KR20100078325A - Purine mimics containing self-assembled brush polyether-based polymers for bio-applications, preparation thereof products comprising the polymer - Google Patents

Purine mimics containing self-assembled brush polyether-based polymers for bio-applications, preparation thereof products comprising the polymer Download PDF

Info

Publication number
KR20100078325A
KR20100078325A KR1020080136557A KR20080136557A KR20100078325A KR 20100078325 A KR20100078325 A KR 20100078325A KR 1020080136557 A KR1020080136557 A KR 1020080136557A KR 20080136557 A KR20080136557 A KR 20080136557A KR 20100078325 A KR20100078325 A KR 20100078325A
Authority
KR
South Korea
Prior art keywords
oco
coo
nhco
conh
polymer compound
Prior art date
Application number
KR1020080136557A
Other languages
Korean (ko)
Other versions
KR101053246B1 (en
Inventor
이문호
김진철
노예철
김희수
정정운
박삼대
권원상
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to KR1020080136557A priority Critical patent/KR101053246B1/en
Publication of KR20100078325A publication Critical patent/KR20100078325A/en
Application granted granted Critical
Publication of KR101053246B1 publication Critical patent/KR101053246B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2636Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/136Comb-like structures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE: Purine mimics containing self-assembled brush polyether-based polymers are provided to be manufactured into a molded product having various shapes due to excellent workability and to show self-assembly phenomenon in which a functional group is aligned to direction perpendicular to a substrate. CONSTITUTION: Purine mimics containing self-assembled brush polyether-based polymer are marked by chemical formula 1. In the chemical formula 1, ρ and σ show a repeating unit of carbon including R1 and R2. In the chemical formula 1, R1 and R2 are hydrogen or an alkyl group having a carbon number of 1-20 and m and n are a content(mol%) of a polyether monomer. In the chemical formula 1, m and n satisfy the condition of 0<m<=100, 0<=n<100, and m + n = 100.

Description

퓨린 미믹을 브러쉬 말단으로 가지는 자기조립성 고분자 및 그 제조방법{PURINE MIMICS CONTAINING SELF-ASSEMBLED BRUSH POLYETHER-BASED POLYMERS FOR BIO-APPLICATIONS, PREPARATION THEREOF PRODUCTS COMPRISING THE POLYMER}PURINE MIMICS CONTAINING SELF-ASSEMBLED BRUSH POLYETHER-BASED POLYMERS FOR BIO-APPLICATIONS, PREPARATION THEREOF PRODUCTS COMPRISING THE POLYMER}

본 발명은 퓨린 미믹을 브러쉬 말단으로 가지는 자기조립성 고분자 물질의 합성과 그 응용에 관한 것이다. 발명된 고분자는 미생물, 단백질, DNA, RNA와 같은 물질의 흡착 또는 분리를 유도하는 응용 및 이러한 흡착 성질을 이용하여 대상 생물체에 상기 생체 물질을 전달하는 물질로써 응용이 가능하다. The present invention relates to the synthesis and application of a self-assembling polymer material having a purine mimic at the brush end. Invented polymers can be applied as an application for inducing adsorption or separation of substances such as microorganisms, proteins, DNA and RNA, and as a substance for delivering the biological substance to a target organism using such adsorption properties.

자기조립성 층을 형성하기 위한 방안으로서, 현재까지 가장 각광받고 있는 방법으로는 자기조립단분자층(SAM : Self Assembled Monolayer)을 이용한 방법이 있다. 이 방법은 자기조립 현상을 가지는 기능성 단분자 물질을 기질 표면에 도입하여 원하는 성질의 표면을 구현하는 것이다. 그러나 SAM은 그 제조 원리 상 화학적, 열적 안정성에 취약점을 지니고 있어 다양한 환경에 응용되기에는 어려움이 많다.As a method for forming a self-assembly layer, the most popular method so far is a method using a self-assembled monolayer (SAM). This method introduces a functional monomolecular material with self-assembly onto the substrate surface to produce a surface of desired properties. However, SAM has a weakness in chemical and thermal stability due to its manufacturing principle, which makes it difficult to apply to various environments.

본 발명은 상기된 SAM의 단점을 극복할 수 있는 경제적인 고분자 물질을 만들기 위함이다. 본 자기조립성 고분자는 표면 흡착을 통하여 미생물을 효과적으로 배양할 수 있을 뿐만 아니라 단백질, DNA, RNA와 같은 특정 물질을 부착 또는 분리하거나 이와 같은 물질을 생물체에 전달하는 매개체로써도 사용이 가능하다.The present invention is to make an economical polymer material that can overcome the disadvantages of the above-described SAM. The self-assembled polymer can not only effectively culture microorganisms through surface adsorption but also can be used as a medium for attaching or separating specific substances such as proteins, DNA, RNA, or delivering such substances to organisms.

상기 기술적 과제를 이루기 위하여 본 발명에서는, 화학식 1로 표시되는 퓨린 미믹을 브러쉬 말단으로 가지는 자기조립성 고분자 화합물을 제공한다.In order to achieve the above technical problem, the present invention provides a self-assembling polymer compound having a purin mimic represented by the formula (1) as a brush end.

Figure 112008090347487-PAT00002
(1)
Figure 112008090347487-PAT00002
(One)

상기식에서 ρ, σ는 R1 및 R2를 포함하는 탄소의 반복 단위를 나타내는 것으로 서로에 관계없이 1 내지 20의 값이고;Where ρ and σ represent repeating units of carbon comprising R 1 and R 2 and are values of 1 to 20 regardless of each other;

R1 및 R2는 서로에 관계없이 수소, 탄소 수 1 내지 20의 알킬기이고;R 1 and R 2 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms;

m 및 n는 폴리에테르 단위체의 함량(mol %)을 나타낸 것으로, 0<m≤100 이고, 0≤n<100이며, m + n = 100이고;  m and n represent the content (mol%) of the polyether unit, where 0 <m ≦ 100, 0 ≦ n <100, and m + n = 100;

Y는 H, 탄소 수 1내지 20의 알킬기 또는 -Z 말단에 E, G, J, L, M, Q, T, U, V, W, α, β 및 γ를 포함하는 고리이고; Y is H, an alkyl group having 1 to 20 carbon atoms, or a ring containing E, G, J, L, M, Q, T, U, V, W, α, β, and γ at the -Z end;

Z는 링커이며, Z is a linker,

E, G, J, L, M, Q 및 T는 C, N, O, P 또는 S로 이루어진 군으로부터 선택되고;E, G, J, L, M, Q and T are selected from the group consisting of C, N, O, P or S;

U, V, W, α, β및 γ는 -CHO, -COOH, -COOR, -C=NR, -H, -N3, -NO2, -N=R, -NH2, -NHR, -NR2, -NR3 +, -OH, -OCR, -OR, -POH, -P0R, -PO2H, -PO2R, -PO3H, -PO3R, -SH, -SR, -SOH, -SOR, -S02H, -S02R, -SO3H, SO3R, =O, =N, =S 및 -C6H5로 이루어진 군으로부터 선택되며; U, V, W, α, β and γ are -CHO, -COOH, -COOR, -C = NR, -H, -N 3 , -NO 2 , -N = R, -NH 2 , -NHR, -NR 2 , -NR 3 + , -OH, -OCR, -OR, -POH, -P0R, -PO 2 H, -PO 2 R, -PO 3 H, -PO 3 R , -SH, -SR, -SOH, -SOR, -S0 2 H, -S0 2 R, -SO 3 H, SO 3 R, = O, = N, = S and -C 6 H 5 from the group consisting of Selected;

상기 수은 이온 검출 기능 브러쉬 고분자 화합물의 중량평균 분자량은 5,000 내지 5,000,000, 바람직하게는 5,000 내지 500,000이다.The weight average molecular weight of the mercury ion detection function brush polymer compound is 5,000 to 5,000,000, preferably 5,000 to 500,000.

본 발명에 있어서, 상기 말단 고리와 폴리에테르 폴리올 주쇄를 연결하는 링커는 다양한 형태로 이루어질 수 있다. 본 발명에 있어서, 상기 링커는 -CH2S(CR3R4)γO-, -CH2S(CR3R4)γO(CR5R6)τ-, -CH2S(CR3R4)γOCO-, -CH2S(CR3R4)γOCO(CR5R6)τ-, -CH2S(CR3R4)γCOO-, -CH2S(CR3R4)γCOO(CR5R6)τ-, -CH2S(CR3R4)γNHCO-, -CH2S(CR3R4)γNHCOO(CR5R6)τ-, -CH2S(CR3R4)γOCO(CH2)2OCO-, -CH2S(CR3R4)γ OCO(CH2)2OCO(CR5R6)τ-, -CH2S(CR3R4)γCO-, -CH2S(CR3R4)γCO(CR5R6)τ-, -CH2SO2(CR3R4)γO-, -CH2SO2(CR3R4)γO(CR5R6)τ-, -CH2SO(CR3R4)γOCO-, -CH2SO(CR3R4)γOCO(CR5R6)τ-, -CH2SO(CR3R4)γCOO-, -CH2SO(CR3R4)γCOO(CR5R6)τ-, -CH2SO(CR3R4)γNHCO-, -CH2SO(CR3R4)γNHCO(CR5R6)τ-, -CH2SO(CR3R4)γOCO(CH2)2OCO-, -CH2SO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2SO(CR3R4)γCO-, -CH2SO(CR3R4)γCO(CR5R6)τ-, -CH2SO2(CR3R4)γOCO-, -CH2SO2(CR3R4)γOCO(CR5R6)τ-, -CH2SO2(CR3R4)γCOO-, -CH2SO2(CR3R4)γCOO(CR5R6)τ-, -CH2SO2(CR3R4)γNHCO-, -CH2SO2(CR3R4)γNHCO(CR5R6)τ-, -CH2SO2(CR3R4)γOCO(CH2)2OCO-, -CH2SO2(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2SO2(CR3R4)γCO-, -CH2SO2(CR3R4)γCO(CR5R6)τ -, -OCO(CR3R4)γO-, -OCO(CR3R4)γO(CR5R6)τ-, -OCO(CR3R4)γOCO-, -OCO(CR3R4)γOCO(CR5R6)τ-, -OCO(CR3R4)γCOO-, -OCO(CR3R4)γCOO(CR5R6)τ-, -OCO(CR3R4)γNHCO-, -OCO(CR3R4)γNHCO(CR5R6)τ-, -OCO(CR3R4)γOCO(CH2)2OCO-, -OCO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OCO(CR3R4)γCO-, -OCO(CR3R4)γCO(CR5R6)τ-, -COO(CR3R4)γO-, -COO(CR3R4)γO(CR5R6)τ-, -COO(CR3R4)γOCO-, -COO(CR3R4)γOCO (CR5R6)τ-, -COO(CR3R4)γCOO-, -COO(CR3R4)γCOO(CR5R6)τ-, -COO(CR3R4)γNHCO-, -COO(CR3R4)γNHCO(CR5R6)τ-, -COO(CR3R4)γOCO(CH2)2OCO-, -COO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -COO(CR3R4)γCO-, -COO(CR3R4)γ CO(CR5R6)τ-, -O(CR3R4)γO-, -O(CR3R4)γO(CR5R6)τ-, -O(CR3R4)γOCO-, -O(CR3R4)γOCO(CR5R6)τ-, -O(CR3R4)γCOO-, -O(CR3R4)γCOO(CR5R6)τ-, -O(CR3R4)γNHCO-, -O(CR3R4)γNHCO(CR5R6)τ-, -O(CR3R4)γOCO(CH2)2OCO-, -O(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -O(CR3R4)γCO-, -O(CR3R4)γCO(CR5R6)τ-, -NH(CR3R4)γO-, -NH(CR3R4)γO(CR5R6)τ-, -NH(CR3R4)γOCO-, -NH(CR3R4)γOCO(CR5R6)τ-, -NH(CR3R4)γCOO-, -NH(CR3R4)γCOO(CR5R6)τ-, -NH(CR3R4)γNHCO-, -NH(CR3R4)γNHCO(CR5R6)τ-, -NH(CR3R4)γOCO(CH2)2OCO-, -NH(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -NH(CR3R4)γCO-, -NH(CR3R4)γCO(CR5R6)τ-, -(CR3R4)γO-, -(CR3R4)γO(CR5R6)τ-, -(CR3R4)γOCO-, -(CR3R4)γOCO(CR5R6)τ-, -(CR3R4)γ(CH2)nCOO-, -(CR3R4)γ(CH2)nCOO(CR5R6)τ-, -(CR3R4)γNHCO-, -(CR3R4)γNHCO(CR5R6)τ-, -(CR3R4)γOCO(CH2)2OCO-, -(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4(CR3R4)γO-, -OC6H4(CR3R4)γO(CR5R6)τ-, -OC6H4(CR3R4)γOCO-, -OC6H4(CR3R4)γOCO-, -OC6H4(CR3R4)γCOO(CR5R6)τ-, -OC6H4(CR3R4)γNHCO-, -OC6H4(CR3R4)γNHCO(CR5R6)τ-, -OC6H4(CR3R4)γ-, -OCO(CH2)2OCO-, -OCO(CH2)2OCO(CR3R4)γ-, -OC6H4(CR3R4)γCO-, -OC6H4(CR3R4)γCO(CR5R6)τ-, -OC6H4COO(CR3R4)γOCO-, -OC6H4COO(CR3R4)γOCO(CR5R6)τ-, -OC6H4COO(CR3R4)γCOO-, -OC6H4COO(CR3R4)γCOO(CR5R6)τ-, -OC6H4COO(CR3R4)γO-, -OC6H4COO(CR3R4)γO(CR5R6)τ-, -OC6H4COO(CR3R4)γNHCO-, -OC6H4COO(CR3R4)γNHCO(CR5R6)τ-, -OC6H4COO(CR3R4)γOCO(CH2)2OCO-, -OC6H4COO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4COO(CR3R4)γCO-, -OC6H4COO(CR3R4)γCO(CR5R6)τ- 또는 -OC6H4CONHR(CR3R4)γOCO-, -OC6H4CONHR(CR3R4)γOCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γCOO-, -OC6H4CONH(CR3R4)γCOO(CR5R6)τ-, -OC6H4CONH(CR3R4)γO-, -OC6H4CONH(CR3R4)γO(CR5R6)τ-, -OC6H4CONH(CR3R4)γNHCO-, -OC6H4CONH(CR3R4)γNHCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γOCO(CH2)2OCO-, -OC6H4CONH(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γCO-, -OC6H4CONH(CR3R4)γCO(CR5R6)τ-로 이루어진 군으로부터 선택되는 지방족 또는 방향족 유도체일 수 있으며, 여기에서γ, τ는 서로에 관계없이 각각R3 및 R4 와 R5 및 R6를 포함하는 탄소 반복단위로서 탄소 수 1 내지 20의 값을 지니고 R3, R4, R5 및 R6는 서로에 관계없이 수소, 탄소 수 1 내지 20의 알킬기이다. In the present invention, the linker connecting the end ring and the polyether polyol main chain may be formed in various forms. In the present invention, the linker is -CH 2 S (CR 3 R 4 ) γ O-, -CH 2 S (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -CH 2 S (CR 3 R 4 ) γ OCO-, -CH 2 S (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -CH 2 S (CR 3 R 4 ) γ COO-, -CH 2 S (CR 3 R 4) γ COO (CR 5 R 6) τ -, -CH 2 S (CR 3 R 4) γ NHCO-, -CH 2 S (CR 3 R 4) γ NHCOO (CR 5 R 6) τ -, -CH 2 S (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -CH 2 S (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 S ( CR 3 R 4 ) γ CO-, -CH 2 S (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ O-, -CH 2 SO 2 (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ OCO-, -CH 2 SO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ -, -CH 2 SO (CR 3 R 4) γ COO-, -CH 2 SO (CR 3 R 4) γ COO (CR 5 R 6) τ -, -CH 2 SO (CR 3 R 4) γ NHCO- , -CH 2 SO (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -CH 2 SO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ CO-, -CH 2 SO (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ OCO-, -CH 2 SO 2 (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ COO-, -CH 2 SO 2 (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ -, -CH 2 SO 2 (CR 3 R 4) γ NHCO-, -CH 2 SO 2 (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -CH 2 SO 2 (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -CH 2 SO 2 (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ CO-, -CH 2 SO 2 (CR 3 R 4) γ CO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ O-, -OCO (CR 3 R 4) γ O ( CR 5 R 6) τ -, -OCO (CR 3 R 4) γ OCO-, -OCO (CR 3 R 4) γ OCO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ COO- , -OCO (CR 3 R 4) γ COO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ NHCO-, -OCO (CR 3 R 4) γ NHCO (CR 5 R 6) τ - , -OCO (CR 3 R 4) γ OCO (CH 2) 2 OCO-, -OCO (CR 3 R 4) γ OCO (CH 2) 2 OCO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ CO-, -OCO (CR 3 R 4) γ CO (CR 5 R 6) τ -, -COO (CR 3 R 4) γ O-, -COO (CR 3 R 4) γ O (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ OCO-, -COO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ COO-,- COO (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ NHCO-, -COO (CR 3 R 4 ) γ NHCO (CR 5 R 6) τ -, -COO (CR 3 R 4) γ OCO (CH 2) 2 OCO-, -COO (CR 3 R 4) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ CO-, -COO (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ O-, -O (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ OCO-, -O (CR 3 R 4 ) γ OCO ( CR 5 R 6) τ -, -O (CR 3 R 4) γ COO-, -O (CR 3 R 4) γ COO (CR 5 R 6) τ -, -O (CR 3 R 4) γ NHCO- , -O (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -O (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ CO-, -O (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ O-, -NH (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ OCO-, -NH (CR 3 R 4 ) γ OCO (CR 5 R 6) τ -, -NH ( CR 3 R 4) γ COO-, -NH (CR 3 R 4) γ COO (CR 5 R 6) τ -, -NH (CR 3 R 4) γ NHCO-, - NH (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -NH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ CO-, -NH (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ -,-(CR 3 R 4) γ O-, - (CR 3 R 4) γ O (CR 5 R 6) τ -, - (CR 3 R 4) γ OCO-, - (CR 3 R 4) γ OCO (CR 5 R 6) τ -,-(CR 3 R 4 ) γ (CH 2 ) n COO-,-(CR 3 R 4 ) γ (CH 2 ) n COO (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ NHCO-,-(CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-,-(CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 (CR 3 R 4 ) γ O-, -OC 6 H 4 (CR 3 R 4 ) γ O (CR 5 R 6 ) τ -,- OC 6 H 4 (CR 3 R 4 ) γ OCO-, -OC 6 H 4 (CR 3 R 4 ) γ OCO-, -OC 6 H 4 (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -OC 6 H 4 (CR 3 R 4) γ NHCO-, -OC 6 H 4 (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -OC 6 H 4 (CR 3 R 4) γ -, -OCO (CH 2 ) 2 OCO-, -OCO (CH 2 ) 2 OCO (CR 3 R 4 ) γ- , -OC 6 H 4 (CR 3 R 4 ) γ CO-, -OC 6 H 4 ( CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ OCO-, -OC 6 H 4 COO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ COO-, -OC 6 H 4 COO (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ O-, -OC 6 H 4 COO (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4) γ NHCO-, -OC 6 H 4 COO (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -OC 6 H 4 COO (CR 3 R 4) γ OCO ( CH 2 ) 2 OCO-, -OC 6 H 4 COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ CO -, -OC 6 H 4 COO (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ -or -OC 6 H 4 CONHR (CR 3 R 4 ) γ OCO-, -OC 6 H 4 CONHR (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ COO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ O-, -OC 6 H 4 CONH (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4) γ NHCO-, -OC 6 H 4 CONH (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -OC 6 H 4 CONH (CR 3 R 4) γ OCO (CH 2) 2 OCO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ CO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ − may be an aliphatic or aromatic derivative selected from the group consisting of wherein γ and τ are each independently of each other R 3 and R 4 and, including R 5 and R 6 As carbon repeating units has a value of 1 to 20 carbon atoms, R 3, R 4, R 5 and R 6 is an alkyl group of a hydrogen, 1 to 20 carbon, regardless of each other.

