테늄에 비해 더 낮은 비저항을 가지므로, 무전해 도금을 통해 구리 박막이 루테늄 표면에 형성되면 박막의 면저항은 급격히 감소하는 경향을 나타내며, 이를 통해 구리 박막이 전처리 과정을 통해 정상적으로 형성되었음을 알 수 있다. Referring to FIG. 1, since copper has a lower specific resistance than ruthenium, when the copper thin film is formed on the ruthenium surface through electroless plating, the sheet resistance of the thin film tends to decrease rapidly. It can be seen that through the normal formation.
도 2를 참조하면, 루테늄 박막 위에 구리 박막이 성공적으로 형성됨을 확인할 수 있다. 이렇게 형성된 구리 박막은 루테늄 박막과 우수한 계면 특성 및 접착성을 가진다. Referring to FIG. 2, it can be seen that the copper thin film is successfully formed on the ruthenium thin film. The copper thin film thus formed has excellent interfacial properties and adhesion with the ruthenium thin film.
본 발명은 점차 미세화되는 금속 배선 공정에 있어서 얇고 연속적인 씨앗층 혹은 금속 박막을 루테늄과 같은 확산방지막 위에 형성하기 위한 것으로, 이러한 과정을 통해 매우 우수한 단차 피복성을 가지는 씨앗층을 미세패턴 내부에 형성하거나, 혹은 전해 도금 또는 무전해 도금을 루테늄 박막 표면에서 직접 수행할 수 있다. 따라서 기존의 물리 기상 증착에서 나타날 가능성이 있는 패턴 측벽(side wall)에서의 씨앗층 연속성 문제를 해결할 수 있으며, 루테늄 위에서의 다른 박막형성 기술이 직면할 수 있는 초기 단계의 입자형성 과정을 제거함으로서 현재 공정기술이 가지고 있는 한계점을 해결할 우수한 해결책이 될 수 있을 것으로 기대된다. 또한, 화학적 방법을 이용해 전처리를 진행하므로 전해도금에 비해 향후 대면적 기판에서의 공정 기술에 적합하다.The present invention is to form a thin and continuous seed layer or metal thin film on the diffusion barrier such as ruthenium in the increasingly fine metal wiring process, through the process to form a seed layer having a very high step coverage in the fine pattern Alternatively, electrolytic plating or electroless plating may be performed directly on the surface of the ruthenium thin film. This solves the seed layer continuity problem at the pattern sidewalls that may occur in conventional physical vapor deposition, and eliminates the early-stage particle formation process that other thin film formation techniques on ruthenium may face. It is expected to be an excellent solution to the limitations of process technology. In addition, since the pretreatment is performed using a chemical method, it is suitable for the process technology in a large area substrate in the future compared to the electroplating.
본 발명은 상기 실시예에만 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야에서 통상의 지식을 가진 자에 의해 많은 변형이 가능함은 명백하다. The present invention is not limited to the above embodiments, and it is apparent that many modifications are possible by those skilled in the art within the technical spirit of the present invention.
도 1은 본 발명의 실시예에 따라 루테늄 표면을 전처리한 후 무전해 도금을 진행한 경우의 루테늄 표면의 면저항을 나타낸 그래프; 및1 is a graph showing the sheet resistance of the ruthenium surface when the electroless plating is performed after pretreatment of the ruthenium surface according to an embodiment of the present invention; And
도 2는 본 발명의 실시예에 따라 형성된 구리 박막 표면과 단면의 전자현미경 사진이다.2 is an electron micrograph of the copper thin film surface and cross section formed according to an embodiment of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090001531A KR101100084B1 (en) | 2009-01-08 | 2009-01-08 | Method for forming copper interconnection layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090001531A KR101100084B1 (en) | 2009-01-08 | 2009-01-08 | Method for forming copper interconnection layer |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20100082172A true KR20100082172A (en) | 2010-07-16 |
KR101100084B1 KR101100084B1 (en) | 2011-12-29 |
Family
ID=42642366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090001531A KR101100084B1 (en) | 2009-01-08 | 2009-01-08 | Method for forming copper interconnection layer |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101100084B1 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100400765B1 (en) | 2000-11-13 | 2003-10-08 | 엘지.필립스 엘시디 주식회사 | Method for forming thin-film and liquid crystal display device fabricated by the same method |
-
2009
- 2009-01-08 KR KR1020090001531A patent/KR101100084B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR101100084B1 (en) | 2011-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6824665B2 (en) | Seed layer deposition | |
US6794288B1 (en) | Method for electroless deposition of phosphorus-containing metal films onto copper with palladium-free activation | |
US20140199497A1 (en) | Methods for reducing metal oxide surfaces to modified metal surfaces | |
RU2374359C2 (en) | Compositions for de-energised deposition of triple materials for semiconsuctor industry | |
TW201426832A (en) | Method of manufacturing semiconductor device, and semiconductor device | |
US20190024239A1 (en) | Method for depositing a copper seed layer onto a barrier layer and copper plating bath | |
TWI332999B (en) | Cobalt-based alloy electroless plating solution and electroless plating method using the same | |
KR20070113243A (en) | Cobalt self-initiated electroless via fill for stacked memory cells | |
KR102116055B1 (en) | Electroless nickel strike plating solution | |
KR20100128865A (en) | A composition of eletroless chemical copper plating for nano scale device interconnection | |
CN1784507B (en) | Compositions for the currentless deposition of ternary materials for use in the semiconductor industry | |
KR101100084B1 (en) | Method for forming copper interconnection layer | |
CN116324032A (en) | Electroless nickel deposition on copper without palladium activation | |
KR101224208B1 (en) | Electroless copper plating solution including anionic surfactant for wiring and copper coating layer prepared by the same | |
Milusheva et al. | Electroless copper deposition into anodic aluminium oxide on aluminum substrate | |
TW201432089A (en) | A method for plating a substrate with a metal | |
KR101375291B1 (en) | Autocatalytic-type electroless Ni-P-Co plating solution comprising dimethylamine borane in extremely small quantities and method for producing thereof | |
KR101179118B1 (en) | Heating plate with AlN-hBN composite substrate and manufacturing method of the same | |
KR20120004776A (en) | Autocatalytic tin plating solution and autocatalytic tin plating method using the same | |
KR101224207B1 (en) | Electroless copper plating solution including cationic surfactant for wiring and copper coating layer prepared by the same | |
van der Veen et al. | Conformal Cu electroless seed on Co and Ru liners enables Cu fill by plating for advanced interconnects | |
Yu | Electroless Deposition of Copper and Copper-Manganese Alloy for Application in Interconnect Metallization | |
WO2012158056A1 (en) | Method for applying a nanocrystalline coating consisting of metals and alloys to metal parts |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20141210 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20151126 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20160222 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20171124 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20181203 Year of fee payment: 8 |