본 발명의 바람직한 실시에 있어서, 상기 링커는 에스테르 반응에 의해서 형성되며, 바람직하게는 -CH2S(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-이며, 상기 고리에서 T, G, M, L은 원소 N이며, E, J, Q 는 원소 C이다. In a preferred embodiment of the invention, the linker is formed by an ester reaction, preferably -CH 2 S (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- In the ring, T, G, M and L are elements N and E, J and Q are elements C.

본 발명에 따른 화학식 1의 퓨린 미믹 자기조립성 브러쉬 고분자 화합물로서 대표적인 예로서 하기 화학식 2의 구조를 갖는 폴리[옥시((아데닌에틸옥시카보닐에틸카보닐옥시)운데실티오메틸)에틸렌-랜-옥시(도데실티오메틸)에틸렌]이 있다 (이 하 PECH-A라 약칭함).  As a representative example of the purine mimic self-assembling brush polymer compound of formula 1 according to the present invention, poly [oxy ((adenineethyloxycarbonylethylcarbonyloxy) undecylthiomethyl) ethylene-lan- having a structure of formula (2) Oxy (dodecylthiomethyl) ethylene] (hereinafter abbreviated as PECH-A).

Figure 112008090347487-PAT00003
(2)
Figure 112008090347487-PAT00003
(2)

상기 식에서, m 및 n은 상기 화학식 1에서 정의한 바와 같다. Wherein m and n are as defined in the formula (1).

상기 화학식 1의 퓨린 미믹을 브러쉬 말단으로 가지는 자기조립성 고분자 화합물에서, 브러쉬 고분자 화합물 단위체의 함량(mol%)을 나타내는 m은 0 내지 100, 바람직하게는 50 내지 100이다.   In the self-assembling polymer compound having the purine mimic of Chemical Formula 1 as a brush end, m representing the content (mol%) of the brush polymer compound unit is 0 to 100, preferably 50 to 100.

본 발명에 따른 고분자 화합물은 코팅 시 말단의 기능기가 코팅된 표면에 수직으로 넓은 면적에 대해 층상으로 배향하는, 유연한 브러쉬 특성을 가진다. 이러한 배향성은 측쇄 기능기의 효능을 극대화시킬 수 있다. The polymer compound according to the present invention has a flexible brush property that, upon coating, orients in layers over a large area perpendicular to the surface on which the functional groups at the end are coated. This orientation can maximize the efficacy of the side chain functional groups.

본 발명은 일 측면에서, 하기 화학식 3로 표현되는 폴리에테르 고분자를The present invention in one aspect, the polyether polymer represented by the following formula (3)

Figure 112008090347487-PAT00004
(3)
Figure 112008090347487-PAT00004
(3)

        유기 용매 중에서 하기 화학식 4의 화합물The compound of formula 4 in an organic solvent

Figure 112008090347487-PAT00005
(4)
Figure 112008090347487-PAT00005
(4)

또는 이들의 유도체와의 반응을 통하여 화학식 1의 화합물을 제조하고,Or through the reaction with derivatives thereof to prepare a compound of formula (1),

여기서, L1 및 L2는 반응을 통해서 상기 화학식(1)의 W를 이루는 링커이며, Here, L1 and L2 are linkers forming the W of the formula (1) through a reaction,

Y1은 수소, 탄소수 1-20의 알킬기, 또는 L1이다. Y1 is hydrogen, a C1-C20 alkyl group, or L1.

본 발명에 있어서, 상기 반응은 화학식 3의 폴리에테르 고분자 화합물을 유기 용매 중에서 화학식4의 화합물과 반응시켜, 코팅 시 말단의 기능기가 코팅된 표면에 수직으로 넓은 면적에 대해 층상으로 배향하는 폴리에테르 고분자를 제조하는 것이다. 사용되는 유기 용매로는 클로로포름, 디클로로메탄, 디메틸아세트아마이드, 디메틸포름아미드 또는 그 혼합용액 등이 있다.In the present invention, the reaction is a polyether polymer having a polyether polymer of formula 3 is reacted with a compound of formula 4 in an organic solvent, the layer is oriented in a layer over a large area perpendicular to the surface coated with functional groups at the time of coating To prepare. Organic solvents to be used include chloroform, dichloromethane, dimethylacetamide, dimethylformamide or a mixed solution thereof.

본 발명의 일 실시에 있어서, 상기 화학식 1의 링커 ㅋ 코팅 시 말단의 기능기가 코팅된 표면에 수직으로 넓은 면적에 대해 층상으로 배향하는 Z는 화학식 3의 폴리에테르 고분자 화합물의 링커 L1과 T에 형성된 링커 L2의 반응으로 제조될 수 있으며, 일 예로 L1이 -OH 말단이고, L2 산기로서 에스테르 축합 반응이다.In one embodiment of the present invention, when the linker of Formula 1 is coated, Z, which is oriented in a layer structure over a large area perpendicular to a surface coated with functional groups at the terminal, is formed in the linkers L1 and T of the polyether polymer compound of Formula 3 It can be prepared by the reaction of linker L2, for example L1 is -OH terminal, ester condensation reaction as L2 acid group.

본 발명의 바람직한 실시에 있어서, 상기 화학식 4의 링커 L2 는 알코올기를 도입한 후, 엔하이드라이드 화합물과 반응시켜 말단을 -COOH로 변환시킬 수 있다. 본 발명에 실시에 있어서, 상기 OH말단의 화학식(3)의 폴리에테르 고분자 화합물은 하기 화학식(5)의 폴리에테르 화합물에 할로겐 치환 반응을 통해서 제조될 수 있다. In a preferred embodiment of the present invention, the linker L2 of Chemical Formula 4 may introduce an alcohol group, and then react with an enhydride compound to convert the terminal into -COOH. In the present invention, the polyether polymer compound of the general formula (3) of the OH terminal can be prepared through a halogen substitution reaction to the polyether compound of the general formula (5).

Figure 112008090347487-PAT00006
(5)
Figure 112008090347487-PAT00006
(5)

여기서, 상기 R1 및 R2는 수소 또는 탄소수 1-20의 알킬이며, γ는 0-20정수의 반복단위이며, x는 F, Cl, Br 및 I이고, d는 50내지 50,000이며, A는 수소, 알킬, 또는 CH2X이다. Wherein R1 and R2 are hydrogen or alkyl of 1-20 carbon atoms, γ is a repeating unit of 0-20 integer, and x is F, Cl, Br And I, d is 50 to 50,000 and A is hydrogen, alkyl, or CH2X.

본 발명의 실시에 있어서, 상기 할로겐 치환 반응은 CH2X기를 NaSROH와 NaSR의 혼합물과 반응시켜 도입될 수 있으며, R과 ROH는 탄소수 1-20의 알킬, 및 알콕시이다. 용매로는 디메틸아세트아마이드, 디메틸포름아마이드, 디에틸에테르, 디클로로메탄, 테트라하이드로퓨란 또는 그 혼합용액 등이 있다. 이 단계에서의 반응은 -100 내지 100 ℃의 온도 및 1 내지 5 atm의 압력에서 이루어지는 것이 좋다.In the practice of the present invention, the halogen substitution reaction may be introduced by reacting a CH2X group with a mixture of NaSROH and NaSR, wherein R and ROH are alkyl having 1-20 carbon atoms, and alkoxy. Examples of the solvent include dimethylacetamide, dimethylformamide, diethyl ether, dichloromethane, tetrahydrofuran or a mixed solution thereof. The reaction in this step is preferably carried out at a temperature of -100 to 100 ℃ and a pressure of # 1 to 5 atm.

상기 화학식(5)의 폴리에테르 고분자 화합물은 공지된 방법으로 제조될 수 있으며, 고리형 에테르 화합물을 용매를 사용하지 않거나 디클로로메탄, 클로로포 름, 다이에틸에테르 등의 용매 중에서 트라이페닐카베니움 헥사플루오로포스페이트 또는 트라이페닐카베니움 헥사클로로안티모니에이트, 알킬 알루미늄 등의 양이온 개시제의 존재하에 양이온 개환 중합 반응하는 단계를 포함한다. The polyether high molecular compound of Formula (5) can be prepared by a known method, the triphenylcarbenium hexa in a solvent such as dichloromethane, chloroform, diethyl ether, without using a cyclic ether compound or a solvent Cation ring-opening polymerization in the presence of a cationic initiator such as fluorophosphate or triphenylcarbenium hexachloroantimoniate, alkyl aluminum, and the like.

본 발명은 일 측면에 있어서, 상기 화학식 1로 표시되는 퓨린 미믹을 브러쉬 말단으로 가지는 고분자의 생체 적합성 재료로의 용도를 제공한다. In one aspect, the present invention provides a use of a polymer having a purine mimic represented by Chemical Formula 1 as a brush end as a biocompatible material.

본 발명에 있어서, 상기 고분자 화합물은 생체 적합성을 재료로서 세포에 대해 부착, 흡착, 또는 접착성 향상 능을 가지며, 병원성 세균에 대해서는 부착, 흡착, 또는 접착에 대한 억제능을 가진다. In the present invention, the polymer compound has a biocompatibility as a material, has the ability to adhere, adsorb, or improve adhesion to cells, and has an ability to inhibit adhesion, adsorption, or adhesion to pathogenic bacteria.

본 발명의 실시에 있어서, 상기 생체 적합성 브러쉬 고분자는 HEp-2 cells 세포등에 대해서는 흡착, 부착, 또는 접착에 대한 향상능을 나타내며, P.aeruginosa, S.aureus, S. epidermidis, E. faecalis, 또는 E.coli 등의 병원권 세균에 대해서 흡착, 부착, 또는 접착에 대한 억제능을 나타낸다. 이에 따라, 본 발명에 따른 생체 적합성 고분자는 생체 적합성 고분자는 생체내에 삽입되거나 투여되는 다양한 형태의 가공물, 예를 들어, 치아, 인공관절, 보형물 등을 제조하거나 이들을 코팅하는 생체 적합성 재료로 사용할 수 있다.In the practice of the present invention, the biocompatible brush polymer exhibits an improvement in adsorption, adhesion, or adhesion to HEp-2 cells, and the like. P.aeruginosa, S.aureus, S. epidermidis, E. faecalis, or Inhibition of adhesion, adhesion, or adhesion to pathogenic bacteria such as E. coli . Accordingly, the biocompatible polymer according to the present invention can be used as a biocompatible material for preparing or coating various types of workpieces, such as teeth, artificial joints, implants, etc., which are inserted or administered in vivo. .

본 발명은 일 측면에 있어서, 상기 화학식 1로 표시되는 퓨린 미믹을 브러쉬 말단으로 가지는 브러쉬 고분자의 단백질에 대한 선택적 결합특성을 이용한 센서 또는 흡착이나 분리제로서의 용도를 제공한다. In one aspect, the present invention provides a use as a sensor or an adsorption or separation agent using a selective binding property to the protein of the brush polymer having a purin mimic represented by the formula (1) at the brush end.

본 발명에 따른 고분자 화합물은 단백질과의 결합성이 좋아, 단백질을 선택적으로 흡착할 수 있어, 단백질의 분리 또는 정제물질로 사용할 수 있다. 예를 들 어, 본 발명에 따른 고분자로 이루어진 코팅막은 감마-글로블린에 선택적으로 결합하여 흡착할 수 있다. The polymer compound according to the present invention has a good binding property with a protein, so that the protein can be selectively adsorbed and used as a protein separation or purification material. For example, the coating film made of a polymer according to the present invention may be selectively adsorbed to gamma-globulin.

본 발명에 따른 고분자 화합물은 단백질들을 감지할 수 있는 화학 센서로 사용할 수 있다. 예를 들어, 본 발명에 따른 고분자를 프리즘 표면 코팅하고, 플라스몬 공명 분광법을 통해 단백질의 검출이 가능하다. 본 발명의 실시에 있어서, 상기 단백질의 검출 또는 특정 단백질의 검출은 표면플라즈몬 공명 분광기를 이용하여 고분자 화합물이 코팅된 프리즘에 광을 입사시켜 단백질의 결합에 따른 반사도의 변화를 측정하여 이루어질 수 있다. The polymer compound according to the present invention can be used as a chemical sensor that can detect proteins. For example, the polymer according to the present invention can be prism surface coated and the protein can be detected through plasmon resonance spectroscopy. In the practice of the present invention, the detection of the protein or the detection of a specific protein can be made by measuring the change in reflectivity according to the binding of the protein by injecting light into the prism coated with the polymer compound using a surface plasmon resonance spectroscopy.

본 발명에 의해서 말단에 퓨린미믹기를 가지는 측쇄가 형성된 브러쉬형 폴리에티르 폴리머가 제공되었다. According to the present invention, there is provided a brush-like polyether polymer having a side chain having a purinmimic group at its end.

본 발명에 따른 퓨린미믹 브러쉬고분자는 본 발명에 소개된 물질은 우수한 가공성을 바탕으로 다양한 형태의 성형물로 제조될 수 있으며 특히 특정 기질 위에 나노 필름으로 제조될 경우 기능기가 기질에 수직한 방향으로 배향되는 자기조립 현상을 보인다. 자기조립 현상은 기능기의 표면 분포를 극대화하며 이로 인해 고분자 물질의 말단에 결합된 기능기와 기능기를 인지하는 세포, 단백질, DNA, RNA 등과 같은 물질과의 상호 작용을 최대화할 수 있다. 이와 같은 특징을 이용하여 본 자기조립성 고분자는 표면 흡착을 통하여 미생물을 효과적으로 배양할 수 있을 뿐만 아니라 단백질, DNA, RNA와 같은 특정 물질을 부착 또는 분리하거나 이와 같은 물질을 생물체에 전달하는 매개체로써도 사용이 가능하다.Purinmimic brush polymer according to the present invention can be produced in a variety of moldings on the basis of the excellent processability, especially when the functional group is oriented in a direction perpendicular to the substrate when made of a nano film on a specific substrate Self-assembly Self-assembly maximizes the surface distribution of functional groups, which can maximize the interaction of functional groups bound to the ends of the polymeric material with materials such as cells, proteins, DNA and RNA. Using these characteristics, the self-assembled polymer can not only effectively culture microorganisms through surface adsorption, but also can be used as a medium for attaching or separating specific substances such as proteins, DNA, RNA, or delivering such substances to living organisms. This is possible.

이하, 본 발명을 하기 합성 예와 실시 예를 들어 설명하기로 하되, 본 발명이 하기 합성 예와 실시 예만 한정되는 것은 아니다. Hereinafter, the present invention will be described with reference to the following synthesis examples and examples, but the present invention is not limited only to the following synthesis examples and examples.

<합성예 1>Synthesis Example 1

Figure 112008090347487-PAT00007
Figure 112008090347487-PAT00007

100mL의 둥근바닥 플라스크에 40mL(512mmol)의 에피클로로히드린을 넣고 질소분위기 하에서 5°C로 냉각시켰다. 여기에 2.56mmol의 개시제를 디클로로메탄에 녹인 용액을 첨가한 후 상온에서 4일간 교반하였다. 이 반응물을 소량의 디클로로메탄에 녹인 후 메탄올에 재침전시켜 정제하고, 이를 40°C 진공 하에서 8시간 건조하여 폴리에피클로로히드린을 제조하였다. 수율: 65%. 1H-NMR (300 MHz, CDCl3):δ(ppm)=3.89-3.49 (br, 3H, OCH, OCH2,CH2Cl); 13C-NMR (75 MHz, CDCl3):δ(ppm)= 79.70, 70.32, 44.31; FTIR(in film):ν(cm-1)= 2960, 2915, 2873, 1427, 1348, 1299, 1263, 1132, 750, 707.40 mL (512 mmol) of epichlorohydrin was added to a 100 mL round bottom flask and cooled to 5 ° C. under a nitrogen atmosphere. A solution of 2.56 mmol of an initiator dissolved in dichloromethane was added thereto, followed by stirring at room temperature for 4 days. The reaction product was dissolved in a small amount of dichloromethane, purified by reprecipitation in methanol, and dried for 8 hours under vacuum at 40 ° C. to prepare polyepichlorohydrin. Yield 65%. 1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 3.89-3.49 (br, 3H, OCH, OCH 2 , CH 2 Cl); 13 C-NMR (75 MHz, CDCl 3 ): δ (ppm) = 79.70, 70.32, 44.31; FTIR (in film): ν (cm −1 ) = 2960, 2915, 2873, 1427, 1348, 1299, 1263, 1132, 750, 707.

<합성예 2> (m=0, PECH_OH0) Synthesis Example 2 (m = 0, PECH_OH0)

Figure 112008090347487-PAT00008
Figure 112008090347487-PAT00008

합성예 1에서 얻은 폴리에피클로로히드린 화합물 558mg (6.03mmol)을 5mL의 디메틸아세트아마이드에 녹인 용액에, 나트륨 도데실싸이올레이트 1350mg (6.03mmol)을 10mL의 디메틸아세트아마이드에 녹인 용액을 첨가하였다. 이 혼합액을 50℃에서 2 시간 교반한 후 클로로포름으로 추출하고 물로 씻어 용매를 제거한 후, 헥산에 침전시켰다. 이 침전물을 40°C 진공 하에서 8 시간 건조하여 목적 화합물 (PECH_OH0)을 얻었다. 1H-NMR (300 MHz, CDCl3):δ(ppm)=3.70-3.59 (br, 3H, OCH, OCH2), 2.75-2.52 (m, 4H, CH2SCH2), 1.57-1.13 (m, 20H, CH2), 0.88 (t, 3H, CH3); 13C-NMR (75 MHz, CDCl3):δ(ppm)=79.36-78.72, 63.07, 39.23, 33.26, 32.82, 29.75-28.53, 25.76; IR (in film): ν (cm-1)=2960, 2854, 1460, 1110, 732.To a solution of 558 mg (6.03 mmol) of polyepichlorohydrin compound obtained in Synthesis Example 1 in 5 mL of dimethylacetamide, a solution of 1350 mg (6.03 mmol) of sodium dodecylthiolate in 10 mL of dimethylacetamide was added. . The mixture was stirred at 50 ° C. for 2 hours, extracted with chloroform, washed with water to remove the solvent, and then precipitated in hexane. This precipitate was dried under vacuum at 40 ° C. for 8 hours to obtain the title compound (PECH_OH0). 1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 3.70-3.59 (br, 3H, OCH, OCH 2 ), 2.75-2.52 (m, 4H, CH 2 SCH 2 ), 1.57-1.13 (m , 20H, CH 2 ), 0.88 (t, 3H, CH 3 ); 13 C-NMR (75 MHz, CDCl 3 ): δ (ppm) = 79.36-78.72, 63.07, 39.23, 33.26, 32.82, 29.75-28.53, 25.76; IR (in film): ν (cm −1 ) = 2960, 2854, 1460, 1110, 732.

<합성예 3> (m=25, PECH_OH25)Synthesis Example 3 (m = 25, PECH_OH25)

Figure 112008090347487-PAT00009
Figure 112008090347487-PAT00009

합성예 1에서 얻은 폴리에피클로로히드린 화합물 894mg (9.66mmol)을 6mL의 디메틸아세트아마이드에 녹인 용액에, 나트륨 11-하이드록시운데실싸이올레이트 548mg (2.42mmol)과 나트륨 도데실싸이올레이트 1630mg (7.25mmol)을 30mL의 디메틸아세트아마이드에 녹인 용액을 첨가하였다. 이 혼합액을 실온에서 하루 동안 교반한 후 클로로포름으로 추출하고 물로 씻어 용매를 제거한 후, 헥산에 침전시켰다. 이 침전물을 40°C 진공 하에서 8 시간 건조하여 목적 화합물 (PECH_OH20)을 얻었다. 1H-NMR (300 MHz, CDCl3):δ(ppm)=3.70-3.59 (br, OCH, OCH2), 2.75-2.52 (m, CH2SCH2), 1.57-1.13 (m, CH2), 0.88 (t, CH3); 13C-NMR (75 MHz, CDCl3):δ(ppm)=79.36-78.72, 69.42, 63.07, 39.23, 33.26, 32.82, 29.75-28.53, 25.76, 23.31, 14.75; IR (in film): ν (cm-1)=3590-3100, 2960, 2854, 1460, 1110, 732.894 mg (9.66 mmol) of the polyepichlorohydrin compound obtained in Synthesis Example 1 was dissolved in 6 mL of dimethylacetamide, 548 mg (2.42 mmol) of sodium 11-hydroxyundecylthiolate and 1630 mg of sodium dodecylthiolate. (7.25 mmol) was added to a solution of 30 mL of dimethylacetamide. The mixture was stirred for one day at room temperature, extracted with chloroform, washed with water to remove the solvent, and then precipitated in hexane. This precipitate was dried under vacuum at 40 ° C. for 8 hours to obtain the title compound (PECH_OH20). 1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 3.70-3.59 (br, OCH, OCH 2 ), 2.75-2.52 (m, CH 2 SCH 2 ), 1.57-1.13 (m, CH 2 ) , 0.88 (t, CH 3 ); 13 C-NMR (75 MHz, CDCl 3 ): δ (ppm) = 79.36-78.72, 69.42, 63.07, 39.23, 33.26, 32.82, 29.75-28.53, 25.76, 23.31, 14.75; IR (in film): ν (cm −1 ) = 3590-3100, 2960, 2854, 1460, 1110, 732.

<합성예 4> (m=50, PECH_OH50)Synthesis Example 4 (m = 50, PECH_OH50)

Figure 112008090347487-PAT00010
Figure 112008090347487-PAT00010

합성예 1에서 얻은 폴리에피클로로히드린 화합물 894mg (9.66mmol)을 6mL의 디메틸아세트아마이드에 녹인 용액에, 11-하이드록시운데실싸이올레이트 1093mg (4.83mmol)과 도데실싸이올레이트 1083mg (4.83mmol)을 30mL의 디메틸아세트아마이드에 녹인 용액을 첨가하였다. 이 혼합액을 실온에서 하루 동안 교반한 후 클로로포름으로 추출하고 물로 씻어 용매를 제거한 후, 헥산에 침전시켰다. 이 침전물을 40°C 진공 하에서 8 시간 건조하여 목적 화합물 (PECH_OH40)을 얻었다. 1H-NMR (300 MHz, CDCl3):δ(ppm)=3.70-3.59 (br, OCH, OCH2), 2.75-2.52 (m, CH2SCH2), 1.57-1.13 (m, CH2), 0.88 (t, CH3); 13C-NMR (75 MHz, CDCl3):δ(ppm)=79.36-78.72, 69.42, 63.07, 39.23, 33.26, 32.82, 29.75-28.53, 25.76, 23.31, 14.75; IR (in film): ν (cm-1)=3590-3100, 2960, 2854, 1460, 1110, 732.894 mg (9.66 mmol) of the polyepichlorohydrin compound obtained in Synthesis Example 1 was dissolved in 6 mL of dimethylacetamide. mmol) was added to 30 mL of dimethylacetamide. The mixture was stirred for one day at room temperature, extracted with chloroform, washed with water to remove the solvent, and then precipitated in hexane. This precipitate was dried under vacuum at 40 ° C. for 8 hours to obtain the title compound (PECH_OH40). 1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 3.70-3.59 (br, OCH, OCH 2 ), 2.75-2.52 (m, CH 2 SCH 2 ), 1.57-1.13 (m, CH 2 ) , 0.88 (t, CH 3 ); 13 C-NMR (75 MHz, CDCl 3 ): δ (ppm) = 79.36-78.72, 69.42, 63.07, 39.23, 33.26, 32.82, 29.75-28.53, 25.76, 23.31, 14.75; IR (in film): ν (cm −1 ) = 3590-3100, 2960, 2854, 1460, 1110, 732.

<합성예 5> (m=75, PECH_OH75)Synthesis Example 5 (m = 75, PECH_OH75)

Figure 112008090347487-PAT00011
Figure 112008090347487-PAT00011

합성예 1에서 얻은 폴리에피클로로히드린 화합물 894mg (9.66mmol)을 6mL의 디메틸아세트아마이드에 녹인 용액에, 11-하이드록시운데실싸이올레이트 1630mg (7.25mmol)과 도데실싸이올레이트 542mg (2.41mmol)을 30mL의 디메틸아세트아마이드에 녹인 용액을 첨가하였다. 이 혼합액을 실온에서 하루 동안 교반한 후 클로로포름으로 추출하고 물로 씻어 용매를 제거한 후, 헥산에 침전시켰다. 이 침전물을 40°C 진공 하에서 8 시간 건조하여 목적 화합물 (PECH_OH60)을 얻었다. 1H-NMR (300 MHz, CDCl3):δ(ppm)=3.70-3.59 (br, OCH, OCH2), 2.75-2.52 (m, CH2SCH2), 1.57-1.13 (m, CH2), 0.88 (t, CH3); 13C-NMR (75 MHz, CDCl3):δ(ppm)=79.36-78.72, 69.42, 63.07, 39.23, 33.26, 32.82, 29.75-28.53, 25.76, 23.31, 14.75; IR (in film): ν (cm-1)=3590-3100, 2960, 2854, 1460, 1110, 732.In a solution of 894 mg (9.66 mmol) of the polyepichlorohydrin compound obtained in Synthesis Example 1 in 6 mL of dimethylacetamide, 1630 mg (7.25 mmol) of 11-hydroxyundecylthiolate and 542 mg of dodecylthiolate (2.41 mmol) was added to 30 mL of dimethylacetamide. The mixture was stirred for one day at room temperature, extracted with chloroform, washed with water to remove the solvent, and then precipitated in hexane. This precipitate was dried under vacuum at 40 ° C. for 8 hours to obtain the title compound (PECH_OH60). 1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 3.70-3.59 (br, OCH, OCH 2 ), 2.75-2.52 (m, CH 2 SCH 2 ), 1.57-1.13 (m, CH 2 ) , 0.88 (t, CH 3 ); 13 C-NMR (75 MHz, CDCl 3 ): δ (ppm) = 79.36-78.72, 69.42, 63.07, 39.23, 33.26, 32.82, 29.75-28.53, 25.76, 23.31, 14.75; IR (in film): ν (cm −1 ) = 3590-3100, 2960, 2854, 1460, 1110, 732.

<합성예 6> (m=100, PECH_OH100)Synthesis Example 6 (m = 100, PECH_OH100)

Figure 112008090347487-PAT00012
Figure 112008090347487-PAT00012

합성예 1에서 얻은 폴리에피클로로히드린 화합물 500mg (5.4mmol)을 2mL의 디메틸아세트아마이드에 녹인 용액에, 11-하이드록시운데실싸이올레이트 1,382mg (5.4mmol)을 10mL의 디메틸아세트아마이드에 녹인 용액을 첨가하였다. 이 혼합액을 상온에서 2 시간 교반한 후 클로로포름으로 추출하고 물로 씻어 용매를 제거한 후, 헥산에 침전시켰다. 이 침전물을 40°C 진공 하에서 8 시간 건조하여 목적 화합물(PECH_OH100)을 얻었다. 1H-NMR (300 MHz, CDCl3):δ(ppm)=3.70-3.59 (br, 3H, OCH, OCH2), 2.75-2.52 (m, 4H, CH2SCH2), 1.57-1.13 (m, 18H, CH2); 13C-NMR (75 MHz, CDCl3):δ(ppm)=79.36-78.72, 69.42, 63.07, 39.23, 33.26, 32.82, 29.75-28.53, 25.76; IR (in film): ν (cm-1)=3590-3100, 2960, 2854, 1460, 1110, 732.500 mg (5.4 mmol) of the polyepichlorohydrin compound obtained in Synthesis Example 1 was dissolved in 2 mL of dimethylacetamide, and 1,382 mg (5.4 mmol) of 11-hydroxyundecylthiolate was dissolved in 10 mL of dimethylacetamide. The solution was added. The mixture was stirred at room temperature for 2 hours, extracted with chloroform, washed with water to remove the solvent, and then precipitated in hexane. This precipitate was dried under vacuum at 40 ° C. for 8 hours to obtain the target compound (PECH_OH100). 1 H-NMR (300 MHz, CDCl 3 ): δ (ppm) = 3.70-3.59 (br, 3H, OCH, OCH 2 ), 2.75-2.52 (m, 4H, CH 2 SCH 2 ), 1.57-1.13 (m , 18H, CH 2 ); 13 C-NMR (75 MHz, CDCl 3 ): δ (ppm) = 79.36-78.72, 69.42, 63.07, 39.23, 33.26, 32.82, 29.75-28.53, 25.76; IR (in film): ν (cm −1 ) = 3590-3100, 2960, 2854, 1460, 1110, 732.

<합성예 7> 6-(9-아데닐)에틸옥시카보닐에틸카보실닉에시드 (합성예 6의 유도체 합성)Synthesis Example 7 6- (9-Adenyl) ethyloxycarbonylethylcarbosnic acid (synthesis of derivative of Synthesis Example 6)

Figure 112008090347487-PAT00013
Figure 112008090347487-PAT00013

아데닌 4.96 g (36.7 mmol), 에틸렌카보네이트 (3.30 g, 37.5 mmol) 그리고 미량의 수산화나트륨을 디메틸포름아마이드 150 ml에 녹인 후 2 시간 동안 리플럭스한다. 반응이 끝나면 용매를 감압 가열하여 제거하고 남은 물질을 에탄올에서 재결정하여. 9-(2-하이드록시에틸)아데닌 4.68 g (수율 = 71 %)을 얻는다. 1H NMR (DMSO-d) 8.15 (1 H, s), 8.08 (1 H, s), 7.24 (2 H, s), 5.00 (1 H, t), 4.19 (2 H, t), 3.75 (2 H, q). 얻어진 9-(2-하이드록시에틸)아데닌 0.50 g (2.79 mmol)과 석시닐안하이드라이드 0.279 (2.79 mmol)을 디메틸포름아마이드 20 ml에 녹인 후 24 시간 동안 상온에서 반응한다. 반응이 종료되면 흰색으로 침전된 물질을 필터하고 이것을 디에틸에테르로 여러 번 씻어주고 건조하면 6-(9-아데닐)에틸옥시카보닐에틸카보닐닉에시드 0.59 g (수율 = 80%)을 얻는다. 1H NMR (DMSO-d) 8.14 (1 H, s), 8.13 (1 H, s), 7.21 (2 H, s), 4.39 (4 H, t), 2.43 (4 H, t).4.96 g (36.7 mmol) of adenine, ethylene carbonate (3.30 g, 37.5 mmol) and traces of sodium hydroxide are dissolved in 150 ml of dimethylformamide and then refluxed for 2 hours. After the reaction, the solvent was removed by heating under reduced pressure, and the remaining material was recrystallized from ethanol. 4.68 g (yield = 71%) of 9- (2-hydroxyethyl) adenine are obtained. 1 H NMR (DMSO- d ) 8.15 (1 H, s), 8.08 (1 H, s), 7.24 (2 H, s), 5.00 (1 H, t), 4.19 (2 H, t), 3.75 ( 2 H, q). 0.50 g (2.79 mmol) of 9- (2-hydroxyethyl) adenine and 0.279 (2.79 mmol) of succinyl anhydride were dissolved in 20 ml of dimethylformamide, and then reacted at room temperature for 24 hours. After the reaction was completed, the white precipitated material was filtered off, washed with diethyl ether several times and dried to obtain 0.59 g (yield = 80%) of 6- (9-adenyl) ethyloxycarbonylethylcarbonyl acid. 1 H NMR (DMSO- d ) 8.14 (1 H, s), 8.13 (1 H, s), 7.21 (2 H, s), 4.39 (4 H, t), 2.43 (4 H, t).

<합성예 8> (m=25, PECH-A25)Synthesis Example 8 (m = 25, PECH-A25)

Figure 112008090347487-PAT00014
Figure 112008090347487-PAT00014

합성예 3에서 얻은 화합물 260 mg (0.25 OH mmol)과 N-(3-디메틸아미노프로필)-N'-에틸카보디이미드 하이드로크로라이드 116 mg (0.750 mmol), 4-(디메틸아미노)피리딘 46 mg (0.375 mmol), 합성예 7에서 얻은 화합물 66 mg (0.25 mmol)을 20 ml 디메틸포름아마이드에 녹인 후 50 ℃에서 24 시간 동안 가열하면서 교반한다. 반응이 완료되면 상온으로 식힌 후 200 ml 디에틸 에테르에 침전한 후 침전용매를 제거하고 남은 고상 물질을 실리카겔 크로마토그래피로 정제한다 (메틸렌크로라이드 : 메탄올 = 20 vol% :80 vol%, Rf=0.8). 1H-NMR (300 MHz, DMSO-d) 8.12 (s, 1H, NH), 8.09 (s, 1H, Ar-H), 7.21 (s, 2H, NH2), 4.37 (t, 4H, NCH2CH2O ), 4.08 (s, 2H, CH2), 3.70-3.59 (br, 3H, OCH, OCH2), 2.81-2.54 (t, 4H, CH2SCH2), 2.48(t, 4H, OCCH2CH2CO), 1.67-1.13 (m, 18H, CH2), 0.88 (t, 3H, CH3); 13H-NMR (75 MHz, DMSO-d) 172.7, 155.9, 152.3, 149.3, 140.8, 118.7, 79.36-78.72, 64.9, 63.2, 61.6, 42.9, 33.6, 32.5, 30.3-27.3, 26.5-24.7, 14.75; IR (KBr) ν (cm-1)=3800-3020, 2920, 2850, 1730, 1660, 1600, 1470, 1320, 1300, 1190, 1135, 1080260 mg (0.25 OH mmol) of the compound obtained in Synthesis Example 3 and 116 mg (0.750 mmol) of 4-N- (3-dimethylaminopropyl) -N'-ethylcarbodiimide hydrochloride, 46 mg of 4- (dimethylamino) pyridine (0.375 mmol) and 66 mg (0.25 mmol) of the compound obtained in Synthesis Example 7 were dissolved in 20 ml dimethylformamide, and then stirred with heating at 50 ° C. for 24 hours. After the reaction was completed, the mixture was cooled to room temperature, precipitated in 200 ml of diethyl ether, the precipitated solvent was removed, and the remaining solid was purified by silica gel chromatography (methylene chloride: methanol = 20 vol%: 80 vol%, R f = 0.8). 1 H-NMR (300 MHz, DMSO- d ) 8.12 (s, 1H, NH), 8.09 (s, 1H, Ar-H), 7.21 (s, 2H, NH 2 ), 4.37 (t, 4H, NCH 2 CH 2 O), 4.08 (s, 2H, CH 2 ), 3.70-3.59 (br, 3H, OCH, OCH 2 ), 2.81-2.54 (t, 4H, CH 2 SCH 2 ), 2.48 (t, 4H, OCCH 2 CH 2 CO), 1.67-1.13 (m, 18H, CH 2 ), 0.88 (t, 3H, CH 3 ); 13 H-NMR (75 MHz, DMSO- d ) 172.7, 155.9, 152.3, 149.3, 140.8, 118.7, 79.36-78.72, 64.9, 63.2, 61.6, 42.9, 33.6, 32.5, 30.3-27.3, 26.5-24.7, 14.75; IR (KBr) ν (cm -1 ) = 3800-3020, 2920, 2850, 1730, 1660, 1600, 1470, 1320, 1300, 1190, 1135, 1080

<합성예 8> (m=50, PECH-A50)Synthesis Example 8 (m = 50, PECH-A50)

Figure 112008090347487-PAT00015
Figure 112008090347487-PAT00015

합성예 4에서 얻은 화합물 260 mg (0.50 OH mmol)과 N-(3-디메틸아미노프로필)-N'-에틸카보디이미드 하이드로크로라이드 233 mg (1.50 mmol), 4-(디메틸아미노)피리딘 92 mg (0.75 mmol), 합성예 7에서 얻은 화합물 132 mg (0.50 mmol)을 20 ml 디메틸포름아마이드에 녹인 후 50 ℃에서 24 시간 동안 가열하면서 교반한다. 반응이 완료되면 상온으로 식힌 후 200 ml 디에틸 에테르에 침전한 후 침전용매를 제거하고 남은 고상 물질을 실리카겔 크로마토그래피로 정제한다 (메틸렌크로라이드 : 메탄올 = 20 vol% :80 vol%, Rf=0.8). 1H-NMR (300 MHz, DMSO-d) 8.12 (s, 1H, NH), 8.09 (s, 1H, Ar-H), 7.21 (s, 2H, NH2), 4.37 (t, 4H, NCH2CH2O ), 4.08 (s, 2H, CH2), 3.70-3.59 (br, 3H, OCH, OCH2), 2.81-2.54 (t, 4H, CH2SCH2), 2.48(t, 4H, OCCH2CH2CO), 1.67-1.13 (m, 18H, CH2), 0.88 (t, 3H, CH3); 13H-NMR (75 MHz, DMSO-d) 172.7, 155.9, 152.3, 149.3, 140.8, 118.7, 79.36-78.72, 64.9, 63.2, 61.6, 42.9, 33.6, 32.5, 30.3-27.3, 26.5-24.7, 14.75; IR (KBr) ν (cm-1)=3800-3020, 2920, 2850, 1730, 1660, 1600, 1470, 1320, 1300, 1190, 1135, 1080260 mg (0.50 OH mmol) of the compound obtained in Synthesis Example 4 and 233 mg (1.50 mmol) of N- (3-dimethylaminopropyl) -N'-ethylcarbodiimide hydrochloride, 92 mg of 4- (dimethylamino) pyridine (0.75 mmol) and 132 mg (0.50 mmol) of the compound obtained in Synthesis Example 7 were dissolved in 20 ml dimethylformamide, and then stirred with heating at 50 ° C. for 24 hours. After the reaction was completed, the mixture was cooled to room temperature, precipitated in 200 ml of diethyl ether, the precipitated solvent was removed, and the remaining solid was purified by silica gel chromatography (methylene chloride: methanol = 20 vol%: 80 vol%, R f = 0.8). 1 H-NMR (300 MHz, DMSO- d ) 8.12 (s, 1H, NH), 8.09 (s, 1H, Ar-H), 7.21 (s, 2H, NH 2 ), 4.37 (t, 4H, NCH 2 CH 2 O), 4.08 (s, 2H, CH 2 ), 3.70-3.59 (br, 3H, OCH, OCH 2 ), 2.81-2.54 (t, 4H, CH 2 SCH 2 ), 2.48 (t, 4H, OCCH 2 CH 2 CO), 1.67-1.13 (m, 18H, CH 2 ), 0.88 (t, 3H, CH 3 ); 13 H-NMR (75 MHz, DMSO- d ) 172.7, 155.9, 152.3, 149.3, 140.8, 118.7, 79.36-78.72, 64.9, 63.2, 61.6, 42.9, 33.6, 32.5, 30.3-27.3, 26.5-24.7, 14.75; IR (KBr) ν (cm -1 ) = 3800-3020, 2920, 2850, 1730, 1660, 1600, 1470, 1320, 1300, 1190, 1135, 1080

<합성예 9> (m=75, PECH-A75)Synthesis Example 9 (m = 75, PECH-A75)

Figure 112008090347487-PAT00016
Figure 112008090347487-PAT00016

합성예 5에서 얻은 화합물 260 mg (0.75 OH mmol)과 N-(3-디메틸아미노프로필)-N'-에틸카보디이미드 하이드로크로라이드 349 mg (2.25 mmol), 4-(디메틸아미노)피리딘 137 mg (1.13 mmol), 합성예 7에서 얻은 화합물 197 mg (0.75 mmol)을 20 ml 디메틸포름아마이드에 녹인 후 50 ℃에서 24 시간 동안 가열하면서 교반한다. 반응이 완료되면 상온으로 식힌 후 200 ml 디에틸 에테르에 침전한 후 침전용매를 제거하고 남은 고상 물질을 실리카겔 크로마토그래피로 정제한다 (메틸렌크로라이드 : 메 탄올 = 20 vol% :80 vol%, Rf=0.8). 1H-NMR (300 MHz, DMSO-d) 8.12 (s, 1H, NH), 8.09 (s, 1H, Ar-H), 7.21 (s, 2H, NH2), 4.37 (t, 4H, NCH2CH2O ), 4.08 (s, 2H, CH2), 3.70-3.59 (br, 3H, OCH, OCH2), 2.81-2.54 (t, 4H, CH2SCH2), 2.48(t, 4H, OCCH2CH2CO), 1.67-1.13 (m, 18H, CH2), 0.88 (t, 3H, CH3); 13H-NMR (75 MHz, DMSO-d) 172.7, 155.9, 152.3, 149.3, 140.8, 118.7, 79.36-78.72, 64.9, 63.2, 61.6, 42.9, 33.6, 32.5, 30.3-27.3, 26.5-24.7, 14.75; IR (KBr) ν (cm-1)=3800-3020, 2920, 2850, 1730, 1660, 1600, 1470, 1320, 1300, 1190, 1135, 1080260 mg (0.75 OH mmol) of the compound obtained in Synthesis Example 5 and 349 mg (2.25 mmol) of N- (3-dimethylaminopropyl) -N'-ethylcarbodiimide hydrochloride, 137 mg of 4- (dimethylamino) pyridine (1.13 mmol) and 197 mg (0.75 mmol) of the compound obtained in Synthesis Example 7 were dissolved in 20 ml dimethylformamide, and then stirred with heating at 50 ° C. for 24 hours. After the reaction was completed, the mixture was cooled to room temperature, precipitated in 200 ml of diethyl ether, the precipitated solvent was removed, and the remaining solid was purified by silica gel chromatography (methylene chloride: methanol = 20 vol%: 80 vol%, R f = 0.8). 1 H-NMR (300 MHz, DMSO- d ) 8.12 (s, 1H, NH), 8.09 (s, 1H, Ar-H), 7.21 (s, 2H, NH 2 ), 4.37 (t, 4H, NCH 2 CH 2 O), 4.08 (s, 2H, CH 2 ), 3.70-3.59 (br, 3H, OCH, OCH 2 ), 2.81-2.54 (t, 4H, CH 2 SCH 2 ), 2.48 (t, 4H, OCCH 2 CH 2 CO), 1.67-1.13 (m, 18H, CH 2 ), 0.88 (t, 3H, CH 3 ); 13 H-NMR (75 MHz, DMSO- d ) 172.7, 155.9, 152.3, 149.3, 140.8, 118.7, 79.36-78.72, 64.9, 63.2, 61.6, 42.9, 33.6, 32.5, 30.3-27.3, 26.5-24.7, 14.75; IR (KBr) ν (cm -1 ) = 3800-3020, 2920, 2850, 1730, 1660, 1600, 1470, 1320, 1300, 1190, 1135, 1080

<합성예 10> (m=100, PECH-A100)Synthesis Example 10 (m = 100, PECH-A100)

Figure 112008090347487-PAT00017
Figure 112008090347487-PAT00017

합성예 6에서 얻은 화합물 260 mg (1.00 OH mmol)과 N-(3-디메틸아미노프로필)-N'-에틸카보디이미드 하이드로크로라이드 465 mg (3 mmol), 4-(디메틸아미노)피리딘 183 mg (1.5 mmol), 합성예 7에서 얻은 화합물 263 mg (1.00 mmol)을 20 ml 디메틸포름아마이드에 녹인 후 50 ℃에서 24 시간 동안 가열하면서 교반한다. 반응이 완료되면 상온으로 식힌 후 200 ml 디에틸 에테르에 침전한 후 침전용매를 제거하고 남은 고상 물질을 실리카겔 크로마토그래피로 정제한다 (메틸렌크로라이드 : 메탄올 = 20 vol% :80 vol%, Rf=0.8). 1H-NMR (300 MHz, DMSO-d) 8.12 (s, 1H, NH), 8.09 (s, 1H, Ar-H), 7.21 (s, 2H, NH2), 4.37 (t, 4H, NCH2CH2O ), 4.08 (s, 2H, CH2), 3.70-3.59 (br, 3H, OCH, OCH2), 2.81-2.54 (t, 4H, CH2SCH2), 2.48(t, 4H, OCCH2CH2CO), 1.67-1.13 (m, 18H, CH2); 13H-NMR (75 MHz, DMSO-d) 172.7, 155.9, 152.3, 149.3, 140.8, 118.7, 79.36-78.72, 64.9, 63.2, 61.6, 42.9, 33.6, 32.5, 30.3-27.3, 26.5-24.7; IR (KBr) ν (cm-1)=3800-3020, 2920, 2850, 1730, 1660, 1600, 1470, 1320, 1300, 1190, 1135, 1080260 mg (1.00 OH mmol) of the compound obtained in Synthesis Example 6 and 465 mg (3 mmol) of N- (3-dimethylaminopropyl) -N'-ethylcarbodiimide hydrochloride, 183 mg of 4- (dimethylamino) pyridine (1.5 mmol) and 263 mg (1.00 mmol) of the compound obtained in Synthesis Example 7 were dissolved in 20 ml dimethylformamide, and then stirred with heating at 50 ° C. for 24 hours. After the reaction was completed, the mixture was cooled to room temperature, precipitated in 200 ml of diethyl ether, the precipitated solvent was removed, and the remaining solid was purified by silica gel chromatography (methylene chloride: methanol = 20 vol%: 80 vol%, R f = 0.8). 1 H-NMR (300 MHz, DMSO- d ) 8.12 (s, 1H, NH), 8.09 (s, 1H, Ar-H), 7.21 (s, 2H, NH 2 ), 4.37 (t, 4H, NCH 2 CH 2 O), 4.08 (s, 2H, CH 2 ), 3.70-3.59 (br, 3H, OCH, OCH 2 ), 2.81-2.54 (t, 4H, CH 2 SCH 2 ), 2.48 (t, 4H, OCCH 2 CH 2 CO), 1.67-1.13 (m, 18H, CH 2 ); 13 H-NMR (75 MHz, DMSO- d ) 172.7, 155.9, 152.3, 149.3, 140.8, 118.7, 79.36-78.72, 64.9, 63.2, 61.6, 42.9, 33.6, 32.5, 30.3-27.3, 26.5-24.7; IR (KBr) ν (cm -1 ) = 3800-3020, 2920, 2850, 1730, 1660, 1600, 1470, 1320, 1300, 1190, 1135, 1080

<실시예 1> &Lt; Example 1 >

위에 상기된 브러쉬 고분자를 클로로포름을 용매로 하여 1wt% 농도의 용액으로 녹인다. 이 용액을 폴리에틸렌테레프탈레이트 기질에 딥 코팅하여 60 ℃ 진공 오븐에서 하루 동안 건조한다. 준비된 필름은 다섯가지 병원성 균을 이용하여 흡착 및 살균 실험을 하였다. 실험 방법은 각 고분자 박막을 107 CFU/ml의 농도로 정량화 된 다섯 가지 병원성 균이 들어 있는 배지에 넣고 30분, 2시간 동안 균을 흡착 시킨 후 꺼내어 초음파기를 이용하여 탈착한 후 탈착된 균을 반고형 배지에 접종을 하여 37℃ 인큐베이터 내에서 하루 동안 키워 흡착된 양을 계산하였다. 실험은 3회 반복하여 평균한 값을 도 1에 나타내었다.The brush polymer described above is dissolved in a solution of 1wt% concentration using chloroform as a solvent. This solution is dip coated onto a polyethylene terephthalate substrate and dried in a 60 ° C. vacuum oven for one day. The prepared film was subjected to adsorption and sterilization experiment using five pathogenic bacteria. Experimental method is to put each polymer thin film in a medium containing five pathogenic bacteria quantified at the concentration of 10 7 CFU / ml, and then the bacteria were adsorbed for 30 minutes and 2 hours, then taken out and detached by an ultrasonic wave, The inoculum was inoculated in semi-solid medium and grown in a 37 ° C. incubator for one day to calculate the amount of adsorption. The experiment is shown in Figure 1 the average value of three iterations.

<실시예 2> <Example 2>

위에 상기된 브러쉬 고분자를 클로로포름을 용매로 하여 1wt% 농도의 용액으로 녹인다. 이 용액을 슬라이드 글라스 기질에 딥 코팅하여 60 ℃ 진공 오븐에서 하루 동안 건조한다. 준비 된 고분자 박막에 Human endothelial cell인 HEp-2 cells을 이용하여 세포 적합 특성에 대한 실험을 하였다. 실험 방법은 각 고분자 박막을 70% 에틸 알콜로 소독을 한 뒤 T-25 플라스크에 넣고, 적당한 배지에 0.5 × 106cells/ml를 가지는 HEp-2 cells 서스펜젼을 역시 T-25 플라스크에 넣어 시간에 따라 고분자 박막 위에서 HEp-2 cells의 거동에 대하여 관찰하였다. 6시간, 3일, 7일째 관찰 된 각 고분자 박막 위에서의 세포의 광학 현미경 사진을 도 2에 나타내었다.The brush polymer described above is dissolved in a solution of 1wt% concentration using chloroform as a solvent. The solution is dip coated onto a slide glass substrate and dried in a 60 ° C. vacuum oven for one day. The prepared polymer thin film was tested for cell compatibility using HEp-2 cells, which are human endothelial cells. The test method is to disinfect each polymer thin film with 70% ethyl alcohol and place it in a T-25 flask, and then add a HEp-2 cells suspension with 0.5 × 10 6 cells / ml in a suitable medium. The behavior of HEp-2 cells on the polymer thin film was observed with time. Optical micrographs of the cells on each polymer thin film observed at 6 hours, 3 days, and 7 days are shown in FIG. 2.

<실시예 3><Example 3>

위에 상기된 브러쉬 고분자를 클로로포름을 용매로 하여 1wt% 농도의 용액으 로 녹인다. 이 용액을 금이 코팅된 프리즘 위에 스핀 코팅하여 60 ℃ 진공 오븐에서 하루 동안 건조한다. 고분자가 코팅된 프리즘은 표면 플라스몬 공명 분광기를 이용하여 3가지 각기 다른 단백질에 대하여 흡착 실험을 하였다. 각 단백질의 농도는 1 mg/mL 로 조정하였으며, 흡착에 따른 반사도의 변화를 도 3에 나타내었다. The brush polymer described above is dissolved in a solution of 1wt% concentration using chloroform as a solvent. The solution is spin coated onto a gold coated prism and dried in a 60 ° C. vacuum oven for one day. The polymer-coated prism was subjected to adsorption experiments on three different proteins using surface plasmon resonance spectroscopy. The concentration of each protein was adjusted to 1 mg / mL, and the change in reflectivity with adsorption is shown in FIG. 3.

도 1은 본 실험에 사용된 막의 시간에 따른 (30분, 2시간) 박테리아의 흡착 그래프이다.1 is a graph of adsorption of bacteria over time (30 minutes, 2 hours) of the membrane used in this experiment.

도 2는 HEp-2 cells을 이용한 시간에 따른 (6시간, 3일, 7일) 세포 적합 특성을 광학현미경으로 관찰한 사진이다.FIG. 2 is a photograph of observation of cell suitability according to time using HEp-2 cells (6 hours, 3 days, 7 days) using an optical microscope.

도 3은 3가지 다른 종류의 단백질에 대한 흡착 실험에 따른 그래프이다.3 is a graph of adsorption experiments for three different kinds of proteins.

도 4는 포항 방사광 가속기의 4C2 빔라인을 이용하여 고분자 박막 구조를 분석하는 스침각 입사 엑스선 산란(Grazing Incidence X-ray Scattering; GIXS) 장치를 이용하여 고분자 주사슬과 브러쉬의 배향성을 측정한 2차원 이미지 결과이다.4 is a two-dimensional image measuring the orientation of a polymer main chain and a brush using a Grazing Incidence X-ray Scattering (GIXS) device that analyzes a polymer thin film structure using a 4C2 beamline of a Pohang emission accelerator. The result is.

도 5는 상기 도 4의 결과를 기질의 수직한 방향으로 데이터를 추출하여 고분자의 자기조립특성에 의한 층상 구조를 확인한 그래프 결과이다.FIG. 5 is a graph result of confirming the layered structure by self-assembly of the polymer by extracting data in the vertical direction of the substrate of FIG. 4.

Claims (20)

하기 화학식 (1)로 표현되는 자기조립성 브러쉬 고분자 화합물.Self-assembling brush polymer compound represented by the following formula (1).
Figure 112008090347487-PAT00018
(1)
Figure 112008090347487-PAT00018
(One)
상기식에서 ρ, σ는 R1 및 R2를 포함하는 탄소의 반복 단위를 나타내는 것으로 서로에 관계없이 1 내지 20의 값이고;Where ρ and σ represent repeating units of carbon comprising R 1 and R 2 and are values of 1 to 20 regardless of each other; R1 및 R2는 서로에 관계없이 수소, 탄소 수 1 내지 20의 알킬기이고;R 1 and R 2 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms; m 및 n는 폴리에테르 단위체의 함량(mol %)을 나타낸 것으로, 0<m≤100 이고, 0≤n<100이며, m + n = 100이고;  m and n represent the content (mol%) of the polyether unit, where 0 <m ≦ 100, 0 ≦ n <100, and m + n = 100; Y는 H, 탄소 수 1내지 20의 알킬기 또는 -Z 말단에 E, G, J, L, M, Q, T, U, V, W, α, β 및 γ를 포함하는 고리이고; Y is H, an alkyl group having 1 to 20 carbon atoms, or a ring containing E, G, J, L, M, Q, T, U, V, W, α, β, and γ at the -Z end; Z는 링커이며, Z is a linker, E, G, J, L, M, Q 및 T는 C, N, O, P 또는 S로 이루어진 군으로부터 선택되고;E, G, J, L, M, Q and T are selected from the group consisting of C, N, O, P or S; U, V, W, α, β및 γ는 -CHO, -COOH, -COOR, -C=NR, -H, -N3, -NO2, -N=R, -NH2, -NHR, -NR2, -NR3 +, -OH, -OCR, -OR, -POH, -P0R, -PO2H, -PO2R, -PO3H, -PO3R, -SH, -SR, -SOH, -SOR, -S02H, -S02R, -SO3H, SO3R, =O, =N, =S 및 -C6H5로 이루어진 군으로부터 선택된다. U, V, W, α, β and γ are -CHO, -COOH, -COOR, -C = NR, -H, -N 3 , -NO 2 , -N = R, -NH 2 , -NHR, -NR 2 , -NR 3 + , -OH, -OCR, -OR, -POH, -P0R, -PO 2 H, -PO 2 R, -PO 3 H, -PO 3 R , -SH, -SR, -SOH, -SOR, -S0 2 H, -S0 2 R, -SO 3 H, SO 3 R, = O, = N, = S and -C 6 H 5 from the group consisting of Is selected.
제1항에 있어서, The method of claim 1, Z는 -CH2S(CR3R4)γO-, -CH2S(CR3R4)γO(CR5R6)τ-, -CH2S(CR3R4)γOCO-, -CH2S(CR3R4)γOCO(CR5R6)τ-, -CH2S(CR3R4)γCOO-, -CH2S(CR3R4)γCOO(CR5R6)τ-, -CH2S(CR3R4)γNHCO-, -CH2S(CR3R4)γNHCOO(CR5R6)τ-, -CH2S(CR3R4)γOCO(CH2)2OCO-, -CH2S(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2S(CR3R4)γCO-, -CH2S(CR3R4)γCO(CR5R6)τ-, -CH2SO2(CR3R4)γO-, -CH2SO2(CR3R4)γO(CR5R6)τ-, -CH2SO(CR3R4)γOCO-, -CH2SO(CR3R4)γOCO(CR5R6)τ-, -CH2SO(CR3R4)γCOO-, -CH2SO(CR3R4)γCOO(CR5R6)τ-, -CH2SO(CR3R4)γNHCO-, -CH2SO(CR3R4)γNHCO(CR5R6)τ-, -CH2SO(CR3R4)γOCO(CH2)2OCO-, -CH2SO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2SO(CR3R4)γCO-, -CH2SO(CR3R4)γCO(CR5R6)τ-, -CH2SO2(CR3R4)γOCO-, -CH2SO2(CR3R4)γOCO(CR5R6)τ-, -CH2SO2(CR3R4)γCOO-, -CH2SO2(CR3R4)γCOO(CR5R6)τ-, -CH2SO2(CR3R4)γNHCO-, -CH2SO2(CR3R4)γNHCO(CR5R6)τ-, -CH2SO2(CR3R4)γOCO(CH2)2OCO-, -CH2SO2(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2SO2(CR3R4)γCO-, -CH2SO2(CR3R4)γCO(CR5R6)τ -, -OCO(CR3R4)γO-, -OCO(CR3R4)γO(CR5R6)τ-, -OCO(CR3R4)γOCO-, -OCO(CR3R4)γOCO(CR5R6)τ-, -OCO(CR3R4)γCOO-, -OCO(CR3R4)γCOO(CR5R6)τ-, -OCO(CR3R4)γNHCO-, -OCO(CR3R4)γNHCO(CR5R6)τ-, -OCO(CR3R4)γOCO(CH2)2OCO-, -OCO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OCO(CR3R4)γCO-, -OCO(CR3R4)γCO(CR5R6)τ-, -COO(CR3R4)γO-, -COO(CR3R4)γO(CR5R6)τ-, -COO(CR3R4)γOCO-, -COO(CR3R4)γOCO (CR5R6)τ-, -COO(CR3R4)γCOO-, -COO(CR3R4)γCOO(CR5R6)τ-, -COO(CR3R4)γNHCO-, -COO(CR3R4)γNHCO(CR5R6)τ-, -COO(CR3R4)γOCO(CH2)2OCO-, -COO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -COO(CR3R4)γCO-, -COO(CR3R4)γCO(CR5R6)τ-, -O(CR3R4)γO-, -O(CR3R4)γO(CR5R6)τ-, -O(CR3R4)γOCO-, -O(CR3R4)γOCO(CR5R6)τ-, -O(CR3R4)γCOO-, -O(CR3R4)γCOO(CR5R6)τ-, -O(CR3R4)γNHCO-, -O(CR3R4)γNHCO(CR5R6)τ-, -O(CR3R4)γOCO(CH2)2OCO-, -O(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -O(CR3R4)γCO-, -O(CR3R4)γCO(CR5R6)τ-, -NH(CR3R4)γO-, -NH(CR3R4)γO(CR5R6)τ-, -NH(CR3R4)γOCO-, -NH(CR3R4)γOCO(CR5R6)τ-, -NH(CR3R4)γCOO-, -NH(CR3R4)γCOO(CR5R6)τ-, -NH(CR3R4)γNHCO-, -NH(CR3R4)γNHCO(CR5R6)τ-, -NH(CR3R4)γOCO(CH2)2OCO-, -NH(CR3R4)γ OCO(CH2)2OCO(CR5R6)τ-, -NH(CR3R4)γCO-, -NH(CR3R4)γCO(CR5R6)τ-, -(CR3R4)γO-, -(CR3R4)γO(CR5R6)τ-, -(CR3R4)γOCO-, -(CR3R4)γOCO(CR5R6)τ-, -(CR3R4)γ(CH2)nCOO-, -(CR3R4)γ(CH2)nCOO(CR5R6)τ-, -(CR3R4)γNHCO-, -(CR3R4)γNHCO(CR5R6)τ-, -(CR3R4)γOCO(CH2)2OCO-, -(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4(CR3R4)γO-, -OC6H4(CR3R4)γO(CR5R6)τ-, -OC6H4(CR3R4)γOCO-, -OC6H4(CR3R4)γOCO-, -OC6H4(CR3R4)γCOO(CR5R6)τ-, -OC6H4(CR3R4)γNHCO-, -OC6H4(CR3R4)γNHCO(CR5R6)τ-, -OC6H4(CR3R4)γ-, -OCO(CH2)2OCO-, -OCO(CH2)2OCO(CR3R4)γ-, -OC6H4(CR3R4)γCO-, -OC6H4(CR3R4)γCO(CR5R6)τ-, -OC6H4COO(CR3R4)γOCO-, -OC6H4COO(CR3R4)γOCO(CR5R6)τ-, -OC6H4COO(CR3R4)γCOO-, -OC6H4COO(CR3R4)γCOO(CR5R6)τ-, -OC6H4COO(CR3R4)γO-, -OC6H4COO(CR3R4)γO(CR5R6)τ-, -OC6H4COO(CR3R4)γNHCO-, -OC6H4COO(CR3R4)γNHCO(CR5R6)τ-, -OC6H4COO(CR3R4)γOCO(CH2)2OCO-, -OC6H4COO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4COO(CR3R4)γCO-, -OC6H4COO(CR3R4)γCO(CR5R6)τ- 또는 -OC6H4CONHR(CR3R4)γOCO-, -OC6H4CONHR(CR3R4)γOCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γCOO-, -OC6H4CONH(CR3R4)γCOO(CR5R6)τ-, -OC6H4CONH(CR3R4)γO-, -OC6H4CONH(CR3R4)γO(CR5R6)τ-, -OC6H4CONH(CR3R4)γNHCO-, -OC6H4CONH(CR3R4)γNHCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γOCO(CH2)2OCO-, -OC6H4CONH(CR3R4) γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γCO-, -OC6H4CONH(CR3R4)γCO(CR5R6)τ-로 이루어진 군으로부터 선택되는 지방족 또는 방향족 유도체이며; Z is -CH 2 S (CR 3 R 4 ) γ O-, -CH 2 S (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -CH 2 S (CR 3 R 4 ) γ OCO- , -CH 2 S (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -CH 2 S (CR 3 R 4 ) γ COO-, -CH 2 S (CR 3 R 4 ) γ COO (CR 5 R 6) τ -, -CH 2 S (CR 3 R 4) γ NHCO-, -CH 2 S (CR 3 R 4) γ NHCOO (CR 5 R 6) τ -, -CH 2 S (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -CH 2 S (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 S (CR 3 R 4 ) γ CO-, -CH 2 S (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ O-, -CH 2 SO 2 (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ OCO-, -CH 2 SO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4) γ COO- , -CH 2 SO (CR 3 R 4) γ COO (CR 5 R 6) τ -, -CH 2 SO (CR 3 R 4) γ NHCO-, -CH 2 SO ( CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -CH 2 SO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ CO-, -CH 2 SO (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ OCO-, -CH 2 SO 2 (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ -,- CH 2 SO 2 (CR 3 R 4) γ COO-, -CH 2 SO 2 (CR 3 R 4) γ COO (CR 5 R 6) τ -, -CH 2 SO 2 (CR 3 R 4) γ NHCO- , -CH 2 SO 2 (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -CH 2 SO 2 ( CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ CO-, -CH 2 SO 2 (CR 3 R 4 ) γ CO (CR 5 R 6) τ - , -OCO (CR 3 R 4) γ O-, -OCO (CR 3 R 4) γ O (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ OCO -, -OCO (CR 3 R 4 ) γ OCO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ COO-, -OCO (CR 3 R 4) γ COO (CR 5 R 6) τ -, -OCO (CR 3 R 4 ) γ NHCO-, -OCO (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ OCO (CH 2) 2 OCO- , -OCO (CR 3 R 4) γ OCO (CH 2) 2 OCO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ CO-, -OCO (CR 3 R 4) γ CO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ O-, -COO (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ OCO-, -COO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ COO-, -COO (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ NHCO-, -COO (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ -,- COO (CR 3 R 4 ) γ CO-, -COO (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ O-, -O (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ OCO-, -O (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ COO-, -O (CR 3 R 4) γ COO (CR 5 R 6) τ -, -O (CR 3 R 4) γ NHCO-, -O (CR 3 R 4) γ NHCO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -O (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -O ( CR 3 R 4 ) γ CO-, -O (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ O-, -NH (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ OCO-, -NH (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ COO -, -NH (CR 3 R 4 ) γ COO (CR 5 R 6) τ -, -NH (CR 3 R 4) γ NHCO-, -NH (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -NH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -NH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ CO-, -NH (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ O-,-(CR 3 R 4 ) γ O (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ OCO-,-(CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ (CH 2 ) n COO-,- (CR 3 R 4) γ ( CH 2) n COO (CR 5 R 6) τ -, - (CR 3 R 4) γ NHCO-, - (CR 3 R 4) γ NHCO (CR 5 R 6) τ - ,-(CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-,-(CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 (CR 3 R 4 ) γ O-, -OC 6 H 4 (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -OC 6 H 4 (CR 3 R 4 ) γ OCO-, -OC 6 H 4 ( CR 3 R 4) γ OCO-, -OC 6 H 4 (CR 3 R 4) γ COO (CR 5 R 6) τ -, -OC 6 H 4 (CR 3 R 4) γ NHCO-, -OC 6 H 4 (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -OC 6 H 4 (CR 3 R 4) γ -, -OCO (CH 2) 2 OCO-, -OCO (CH 2) 2 OCO (CR 3 R 4 ) γ- , -OC 6 H 4 (CR 3 R 4 ) γ CO-, -OC 6 H 4 (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ OCO-, -OC 6 H 4 COO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ COO- , -OC 6 H 4 COO (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ O-, -OC 6 H 4 COO (CR 3 R 4) γ O (CR 5 R 6) τ -, -OC 6 H 4 COO (CR 3 R 4) γ NHCO-, -OC 6 H 4 COO (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -OC 6 H 4 COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ CO-, -OC 6 H 4 COO (CR 3 R 4 ) γ CO ( CR 5 R 6 ) τ -or -OC 6 H 4 CONHR (CR 3 R 4 ) γ OCO-, -OC 6 H 4 CONHR (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ COO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ O -, -OC 6 H 4 CONH ( CR 3 R 4) γ O (CR 5 R 6) τ -, -OC 6 H 4 CONH (CR 3 R 4) γ NHCO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ CO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ -an aliphatic or aromatic derivative selected from the group consisting of;  여기에서γ, τ는 서로에 관계없이 각각R3 및 R4 와 R5 및 R6를 포함하는 탄소 반복단위로서 탄소 수 1 내지 20의 값을 지니고 R3, R4, R5 및 R6는 서로에 관계없이 수소, 탄소 수 1 내지 20의 알킬기인 자기조립성 브러쉬 고분자 화합물.Γ and τ are each carbon repeating unit including R 3 and R 4 and R 5 and R 6 irrespective of each other and have a value of 1 to 20 carbon atoms and R 3 , R 4 , R 5 and R 6 are A self-assembling brush polymer compound that is hydrogen or an alkyl group having 1 to 20 carbon atoms irrespective of each other. 제1항에 있어서, 상기 브러쉬 고분자는 중량평균 분자량이 5,000 내지 5,000,000인 자기조립성 브러쉬 고분자 화합물.The self-assembling brush polymer compound of claim 1, wherein the brush polymer has a weight average molecular weight of 5,000 to 5,000,000. 제1항에 있어서, 상기 T, M, L, 및 G는 N이며, Q 및 E는 C인 자기조립성 브러쉬 고분자 화합물.The self-assembling brush polymer compound according to claim 1, wherein T, M, L, and G are N, and Q and E are C. 제1항에 있어서, 상기 고분자화합물은 The method of claim 1, wherein the polymer compound 폴리[옥시((아데닌에틸옥시카보닐에틸카보닐옥시)운데실티오메틸)에틸렌-랜-옥시(도데실티오메틸)에틸렌]인 자기조립성 기능성 브러쉬 고분자 화합물.A self-assembling functional brush polymer compound which is poly [oxy ((adenineethyloxycarbonylethylcarbonyloxy) undecylthiomethyl) ethylene-lan-oxy (dodecylthiomethyl) ethylene]. 기능성 브러쉬 고분자 화합물 제조 방법에 있어서, 하기 화학식 3로 표현되는 폴리에테르 고분자를In the method for producing a functional brush polymer compound, a polyether polymer represented by the following formula (3)
Figure 112008090347487-PAT00019
(3)
Figure 112008090347487-PAT00019
(3)
        유기 용매 중에서 하기 화학식 4의 화합물The compound of formula 4 in an organic solvent
Figure 112008090347487-PAT00020
(4)
Figure 112008090347487-PAT00020
(4)
또는 이들의 유도체와 반응시키고, Or react with derivatives thereof, 상기식에서 ρ, σ는 R1 및 R2를 포함하는 탄소의 반복 단위를 나타내는 것으로 서로에 관계없이 1 내지 20의 값이고;Where ρ and σ represent repeating units of carbon comprising R 1 and R 2 and are values of 1 to 20 regardless of each other; R1 및 R2는 서로에 관계없이 수소, 탄소 수 1 내지 20의 알킬기이고;R 1 and R 2 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms; m 및 n는 폴리에테르 단위체의 함량(mol %)을 나타낸 것으로, 0<m≤100 이고, 0≤n<100이며, m + n = 100이고;  m and n represent the content (mol%) of the polyether unit, where 0 <m ≦ 100, 0 ≦ n <100, and m + n = 100; Y1는 H, 탄소 수 1내지 20의 알킬기 또는 L1이며, Y1 is H, an alkyl group having 1 to 20 carbon atoms or L1, E, G, J, L, M, Q 및 T는 C, N, O, P 또는 S로 이루어진 군으로부터 선택되고;E, G, J, L, M, Q and T are selected from the group consisting of C, N, O, P or S; U, V, W, α, β및 γ는 -CHO, -COOH, -COOR, -C=NR, -H, -N3, -NO2, -N=R, -NH2, -NHR, -NR2, -NR3 +, -OH, -OCR, -OR, -POH, -P0R, -PO2H, -PO2R, -PO3H, -PO3R, -SH, -SR, -SOH, -SOR, -S02H, -S02R, -SO3H, SO3R, =O, =N, =S 및 -C6H5로 이루어진 군으로부터 선택되며, U, V, W, α, β and γ are -CHO, -COOH, -COOR, -C = NR, -H, -N 3 , -NO 2 , -N = R, -NH 2 , -NHR, -NR 2 , -NR 3 + , -OH, -OCR, -OR, -POH, -P0R, -PO 2 H, -PO 2 R, -PO 3 H, -PO 3 R , -SH, -SR, -SOH, -SOR, -S0 2 H, -S0 2 R, -SO 3 H, SO 3 R, = O, = N, = S and -C 6 H 5 from the group consisting of Selected, 상기 L1과 상기 L2는 반응해서 하기 Z를 이루며, 상기 Z는 L1 and L2 react to form Z, and Z is -CH2S(CR3R4)γO-, -CH2S(CR3R4)γO(CR5R6)τ-, -CH2S(CR3R4)γOCO-, -CH2S(CR3R4)γOCO(CR5R6)τ-, -CH2S(CR3R4)γCOO-, -CH2S(CR3R4)γCOO(CR5R6)τ-, -CH2S(CR3R4)γNHCO-, -CH2S(CR3R4)γNHCOO(CR5R6)τ-, -CH2S(CR3R4)γOCO(CH2)2OCO-, -CH2S(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2S(CR3R4)γCO-, -CH2S(CR3R4)γCO(CR5R6)τ-, -CH2SO2(CR3R4)γO-, -CH2SO2(CR3R4)γO(CR5R6)τ-, -CH2SO(CR3R4)γOCO-, -CH2SO(CR3R4)γOCO(CR5R6)τ-, -CH2SO(CR3R4)γCOO-, -CH2SO(CR3R4)γCOO(CR5R6)τ-, -CH2SO(CR3R4)γNHCO-, -CH2SO(CR3R4)γNHCO(CR5R6)τ-, -CH2SO(CR3R4)γOCO(CH2)2OCO-, -CH2SO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2SO(CR3R4)γCO-, -CH2SO(CR3R4)γCO(CR5R6)τ-, -CH2SO2(CR3R4)γOCO-, -CH2SO2(CR3R4)γOCO(CR5R6)τ-, -CH2SO2(CR3R4)γCOO-, -CH2SO2(CR3R4)γCOO(CR5R6)τ-, -CH2SO2(CR3R4)γNHCO-, -CH2SO2(CR3R4)γNHCO(CR5R6)τ-, -CH2SO2(CR3R4)γOCO(CH2)2OCO-, -CH2SO2(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2SO2(CR3R4)γCO-, -CH2SO2(CR3R4)γCO(CR5R6)τ -, -OCO(CR3R4)γO-, -OCO(CR3R4)γO(CR5R6)τ-, -OCO(CR3R4)γOCO-, -OCO(CR3R4)γOCO(CR5R6) τ-, -OCO(CR3R4)γCOO-, -OCO(CR3R4)γCOO(CR5R6)τ-, -OCO(CR3R4)γNHCO-, -OCO(CR3R4)γNHCO(CR5R6)τ-, -OCO(CR3R4)γOCO(CH2)2OCO-, -OCO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OCO(CR3R4)γCO-, -OCO(CR3R4)γCO(CR5R6)τ-, -COO(CR3R4)γO-, -COO(CR3R4)γO(CR5R6)τ-, -COO(CR3R4)γOCO-, -COO(CR3R4)γOCO (CR5R6)τ-, -COO(CR3R4)γCOO-, -COO(CR3R4)γCOO(CR5R6)τ-, -COO(CR3R4)γNHCO-, -COO(CR3R4)γNHCO(CR5R6)τ-, -COO(CR3R4)γOCO(CH2)2OCO-, -COO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -COO(CR3R4)γCO-, -COO(CR3R4)γCO(CR5R6)τ-, -O(CR3R4)γO-, -O(CR3R4)γO(CR5R6)τ-, -O(CR3R4)γOCO-, -O(CR3R4)γOCO(CR5R6)τ-, -O(CR3R4)γCOO-, -O(CR3R4)γCOO(CR5R6)τ-, -O(CR3R4)γNHCO-, -O(CR3R4)γNHCO(CR5R6)τ-, -O(CR3R4)γOCO(CH2)2OCO-, -O(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -O(CR3R4)γCO-, -O(CR3R4)γCO(CR5R6)τ-, -NH(CR3R4)γO-, -NH(CR3R4)γO(CR5R6)τ-, -NH(CR3R4)γOCO-, -NH(CR3R4)γOCO(CR5R6)τ-, -NH(CR3R4)γCOO-, -NH(CR3R4)γCOO(CR5R6)τ-, -NH(CR3R4)γNHCO-, -NH(CR3R4)γNHCO(CR5R6)τ-, -NH(CR3R4)γOCO(CH2)2OCO-, -NH(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -NH(CR3R4)γCO-, -NH(CR3R4)γCO(CR5R6)τ-, -(CR3R4)γO-, -(CR3R4)γO(CR5R6)τ-, -(CR3R4)γOCO-, -(CR3R4)γOCO(CR5R6)τ-, -(CR3R4)γ(CH2)nCOO-, -(CR3R4)γ(CH2)nCOO(CR5R6)τ-, -(CR3R4)γNHCO-, -(CR3R4)γNHCO(CR5R6)τ-, -(CR3R4)γOCO(CH2)2OCO-, -(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4(CR3R4)γO-, -OC6H4(CR3R4)γO(CR5R6)τ-, -OC6H4(CR3R4)γOCO-, -OC6H4(CR3R4)γOCO-, -OC6H4(CR3R4)γCOO(CR5R6)τ-, -OC6H4(CR3R4)γNHCO-, -OC6H4(CR3R4)γNHCO(CR5R6)τ-, -OC6H4(CR3R4)γ-, -OCO(CH2)2OCO-, -OCO(CH2)2OCO(CR3R4)γ-, -OC6H4(CR3R4)γCO-, -OC6H4(CR3R4)γCO(CR5R6)τ-, -OC6H4COO(CR3R4)γOCO-, -OC6H4COO(CR3R4)γOCO(CR5R6)τ-, -OC6H4COO(CR3R4)γCOO-, -OC6H4COO(CR3R4)γCOO(CR5R6)τ-, -OC6H4COO(CR3R4)γO-, -OC6H4COO(CR3R4)γO(CR5R6)τ-, -OC6H4COO(CR3R4)γNHCO-, -OC6H4COO(CR3R4)γNHCO(CR5R6)τ-, -OC6H4COO(CR3R4)γOCO(CH2)2OCO-, -OC6H4COO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4COO(CR3R4)γCO-, -OC6H4COO(CR3R4)γCO(CR5R6)τ- 또는 -OC6H4CONHR(CR3R4)γOCO-, -OC6H4CONHR(CR3R4)γOCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γCOO-, -OC6H4CONH(CR3R4)γCOO(CR5R6)τ-, -OC6H4CONH(CR3R4)γO-, -OC6H4CONH(CR3R4)γO(CR5R6)τ-, -OC6H4CONH(CR3R4)γNHCO-, -OC6H4CONH(CR3R4)γNHCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γOCO(CH2)2OCO-, -OC6H4CONH(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γCO-, -OC6H4CONH(CR3R4)γCO(CR5R6)τ-로 이루어진 군으로부터 선택되는 지방족 또는 방향족 유도체이며; -CH 2 S (CR 3 R 4 ) γ O-, -CH 2 S (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -CH 2 S (CR 3 R 4 ) γ OCO-,- CH 2 S (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ −, —CH 2 S (CR 3 R 4 ) γ COO-, —CH 2 S (CR 3 R 4 ) γ COO (CR 5 R 6) τ -, -CH 2 S (CR 3 R 4) γ NHCO-, -CH 2 S (CR 3 R 4) γ NHCOO (CR 5 R 6) τ -, -CH 2 S (CR 3 R 4) γ OCO (CH 2 ) 2 OCO-, -CH 2 S (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 S (CR 3 R 4 ) γ CO- , -CH 2 S (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ O-, -CH 2 SO 2 (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ OCO-, -CH 2 SO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4) γ COO-, -CH 2 SO (CR 3 R 4) γ COO (CR 5 R 6) τ -, -CH 2 SO (CR 3 R 4) γ NHCO-, -CH 2 SO (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -CH 2 SO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ CO-, -CH 2 SO (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ OCO-, -CH 2 SO 2 (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4) γ COO-, -CH 2 SO 2 (CR 3 R 4) γ COO (CR 5 R 6) τ -, -CH 2 SO 2 (CR 3 R 4) γ NHCO-, - CH 2 SO 2 (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -CH 2 SO 2 (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ CO-, -CH 2 SO 2 (CR 3 R 4 ) γ CO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ O-, -OCO (CR 3 R 4) γ O (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ OCO-, -OCO (CR 3 R 4) γ OCO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ COO-, -OCO (CR 3 R 4) γ COO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ NHCO-, -OCO (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ OCO (CH 2) 2 OCO-, - OCO (CR 3 R 4) γ OCO (CH 2) 2 OCO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ CO-, -OCO (CR 3 R 4) γ CO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ O-, -COO (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ OCO-, -COO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ COO-, -COO (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ NHCO-, -COO (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ CO-, -COO (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ O-, -O (CR 3 R 4 ) γ O ( CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ OCO-, -O (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ COO- , -O (CR 3 R 4) γ COO (CR 5 R 6) τ -, -O (CR 3 R 4) γ NHCO-, -O (CR 3 R 4) γ NHCO (CR 5 R 6) τ - , -O (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -O (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ CO-, -O (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ O-, -NH (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ OCO-, -NH (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ COO-,- NH (CR 3 R 4) γ COO (CR 5 R 6) τ -, -NH (CR 3 R 4) γ NHCO-, -NH (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, - NH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -NH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ CO-, -NH (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ O-,-(CR 3 R 4 ) γ O (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ OCO-,-(CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ (CH 2 ) n COO-,-(CR 3 R 4 ) γ (CH 2 ) n COO (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ NHCO-,-(CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ -,- (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-,-(CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 (CR 3 R 4 ) γ O-, -OC 6 H 4 (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -OC 6 H 4 (CR 3 R 4 ) γ OCO-, -OC 6 H 4 (CR 3 R 4) γ OCO-, -OC 6 H 4 (CR 3 R 4) γ COO (CR 5 R 6) τ -, -OC 6 H 4 (CR 3 R 4) γ NHCO-, -OC 6 H 4 ( CR 3 R 4) γ NHCO ( CR 5 R 6) τ -, -OC 6 H 4 (CR 3 R 4) γ -, -OCO (CH 2) 2 OCO-, -OCO (CH 2) 2 OCO (CR 3 R 4 ) γ- , -OC 6 H 4 (CR 3 R 4 ) γ CO-, -OC 6 H 4 (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ OCO-, -OC 6 H 4 COO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ COO-,- OC 6 H 4 COO (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ O-, -OC 6 H 4 COO (CR 3 R 4 ) γ O (CR 5 R 6) τ -, -OC 6 H 4 COO (CR 3 R 4) γ NHCO-, -OC 6 H 4 COO ( CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -OC 6 H 4 COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ CO-, -OC 6 H 4 COO (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ -or -OC 6 H 4 CONHR (CR 3 R 4 ) γ OCO-, -OC 6 H 4 CONHR (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ COO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ O-, -OC 6 H 4 CONH (CR 3 R 4) γ O (CR 5 R 6) τ -, -OC 6 H 4 CONH (CR 3 R 4) γ NHCO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ CO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ Aliphatic or aromatic derivatives selected from the group consisting of;  여기에서γ, τ는 서로에 관계없이 각각R3 및 R4 와 R5 및 R6를 포함하는 탄소 반복단위로서 탄소 수 1 내지 20의 값을 지니고 R3, R4, R5 및 R6는 서로에 관계없이 수 소, 탄소 수 1 내지 20의 알킬기인 자기조립성 브러쉬 고분자 화합물 제조 방법.Γ and τ are each carbon repeating unit including R 3 and R 4 and R 5 and R 6 irrespective of each other and have a value of 1 to 20 carbon atoms and R 3 , R 4 , R 5 and R 6 are A method for producing a self-assembling brush polymer compound, which is an alkyl group having 1 to 20 carbon atoms regardless of each other.
제6항에 있어서, 상기 Z는 에스테르 축합반응으로 형성된 것을 특징으로 하는 자기조립성 브러쉬 고분자 화합물 제조 방법.7. The method of claim 6, wherein Z is formed by an ester condensation reaction. 제6항에 있어서, 상기 L1의 말단은 -OH이며, 상기 L2의 말단은 -COOH인 것을 특징으로 하는 자기조립성 브러쉬 고분자 화합물 제조 방법.7. The method of claim 6, wherein the terminal of L1 is -OH and the terminal of L2 is -COOH. 제6항에 있어서, 상기 화학식 4는 6-(9-아데닐)에틸옥시카보닐에틸카보실닉에시드인 것을 특징으로 하는 자기조립성 브러쉬 고분자 화합물 제조 방법.7. The method of claim 6, wherein the formula (4) is 6- (9-adenyl) ethyloxycarbonylethylcarbosonic acid. 제9항에 있어서, 상기 6-(9-아데닐)에틸옥시카보닐에틸카보실닉에시드인 은 9-(2-하이드록시에틸)아데닌을 석시닐안하이드라이드와 반응시켜 제조되는 것을 특징으로 하는 자기조립성 브러쉬 고분자 화합물 제조 방법.10. The method of claim 9, wherein the 6- (9-adenyl) ethyloxycarbonylethylcarbosonic acid silver is prepared by reacting 9- (2-hydroxyethyl) denine with succinyl anhydride. Method for producing self-assembling brush polymer compound. 하기 화학식 1로 표시되는 생체 적합성 자기조립성 브러쉬 고분자 화합물로 제조된 생체 재료.A biomaterial made of a biocompatible self-assembling brush polymer compound represented by Formula 1 below.
Figure 112008090347487-PAT00021
(1)
Figure 112008090347487-PAT00021
(One)
상기식에서 ρ, σ는 R1 및 R2를 포함하는 탄소의 반복 단위를 나타내는 것으로 서로에 관계없이 1 내지 20의 값이고;Where ρ and σ represent repeating units of carbon comprising R 1 and R 2 and are values of 1 to 20 regardless of each other; R1 및 R2는 서로에 관계없이 수소, 탄소 수 1 내지 20의 알킬기이고;R 1 and R 2 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms; m 및 n는 폴리에테르 단위체의 함량(mol %)을 나타낸 것으로, 0<m≤100 이고, 0≤n<100이며, m + n = 100이고;  m and n represent the content (mol%) of the polyether unit, where 0 <m ≦ 100, 0 ≦ n <100, and m + n = 100; Y는 H, 탄소 수 1내지 20의 알킬기 또는 -Z 말단에 E, G, J, L, M, Q, T, U, V, W, α, β 및 γ를 포함하는 고리이고; Y is H, an alkyl group having 1 to 20 carbon atoms, or a ring containing E, G, J, L, M, Q, T, U, V, W, α, β, and γ at the -Z end; Z는 -CH2S(CR3R4)γO-, -CH2S(CR3R4)γO(CR5R6)τ-, -CH2S(CR3R4)γOCO-, -CH2S(CR3R4)γOCO(CR5R6)τ-, -CH2S(CR3R4)γCOO-, -CH2S(CR3R4)γCOO(CR5R6)τ-, -CH2S(CR3R4)γNHCO-, -CH2S(CR3R4)γNHCOO(CR5R6)τ-, -CH2S(CR3R4)γOCO(CH2)2OCO-, -CH2S(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2S(CR3R4)γCO-, -CH2S(CR3R4)γCO(CR5R6)τ-, -CH2SO2(CR3R4)γO-, -CH2SO2(CR3R4)γO(CR5R6)τ-, -CH2SO(CR3R4)γOCO-, -CH2SO(CR3R4)γ OCO(CR5R6)τ-, -CH2SO(CR3R4)γCOO-, -CH2SO(CR3R4)γCOO(CR5R6)τ-, -CH2SO(CR3R4)γNHCO-, -CH2SO(CR3R4)γNHCO(CR5R6)τ-, -CH2SO(CR3R4)γOCO(CH2)2OCO-, -CH2SO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2SO(CR3R4)γCO-, -CH2SO(CR3R4)γCO(CR5R6)τ-, -CH2SO2(CR3R4)γOCO-, -CH2SO2(CR3R4)γOCO(CR5R6)τ-, -CH2SO2(CR3R4)γCOO-, -CH2SO2(CR3R4)γCOO(CR5R6)τ-, -CH2SO2(CR3R4)γNHCO-, -CH2SO2(CR3R4)γNHCO(CR5R6)τ-, -CH2SO2(CR3R4)γOCO(CH2)2OCO-, -CH2SO2(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -CH2SO2(CR3R4)γCO-, -CH2SO2(CR3R4)γCO(CR5R6)τ -, -OCO(CR3R4)γO-, -OCO(CR3R4)γO(CR5R6)τ-, -OCO(CR3R4)γOCO-, -OCO(CR3R4)γOCO(CR5R6)τ-, -OCO(CR3R4)γCOO-, -OCO(CR3R4)γCOO(CR5R6)τ-, -OCO(CR3R4)γNHCO-, -OCO(CR3R4)γNHCO(CR5R6)τ-, -OCO(CR3R4)γOCO(CH2)2OCO-, -OCO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OCO(CR3R4)γCO-, -OCO(CR3R4)γCO(CR5R6)τ-, -COO(CR3R4)γO-, -COO(CR3R4)γO(CR5R6)τ-, -COO(CR3R4)γOCO-, -COO(CR3R4)γOCO (CR5R6)τ-, -COO(CR3R4)γCOO-, -COO(CR3R4)γCOO(CR5R6)τ-, -COO(CR3R4)γNHCO-, -COO(CR3R4)γNHCO(CR5R6)τ-, -COO(CR3R4)γOCO(CH2)2OCO-, -COO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -COO(CR3R4)γCO-, -COO(CR3R4)γCO(CR5R6)τ-, -O(CR3R4)γO-, -O(CR3R4)γO(CR5R6)τ-, -O(CR3R4)γOCO-, -O(CR3R4)γOCO(CR5R6)τ-, -O(CR3R4)γCOO-, -O(CR3R4)γCOO(CR5R6)τ-, -O(CR3R4)γNHCO-, -O(CR3R4)γNHCO(CR5R6)τ-, -O(CR3R4)γOCO(CH2)2OCO-, -O(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -O(CR3R4)γCO-, -O(CR3R4)γCO(CR5R6)τ-, -NH(CR3R4)γO-, -NH(CR3R4)γO(CR5R6)τ-, -NH(CR3R4)γOCO-, -NH(CR3R4)γOCO(CR5R6)τ-, -NH(CR3R4)γCOO-, -NH(CR3R4)γCOO(CR5R6)τ-, -NH(CR3R4)γNHCO-, -NH(CR3R4)γNHCO(CR5R6)τ-, -NH(CR3R4)γOCO(CH2)2OCO-, -NH(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -NH(CR3R4)γCO-, -NH(CR3R4)γCO(CR5R6)τ-, -(CR3R4)γO-, -(CR3R4)γO(CR5R6)τ-, -(CR3R4)γOCO-, -(CR3R4)γOCO(CR5R6)τ-, -(CR3R4)γ(CH2)nCOO-, -(CR3R4)γ(CH2)nCOO(CR5R6)τ-, -(CR3R4)γNHCO-, -(CR3R4)γNHCO(CR5R6)τ-, -(CR3R4)γOCO(CH2)2OCO-, -(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4(CR3R4)γO-, -OC6H4(CR3R4)γO(CR5R6)τ-, -OC6H4(CR3R4)γOCO-, -OC6H4(CR3R4)γOCO-, -OC6H4(CR3R4)γCOO(CR5R6)τ-, -OC6H4(CR3R4)γNHCO-, -OC6H4(CR3R4)γNHCO(CR5R6)τ-, -OC6H4(CR3R4)γ-, -OCO(CH2)2OCO-, -OCO(CH2)2OCO(CR3R4)γ-, -OC6H4(CR3R4)γCO-, -OC6H4(CR3R4)γCO(CR5R6)τ-, -OC6H4COO(CR3R4)γOCO-, -OC6H4COO(CR3R4)γOCO(CR5R6)τ-, -OC6H4COO(CR3R4)γCOO-, -OC6H4COO(CR3R4)γCOO(CR5R6)τ-, -OC6H4COO(CR3R4)γO-, -OC6H4COO(CR3R4)γO(CR5R6)τ-, -OC6H4COO(CR3R4)γNHCO-, -OC6H4COO(CR3R4)γNHCO(CR5R6)τ-, -OC6H4COO(CR3R4)γ OCO(CH2)2OCO-, -OC6H4COO(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4COO(CR3R4)γCO-, -OC6H4COO(CR3R4)γCO(CR5R6)τ- 또는 -OC6H4CONHR(CR3R4)γOCO-, -OC6H4CONHR(CR3R4)γOCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γCOO-, -OC6H4CONH(CR3R4)γCOO(CR5R6)τ-, -OC6H4CONH(CR3R4)γO-, -OC6H4CONH(CR3R4)γO(CR5R6)τ-, -OC6H4CONH(CR3R4)γNHCO-, -OC6H4CONH(CR3R4)γNHCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γOCO(CH2)2OCO-, -OC6H4CONH(CR3R4)γOCO(CH2)2OCO(CR5R6)τ-, -OC6H4CONH(CR3R4)γCO-, -OC6H4CONH(CR3R4)γCO(CR5R6)τ-로 이루어진 군으로부터 선택되는 지방족 또는 방향족 유도체이며; Z is -CH 2 S (CR 3 R 4 ) γ O-, -CH 2 S (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -CH 2 S (CR 3 R 4 ) γ OCO- , -CH 2 S (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -CH 2 S (CR 3 R 4 ) γ COO-, -CH 2 S (CR 3 R 4 ) γ COO (CR 5 R 6) τ -, -CH 2 S (CR 3 R 4) γ NHCO-, -CH 2 S (CR 3 R 4) γ NHCOO (CR 5 R 6) τ -, -CH 2 S (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -CH 2 S (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 S (CR 3 R 4 ) γ CO-, -CH 2 S (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ O-, -CH 2 SO 2 (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ OCO-, -CH 2 SO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4) γ COO- , -CH 2 SO (CR 3 R 4) γ COO (CR 5 R 6) τ -, -CH 2 SO (CR 3 R 4) γ NHCO-, -CH 2 SO ( CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -CH 2 SO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 SO (CR 3 R 4 ) γ CO-, -CH 2 SO (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ OCO-, -CH 2 SO 2 (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ -,- CH 2 SO 2 (CR 3 R 4) γ COO-, -CH 2 SO 2 (CR 3 R 4) γ COO (CR 5 R 6) τ -, -CH 2 SO 2 (CR 3 R 4) γ NHCO- , -CH 2 SO 2 (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -CH 2 SO 2 ( CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -CH 2 SO 2 (CR 3 R 4 ) γ CO-, -CH 2 SO 2 (CR 3 R 4 ) γ CO (CR 5 R 6) τ - , -OCO (CR 3 R 4) γ O-, -OCO (CR 3 R 4) γ O (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ OCO -, -OCO (CR 3 R 4 ) γ OCO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ COO-, -OCO (CR 3 R 4) γ COO (CR 5 R 6) τ -, -OCO (CR 3 R 4 ) γ NHCO-, -OCO (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ OCO (CH 2) 2 OCO- , -OCO (CR 3 R 4) γ OCO (CH 2) 2 OCO (CR 5 R 6) τ -, -OCO (CR 3 R 4) γ CO-, -OCO (CR 3 R 4) γ CO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ O-, -COO (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ OCO-, -COO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ COO-, -COO (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ NHCO-, -COO (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ -,- COO (CR 3 R 4 ) γ CO-, -COO (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ O-, -O (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ OCO-, -O (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ COO-, -O (CR 3 R 4) γ COO (CR 5 R 6) τ -, -O (CR 3 R 4) γ NHCO-, -O (CR 3 R 4) γ NHCO (CR 5 R 6 ) τ- , -O (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -O (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -O ( CR 3 R 4 ) γ CO-, -O (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ O-, -NH (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ OCO-, -NH (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ COO -, -NH (CR 3 R 4 ) γ COO (CR 5 R 6) τ -, -NH (CR 3 R 4) γ NHCO-, -NH (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -NH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -NH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -NH (CR 3 R 4 ) γ CO-, -NH (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ O-,-(CR 3 R 4 ) γ O (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ OCO-,-(CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ -,-(CR 3 R 4 ) γ (CH 2 ) n COO-,- (CR 3 R 4) γ ( CH 2) n COO (CR 5 R 6) τ -, - (CR 3 R 4) γ NHCO-, - (CR 3 R 4) γ NHCO (CR 5 R 6) τ - ,-(CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-,-(CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 (CR 3 R 4 ) γ O-, -OC 6 H 4 (CR 3 R 4 ) γ O (CR 5 R 6 ) τ- , -OC 6 H 4 (CR 3 R 4 ) γ OCO-, -OC 6 H 4 ( CR 3 R 4) γ OCO-, -OC 6 H 4 (CR 3 R 4) γ COO (CR 5 R 6) τ -, -OC 6 H 4 (CR 3 R 4) γ NHCO-, -OC 6 H 4 (CR 3 R 4) γ NHCO (CR 5 R 6) τ -, -OC 6 H 4 (CR 3 R 4) γ -, -OCO (CH 2) 2 OCO-, -OCO (CH 2) 2 OCO (CR 3 R 4 ) γ- , -OC 6 H 4 (CR 3 R 4 ) γ CO-, -OC 6 H 4 (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ OCO-, -OC 6 H 4 COO (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ COO- , -OC 6 H 4 COO (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ O-, -OC 6 H 4 COO (CR 3 R 4) γ O (CR 5 R 6) τ -, -OC 6 H 4 COO (CR 3 R 4) γ NHCO-, -OC 6 H 4 COO (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -OC 6 H 4 COO (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 COO (CR 3 R 4 ) γ CO-, -OC 6 H 4 COO (CR 3 R 4 ) γ CO ( CR 5 R 6 ) τ -or -OC 6 H 4 CONHR (CR 3 R 4 ) γ OCO-, -OC 6 H 4 CONHR (CR 3 R 4 ) γ OCO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ COO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ COO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ O -, -OC 6 H 4 CONH ( CR 3 R 4) γ O (CR 5 R 6) τ -, -OC 6 H 4 CONH (CR 3 R 4) γ NHCO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ NHCO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ OCO (CH 2 ) 2 OCO (CR 5 R 6 ) τ- , -OC 6 H 4 CONH (CR 3 R 4 ) γ CO-, -OC 6 H 4 CONH (CR 3 R 4 ) γ CO (CR 5 R 6 ) τ -an aliphatic or aromatic derivative selected from the group consisting of;  여기에서γ, τ는 서로에 관계없이 각각R3 및 R4 와 R5 및 R6를 포함하는 탄소 반복단위로서 탄소 수 1 내지 20의 값을 지니고 R3, R4, R5 및 R6는 서로에 관계없이 수소, 탄소 수 1 내지 20의 알킬기이며;Γ and τ are each carbon repeating unit including R 3 and R 4 and R 5 and R 6 irrespective of each other and have a value of 1 to 20 carbon atoms and R 3 , R 4 , R 5 and R 6 are Irrespective of one another, hydrogen, an alkyl group having 1 to 20 carbon atoms; E, G, J, L, M, Q 및 T는 C, N, O, P 또는 S로 이루어진 군으로부터 선택되고;E, G, J, L, M, Q and T are selected from the group consisting of C, N, O, P or S; U, V, W, α, β및 γ는 -CHO, -COOH, -COOR, -C=NR, -H, -N3, -NO2, -N=R, -NH2, -NHR, -NR2, -NR3 +, -OH, -OCR, -OR, -POH, -P0R, -PO2H, -PO2R, -PO3H, -PO3R, -SH, -SR, -SOH, -SOR, -S02H, -S02R, -SO3H, SO3R, =O, =N, =S 및 -C6H5로 이루어진 군으로부터 선택되며; U, V, W, α, β and γ are -CHO, -COOH, -COOR, -C = NR, -H, -N 3 , -NO 2 , -N = R, -NH 2 , -NHR, -NR 2 , -NR 3 + , -OH, -OCR, -OR, -POH, -P0R, -PO 2 H, -PO 2 R, -PO 3 H, -PO 3 R , -SH, -SR, -SOH, -SOR, -S0 2 H, -S0 2 R, -SO 3 H, SO 3 R, = O, = N, = S and -C 6 H 5 from the group consisting of Selected; 상기 수은 이온 검출 기능 브러쉬 고분자 화합물의 중량평균 분자량은 5,000 내지 5,000,000.The weight average molecular weight of the mercury ion detection function brush polymer compound is 5,000 to 5,000,000.
제11항에 있어서, 상기 생체재료는 세포에 대해 부착, 흡착, 또는 접착에 대한 향상능을 가지는 것을 특징으로 하는 생체재료.12. The biomaterial according to claim 11, wherein the biomaterial has an ability to improve adhesion, adsorption, or adhesion to cells. 제12항에 있어서, 상기 세포는 HEp-2 cells인 생체 재료.The biomaterial of claim 12, wherein the cells are HEp-2 cells. 제11항에 있어서, 상기 생체재료는 병원성 세균에 대한 부착, 흡착, 또는 접착에 대한 억제능을 가지는 것을 특징으로 하는 생체 재료.The biomaterial according to claim 11, wherein the biomaterial has an ability to inhibit adhesion, adsorption, or adhesion to pathogenic bacteria. 제 14항에 있어서, 상기 병원성 세균은 P.aeruginosa, S.aureus, S. epidermidis, E. faecalis, 또는 E.coli 인 생체 재료.The biomaterial of claim 14, wherein the pathogenic bacterium is P.aeruginosa, S.aureus, S. epidermidis, E. faecalis, or E.coli . 제11항에 따른 생체 재료를 가공하여 제조되는 생체 적합성 부재.A biocompatible member produced by processing the biomaterial according to claim 11. 제1항에 따른 고분자 화합물을 이용한 박막을 포함하는 단백질 흡착용 부재.Protein adsorption member comprising a thin film using the polymer compound according to claim 1. 제1항에 따른 고분자 화합물을 이용한 박막을 포함하는 단백질 분석용 부재.Protein analysis member comprising a thin film using the polymer compound according to claim 1. 제1항에 따른 고분자 화합물이 말단의 기능기가 표면에 수직으로 넓은 면적에 대해 층상으로 배향하도록 코팅된 재료.A material according to claim 1, wherein the polymeric compound is coated such that the terminal functional groups are oriented in a layered manner over a large area perpendicular to the surface. 폴리에테르 브러쉬 고분자의 적어도 일부의 브러쉬 말단에 하기 화학식(6)의 고리화합물이 T를 통해서 결합된 것을 특징으로 하는 자기조립성 브러쉬 고분자 화합물;A self-assembling brush polymer compound characterized in that a cyclic compound of formula (6) is bonded through T to at least a part of the brush end of the polyether brush polymer;
Figure 112008090347487-PAT00022
(6)
Figure 112008090347487-PAT00022
(6)
여기서, 상기 E, G, J, L, M, Q 및 T는 C, N, O, P 또는 S로 이루어진 군으로부터 선택되고;Wherein E, G, J, L, M, Q and T are selected from the group consisting of C, N, O, P or S; 상기 U, V, W, α, β및 γ는 -CHO, -COOH, -COOR, -C=NR, -H, -N3, -NO2, -N=R, -NH2, -NHR, -NR2, -NR3 +, -OH, -OCR, -OR, -POH, -P0R, -PO2H, -PO2R, -PO3H, -PO3R, -SH, -SR, -SOH, -SOR, -S02H, -S02R, -SO3H, SO3R, =O, =N, =S 및 -C6H5로 이루어진 군으로부터 선택된다.U, V, W, α, β, and γ are -CHO, -COOH, -COOR, -C = NR, -H, -N 3 , -NO 2 , -N = R, -NH 2 , -NHR, -NR 2 , -NR 3 + , -OH, -OCR, -OR, -POH, -P0R, -PO 2 H, -PO 2 R, -PO 3 H, -PO 3 R , -SH, -SR, -SOH, -SOR, -S0 2 H, -S0 2 R, -SO 3 H, SO 3 R, = O, = N, = S and -C 6 H 5 from the group consisting of Is selected.
KR1020080136557A 2008-12-30 2008-12-30 Self-assembled polymer having Purin Mimic at the brush end and its manufacturing method KR101053246B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080136557A KR101053246B1 (en) 2008-12-30 2008-12-30 Self-assembled polymer having Purin Mimic at the brush end and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080136557A KR101053246B1 (en) 2008-12-30 2008-12-30 Self-assembled polymer having Purin Mimic at the brush end and its manufacturing method

Publications (2)

Publication Number Publication Date
KR20100078325A true KR20100078325A (en) 2010-07-08
KR101053246B1 KR101053246B1 (en) 2011-08-01

Family

ID=42639557

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080136557A KR101053246B1 (en) 2008-12-30 2008-12-30 Self-assembled polymer having Purin Mimic at the brush end and its manufacturing method

Country Status (1)

Country Link
KR (1) KR101053246B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150111411A (en) * 2014-03-21 2015-10-06 포항공과대학교 산학협력단 Brush polymer bearing nucleobase-mimic functional groups and its synthesis and digital memory devices
WO2018088775A1 (en) * 2016-11-14 2018-05-17 주식회사 쎄코 Cell membrane-mimicking brush polymer and method for preparing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100798596B1 (en) 2006-12-21 2008-01-28 포항공과대학교 산학협력단 Brush polyether-based polymer having chemical sensing capability, preparation thereof and chemical sensor comprising the polymer
KR100838124B1 (en) 2007-02-01 2008-06-13 포항공과대학교 산학협력단 Biocompatible aliphatic brush polymers and manufacturing methods thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150111411A (en) * 2014-03-21 2015-10-06 포항공과대학교 산학협력단 Brush polymer bearing nucleobase-mimic functional groups and its synthesis and digital memory devices
WO2018088775A1 (en) * 2016-11-14 2018-05-17 주식회사 쎄코 Cell membrane-mimicking brush polymer and method for preparing same
US10907068B2 (en) 2016-11-14 2021-02-02 Ceko Co., Ltd. Cell membrane-mimicking brush polymer and method for preparding same

Also Published As

Publication number Publication date
KR101053246B1 (en) 2011-08-01

Similar Documents

Publication Publication Date Title
JP7301401B2 (en) Self-supporting nonfouling polymers, compositions thereof, and related monomers
Yang et al. Penicillin V-conjugated PEG-PAMAM star polymers
AU2001275957B2 (en) Surfaces that resist the adsorption of biological species
JP2020139163A (en) Functionalized zwitterionic polymers and mixed charge polymers, related hydrogels, and methods for their use
JP5671024B2 (en) Process for making polymers, preferably (alkyl) acryloyl polycarbonates, resulting polymers and (alkyl) acryloyl polycarbonates, and biodevices comprising the same
US9345776B2 (en) Biodegradable polymers with sulfenamide bonds for drug delivery applications
EP1931718B1 (en) Catechol functionalized polymers and method for preparing them
KR20070032951A (en) Polymer Coupling Agents and Pharmaceutically Active Polymers Prepared therefrom
JP4628951B2 (en) Compound having phosphorylcholine group, polymer thereof and method for producing the same
KR101053246B1 (en) Self-assembled polymer having Purin Mimic at the brush end and its manufacturing method
KR100838124B1 (en) Biocompatible aliphatic brush polymers and manufacturing methods thereof
KR101260328B1 (en) Dialkyl aminoalkyl sulfone and their mimics containing self-assembled brush polyether-based polymers for bio-applications, preparation thereof products comprising the polymer
KR101061426B1 (en) Antibacterial brush polymer compound, preparation method thereof and product using same
KR101083419B1 (en) Dendritic oligopeptide-grafted cyclotriphosphazene, a process for the preparation therof, and a drug delivery system containing the same
KR101218759B1 (en) Carbohydrates and their mimics containing self-assembled brush polyether-based polymers for bio-applications, preparation thereof, and products comprising the polymers
WO2015170769A1 (en) Antibacterial polymer, production method therefor, and usage thereof
KR20150025876A (en) Polyethyleneglycol/polyester block copolymers with ionic functional group in side chain or chain-end, and method for preparing the same
CN107129579A (en) A kind of photoluminescence biodegradable poly phosphine nitrile and preparation method thereof
US20190276701A1 (en) Cell Membrane-Mimicking Brush Polymer And Method For Preparding Same
EP3243861A1 (en) Method for preparing polyurethane and/or polycarbonate surface-modified substrates
KR20230000812A (en) Biocompatible polymer and preparation method thereof
US11192977B2 (en) Use of poly(alkylene terephthalates) and methods for their preparation
JP2018113928A (en) Contact type materials with biological substance in which surface thereof is modified by biocompatible polymer
Molina García Modified polymers as electroactive biomaterials
JPH11255845A (en) Polyurethane obtained by grafting of glycosylethyl methacrylate, manufacture and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee