KR20100076614A - A composition comprising eupafolin isolated from artemisia princeps pampanini for preventing and treating cancer disease - Google Patents

A composition comprising eupafolin isolated from artemisia princeps pampanini for preventing and treating cancer disease Download PDF

Info

Publication number
KR20100076614A
KR20100076614A KR1020080134726A KR20080134726A KR20100076614A KR 20100076614 A KR20100076614 A KR 20100076614A KR 1020080134726 A KR1020080134726 A KR 1020080134726A KR 20080134726 A KR20080134726 A KR 20080134726A KR 20100076614 A KR20100076614 A KR 20100076614A
Authority
KR
South Korea
Prior art keywords
cancer
caspase
apoptosis
cell
carcinoma
Prior art date
Application number
KR1020080134726A
Other languages
Korean (ko)
Inventor
백남인
이경태
최명숙
정태숙
강화정
정경숙
정해곤
Original Assignee
강화군
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강화군 filed Critical 강화군
Priority to KR1020080134726A priority Critical patent/KR20100076614A/en
Publication of KR20100076614A publication Critical patent/KR20100076614A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/03Organic compounds
    • A23L29/035Organic compounds containing oxygen as heteroatom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/28Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
    • A61K36/282Artemisia, e.g. wormwood or sagebrush
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/308Foods, ingredients or supplements having a functional effect on health having an effect on cancer prevention

Landscapes

  • Health & Medical Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Polymers & Plastics (AREA)
  • Epidemiology (AREA)
  • Food Science & Technology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Medical Informatics (AREA)
  • Botany (AREA)
  • Biotechnology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PURPOSE: A composition containing eupafolin isolated from Artemisia princeps Pampanini is provided to suppress proliferation of cancer cells by inducing cancer cell apoptosis. CONSTITUTION: A pharmaceutical composition for preventing and treating cancer contains eupafolin of structural formula 1 as an active ingredient, which is isolated from Artemisia princeps Pampanini. The composition contains 0.1-50 weight% of Artemisia princeps Pampanini extract. The Artemisia princeps Pampanini extract is isolated using water, low alcohol of C1-C4, or mixture solvent thereof. A health food for preventing and treating cancer contains eupafolin as an active ingredient. The health food is used in the form of powder, granule, tablet, capsule, or beverage.

Description

사자발쑥으로부터 분리된 유파폴린〔eupafolin〕을 유효성분으로 함유하는 암 예방 및 치료용 조성물{A composition comprising eupafolin isolated from Artemisia princeps Pampanini for preventing and treating cancer disease}A composition comprising eupafolin isolated from Artemisia princeps Pampanini for preventing and treating cancer disease} which contains eupapoline [eu 〔afolin] isolated from lion cucurbits as an active ingredient

본 발명은 사자발쑥(Artemisia princeps Pampanini)으로부터 분리된 유파폴린을 유효성분으로 함유하는 암 질환의 예방 및 치료용 조성물을 제공한다.The present invention provides a composition for the prevention and treatment of cancer diseases, containing as an active ingredient opapaline isolated from Artemisia princeps Pampanini.

[문헌 1] Kalechman et al., Synergistic anti-tumoral effect of paclitaxel (Taxol)+AS101 in a murine model of B16 melanoma:association with ras-dependent signal-trasduction pathways., Int. J. Cancer, 86, pp.281-288, 2000Kalechman et al., Synergistic anti-tumoral effect of paclitaxel (Taxol) + AS101 in a murine model of B16 melanoma: association with ras-dependent signal-trasduction pathways., Int. J. Cancer , 86 , pp. 281-288, 2000

[문헌 2] Gamet-Payractre et al., Sulforaphane a naturally occurring isothiocyanate, induced arrest and apoptosis in HT29 human colon cancer cell. Cancer Res., 60, pp.1426-1433, 2000Gamet-Payractre et al., Sulforaphane a naturally occurring isothiocyanate, induced arrest and apoptosis in HT29 human colon cancer cell. Cancer Res ., 60 , pp. 1426-1433, 2000

[문헌 3] Piao et al., Induction of G(2)/M phase arrest and apoptosis by a new synthetic anti-cancer agent, DW2282, in promyelocytic leukemia (HL-60) cells. BiochemPharmacol, 62, pp.1439-1447, 2001Piao et al., Induction of G (2) / M phase arrest and apoptosis by a new synthetic anti-cancer agent, DW2282, in promyelocytic leukemia (HL-60) cells. BiochemPharmacol , 62 , pp. 1439-1447, 2001

[문헌 4] Nagata et al., Degradation of chromosomal DNA during apoptosis., Cell Death Differ, 1, pp.108-116, 2004Nagata et al., Degradation of chromosomal DNA during apoptosis., Cell Death Differ , 1 , pp. 108-116, 2004

[문헌 5] Orrenius S et al., Mitochondrial oxidativestress: implications for cell death. Annu. Rev. Pharmacol. Toxicol, 47, pp.19.1-19.41, 2007[Document 5] Orrenius S et al., Mitochondrial oxidative stresses: implications for cell death. A nnu. Rev. Pharmacol. Toxicol , 47 , pp.19.1-19.41, 2007

[문헌 6] Kim R., Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer, 103, pp.1551-1560, 2005Kim R., Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer , 103 , pp.1551-1560, 2005

[문헌 7] Jiang X et al., Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway, Science, 299, pp.223-226, 2003Jiang X et al., Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway, Science , 299 , pp.223-226, 2003

[문헌 8] Kaufmann et al., Specific proteolytic cleavage of poly(ADP-ribose) polymerase: An early marker of chemotherapy-induced apoptosis, Cancer Research, S3, pp.3976-3985, 1993Kaufmann et al., Specific proteolytic cleavage of poly (ADP-ribose) polymerase: An early marker of chemotherapy-induced apoptosis, Cancer Research , S3 , pp.3976-3985, 1993

[문헌 9] Ikai et al., Induction of apoptosis, p53 and heme oxygenase-1 by cytotoxic prostaglandin △12-PGJ2 in transformed endothelian cells, Prostaglandins, Leukotrienes, and Essential Fatty Acids, 58(4), pp.295-300, 1998 Ikai et al., Induction of apoptosis, p53 and heme oxygenase-1 by cytotoxic prostaglandin Δ 12 -PGJ 2 in transformed endothelian cells, Prostaglandins, Leukotrienes, and Essential Fatty Acids , 58 (4) , pp.295- 300, 1998

[문헌 10] Vispe et al., A cellular defense pathway regulating transcription through poly(ADP-ribosyl)ation in response to DNA damage, PNAS, 97(18), pp.9886-9891, 2000Vispe et al., A cellular defense pathway regulating transcription through poly (ADP-ribosyl) ation in response to DNA damage, PNAS , 97 (18) , pp.9886-9891, 2000

[문헌 11] Kelloff et al., Progress in cancer chemoprevention., Annals New York Academy of Sciences, 889, pp.1-13, 199911 Kelloff et al., Progress in cancer chemoprevention., Annals New York Academy of Sciences, 889 , pp.1-13, 1999

[문헌 12] Tan, R. X., et al., Biologically active substances from the genus Artemisia, Planta Medica, 64, pp.295-302, 199812, Tan, RX, et al., Biologically active substances from the genus Artemisia, Planta Medica, 64 , pp. 295-302, 1998

[문헌 13] Ryu SN., et al., Quantitative analysis of eupatilin and jaceosidin in Artemisia herba, Kor. J. Crop Sci., 49, pp.452-456, 2004[13] Ryu SN., Et al., Quantitative analysis of eupatilin and jaceosidin in Artemisia herba, Kor. J. Crop Sci. , 49 , pp.452-456, 2004

[문헌 14] Xiaoyi W., et al., Phenolic constituents from Mikania micrantha, Biochem. System. Ecol., 32, pp.1091-1096, 2004[14] Xiaoyi W., et al., Phenolic constituents from Mikania micrantha, Biochem. System. Ecol. , 32 , pp.1091-1096, 2004

[문헌 15] Carmichael et al., Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemisensitivity testing. Cancer Research, 47, pp.944-946, 1987Carmichael et al., Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemisensitivity testing. Cancer Research , 47 , pp. 944-946, 1987

[문헌 16] Oberhammer et al., Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation, The EMBO Journal, 12(9), pp.3679-3684, 1993Oberhammer et al., Apoptotic death in epithelial cells: cleavage of DNA to 300 and / or 50 kb fragments prior to or in the absence of internucleosomal fragmentation, The EMBO Journal , 12 (9) , pp.3679-3684. , 1993

[문헌 17] Kim, Y. H., et al., Expression of the murine homologue of the cell cycle control protein p32cdc2 in T lymphocytes. Journal of Immunology, 149, pp.17-23, 199217, Kim, YH, et al., Expression of the murine homologue of the cell cycle control protein p32cdc2 in T lymphocytes. Journal of Immunology, 149 , pp.17-23, 1992

[문헌 18] Luo, Y et al., Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine. Photochem Photobiol. 66, p.479, 1997[18] Luo, Y et al., Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine. Photochem Photobio l. 66 , p. 479, 1997

[문헌 19] Sambrook J., et al., Molecular Cloning Laboratory Manual, 2nd ed., pp.18.60-18.71, 1989Sambrook J., et al., Molecular Cloning Laboratory Manual, 2nd ed ., Pp. 18.60-18.71, 1989

[문헌 20] Zamzami N., et al., Reduction of mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J. Exp. Med., 181, pp.1661-1672, 1995Zamzami N., et al., Reduction of mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J. Exp. Med ., 181 , pp. 1661-1672, 1995

[문헌 21] Von Ahsen O., et al., The ‘harmless’ release of cytochrome c. Cell Death Differ., 7, pp.1192-1199, 200021 Von Ahsen O., et al., The 'harmless' release of cytochrome c . Cell Death Differ ., 7 , pp. 1192-1199, 2000

[문헌 22] Li P., et al., Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade, Cell, 91, pp.479-489, 1997Li P., et al., Cytochrome c and dATP-dependent formation of Apaf-1 / caspase-9 complex initiates an apoptotic protease cascade, Cell , 91 , pp. 479-489, 1997

[문헌 23] Reed J., Bcl-2 and regulation of programmed cell death. J Cell Biol., 124, pp.1-6, 1994Reed J., Bcl-2 and regulation of programmed cell death. J Cell Biol., 124 , pp . 1-6, 1994

[문헌 24] Oltvai ZN., et al., Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell, 74, pp.609-619, 199324. Oltvai ZN., Et al., Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell, 74 , pp. 609-619, 1993

암은 인류가 해결해야 할 난치병 중의 하나로, 전 세계적으로 이를 치유하기 위한 개발에 막대한 자본이 투자되고 있는 실정이며, 우리나라의 경우, 1983년 이후로 한국인의 사망원인 중 제 1위의 질병으로서 연간 약 10만 명 이상이 진단되고, 약 6만 명 이상이 사망하고 있다. 이러한 암의 유발 인자인 발암물질로는 흡연, 자외선, 화학물질, 음식물, 기타 환경인자들이 있으나, 그 유발 원인이 다양하여 치료제의 개발이 어려울 뿐만 아니라 발생하는 부위에 따라 치료제의 효과 또한 각기 다르다. Cancer is one of the incurable diseases that humanity has to solve, and huge capital has been invested in the development to cure it all over the world.In Korea, it is the number one disease cause of death among Koreans since 1983. More than 100,000 have been diagnosed, and more than 60,000 have died. Carcinogens, which are triggers of cancer, include smoking, ultraviolet rays, chemicals, food, and other environmental factors. However, due to various causes, the development of therapeutic agents is difficult, and the effects of the therapeutic agents also vary depending on the site of occurrence.

현재 사용되는 항암제로는 효소제제 또는 백신 등의 생물학적 제제, 순수합성 의약품 및 천연물 유래의 의약품 등이 있으며, 이 중 유전자, 효소, 백신 등을 이용한 항암제는 실용단계에 있는 상태가 아니며 화학요법에 의해 개발된 항암제는 상당한 독성을 지니고 있고, 암 세포만을 선택적으로 제거하지 못해 암 세포뿐만 아니라 정상세포도 파괴시키는 부작용이 있으며, 최근에는 이에 대한 암 세포의 내성이 발생되어 암 치료에 효과적이지 못한 상태이다. 따라서 암의 발생 후 이의 치료뿐 아니라, 암의 발생을 예방하기 위한 독성이 적고, 암 세포의 내성을 유발시키지 않는 효과적인 항암제의 개발이 절실히 필요하다.Currently used anticancer agents include biological preparations such as enzyme preparations or vaccines, pure synthetic medicines, and medicines derived from natural products. Among them, anticancer drugs using genes, enzymes, vaccines, etc. are not in a practical stage and are used by chemotherapy. The developed anticancer drugs have considerable toxicity and have side effects of destroying not only cancer cells but also normal cells because they cannot selectively remove only cancer cells, and recently, cancer cells have become resistant to this and are ineffective for treating cancer. . Therefore, there is an urgent need to develop an effective anticancer agent that is less toxic for preventing cancer and develops cancer cells.

세포사멸(Apoptosis)은 대부분의 항암제가 암세포의 증식억제 효과를 나타내는 중요한 작용기작으로(Kalechman et al., Synergistic anti-tumoral effect of paclitaxel (Taxol)+AS101 in a murine model of B16 melanoma:association with ras-dependent signal-trasduction pathways. Int. J. Cancer, 86, pp.281-288, 2000; Gamet-Payractre et al., Sulforaphane a naturally occurring isothiocyanate, induced arrest and apoptosis in HT29 human colon cancer cell. Cancer Res., 60, pp.1426-1433, 2000), 유전자에 의해 조절되는 능동적인 세포의 죽음을 의미하며, 생체 내에서 세포증식과 세포죽음 사이의 균형을 유지시켜주는 중요한 역할을 한다(Piao et al., Induction of G(2)/M phase arrest and apoptosis by a new synthetic anti-cancer agent, DW2282, in promyelocytic leukemia (HL-60) cells. BiochemPharmacol, 62, pp.1439-1447, 2001). 세포사멸과정이 일어나는 동안에 세포는 핵 내 크로마틴의 농축, 세포질의 응축, DNA의 절편화, 핵의 절편화, 세포사멸체(apoptotic body)의 형성을 일으키는 일련의 과정을 겪게 되며(Nagata et al., Degradation of chromosomal DNA during apoptosis. Cell Death Differ, 1, pp.108-116, 2004), 이러한 세포사멸 경로는 외인성경로(extrinsic pathway)와 내인성경로(intrinsic pathway)로 나눌 수 있다. 첫째, 외인성 경로, 즉 죽음수용체를 경유하는 세포죽음경로에서는‘죽음유도신호복합체(DISC, death-inducing signaling complex)’가 형성되고, 그 결과 프로캐스파아제(procaspase)-8이 활성화된다(Orrenius S et al., Mitochondrial oxidativestress: implications for cell death. Annu. Rev. Pharmacol. Toxicol. 47, 19.1-19.41, 2007). 활성화된 캐스파아제(caspase)-8는 직접 프로캐스파아제(procaspase)-3을 활성화시켜, 타겟단백질들(e.g. PARP-1: poly(ADP-ribose) polymerase-I, ICAD: inhibitor of caspase-activated DNase)을 잘라 세포사멸을 일으킨다(type I)(Kim R., Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer, 103, pp.1551-1560, 2005). 그러나, 많은 세포에서 캐스파아제(caspase)-8은 Bcl-2(B-cell lymphoma 2) 단백질군 구성원인 Bid (Bcl-2 homology domain 3 interacting domain death agonist)를 잘라 tBid(truncated Bid)로 만들고, tBid는 미토콘드리아 외막으로 이동한다(type II). 또한 세포질, 미토콘드리아 외막에 있는 Bax (Bcl-2-associated X protein)와 미토콘드리아의 외막과 소포체에 존재하는 Bak (Bcl-2 antagonist killer)도 미토콘드리아 외막으로 삽입된다. tBid와 Bak 또는 Bax와 Bak은 중합화(oligomerization)되어, 미토콘드리아 외막으로 삽입되어 미토콘드리아의 외막투과성을 증가시킨다. 이로써, 미토콘드리아의 외막과 내막사이에 있는 시토크롬(cytochrome) c를 세포질로 방출시켜‘아폽토좀(apoptosome) 복합체’를 형성하게 한다. dATP의 존재하에 시토크롬(cytochrome) c와 Apaf-1 (apoptosis activating factor-1), 프로캐스파아제(procaspase)-9로 이루어진 아폽토좀(apoptosome) 복합체는 하위단계의 프로캐스파아제(procaspase)-3를 활성화시켜 세포죽음을 유도한다. 둘째, 내인성경로(intrinsic pathway)는 죽음신호가 미토콘드리아에 작용하여 시토크롬(cytochrome) c를 방출시키며, 전술한 바와 같이 세포질에서 ‘아폽토좀(apoptosome) 복합체’를 형성하게한다. 이 경로는 Bcl-2 단백질군, IAPs (inhibitor of apoptosis proteins), Smac (second mitochondrial activator of caspases)/ Diablo, HtrA2 (high-temperature requirement protein A2)/Omi들에 의해 조절된다. 아폽토좀(Apoptosome) 복합체는 또한 Pro-T (oncoprotein prothymosin-α)과 PHAP (tumor suppressor putative HLA-DR-associated protein) 등의 단백질에 의하여 그 기능이 조절되기도 한다(Jiang X et al., Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway, Science, 299, pp.223-226, 2003). Apoptosis is an important mechanism of action in which most anticancer agents exhibit the antiproliferative effect of cancer cells (Kalechman et al., Synergistic anti-tumoral effect of paclitaxel (Taxol) + AS101 in a murine model of B16 melanoma: association with ras) -dependent signal-trasduction pathways.Int. J. Cancer , 86 , pp.281-288, 2000; Gamet-Payractre et al ., Sulforaphane a naturally occurring isothiocyanate, induced arrest and apoptosis in HT29 human colon cancer cell . , 60 , pp.1426-1433, 2000), which refers to active cell death regulated by genes and plays an important role in maintaining a balance between cell proliferation and cell death in vivo (Piao et al . , Induction of G (2) / M phase arrest and apoptosis by a new synthetic anti-cancer agent, DW2282, in promyelocytic leukemia (HL-60) cells.BiochemPharmacol , 62 , pp. 1439-1447, 2001). During the apoptosis process, cells undergo a series of processes that lead to enrichment of chromatin in the nucleus, condensation of the cytoplasm, fragmentation of DNA, fragmentation of the nucleus, and formation of apoptotic bodies (Nagata et al. , Degradation of chromosomal DNA during apoptosis.Cell Death Differ , 1 , pp. 108-116, 2004). These apoptosis pathways can be divided into extrinsic pathways and intrinsic pathways. First, the death-inducing signaling complex (DISC) is formed in the exogenous pathway, ie, the cell death pathway via the death receptor, resulting in the activation of procaspase-8 (Orrenius). S et al., Mitochondrial oxidative stresses: implications for cell death.Annu . Rev. Pharmacol. Toxicol. 47 , 19.1-19.41, 2007). Activated caspase-8 directly activates procaspase-3 to target proteins (eg PARP-1: poly (ADP-ribose) polymerase-I, ICAD: inhibitor of caspase- activated DNase) to cut apoptosis (type I) (Kim R., Recent advances in understanding the cell death pathways activated by anticancer therapy. Cancer, 103 , pp. 1551-1560, 2005). However, in many cells, caspase-8 cleaves Bcl-2 homology domain 3 interacting domain death agonist (Bcl-2), a member of the Bcl-2 (B-cell lymphoma 2) protein family, into tBid (truncated Bid). tBid migrates to the mitochondrial outer membrane (type II). In addition, Bax (Bcl-2-associated X protein) in the cytoplasm, mitochondrial outer membrane, and Bak (Bcl-2 antagonist killer) in the mitochondrial outer membrane and endoplasmic reticulum are also inserted into the mitochondrial outer membrane. tBid and Bak or Bax and Bak are polymerized and inserted into the mitochondrial outer membrane to increase the outer membrane permeability of the mitochondria. As a result, cytochrome c between the outer membrane and the inner membrane of the mitochondria is released into the cytoplasm to form an apoptosome complex. In the presence of dATP, the apoptosome complex, consisting of cytochrome c , Apaf-1 (apoptosis activating factor-1) and procaspase-9, is a low-level procaspase- Activate 3 to induce cell death. Second, the intrinsic pathway causes the death signal to act on the mitochondria, releasing cytochrome c , and to form an apoptosome complex in the cytoplasm as described above. This pathway is regulated by the Bcl-2 family of proteins, inhibitors of apoptosis proteins (IAPs), second mitochondrial activator of caspases (Smac) / Diablo, and high-temperature requirement protein A2 (HtrA2) / Omi. Apoptosome complexes are also regulated by proteins such as oncoprotein prothymosin-α (Pro-T) and tumor suppressor putative HLA-DR-associated protein (Jiang X et al., Distinctive roles). of PHAP proteins and prothymosin-alpha in a death regulatory pathway, Science, 299 , pp.223-226, 2003).

DNA 손상에 의해 초기에 활성화되는 캐스파아제(caspase)는 프로캐스파아제(procaspase)-2이다. 프로캐스파아제(procaspase)-2는 PIDD (p53-inducible protein with a death domain), RAIDD (RIP-associated Ich-1/Ced-3-homologoes protein with a death domain)로 구성된 PIDDosome 복합체를 형성하고, 시토크롬(cytochrome) c를 세포질로 방출시켜 아폽토좀(apoptosome) 형성을 유도한다. 즉, 캐스파아제 케스케이드(caspase cascade)와 연이은 세포 내 단백질들의 절단현상을 통하여 세포는 죽음에 이르게 된다.The caspase that is initially activated by DNA damage is procaspase-2. Procaspase-2 forms a PIDDosome complex consisting of PID53 (p53-inducible protein with a death domain), RAIDD (RIP-associated Ich-1 / Ced-3-homologoes protein with a death domain), Cytochrome c is released into the cytoplasm to induce apoptosome formation. In other words, the cascade of caspase cascade and subsequent intracellular proteins leads to cell death.

캐스파아제(Caspases)의 가장 대표적인 기질로 알려진 PARP(116 kDa)는 캐스파아제(caspase)-3 프로테이즈(protease)의 활성에 의해 85 kDa의 카르복실말단 절편과 28 kDa의 아미노말단 절편으로 나뉘게 된다(Kaufmann et al., Specific proteolytic cleavage of poly(ADP-ribose) polymerase: An early marker of chemotherapy-induced apoptosis, Cancer Research, S3, pp.3976-3985, 1993). PARP는 뇌를 포함한 여러 장기의 세포핵 내에 존재하는 효소로 DNA가 손상될 때 활성화되어 DNA를 수선할 뿐만 아니라 세포 분화 및 유전자 발현에도 관여한다(Ikai et al., Induction of apoptosis, p53 and heme oxygenase-1 by cytotoxic prostaglandin △12-PGJ2 in transformed endothelian cells, Prostaglandins, Leukotrienes, and Essential Fatty Acids, 58(4), pp.295-300, 1998; Vispe et al., A cellular defense pathway regulating transcription through poly(ADP-ribosyl)ation in response to DNA damage, PNAS, 97(18), pp.9886-9891, 2000). PARP (116 kDa), known as the most representative substrate of caspases, is characterized by 85 kDa carboxyl fragments and 28 kDa amino terminal fragments by the activity of caspase-3 protease. Kaufmann et al ., Specific proteolytic cleavage of poly (ADP-ribose) polymerase: An early marker of chemotherapy-induced apoptosis, Cancer Research, S3 , pp.3976-3985, 1993. PARP is an enzyme present in the nucleus of many organs, including the brain, which is activated when DNA is damaged, which not only repairs DNA but also participates in cell differentiation and gene expression (Ikai et al ., Induction of apoptosis, p53 and heme oxygenase-). 1 by cytotoxic prostaglandin △ 12 -PGJ 2 in transformed endothelian cells, Prostaglandins, Leukotrienes, and Essential Fatty Acids, 58 (4) , pp.295-300, 1998; Vispe et al ., A cellular defense pathway regulating transcription through poly ( ADP-ribosyl) ation in response to DNA damage, PNAS , 97 (18) , pp.9886-9891, 2000).

암 치료에는 화학 요법, 방사선 요법, 외과 요법, 유전자치료법 등 많은 방법들이 있지만 약물을 이용하는 화학 요법이 가장 많이 사용되고 있다. 그러나 화학 요법은 부작용이 크고 쉽게 완치되지 않아 암 치료를 위한 새로운 접근 방법이 필요하게 되었다. 크게 두 가지 접근 방법이 시도되고 있다. 첫째는 다양한 합성 방법을 통하여 기존의 항암제의 약효를 유지하는 한편 부작용은 현저히 줄어든 새로운 유도체를 합성, 개발하는 것이고, 둘째는 암 발생 자체를 억제시키거나 암의 진행을 지연 혹은 역전시킴으로써 악성 암으로의 진행을 억제하는 화학적 암 예방(cancer chemoprevention)이다. 최근 선진 각국에서는 독성이 없고 효능이 뛰어난 화학적 암 예방제 및 항암제를 야채, 과일, 약용식물 등의 천연자원으로부터 개발하기 위해 많은 관심을 기울이고 있다(Kelloff et al., Progress in cancer chemoprevention., Annals New York Academy of Sciences, 889, pp.1-13, 1999). 화학적 암 예방은 외형상 건강한 사람을 대상으로 암 발생을 억제하기 위한 1차 예방, 양성암을 앓고 있는 사람을 대상으로 발암과정을 역전시키기 위한 2차 예방, 악성화, 전이, 합병증 등을 억제하고 암을 치료한 적이 있는 사람을 대상으로 재발을 예방하기 위한 3차 예방으로 단계적으로 적용할 수 있다. 따라서 암 예방 뿐만 아니라 치료제로서도 매우 유용하게 이용될 수 있다. There are many methods for cancer treatment, including chemotherapy, radiation therapy, surgical therapy, and gene therapy, but chemotherapy using drugs is most commonly used. However, chemotherapy has many side effects and is not easily cured, requiring a new approach to cancer treatment. Two approaches are being attempted. The first is the synthesis and development of new derivatives that maintain the efficacy of existing anticancer drugs through various synthetic methods, and the side effects are significantly reduced, and the second is to prevent malignant cancer by inhibiting cancer development itself or delaying or reversing cancer progression. It is chemical chemoprevention that inhibits progression. In recent years, many countries have been paying attention to develop nontoxic and efficacious chemical cancer preventive and anticancer agents from natural resources such as vegetables, fruits and medicinal plants (Kelloff et al., Progress in cancer chemoprevention., Annals New York). Academy of Sciences, 889 , pp.1-13, 1999). Chemical cancer prevention is primarily intended to prevent cancer from appearing in healthy individuals and secondary prevention, malignancy, metastasis and complications to reverse the carcinogenic process in people with benign cancer. It can be applied step by step as a third prevention to prevent recurrence in people who have been treated. Therefore, it can be very useful as a therapeutic agent as well as cancer prevention.

쑥(Artemisia)은 한국을 비롯하여 아시아와 유럽지역 등에 분포되어 자생하는 국화과(compositae)의 다년생 초본 식물로서 약 350여종이 존재하는 것으로 알려져 있고 이중에서 300여종이 우리나라에 자생하고 있다. 쑥은 식용으로 사용될 수 있는 것과 약용으로 사용될 수 있는 것, 식용 및 약용으로 모두 사용할 수 있는 것으로 구분된다. 사자발쑥(Artemisia princeps Pampanini)은 전국 각지에서 야생하며, 강화약쑥이라고 부르기도 한다. 잎이 넓고 짙은 녹색이며 사자발 모양으로 갈라져 마디마디 착생하며 특유의 향을 발하는 것으로 알려져 있다. 사자발쑥의 성분으로는 유파틸린(eupatilin), 자세오시딘(jaceosidin), 아피게닌(apigenin), 유파폴린(eupafolin, 6-methoxy 5, 7, 30, 40-tetra hydroxy flavone), 아밀라아제, 콜린, 아르데모즈, 유칼립톨, 정유 성분(시네올, 트리사이클린, 테르핀네, 보르네올, 피넨 등 65종), 비타민 A, B, C, 단백질, 칼슘, 마그네슘, 철분, 칼륨 및 인 등이 함유되어 있고, 일반 쑥에 비해 약효가 탁월한 것으로 알려져 있으며, 약리적 효과로는 소염, 진통, 강심, 진해 작용뿐만 아니라 항말라리아(anti-malarial), 항바이러스(antiviral), 항산화(anti-oxidant), 항궤양(anti-ulcerogenic) 효과 등이 알려져 있다(Tan, R. X., et al., Biologically active substances from the genus Artemisia., Planta Medica, 64, pp.295-302, 1998). Artemisia is a perennial herbaceous plant of the compositae, which is distributed in Korea, Asia and Europe, and is known to have about 350 species, of which 300 are native to Korea. Mugwort is divided into those that can be used for food, those that can be used for medicinal use, both edible and medicinal. Artemisia princeps Pampanini is wild throughout the country and is also called fortified wormwood. The leaves are broad and dark green, and split into lion-shaped leaves, and the nodes are known to give off their unique scent. The components of lion cucurbita are eupatilin, eupicin, apigenin, eupafolin, 6-methoxy 5, 7, 30, 40-tetra hydroxy flavone, amylase, choline, It contains aldehydes, eucalyptol, essential oils (65 kinds such as cineol, tricycline, terpinene, bornole, pinene), vitamins A, B, C, protein, calcium, magnesium, iron, potassium and phosphorus It is known to have superior medicinal effects compared to regular mugwort, and its pharmacological effects include anti-malarial, antiviral, anti-oxidant and anti-ulcer as well as anti-inflammatory, analgesic, cardiac and antitussive effects. anti-ulcerogenic effects are known (Tan, RX, et al., Biologically active substances from the genus Artemisia ., Planta Medica, 64 , pp. 295-302, 1998).

그러나 상기 문헌 어디에도 본 발명의 사자발쑥으로부터 분리된 유파폴린이 암세포의 세포사멸을 유발시켜 암세포의 증식을 억제하여 암 질환의 예방 및 치료를 위한 조성물로서 사용가능하다고 교시되거나 개시된 바 없다.However, none of the above documents teaches or discloses that eupapoline isolated from lion cucurbita of the present invention can be used as a composition for preventing and treating cancer diseases by inhibiting the proliferation of cancer cells by inducing apoptosis of cancer cells.

현재 치료제로 사용되는 물질들은 상당한 독성을 지니고 있으며, 암 세포만을 선택적으로 제거하지 못하므로, 암의 발생 후 이의 치료뿐 아니라, 암의 발생을 예방하기 위한 독성이 적고 효과적인 천연물 항암제의 개발이 절실히 필요하다.Since the substances used as therapeutic agents are quite toxic and cannot selectively remove only cancer cells, there is an urgent need for the development of low-toxic and effective natural anticancer drugs to prevent the development of cancer as well as its treatment after the occurrence of cancer. Do.

이에 본 발명자들은 사자발쑥으로부터 분리된 유파폴린이 암세포의 세포사멸을 유발시켜 암세포의 증식을 억제하는 탁월한 항암효과를 나타냄을 확인함으로서 본 발명을 완성하였다.Accordingly, the present inventors have completed the present invention by confirming that the yupapoline isolated from lion cucurbita exhibits an excellent anticancer effect of inhibiting the proliferation of cancer cells by inducing apoptosis of cancer cells.

본 발명은 사자발쑥(Artemisia princeps Pampanini)으로부터 분리된 유파폴린을 유효성분으로 함유하는 암 질환의 예방 및 치료용 약학조성물을 제공한다.The present invention provides a pharmaceutical composition for the prevention and treatment of cancer diseases, containing as an active ingredient opapaline isolated from Artemisia princeps Pampanini .

상기 목적을 달성하기 위하여, 본 발명은 사자발쑥(Artemisia princeps Pampanini)으로부터 분리된 하기 구조식 (1)의 유파폴린을 유효성분으로 함유하는 암 질환의 예방 및 치료용 약학조성물을 제공한다.In order to achieve the above object, the present invention provides a pharmaceutical composition for the prevention and treatment of cancer diseases containing the eupapoline of the following structural formula (1) isolated from Artemisia princeps Pampanini as an active ingredient.

Figure 112008089414941-PAT00001
(1)
Figure 112008089414941-PAT00001
(One)

본원에서 정의되는 암 질환은 위암, 결장암, 유방암, 폐암, 비소 세포성폐 암, 골암, 췌장암, 피부암, 두부 또는 경부암, 피부 또는 안구 내 흑색종, 자궁암, 난소암, 대장암, 소장암, 직장암, 항문부근암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 호지킨병(Hod gkin's disease), 식도암, 소장암, 임파선암, 방광암, 담낭암, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 음경암, 전립선암, 만성 또는 급성 백혈병, 림프구 림프종, 방광암, 신장 또는 수뇨관 암, 신장세포 암종, 신장골반 암종, 중추신경계(CNS; central nervous system) 종양, 1차 CNS 림프종, 척수 종양, 뇌종양, 뇌간 신경교종 또는 뇌하수체 선종 등이며, 바람직하게는 대장암, 자궁경부암, 난소암, 자궁암, 간암, 폐암, 뇌종양, 뇌간 신경교종, 방광암 또는 백혈병이며, 보다 바람직하게는 자궁경부암, 난소암, 자궁암, 폐암, 또는 뇌종양을 포함한다. Cancer diseases as defined herein include gastric cancer, colon cancer, breast cancer, lung cancer, non-small cell lung cancer, bone cancer, pancreatic cancer, skin cancer, head or neck cancer, skin or eye melanoma, uterine cancer, ovarian cancer, colon cancer, small intestine cancer, rectal cancer, Anal familial cancer, fallopian tube carcinoma, endometrial carcinoma, cervical carcinoma, vaginal carcinoma, vulvar carcinoma, Hodgkin's disease, esophageal cancer, small intestine cancer, lymph gland cancer, bladder cancer, gallbladder cancer, endocrine gland cancer, thyroid cancer, parathyroid cancer, Adrenal cancer, soft tissue sarcoma, urethral cancer, penile cancer, prostate cancer, chronic or acute leukemia, lymphocytic lymphoma, bladder cancer, kidney or ureter cancer, renal cell carcinoma, renal pelvic carcinoma, central nervous system (CNS) tumor, 1 Primary CNS lymphoma, spinal cord tumor, brain tumor, brain stem glioma or pituitary adenoma, etc., preferably colon cancer, cervical cancer, ovarian cancer, uterine cancer, liver cancer, lung cancer, brain tumor, brain stem glioma, bladder cancer or leukemia. Preferably including cervical cancer, ovarian cancer, cervical cancer, lung cancer, or a brain tumor.

이하, 본 발명의 화합물을 수득하는 방법을 상세히 설명한다.Hereinafter, the method for obtaining the compound of the present invention will be described in detail.

본 발명의 화합물은, 건조된 사자발쑥 바람직하게는 사자발쑥을 세절하여 건조 중량의 약 1 내지 20배, 바람직하게는 약 3 내지 15배의 물, C1 내지 C4의 저급 알코올 또는 이들의 혼합용매, 바람직하게는 물 또는 메탄올로, 상온(20 내지 100℃, 바람직하게는 20 내지 30℃) 추출온도에서 약 1시간 내지 10일, 바람직하게는 약 20시간 내지 30시간동안 냉침추출, 열수추출, 초음파 추출, 환류냉각 추출 등의 추출방법, 바람직하게는 환류냉각 추출방법을 이용하여 수득한 1 내지 10회, 바람직하게는 2 내지 7회 반복 추출한 후 감압 농축하여 조추출물을 수득하는 제 1단계; 상기 조추출물을 물에 현탁한 후, 에틸 아세테이트 및 물로 각각 추출하는 제 2단계; 제 2단계에서 수득한 에틸 아세테이트 용매 추출물을 n-헥산 : 에틸아세테이트(1~10 : 1(v/v))을 용출용매로 박층 크로마토그래피를 수행하여 20개의 분획으로 나누는 제 3단계; 상기 3단계의 분획물 중 열 여섯번째 분획을 다시 클로로포름 : 메탄올(20~40 : 1(v/v))을 용출용매로 실리카겔 컬럼크로마토그래피를 수행하여 12개의 분획으로 나누는 제 4단계; 상기 제 4단계의 분획물 중 여섯번째 분획을 다시 메탄올 : 물(1~3 : 1(v/v))을 용출용매로 크로마토그래피를 수행하여 정제하는 제 5단계; 상기 5단계의 ODS 컬럼크로마토그래피로 분리하여 유파폴린을 수득하는 제 6단계의 제조 공정을 통해 본 발명의 화합물을 수득할 수 있다. The compound of the present invention is a dried lion cucurbita, preferably sliced lion cucurbita, about 1 to 20 times the dry weight of water, preferably about 3 to 15 times the water, C 1 to C 4 lower alcohols or a mixture thereof Cold extraction, hot water extraction with a solvent, preferably water or methanol, at room temperature (20-100 ° C., preferably 20-30 ° C.) for about 1 hour to 10 days, preferably about 20 hours to 30 hours. In the first step to obtain a crude extract by repeated extraction 1 to 10 times, preferably 2 to 7 times obtained by using an extraction method, such as ultrasonic extraction, reflux cooling extraction, preferably reflux cooling extraction method ; Suspending the crude extract in water and then extracting with ethyl acetate and water, respectively; A third step of diluting the ethyl acetate solvent extract obtained in the second step with n -hexane: ethyl acetate (1-10: 1 (v / v)) by elution solvent to thin layer chromatography to 20 fractions; A fourth step of dividing the sixteenth fraction from the fractions of the three steps into chloroform: methanol (20-40: 1 (v / v)) using silica gel column chromatography as an eluting solvent and dividing it into 12 fractions; A fifth step of purifying the sixth fraction of the fraction of the fourth step by performing chromatography with methanol: water (1-3: 1 (v / v)) as an eluting solvent; The compound of the present invention can be obtained through the sixth step of preparing the separation step by the five step ODS column chromatography to obtain the eupapoline.

본 발명의 사자발쑥으로부터 분리된 유파폴린을 유효성분으로 함유하는 암 예방 및 치료용 약학조성물은, 조성물 총 중량에 대하여 상기 화합물을 0.1 내지 50 중량%로 포함한다.        The pharmaceutical composition for the prevention and treatment of cancer, which contains the eupapoline isolated from lion cucurbita of the present invention as an active ingredient, the compound comprises 0.1 to 50% by weight based on the total weight of the composition.

본 발명의 화합물을 포함하는 약학조성물은 약학적 조성물의 제조에 통상적으로 사용하는 적절한 담체, 부형제 및 희석제를 더 포함할 수 있다.Pharmaceutical compositions comprising the compounds of the present invention may further comprise suitable carriers, excipients and diluents commonly used in the manufacture of pharmaceutical compositions.

그러나 상기와 같은 조성은 반드시 이에 한정되는 것은 아니고, 환자의 상태 및 질환의 종류 및 진행 정도에 따라 변할 수 있다.However, the composition as described above is not necessarily limited thereto, and may vary according to the condition of the patient and the type and extent of the disease.

본 발명의 화합물을 포함하는 암 치료용 약학조성물은 약학적 조성물의 제조에 통상적으로 사용하는 적절한 담체, 부형제 및 희석제를 더 포함할 수 있다.The pharmaceutical composition for treating cancer containing the compound of the present invention may further include appropriate carriers, excipients and diluents commonly used in the preparation of pharmaceutical compositions.

본 발명의 화합물의 약학적 투여 형태는 이들의 약학적 허용 가능한 염의 형태로도 사용될 수 있고, 또한 단독으로 또는 타약학적 활성 화합물과 결합뿐만 아니라 적당한 집합으로 사용될 수 있다. Pharmaceutical dosage forms of the compounds of the invention may be used in the form of their pharmaceutically acceptable salts, or may be used alone or in combination with other pharmaceutically active compounds as well as in a suitable collection.

본 발명의 화합물을 포함하는 약학조성물은, 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형, 외용제, 좌제 및 멸균 주사 용액의 형태로 제형화하여 사용될 수 있다. 화합물을 포함하는 조성물에 포함될 수 있는 담체, 부형제 및 희 석제로는 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다. 제제화할 경우에는 보통 사용하는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제된다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러한 고형제제는 상기 화합물에 적어도 하나 이상의 부형제 예를 들면, 전분, 칼슘카보네이트(calcium carbonate), 수크로스(sucrose) 또는 락토오스(lactose), 젤라틴 등을 섞어 조 제된다. 또한 단순한 부형제 이외에 마그네슘 스테아레이트, 탈크 같은 윤활제들도 사용된다. 경구를 위한 액상 제제로는 현탁제, 내용액제, 유제, 시럽제 등이 해당되는데 흔히 사용되는 단순희석제인 물, 리퀴드 파라핀 이외에 여러 가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구 투여를 위한 제제에는 멸균된 수용액, 비수성용제, 현탁제, 유제, 동결건조 제제, 좌제가 포함된다. 비수성용 제, 현탁제로는 프로필렌글리콜(propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사 용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골(macrogol), 트윈(tween) 61, 카카오지, 라우린지, 글리세로제라틴 등이 사용될 수 있다.The pharmaceutical compositions comprising the compounds of the present invention may be formulated in the form of powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols and the like, external preparations, suppositories, and sterile injectable solutions, respectively, according to conventional methods. Can be used. Carriers, excipients and diluents which may be included in the composition comprising the compound include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium Silicates, cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil. When formulated, diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrating agents, and surfactants are usually used. Solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and such solid preparations may contain at least one excipient such as starch, calcium carbonate, sucrose, or the like. ) Or lactose, gelatin, etc. In addition to simple excipients, lubricants such as magnesium stearate and talc are also used. Oral liquid preparations include suspensions, solvents, emulsions, and syrups, and may include various excipients, such as wetting agents, sweeteners, fragrances, and preservatives, in addition to commonly used simple diluents such as water and liquid paraffin. . Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solvents, suspensions, emulsions, lyophilized preparations, suppositories. As the non-aqueous solvent and suspending agent, propylene glycol, polyethylene glycol, vegetable oils such as olive oil, injectable esters such as ethyl oleate and the like can be used. As the base of the suppository, witepsol, macrogol, tween 61, cacao butter, laurin butter, glycerogelatin and the like can be used.

본 발명의 조성물의 바람직한 투여량은 환자의 상태 및 체중, 질병의 정도, 약물형태, 투여경로 및 기간에 따라 다르지만, 당업자에 의해 적절하게 선택될 수 있다. 그러나 바람직한 효과를 위해서, 본 발명의 조성물은 1일 0.0001 내지 100㎎/kg으로, 바람직하게는 0.001 내지 10㎎/kg으로 투여하는 것이 좋다. 투여는 하루에 한번 투여할 수도 있고, 수회 나누어 투여할 수도 있다. 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다.Preferred dosages of the compositions of the present invention vary depending on the condition and weight of the patient, the extent of the disease, the form of the drug, the route of administration and the duration, and may be appropriately selected by those skilled in the art. However, for the desired effect, the composition of the present invention is preferably administered at 0.0001 to 100 mg / kg, preferably 0.001 to 10 mg / kg per day. Administration may be administered once a day or may be divided several times. The dosage does not limit the scope of the invention in any aspect.

본 발명의 조성물은 쥐, 생쥐, 가축, 인간 등의 포유 동물에 다양한 경로로 투여될 수 있다. 투여의 모든 방식은 예상될 수 있는데, 예를 들면, 경구, 직장 또는 정맥, 근육, 피하, 자궁내 경막 또는 뇌혈관내(intra cerebroventricular) 주사에 의해 투여될 수 있다. The composition of the present invention can be administered to various mammals such as rats, mice, livestock, humans, and the like. All modes of administration can be expected, for example by oral, rectal or intravenous, intramuscular, subcutaneous, intrauterine dural or intra cerebroventricular injections.

본 발명은 암 질환의 예방 효과를 나타내는 유파폴린을 유효성분으로 함유하는 암질환의 예방 및 개선용 건강기능식품을 제공한다. The present invention provides a dietary supplement for the prevention and improvement of cancer diseases, containing as an active ingredient opapaline showing the preventive effect of cancer diseases.

상기 화합물을 첨가할 수 있는 식품으로는, 예를 들어, 각종 식품류, 음료, 껌, 차, 비타민 복합제, 건강 기능성 식품류 등이 있다.Examples of the food to which the compound can be added include various foods, beverages, gums, teas, vitamin complexes, and health functional foods.

또한, 본 발명의 화합물은 암 질환의 예방 및 개선 효과를 목적으로 식품 또는 음료에 첨가될 수 있다. 이 때, 식품 또는 음료 중의 상기 화합물의 양은 전체 식품 중량의 0.01 내지 15 중량%로 가할 수 있으며, 건강 음료 조성물은 100 ㎖를 기준으로 0.02 내지 5 g, 바람직하게는 0.3 내지 1g의 비율로 가할 수 있다. In addition, the compounds of the present invention can be added to food or beverages for the purpose of preventing and improving cancer diseases. At this time, the amount of the compound in the food or beverage may be added at 0.01 to 15% by weight of the total food weight, the health beverage composition may be added in a ratio of 0.02 to 5 g, preferably 0.3 to 1g based on 100 ml. have.

본 발명의 건강기능식품은 정제, 캡슐제, 환제, 액제 등의 형태를 포함한다 .Health functional food of the present invention includes the form of tablets, capsules, pills, liquids and the like.

본 발명의 건강 기능성 음료 조성물은 지시된 비율로 필수 성분으로서 상기 화 합물을 함유하는 외에는 다른 성분에는 특별한 제한이 없으며 통상의 음료와 같이 여러 가지 향미제 또는 천 연 탄수화물 등을 추가 성분으로서 함유할 수 있다. 상술한 천연 탄수화물의 예는 모노사카라이드, 예를 들 어, 포도당, 과당 등; 디사카라이드, 예를 들어 말토스, 슈크로스 등; 및 폴리사카라이드, 예를 들어 덱스트린, 시클로덱스트린 등과 같은 통상적인 당, 및 자일리톨, 소르비톨, 에리트리톨 등의 당알콜이다. 상술한 것 이외의 향미제로서 천연 향미제(타우마틴, 스테비아 추출물(예를 들어 레바우디오시드 A, 글리시르히진등) 및 합성 향미제(사카린, 아스파르탐 등)를 유리하게 사용할 수 있다. 상기 천연 탄수화물의 비율은 본 발 명의 조성물 100 ㎖당 일반적으로 약 1 내지 20g, 바람직하게는 약 5 내지 12g이다.The health functional beverage composition of the present invention is not particularly limited to other ingredients except for containing the compound as essential ingredients in the indicated ratios, and may contain various flavors or natural carbohydrates as additional ingredients, such as ordinary drinks. have. Examples of the above-mentioned natural carbohydrates include monosaccharides such as glucose, fructose and the like; Disaccharides such as maltose, sucrose and the like; And conventional sugars such as polysaccharides such as dextrin, cyclodextrin, and sugar alcohols such as xylitol, sorbitol, and erythritol. As flavoring agents other than those mentioned above, natural flavoring agents (tauumatin, stevia extract (for example, rebaudioside A, glycyrrhizin, etc.) and synthetic flavoring agents (saccharin, aspartame, etc.) can be advantageously used. The proportion of natural carbohydrates is generally about 1 to 20 g, preferably about 5 to 12 g per 100 ml of the composition of the present invention.

상기 외에 본 발명의 조성물은 여러 가지 영양제, 비타민, 광물(전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 중진제(치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로 이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알콜, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 그밖에 본 발명의 조성물은 천연 과일 쥬스 및 과일 쥬스 음료 및 야채 음료의 제조를 위한 과육을 함유할 수 있다. 이러한 성분은 독립적으로 또는 조합하여 사용할 수 있다. 이러한 첨가제의 비율은 그렇게 중요하진 않지만 본 발명의 조성물 100 중량부 당 0 내지 약 20 중량부의 범위에서 선택되는 것이 일반적이다.In addition to the above, the composition of the present invention includes various nutrients, vitamins, minerals (electrolytes), flavors such as synthetic flavors and natural flavors, coloring and neutralizing agents (such as cheese and chocolate), pectic acid and salts thereof, alginic acid and its Salts, organic acids, protective colloid thickeners, pH adjusters, stabilizers, preservatives, glycerin, alcohols, carbonation agents used in carbonated beverages and the like. In addition, the composition of the present invention may contain a natural fruit juice and a pulp for the production of fruit juice drinks and vegetable drinks. These components can be used independently or in combination. The proportion of such additives is not so critical but is generally selected from the range of 0 to about 20 parts by weight per 100 parts by weight of the composition of the present invention.

상술한 바와 같이, 본 발명의 사자발쑥(Artemisia princeps Pampanini)으로부터 분리된 유파폴린(eupafolin)은 암세포의 세포사멸을 유발시켜 암세포의 증식을 억제하는 탁월한 항암효과를 나타내므로 암 예방 및 치료용 조성물로 이용될 수 있다. As described above, eupafolin isolated from the Artemisia princeps Pampanini of the present invention exhibits an excellent anticancer effect of inhibiting the proliferation of cancer cells by inducing apoptosis of cancer cells. Can be used.

이하, 본 발명을 하기의 실시예 및 실험예에 의해 상세히 설명한다. Below, The invention is illustrated in detail by the following examples and experimental examples.

단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예, 참고예 및 실험예에 의해 한정되는 것은 아니다 .However, the following Examples and Experimental Examples are only illustrative of the present invention, and the content of the present invention is not limited by the following Examples, Reference Examples and Experimental Examples.

실시예 1. 사자발쑥으로부터 유파폴린의 분리 Example 1 Isolation of Euphapoline from Lion Wormwood

본 실험에 사용된 건조된 사자발쑥을 강화군 농업기술센터에서 2.4kg을 구입하여 분쇄기를 이용하여 입자의 크기가 30메시(mesh)이하가 되도록 분쇄하여 15ℓ의 80% 메탄올 용액을 가한 다음 상온(24℃)에서 24시간동안 환류 냉각 추출한 후, 상기 잔재를 동일한 방법으로 2회 더 추출한 후 합했다. 이 추출액을 여과 및 동결 건조하여 사자발쑥 조추출물(137 g)을 수득하였다. 2.4kg of dried lion footwort used in this experiment was purchased from Ganghwa-gun Agricultural Technology Center and pulverized to a particle size of 30 mesh or less using a grinder, and 15 liter of 80% methanol solution was added to room temperature (24 After reflux extraction under reflux for 24 hours, the residue was further extracted twice in the same manner and then combined. The extract was filtered and freeze-dried to obtain crude extract of lion cucurbita (137 g).

상기의 방법으로 수득한 사자발쑥 조추출물(137 g)을 물 (2ℓ)에 현탁하여 분액깔대기에 넣은 후, 여기에 에틸 아세테이트(2ℓ×2회)를 가한 다음 진탕하여 각각의 가용부를 감압농축기로 농축하여 사자발쑥의 에틸 아세테이트가용 추출물(47 g), 및 물 가용추출물(90 g)을 수득하였다. Suspension extract of lion cucurbita obtained by the above method (137 g) was suspended in water (2 L) and placed in a separatory funnel, and then ethyl acetate (2 L × 2 times) was added thereto, followed by shaking. Concentration yielded ethyl acetate soluble extract (47 g), and water soluble extract (90 g) of lion cucurbita.

상기의 방법으로 수득한 사자발쑥 에틸 아세테이트 가용추출물(45 g)을 실리카겔 컬럼에 걸고 n-헥산 : 에틸아세테이트(7 : 1 -> 5 : 1 -> 3 : 1 -> 1 : 1(v/v))을 용출용매로 사용하여 크로마토그래피를 실시함에 따라 박층 크로마토그래피에서 동일한 양상을 나타내는 것들은 합하고 농축하여 20개의 분획(1~20)으로 나누었다. 이를 다시 열 여섯 번째 분획물인 16(1.53g)을 클로로포름 : 메탄올(30 : 1(v/v))을 용출용매로 사용한 실리카겔 컬럼 크로마토그래피로부터 분리하여 다시 12개의 분획(16-1 ~ 16-12)으로 나누었다. 이 중 여섯번째 분획물인 16-6(558㎎)을 메탄올 : 물(2 : 1(v/v))을 용출용매로 사용한 ODS 컬럼 크로마토그래피로부터 정제하여 화합물 1(57 mg)을 수득하였으며, 기기분석결과 하기 물성치를 갖는 유파폴린(eupafolin ; 6-methoxy 5, 7, 30, 40-tetra hydroxy flavone)임을 확인하였다(Ryu SN., et al., Quantitative analysis of eupatilin and jaceosidin in Artemisia herba, Kor. J. Crop Sci., 49, pp.452-456, 2004; Xiaoyi W., et al., Phenolic constituents from Mikania micrantha, Biochem. System. Ecol., 32, pp.1091-1096, 2004).Sodium mugwort ethyl acetate soluble extract (45 g) obtained by the above method was placed on a silica gel column and n -hexane: ethyl acetate (7: 1-> 5: 1-> 3: 1 1> 1: 1 (v / v). Chromatography using)) as the elution solvent, the same phase in thin layer chromatography was combined, concentrated and divided into 20 fractions (1-20). The sixteenth fraction, 16 (1.53 g), was separated from silica gel column chromatography using chloroform: methanol (30: 1 (v / v)) as an eluting solvent. Divided by). The sixth fraction, 16-6 (558 mg), was purified from ODS column chromatography using methanol: water (2: 1 (v / v)) as an eluent to obtain Compound 1 (57 mg). As a result of the analysis, it was confirmed that it is eupapoline (eupafolin; 6-methoxy 5, 7, 30, 40-tetra hydroxy flavone) having the following physical properties (Ryu SN., Et al., Quantitative analysis of eupatilin and jaceosidin in Artemisia herba, Kor. J. Crop Sci. , 49 , pp.452-456, 2004; Xiaoyi W., et al., Phenolic constituents from Mikania micrantha, Biochem.System.Ecol . , 32 , pp.1091-1096, 2004).

노란색 분말(Colorless powder); Yellow powder;

Rf= 0.52(클로로포름:메탄올=5:1); Rf= 0.63(아세톤:물=2:1);R f = 0.52 (chloroform: methanol = 5: 1); R f = 0.63 (acetone: water = 2: 1);

M.P. 272-274 ℃; M.P. 272-274 ° C;

IR (KBr, cm-1): 3410, 1662, 1601;IR (KBr, cm- 1 ): 3410, 1662, 1601;

EI/MS m/z (70 eV): 316 [M]+, 301, 298, 273, 167;EI / MS m / z (70 eV): 316 [M] + , 301, 298, 273, 167;

1H-NMR (400 MHz, C5D5N, δH ) : 7.31 (1H, s, H-2'), 7.30 (1H, d, J = 8.0 Hz, H-6'), 6.85 (1H, d, J = 8.0 Hz, H-5'), 6.46 (2H, s, H-3,8), 3.86 (3H, s, 6-OCH3); 1 H-NMR (400 MHz, C 5 D 5 N, δ H ): 7.31 (1H, s, H-2 '), 7.30 (1H, d, J = 8.0 Hz, H-6'), 6.85 (1H , d, J = 8.0 Hz, H-5 '), 6.46 (2H, s, H-3,8), 3.86 (3H, s, 6-OCH 3 );

13C-NMR (100 MHz, C5D5N, δc ) : 183.88 (C-4), 166.10 (C-2), 158.42 (C-9), 154.34 (C-5), 153.91 (C-7), 150.73 (C-4'), 146.75 (C-3'), 132.61 (C-6), 123.46 (C-1'), 120.16 (C-6'), 116.59 (C-5'), 113.98 (C-2'), 105.59 (C-10), 103.25 (C-3), 95.13 (C-8), 60.91 (OCH3). 13 C-NMR (100 MHz, C 5 D 5 N, δ c): 183.88 (C-4), 166.10 (C-2), 158.42 (C-9), 154.34 (C-5), 153.91 (C-7 ), 150.73 (C-4 '), 146.75 (C-3'), 132.61 (C-6), 123.46 (C-1 '), 120.16 (C-6'), 116.59 (C-5 '), 113.98 (C-2 ′), 105.59 (C-10), 103.25 (C-3), 95.13 (C-8), 60.91 (OCH 3 ).

참고예 1. 실험 준비Reference Example 1. Experiment Preparation

1-1. 실험재료1-1. Experimental material

RPMI 1640 배지, 우태아 혈청 (fetal bovine serum), 페니실린 및 스트렙토마이신은 라이프 테크놀로지(Life Technologies, Grand Island, NY) 사에서 구입하였으며, MTT((GrandIsland,NY).3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tertazoliumbromide), DMSO (dimethyl sulfoxide), RNase A, 레우펩틴(leupeptin), 아프로티닌(aprotinin), PMSF (phenylmethylsulfonylfluoride), DAPI (4´,6-diamidino-2-phenylindole-dihydrochloride), Triton X-100, PI (propidium iodide)는 시그마 케미칼(Sigma Chemical, St. Louis, MO) 사에서 구입하였다. 실험에 사용되는 항체인 anti-caspase-3, anti-caspase 7, anti-PARP, anti-Lamin A/C, anti-Bax, anti-Bcl-2, anti-Apaf-1, anti-VDAC, anti-α-tubulin, anti-β-actin 항체들은 산타크루즈 바이오테크놀로지 (Santa Cruz Biotechnology, SantaCruz,CA) 사에서, anti-XIAP, anti-caspase 6, anti-caspase-8, anti-cytochrome c 항체들은 BD 바이오사이언스(BD Biosciences, Pharmingen, San Diego, CA)사에서 구입하였다. anti-caspsae-9, anti-Bid 항체는 셀 시그날링 테크놀로지(Cell Signaling Technology, Beverly, MA)사에서 구입하였다. 그밖의 z-VAD-fmk, z-DEVD-fmk, z-IETD-fmk, z-LEHD-fmk은 칼바이오켐(Calbiochem, Bad Soden, Germany)사에서 각각 구입하여 사용하였다. RPMI 1640 medium, fetal bovine serum, penicillin and streptomycin were purchased from Life Technologies, Grand Island, NY, and MTT ((GrandIsland, NY). 3- (4,5-Dimethylthiazol -2-yl) -2,5-diphenyl-tertazoliumbromide, DMSO (dimethyl sulfoxide), RNase A, leupeptin, aprotinin, PMSF (phenylmethylsulfonylfluoride), DAPI (4´, 6-diamidino- 2-phenylindole-dihydrochloride), Triton X-100, and propidium iodide (PI) were purchased from Sigma Chemical, St. Louis, Mo. Anti-caspase-3, anti-caspase 7, anti-PARP, anti-Lamin A / C, anti-Bax, anti-Bcl-2, anti-Apaf-1, anti-VDAC, anti- α-tubulin, anti-β-actin antibodies are from Santa Cruz Biotechnology (Santa Cruz, CA), anti-XIAP, anti-caspase 6, anti-caspase-8, anti-cytochrome c antibodies It was purchased from Science (BD Biosciences, Pharmingen, San Diego, Calif.). anti-caspsae-9, anti-Bid antibodies were purchased from Cell Signaling Technology (Beverly, Mass.). Other z-VAD-fmk, z-DEVD-fmk, z-IETD-fmk, z-LEHD-fmk were purchased from Calbiochem, Bad Soden, Germany, respectively.

1-2. 암세포주의 준비1-2. Preparation of Cancer Cell Lines

본 실험에 사용된 인체 자궁경부암 세포인 HeLa 세포주, 인간 난소암 세포인 SK-OV-3 세포주, 인간 폐암 세포인 A549 세포주 및 인간 교모세포종 세포인 A172 세포주를 한국세포주은행(Korean cell line bank:KCLB, Seoul, Korea)에서 분양받아 사용하였으며, 세포배양은 RPMI 1640 또는 DMEM (Dulbecco’s modified Eagle’s minimum essential medium)에 열처리하여 불활성화시킨 10% 소태아혈청(fetal bovine serum, FBS), 페니실린 (100 units/ml) 및 스트렙토마이신 황산염 (100 /ml)을 첨가한 배지를 사용하여 37℃, 5% CO2 조건하에서 배양하였다.The human cervical cancer cell HeLa cell line, human ovarian cancer cell SK - OV - 3 cell line, human lung cancer cell A549 cell line and human glioblastoma cell A172 cell line were used in this experiment. , Seoul, Korea), and cell cultures were inactivated by heat treatment with RPMI 1640 or DMEM (Dulbecco's modified Eagle's minimum essential medium) and 10% fetal bovine serum (FBS) and penicillin (100 units /). ml) and streptomycin sulfate (100 / ml) were added and cultured under 37 ° C., 5% CO 2 conditions.

참고예 2. 통계처리 방법Reference Example 2. Statistics Processing Method

각 군의 값은 평균치± SD(Means± SD)로 표시하였고, 표시된 결과는 3번 이상의 독립적인 실험 결과로, P<0.05, P<0.01 수준에서 P<0.001 과 실험군, P<0.001과 대조군으로 분석하였으며, 실험군 사이의 통계적 유의성 검증은 Student's t-test를 사용하여 평가하였다. The mean values for each group were expressed as mean ± SD, and the results indicated were three or more independent experiments, with P <0.001 and P <0.001 and P, 0.00 and P, respectively, at P <0.05 and P <0.01. The statistical significance test between the experimental groups was evaluated using Student's t-test.

실험예 1. 유파폴린의 세포 증식 저해 효과 측정Experimental Example 1 Measurement of Cell Proliferation Inhibitory Effect of Euphapoline

실시예 1에서 수득한 유파폴린의 세포독성을 확인하기 위하여 MTT (3-(4,5-dimethylthiazol-2-yl)-2 ,5 -diphenyltetrazolium bromide) 어세이법을 이용하여 하기와 같이 실험을 수행하였다(Carmichael et al., Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemisensitivity testing. Cancer Research, 47, pp.944-946, 1987). In order to confirm the cytotoxicity of the eupapoline obtained in Example 1, the experiment was performed using the MTT (3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide) assay as follows. Carmichael et al., Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemisensitivity testing. Cancer Research, 47 , pp. 944-946, 1987.

MTT 어세이법은 살아있는 세포의 경우 미토콘드리아의 탈수소 효소작용에 의하여 수용성의 tetrazolium salt MTT(노란색)가 포마잔 크리스탈(formazan crystals; 보라색)로 환원되는 것이 기본 원리로서 즉, 살아있는 세포의 수가 많을수록 포마잔 크리스탈(formazan crystal) 생성이 증가하여 흡광도가 높게 측정된다.The MTT assay is based on the reduction of water-soluble tetrazolium salt MTT (yellow) into formazan crystals (violet) by the dehydrogenase action of mitochondria in living cells. Formazan crystal production increases and absorbance is measured high.

참고예 1의 방법으로 배양한 각각의 암세포들을 96-웰 플레이트에 접종(5 × 104 cells/well)하고 3% FBS 함유한 RPMI 배지 100 ㎖에 24시간 배양시켰다. 상기 실시예 1에서 수득한 유파폴린을 다양한 농도(200, 100, 50, 25, 12.5 /ml)로 처리하여 48시간 후, 50 의 MTT 용액(5.0 mg/ml)을 각 웰에 첨가하고 추가로 4시간 더 배양시킨 다음, 상기 플레이트 상등액을 수득하고, MTT에 의해 생성된 세포내의 포르마잔 결정을 100 의 DMSO를 첨가하여 침전물을 용해한 후, OD값은 마이크로 플래이트 리더기(microplate reader, Molecular Devices)를 사용하여 540 nm에서 측정하였다. 또한 복합 항암 화학요법제 및 여러 고형암 치료에 효과적인 항암제로 널리 이용되고 있는 시스플라틴을 양성 대조군으로 설정하여 비교 실험하였다.Each cancer cell cultured by the method of Reference Example 1 was inoculated in a 96-well plate (5 x 10 4 cells / well) and incubated for 24 hours in 100 ml RPMI medium containing 3% FBS. After 48 hours of treating the papapoline obtained in Example 1 at various concentrations (200, 100, 50, 25, 12.5 / ml), 50 MTT solution (5.0 mg / ml) was added to each well and further After further incubation for 4 hours, the plate supernatant was obtained, and intracellular formazan crystals produced by MTT were dissolved in precipitate by adding 100 DMSO, and the OD value was determined using a microplate reader (Molecular Devices). Measured at 540 nm. In addition, cisplatin, which is widely used as an effective anticancer agent for treating various solid cancer chemotherapy agents and various solid cancers, was set as a positive control and compared.

실험 결과, 48시간 동안 유파폴린을 처리한 HeLa, SK-OV-3, A549, A172 세포 (1.0×105 cell/well)들은 표 1에서 나타난 바와 같이, 각각 26.75, 423.13, 53.34, 145.7 μΜ의 IC50 값을 나타났으며, 특히 HeLa, A549 세포의 경우 양성대조군으로 사용한 시스플라틴보다 세포 증식 저해율이 매우 뛰어남을 알 수 있었다. 이에 따라 하기의 실험예들에서는 암세포,주로 HeLa 세포를 사용하여 유파폴린의 효과를 조사하였다(표 1 참조). As a result, HeLa, SK - OV - 3, A549, and A172 cells (1.0 × 10 5 cells / well) treated with papapoline for 48 hours were 26.75, 423.13, 53.34, and 145.7 μΜ, respectively, as shown in Table 1. The IC 50 value was shown. Especially, the HeLa and A549 cells showed much better inhibition of cell proliferation than the cisplatin used as the positive control group. Accordingly, in the following experimental examples, the effect of opapoline was investigated using cancer cells, mainly HeLa cells (see Table 1).

세 포 주Three pimp 세 포 기 원 Three forgi circle 세포 증식 저해 농도 (IC50; μΜ)Cell proliferation inhibitory concentration (IC 50 ; μΜ) 유파폴린Euphalin 시스플라틴Cisplatin HeLaHeLa 자궁경부암Cervical cancer 26.7526.75 52.2652.26 SK-OV-3SK - OV - 3 난소암Ovarian Cancer 423.13423.13 153.80153.80 A549A549 폐암Lung cancer 53.3453.34 82.9282.92 A172A172 교모세포종Glioblastoma 145.7145.7 137.77137.77

실험예 2. 유파폴린의 의한 세포사멸 유발효과 측정Experimental Example 2 Measurement of Apoptosis-inducing Effect of Euphapoline

세포사멸은 유전자에 의해 조절되는 능동적인 세포의 죽음과정으로, 일단 세포가 사멸신호를 받게 되면 핵 내 크로마틴이 농축되어 핵막을 따라 늘어서게 되고 세포질이 응축, DNA 절편화, 핵 절편화가 발생되고 세포표면이 현저히 돌출되는 형태로 변화한다. 이 돌출된 부분은 세포막에 둘러싸인 세포사멸체(apoptotic body)로 떨어져 나와 분리되고 이웃 대식세포에 의해 흡수되어 분해 제거되는 일련의 과정을 겪는다. 따라서 상기 실험예 1에 나타난 유파폴린에 의한 암세포들의 증식억제효과가 세포사멸(apoptosis)유도에 의하여 발생되는 것인지 알아보기 위해서, 하기 실험들을 수행하였다.Apoptosis is an active cell death process regulated by genes. Once a cell is signaled to die, chromatin in the nucleus is concentrated and lined up along the nuclear membrane, resulting in condensation, DNA fragmentation, and nuclear fragmentation. The surface of the cell changes prominently. This protruding part is separated into the apoptotic body surrounded by the cell membrane and undergoes a series of processes where it is separated and taken up by neighboring macrophages to disintegrate and remove. Therefore, the following experiments were carried out to determine whether the proliferation inhibitory effect of the cancer cells by the euapolin shown in Experimental Example 1 was caused by induction of apoptosis.

2-1. DNA 절편화 현상 분석(DNA fragmention analysis) 2-1. DNA fragmentation analysis

유파폴린이 암세포의 세포사멸을 유발시키는지를 알아보기 위해서, 세포사멸과정의 특징 중 하나인 DNA 절편화의 유발 여부를 아가로즈 겔 전기영동 방법을 이용하여 하기와 같이 실험을 진행하였다(Oberhammer et al., Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation, The EMBO Journal, 12(9), pp.3679-3684, 1993). In order to examine whether eupapoline induces apoptosis of cancer cells, the experiment was performed using agarose gel electrophoresis to determine whether DNA fragmentation, which is one of the characteristics of apoptosis, was performed (Oberhammer et al. ., Apoptotic death in epithelial cells: cleavage of DNA to 300 and / or 50 kb fragments prior to or in the absence of internucleosomal fragmentation, The EMBO Journal , 12 (9) , pp.3679-3684, 1993).

DNA 절편화는 뉴클레오좀(nucleosome, DNA+histone proteins)사이의 연결부위가 절단되어 발생되며, 그 절단 크기는 180-200 염기쌍(base pair) 길이의 일정한 크기의 배수정도이고, 이는 아가로즈 겔상에서 사다리 패턴(ladder pattern)의 밴드로 나타난다.DNA fragmentation is caused by cleavage of the linkage between nucleosomes (DNA + histone proteins), the cleavage size being a multiple of a constant size of 180-200 base pairs in length, which is an agarose gel. It appears as a band of ladder patterns in the phase.

48시간 동안 유파폴린(10, 20, 30, 40 및 60 μM)을 처리한 HeLa 세포 (1.0×105 cell/well)를 PBS로 1회 세척한 후 차가운 세포용해완충액(10 mM Tris-HCl(pH 7.4), 1 mM EDTA, 0.2% Triton X-100)을 넣고, 48℃에서 15분간 배양시킨 후, 용해된 세포들은 14,000rpm으로 15분간 원심분리하여 순수한 염색질(chromatin)으로부터 저분자량 DNA을 분리한다. 상층액을 회수한 후 150 mM의 NaCl, 10 mM의 Tris-HCl (pH 8.0), 40 mM의 EDTA 및 1% SDS의 완충액이 포함된 0.2 ㎎/ml 프로테이나제 K(proteinase K)을 넣어 37℃에서 4시간 동안 반응시킨다. 상기 DNA 반응물에 페놀/클로로포름(phenol/chloroform) 추출방법을 2회 처리하여 단백질을 제거하고, 회수한 상층액에 140 mM 용량의 NaCl와 2배 용량의 에탄올(ethanol)을 넣고 -20℃에서 밤새도록 방치하여 DNA 침전시킨 후 14,000rpm에서 4℃로 15분 동안 원심분리하여 70% 에탄올(ethanol)로 2회 세척 및 건조하였다. RNase-DNase(Boehringer Mannheim, Mannheim,Germany)가 함유된 15 ml의 TE (10 mM Tris-HCl (pH 8.0), 1 mM EDTA)로 DNA를 녹인 후 37℃에서 1시간 반응한 다음 40 mM의 트리스-아세테이트 완충액(Tris-acetate buffer (pH 7.4))이 포함된 1.5% 아가로스 겔(agarose gel)에서 50V로 1시간 동안 영동한 후 브롬화 에티튬(ethidium bromide)으로 사진 촬영을 실시하였다.HeLa cells (1.0 × 10 5 cell / well) treated with 48 mg of papapoline (10, 20, 30, 40, and 60 μM) were washed once with PBS, followed by cold lysis buffer (10 mM Tris-HCl ( pH 7.4), 1 mM EDTA, 0.2% Triton X-100), incubated at 48 ° C. for 15 minutes, and the lysed cells were centrifuged at 14,000 rpm for 15 minutes to separate low molecular weight DNA from pure chromatin. do. After the supernatant was recovered, 0.2 mg / ml proteinase K containing 150 mM NaCl, 10 mM Tris-HCl (pH 8.0), 40 mM EDTA and 1% SDS buffer was added. The reaction is carried out at 37 ° C. for 4 hours. The DNA reactant was treated with phenol / chloroform extraction method twice to remove protein, and 140 mM NaCl and 2 times ethanol were added to the recovered supernatant overnight at -20 ° C. After allowing to stand to precipitate the DNA and centrifuged for 15 minutes at 4 ℃ at 14,000rpm and washed twice with 70% ethanol (ethanol) and dried. DNA was dissolved in 15 ml of TE (10 mM Tris-HCl (pH 8.0), 1 mM EDTA) containing RNase-DNase (Boehringer Mannheim, Mannheim, Germany), followed by reaction at 37 ° C for 1 hour, followed by 40 mM Tris -After 1.5 hours agarose gel containing acetate buffer (Tris-acetate buffer (pH 7.4)) at 50V for 1 hour and photographed with ethidium bromide (ethidium bromide).

실험결과, 도 1에 나타나는 바와 같이, HeLa 세포에 유파폴린을 48시간 동안 처리한 군에서 DNA 단편화 현상을 관찰할 수 있었으며, 이를 통해 유파폴린이 HeLa 세포의 세포사멸을 유도함을 알 수 있었다(도 1 참조).     As a result, as shown in FIG. 1, DNA fragmentation was observed in the group treated with HeLa cells for 48 hours with Eupapoline, and it was found that Eupapoline induced apoptosis of HeLa cells (FIG. 1).

2-2. 아넥신 V (Annexin V- PI staing)을 이용한 세포사멸 분석2-2. Apoptosis analysis using Annexin V-PI staing

유파폴린에 의한 암세포의 세포사멸유발의 정도를 정량적으로 알아보기 위해서, 세포주기 분석은 유세포분석기(Flow cytometry)를 이용하여 문헌에 기재된 방법으로 하기와 같이 실험을 진행하였다(Kim, Y. H., et al., Expression of the murine homologue of the cell cycle control protein p32cdc2 in T lymphocytes. Journal of Immunology, 149, pp.17-23, 1992). In order to quantitatively determine the degree of apoptosis of cancer cells caused by eupapoline, cell cycle analysis was carried out as described in the literature using flow cytometry (Kim, YH, et al. ., Expression of the murine homologue of the cell cycle control protein p32cdc2 in T lymphocytes.Journal of Immunology, 149 , pp. 17-23, 1992).

아넥신 V는 초기 세포사멸 지표자이며, 프로피디움 요오드화물(propidium iodide; 50 ㎍/ml)는 세포사멸과정이 진행되는 세포의 핵 내 DNA 절편에 특이적으로 결합하여 형광을 나타내는 물질이다. Annexin V is an early apoptosis indicator, propidium iodide (propidium iodide (50 ㎍ / ml)) is a substance that binds specifically to the DNA fragments in the nucleus of the cell undergoing apoptosis process and exhibits fluorescence.

실시예 1에서 수득한 유파폴린 30 μM을 0, 12, 24, 36 및 48시간 동안 0, 10, 20, 30, 40, 60μM 처리한 HeLa 세포(1.0×105 cell/well)에 100 ㎖의 결합완충액(binding buffer; 10 mM HEPES/NaOH, 140 mM NaCl, 2.5 mM CaCl2, pH7.4)로 부유시킨 후, 5 μl의 아네신 V(Annexin V-FITC)-FITC와 5 μl의 프로피디움 요오드화물을 섞어 염색하였다. 이 혼합물을 실온, 차광상태에서 15분 동안 배양한 다음, 1시간 이내에 유세포분석기(FACScan flow cytometer; Becton Dickinson Co, Heidelberg, Germany)를 이용하여 세포주기를 분석하였다.100 ml of HeLa cells (1.0 × 10 5 cell / well) treated with 0, 10, 20, 30, 40, and 60 μM of 0,12, 24, 36, and 48 hours of the eupapoline obtained in Example 1 were used. After floating with binding buffer (10 mM HEPES / NaOH, 140 mM NaCl, 2.5 mM CaCl 2 , pH7.4), 5 μl of Annesine V (FITC) -FITC and 5 μl of propidium Iodide was mixed and stained. The mixture was incubated for 15 minutes at room temperature and shaded, and then analyzed within 1 hour using a flow cytometer (FACScan flow cytometer; Becton Dickinson Co, Heidelberg, Germany).

실험결과, 도 2-A에 나타난 바와 같이, HeLa 세포에 유파폴린를 30 μM의 농도로 처리한 군은 처리시간이 증가함에 따라 세포사멸이 증가함을 알 수 있었다. 즉, 유파폴린을 처리하지 않은 대조군의 아넥신 V 양성 %가 6.91% 인 반면, 유파폴린을 30 μM의 농도로 12, 24, 36, 48시간 처리한 군은 7.36%, 11.32%, 37.5%, 80.38%로 점차 증가하여 세포사멸이 증가함을 확인하였다. 또한, 도 2-B에 나타난 바와 같이, 유파폴린을 농도에 따라 48시간동안 처리한 결과 유파폴린을 처리하지 않은 대조군의 아넥신 V 양성 %가 7.06% 인 반면, 유파폴린을 10, 20, 30, 40, 60 μM로 처리한 군은 52.08%, 86.02%, 90.08%, 92.22%로 점차 증가하여 세포사멸이 증가함을 확인하였다(도 2 참조). 이를 통해, 유파폴린이 HeLa의 세포사멸을 유발시키는 정도를 정량적으로 확인할 수 있었다.As a result of the experiment, as shown in Figure 2-A, HeLa cells treated with euphapoline at a concentration of 30 μM was found that apoptosis increases with increasing treatment time. In other words, the annexin V positive percentage of untreated control group was 6.91%, whereas in the group treated with UFAPOLIN at a concentration of 30 μM for 12, 24, 36, 48 hours, 7.36%, 11.32%, 37.5%, Gradually increased to 80.38% confirmed an increase in cell death. In addition, as shown in Figure 2-B, after treatment for 48 hours according to the concentration of eupapoline, annexin V-positive% of the control group not treated with eufapoline is 7.06%, while eupapoline 10, 20, 30 , 40, 60 μM treated group was gradually increased to 52.08%, 86.02%, 90.08%, 92.22% confirmed apoptosis (see Figure 2). Through this, it was possible to quantitatively determine the extent to which eupapoline induces apoptosis of HeLa.

2-3. DAPI 염색(staining)2-3. DAPI staining

유파폴린이 HeLa 세포의 세포사멸을 유발시키는지 알아보기 위해서, 세포사멸과정의 특징 중 하나인 핵의 형태학적 변화 여부를 DNA에 특이적으로 결합하는 DAPI(4’-6-diamidino-2-phenylindole)의 형광염색방법을 이용하여 하기와 같이 실험을 진행하였다(Luo, Y et al., Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine. Photochem Photobiol. 66, p.479, 1997).To determine whether eupapoline induces apoptosis of HeLa cells, DAPI (4'-6-diamidino-2-phenylindole, which binds specifically to DNA, is one of the features of apoptosis, the morphological change of the nucleus. (Luo, Y et al., Initiation of apoptosis versus necrosis by photodynamic therapy with chloroaluminum phthalocyanine. Photochem Photobiol . 66 , p. 479, 1997).

유파폴린을 30 μM의 농도로 처리하여 48시간 동안 배양 한 후, PBS로 세척하고, 3.7% 포름알데하이드 내에서 10분 동안 고정시켰다. 그 후 DNA에 특이적으로 결합하는 형광물질인 DAPI로 10분동안 염색시킨 후 염색된 세포들을 형광 현미경(immun of florescence microscope, META 510, Zeiss)을 이용하여 살펴보았다. Eupapoline was treated with a concentration of 30 μM, incubated for 48 hours, washed with PBS, and fixed in 3.7% formaldehyde for 10 minutes. After staining with DAPI, a fluorescent material specifically binding to DNA for 10 minutes, the stained cells were examined using an fluorescence microscope (META 510, Zeiss).

실험결과, 도 3에 나타나는 바와 같이, 유파폴린 처리군에서는 대조군에 비하여 HeLa 세포핵의 응축, 세포막의 수포 형성 및 세포자멸사체를 형성하면서 세포사멸과정을 나타내었다 (도 3 참조). As a result, as shown in Figure 3, in the eupapoline treatment group showed apoptosis process while forming the condensation of HeLa cell nucleus, vesicle formation and apoptotic bodies compared to the control group (see Figure 3).

실험예 3. 유파폴린의 의한 캐스파아제(caspase) 의존적 경로 측정Experimental Example 3 Caspase Dependent Pathway Determination by Euphapoline

3-1. 캐스파아제(caspase) 유전자 발현 양상의 변화3-1. Caspase Gene Expression Patterns

상기 실험예 2-1 내지 2-3의 결과를 통해서 확인된 유파폴린에 의한 HeLa 세포의 세포사멸 유발에 관여하는 기전을 알아보기 위하여 세포사멸유발 조절에 중요한 유전자들의 발현 변화를 특수 단백질 검출 검사(western blot)방법을 이용하여 하기와 같은 실험을 진행하였다(Sambrook J., et al., Molecular Cloning Laboratory Manual, 2nd ed., pp18.60-18.71, 1989).In order to examine the mechanisms involved in inducing apoptosis of HeLa cells by the eupapoline identified through the results of Experimental Examples 2-1 to 2-3, specific protein detection tests ( Western blot) using the method (Sambrook J., et al., Molecular Cloning Laboratory Manual, 2nd ed ., pp18.60-18.71, 1989).

HeLa 세포(1.0×105 cell/well) 세포에 유파폴린(10, 20, 30, 40 및 60 μM)를 각각 처리하여 48시간 동안 배양한 후, 600 g에서 5분 동안 4℃로 원심 분리하였다. 이를 차가운 PBS로 2회 세척하고 600 g에서 5분 동안 4℃로 원심분리 하여 각각의 세포를 수집한 후 단백질 세포용해용액(Intron, Seoul, Korea)으로 세포를 용해시켰다. 이렇게 만들어진 각각의 단백질을 브래드포드(Bradford)방법을 이용하여 정량하고 동량의 단백질을 10~12% SDS(sodium dodecyl sulphate)-PAGE(Polyacrylamide Gel Electrophoresis)겔을 이용하여 분리한 후 PVDF 막(BIO-RAD, USA; 162-0177)으로 전이시켰다(200mA, 2시간). 그 후 5% 탈지분유(non-fat dry milk)에 블록킹(blocking)을 하고, TTBS (0.1% Tween 20 in TBS) 용액에 1차 항체인 caspase-3, -6, -7, -8, and -9, PARP, Lamin A/C 및 β-actin을 1:1000으로 희석 처리하여 4℃에서 하룻밤 동안 반응시켰다. 이를 TTBS로 3회 세척하였고, 2차 항체로는 HRP (Horse Radish Peroxidase)가 결합된 2차 항체(antirabbit Ig G (Cell Signaling, USA; #7074)와 anti-mouse IgG (American Pharmacia Biotech, USA; #94010))를 1:2000으로 희석하여 1시간 동안 반응시켰다. 그 후 다시 TTBS로 3 회 세척하여 ECL 기질(American Pharmacia Biotech, USA; 16021)과 1~3분 동안 반응 시킨 후 X-ray 필름(Amersham, Piscataway, NJ)에 감광시켜 각 세포의 단백질의 발현 변화를 분석하였다.HeLa cells (1.0 × 10 5 cell / well) cells were treated with eupapoline (10, 20, 30, 40 and 60 μM), respectively, and incubated for 48 hours, followed by centrifugation at 4 ° C. for 5 minutes at 600 g. . This was washed twice with cold PBS and centrifuged at 4 ° C. for 5 minutes at 600 g to collect each cell, and the cells were lysed with protein lysate (Intron, Seoul, Korea). Each protein thus prepared was quantified using the Bradford method, and the same amount of protein was separated using 10-12% sodium dodecyl sulphate (SDS) -PAGE (Polyacrylamide Gel Electrophoresis) gel, followed by PVDF membrane (BIO-). RAD, USA; 162-0177) (200 mA, 2 hours). After blocking in 5% non-fat dry milk, the primary antibodies caspase-3, -6, -7, -8, and in TTBS (0.1% Tween 20 in TBS) solution -9, PARP, Lamin A / C and β-actin were diluted 1: 1000 and reacted overnight at 4 ° C. This was washed three times with TTBS, and the secondary antibody was HRP (Horse Radish Peroxidase) -bound secondary antibody (antirabbit Ig G (Cell Signaling, USA; # 7074)) and anti-mouse IgG (American Pharmacia Biotech, USA; # 94010) was diluted 1: 2000 and reacted for 1 hour. Then, washed three times with TTBS again, reacted with ECL substrate (American Pharmacia Biotech, USA; 16021) for 1 to 3 minutes, and then photosensed on X-ray film (Amersham, Piscataway, NJ) to change the protein expression of each cell. Was analyzed.

HeLa 세포에 유파폴린을 처리한 군(48시간 후)에서 세포사멸의 초기영향인자인 캐스파아제 (caspase)-8과 캐스파아제 (caspase)-9, 직접영향인자인 캐스파아제 (caspase)-3, 캐스파아제 (caspase)-6 및 캐스파아제 (caspase)-7 단백질의 발현을 나누어 살펴본 결과, 도 4-A에 나타나는 바와 같이, 비활성을 나타내는 프로캐스파아제 (procaspase)-8 및 프로캐스파아제 (procaspase)-9 단백질이 점차 농도 의존적으로 발현이 감소한 반면, 활성형 캐스파아제 (cleaved caspase)-8 및 활성형 캐스파아제 (cleaved caspase)-9 단백질의 발현이 증가 되는 것을 확인하였다. 또한 도 4-B에 나타나는 바와 같이, 세포사멸의 직접영향인자인 caspase-3, caspase-6 및 caspase-7 단백질의 발현을 확인한 결과, 비활성을 나타내는 프로캐스파아제 (procaspase)-3, 프로캐스파아제 (procaspase)-6 및 프로캐스파아제 (procaspase)-7 단백질이 점차 농도 의존적으로 발현이 감소한 반면, 활성형 캐스파아제 (cleaved caspase)-3, 활성형 캐스파아제 (cleaved caspase)-6 및 활성형 캐스파아제 (cleaved caspase)-7 단백질의 발현이 증가되는것을 확인할 수 있었다(도 4 참조). 또한 이와같이 활성형 캐스파아제 (cleaved caspase)-3와 활성형 캐스파아제 (cleaved caspase)-6 에 의해 핵내 DNA를 수복하는 PARP 단백질과 핵막을 구성하는 Lamin A/C 단백질이 분해되어 HeLa 세포의 핵이 절편화 되는 기전을 확인하였다. 이를 통해, 유파폴린에 의한 HeLa 세포의 세포사멸이 캐스파아제 (caspase)-8, 캐스파아제 (caspase)-9, 캐스파아제 (caspase)-3, 캐스파아제 (caspase)-6 및 캐스파아제 (caspase)-7 단백질에 의해 유도됨을 알 수 있었다(도 4 참조). Caspase-8 and caspase-9, the direct effectors of caspase, were the early effects of apoptosis in the HeLa cells treated with euphalin (after 48 hours). The expression of caspase-6 and caspase-7 proteins was divided and examined. As shown in Fig. 4-A, procaspase-8 exhibiting inactivity and While procaspase-9 protein gradually decreased in concentration-dependent expression, increased expression of active caspase-8 and cleaved caspase-9 protein was observed. Confirmed. In addition, as shown in Fig. 4-B, the expression of caspase-3, caspase-6 and caspase-7 proteins, which are direct effects factors of apoptosis, was confirmed. As a result, procaspase-3 and procase exhibiting inactivation. While procaspase-6 and procaspase-7 proteins gradually decreased in concentration-dependent expression, active caspase-3, active caspase- 6 and the expression of the active caspase (cleaved caspase-7) protein was confirmed to be increased (see Figure 4). In addition, the active caspase-3 and the active caspase-6 decompose the PARP protein that repairs the DNA in the nucleus and the Lamin A / C protein that constitutes the nuclear membrane. The mechanism by which the nucleus was fragmented was confirmed. Through this, the apoptosis of HeLa cells by the eupapoline was caspase-8, caspase-9, caspase-3, caspase-6 and caspase. It can be seen that it is induced by the caspase-7 protein (see FIG. 4).

3-2. 캐스파아제(caspase) 활성 측정3-2. Measuring caspase activity

상기 실험예 3-1의 결과를 통해서 확인된 유파폴린에 의한 HeLa 세포의 세포사멸에 관여하는 기전이 캐스파아제 (caspase) 단백질 발현에 의한 것임을 확인한 후 이 효소의 활성을 직접적으로 알아보기 위하여 하기와 같은 실험을 진행하였다. In order to directly determine the activity of this enzyme after confirming that the mechanism involved in the apoptosis of HeLa cells by the eupapoline identified through the results of Experimental Example 3-1 was due to caspase protein expression, The same experiment was carried out.

HeLa 세포(1.0×105 cell/well)에 유파폴린(10, 20, 30, 40 및 60 μM)를 각각 처리하여 48시간 동안 배양한 후, 600 g에서 5분 동안 4℃로 원심 분리하였다. 이를 차가운 PBS로 2회 세척하고 600 g에서 5분 동안 4℃로 원심분리 하여 각각의 세포를 수집한 후 효소활성 측정을 위한 단백질 용해용액(Calbiochem, Bad Soden, Germany)으로 세포를 용해시킨 후 아이스 배스(ice bath)에서 5분 동안 반응시켰다. 이를 10,000 rpm에서 10분 동안 원심 분리하고 단백질을 획득 한 후 정량하여 10 μg의 단백질을 80 μl 의 분석용 버퍼(assay buffer; Calbiochem, Bad Soden, Germany)와 10 μl의 기질(substrate)를 첨가, 혼합하여 37℃로 2시간동안 배양하였다. 배양한 혼합액을 분광광도계(microplate reader)를 사용하여 405 nm 파장에서 측정하여 캐스파아제 (caspase) 효소활성을 나타내었다. HeLa cells (1.0 × 10 5 cell / well) were incubated for 48 hours with treatment of eupapoline (10, 20, 30, 40 and 60 μM), respectively, and centrifuged at 4 ° C. for 5 minutes at 600 g. The cells were washed twice with cold PBS, centrifuged at 600 ° C. for 5 minutes at 4 ° C. to collect each cell, and then the cells were lysed with protein lysis solution (Calbiochem, Bad Soden, Germany) for measuring enzyme activity. The reaction was carried out in a bath for 5 minutes. After centrifugation at 10,000 rpm for 10 minutes, protein was obtained and quantified, 10 μg of protein was added to 80 μl of assay buffer (Calbiochem, Bad Soden, Germany) and 10 μl of substrate (substrate). Mixed and incubated for 2 hours at 37 ℃. The culture mixture was measured at a wavelength of 405 nm using a spectrophotometer to show caspase enzyme activity.

그 결과, 도 5에 나타나는 바와 같이, HeLa 세포에 유파폴린을 처리군(48시간 후)에서 캐스파아제 (caspase)-3, 캐스파아제 (caspase)-8 및 캐스파아제 (caspase)-9의 활성이 농도의존적으로 증가됨을 확인할 수 있었으며, 특히, 캐스파아제 (caspase)-9의 활성이 탁월함을 알 수 있다(도 5 참조). As a result, as shown in Fig. 5, caspase-3, caspase-8, and caspase-9 in HeLa cells treated with papapoline (after 48 hours) It was confirmed that the activity of the concentration-dependent increase, in particular, it can be seen that the activity of caspase (caspase-9) is excellent (see Fig. 5).

3-3. 캐스파아제(caspase) 억제제에 의한 세포사멸 억제효과 분석3-3. Inhibition of Apoptosis by Caspase Inhibitors

유파폴린에 의한 HeLa 세포의 세포사멸에 관여하는 기전이 캐스파아제 (caspase) 단백질 발현에 의한 것임을 확인한 후, 이를 캐스파아제 (caspase) 억제제들을 이용하여 다시 검증하였다. After confirming that the mechanism involved in the apoptosis of HeLa cells by the eupapoline is due to caspase protein expression, it was again verified using caspase inhibitors.

HeLa 세포(1.0×105 cell/well)에 각각의 50μM z-VAD-fmk (a broad caspase inhibitor; 광범위한 캐스파아제 억제제), 100μM z-DEVD-fmk (a specific caspase-3 inhibitor; 캐스파아제-3 억제제), 100μM z-IETD-fmk (a specific caspase-8 inhibitor; 캐스파아제-8 억제제), 및 100μM z-LEHD-fmk (a specific caspase-9 inhibitor; 캐스파아제-9 억제제)를 1시간 동안 전처리한 후, 유파폴린을 30 μM의 농도로 처리한 세포를 48시간 동안 배양하여, 상기 실험예 2-2와 동일한 실험방법으로 수행하였다.Each 50 μM z-VAD-fmk (a broad caspase inhibitor), 100 μM z-DEVD-fmk (a specific caspase-3 inhibitor; caspase) in HeLa cells (1.0 × 10 5 cell / well) -3 inhibitor), 100 μM z-IETD-fmk (a specific caspase-8 inhibitor; caspase-8 inhibitor), and 100 μM z-LEHD-fmk (a specific caspase-9 inhibitor; caspase-9 inhibitor) After pretreatment for 1 hour, cells treated with 30 μM of papapoline were incubated for 48 hours, and the same procedure as in Experimental Example 2-2 was performed.

실험결과, 도 6-A에 나타난 바와 같이, 유파폴린을 처리하지 않은 대조군의 아넥신 V 양성 %가 6.95%를 나타내었고 유파폴린을 30 μM의 농도로 처리한 군의 아넥신 V 양성 %는 62.54%로 확인되었다. 그런데 각각의 캐스파아제 (caspase) 억제제들을 처리한 후 유파폴린을 30 μM의 농도로 처리한 군은 유파폴린을 처리하지 않은 대조군과 유사한 아넥신 V 양성 %를 나타내었다. 즉, 유파폴린을 30 μM의 농도로 처리한 군의 아넥신 V 양성 %는 62.54% 였으나, 50μM z-VAD-fmk, 100μM z-DEVD-fmk, 100μM z-IETD-fmk, 및 100μM z-LEHD-fmk를 전처리한 후 유파폴린을 30 μM의 농도로 처리한 군의 아넥신 V 양성 %는 각각 6.81%, 12.41%, 14.92%, 11.92%로 나타났다. 이때 각각의 억제제들은 아넥신 V 양성 %에 아무런 영향을 미치지 않았다. 그러므로 유파폴린에 의한 HeLa 세포의 세포사멸 효과는 캐스파아제 (caspase) 단백질에 의한 기전을 통해 유발됨이 다시 입증되었다 (도 6 참조).As a result, as shown in Figure 6-A, the% Annexin V positive of the control group not treated with papapoline showed 6.95%, and the Annexin V positive% of the group treated with papapoline at a concentration of 30 μM was 62.54. % Was confirmed. However, after treatment with caspase inhibitors (caspase) inhibitors, the group treated with a concentration of 30 μM of eupapoline showed a similar% of annexin V, similar to the control group not treated with eupapoline. In other words, the percentage of Annexin V positive in the group treated with the concentration of 30 μM was 62.54%, but 50 μM z-VAD-fmk, 100 μM z-DEVD-fmk, 100 μM z-IETD-fmk, and 100 μM z-LEHD After pre-treatment with -fmk, the percentage of Annexin V positive in the group treated with euphapoline at a concentration of 30 μM was 6.81%, 12.41%, 14.92%, and 11.92%, respectively. Each inhibitor had no effect on annexin V positive%. Therefore, the apoptosis effect of HeLa cells by ufapoline was again demonstrated through the mechanism by caspase protein (see FIG. 6).

3-4. 캐스파아제(caspase) 억제제에 의한 세포 손상 저해효과 3-4. Inhibitory Effect of Caspase Inhibitors on Cell Damage

유파폴린에 의한 HeLa 세포의 세포사멸 기전이 캐스파아제 (caspase)에 의한 것임을 재차 검증하기 위해, 캐스파아제 (caspase) 억제제가 유파폴린으로 세포사멸이 유도된 HeLa 세포핵의 형태학적 변화에 관여하는 정도를 살펴보았다. Caspase inhibitors are involved in the morphological changes of HeLa cell nuclei induced by apoptotic apoptosis in order to verify that the apoptosis mechanism of HeLa cells is caused by caspase. I looked at the degree.

HeLa 세포(1.0×105 cell/well)에 50μM z-VAD-fmk을 1시간 동안 전처리하고, 유파폴린을 30 μM의 농도로 처리한 후 48시간 동안 배양하여, 상기 실험예 2-3와 동일한 실험방법으로 수행하였다.HeLa cells (1.0 × 10 5 cell / well) were treated with 50 μM z-VAD-fmk for 1 hour, treated with opapoline at a concentration of 30 μM and incubated for 48 hours, the same as in Experimental Example 2-3. Experimental method was performed.

실험 결과, 도 7에 나타나는 바와 같이, 유파폴린 30 μM의 농도로 처리한 군에서 핵의 절편화와 응축이 관찰되었지만, 50μM z-VAD-fmk를 전처리 한 후 유파폴린 30 μM의 농도로 처리한 군에서 대조군과 마찬가지로 HeLa 세포의 핵에 전혀 손상이 일어나지 않았고, 50μM z-VAD-fmk 단독으로 처리한 군 역시 HeLa 세포의 핵에 아무런 영향을 나타내지 않았다. As shown in FIG. 7, nuclei fragmentation and condensation were observed in the group treated with the concentration of 30 μM of papapoline, but after treatment with 50 μM z-VAD-fmk, the concentration of 30 μM of papapoline was treated. As in the control group, no damage occurred to the nucleus of the HeLa cells, and the group treated with 50 μM z-VAD-fmk alone showed no effect on the nuclei of the HeLa cells.

즉, 유파폴린에 의한 HeLa 세포의 핵의 절편화가 캐스파아제 (caspase) 억제제에 의해 완벽하게 억제되었음을 확인하였다(도 7 참조). In other words, it was confirmed that fragmentation of the nuclei of HeLa cells by eupapoline was completely inhibited by caspase inhibitors (see FIG. 7).

3-5. 캐스파아제(caspase) 억제제에 의한 유전자 발현 억제효과3-5. Inhibitory Effect of Caspase Inhibitors on Gene Expression

상기 실험예 3-1 내지 3-4의 결과를 통해서 확인된 유파폴린에 의한 HeLa 세포의 세포사멸 기전이 캐스파아제 (caspase) 단백질 발현에 의한 것임을 보다 면밀히 검증하기 위해, 캐스파아제 (caspase) 억제제가 세포사멸유발 조절에 중요한 유전자들의 발현에 미치는 영향을 확인하였다. In order to more closely verify that the apoptosis mechanism of HeLa cells by the eupapoline identified through the results of Experimental Examples 3-1 to 3-4 is due to caspase protein expression, caspase The effects of inhibitors on the expression of genes important for the regulation of apoptosis were identified.

HeLa 세포(1.0×105 cell/well)에 50μM z-VAD-fmk, 100μM z-IETD-fmk, 및 100μM z-LEHD-fmk을 1시간 동안 전처리하고, 유파폴린을 30 μM의 농도로 처리한 후 48시간 동안 배양하여, 상기 실험예 3-1과 동일한 실험방법으로 수행하였다. 항체는 caspase-3, -6, -7, PARP 및 Lamin A/C를 사용하였으며, 대조군으로 β-actin을 사용하였다. HeLa cells (1.0 × 10 5 cell / well) were pretreated with 50 μM z-VAD-fmk, 100 μM z-IETD-fmk, and 100 μM z-LEHD-fmk for 1 hour and treated with opapoline at a concentration of 30 μM. After culturing for 48 hours, it was carried out by the same experimental method as Experimental Example 3-1. Antibodies were caspase-3, -6, -7, PARP and Lamin A / C. Β-actin was used as a control.

실험 결과, 도 8에 나타나는 바와 같이, HeLa 세포에 유파폴린 30 μM의 농도로 처리한 군에서 활성형 캐스파아제 (cleaved caspase)-3, 활성형 캐스파아제 (cleaved caspase)-6 및 활성형 캐스파아제 (cleaved caspase)-7 단백질 및 핵내 DNA를 수복하는 PARP 단백질과 핵막을 구성하는 Lamin A/C 단백질이 분해되는 것을 확인하였다. 이러한 세포사멸 기전 관련 단백질은 50μM z-VAD-fmk, 100μM z-IETD-fmk, 100μMz-LEHD-fmk 처리군에서 그 발현이 억제되는 것으로 나타났다. 즉, 유파폴린에 유도된 세포 사멸 유발 유전자의 발현이 캐스파아제 (caspase) 저해제에 의해 완벽하게 억제됨으로써, 유파폴린에 의해 유도된 HeLa 세포의 세포사멸은 캐스파아제(caspase) 세포사멸 경로에 의존적임을 확인할 수 있다(도 8 참조). As shown in FIG. 8, in the group treated with HeLa cells at a concentration of 30 μM of eupapoline, active caspase-3, active caspase-6, and active form It was confirmed that the cleaved caspase-7 protein, the PARP protein for repairing the DNA in the nucleus, and the Lamin A / C protein constituting the nuclear membrane were degraded. These apoptosis-related proteins were found to be inhibited in the 50 μM z-VAD-fmk, 100 μM z-IETD-fmk, 100 μMz-LEHD-fmk treatment groups. In other words, the expression of apoptosis-induced apoptosis genes was completely inhibited by caspase inhibitors, so that apoptosis of HeLa cells induced by eupapoline was induced in the caspase apoptosis pathway. It can be confirmed that it is dependent (see FIG. 8).

실험예 4. 유파폴린에 의한 미토콘드리아 막전위차(Experimental Example 4 Mitochondrial Membrane Potential Difference by Euphapoline ΔΨΔΨ mm ) 변화 및 시토크롬(cytochrome) ) Change and cytochrome c c 측정 Measure

유파폴린으로 유도된 세포사멸 과정 중 세포 내 소기관중 하나인 미토콘드리아의 막전위차(ΔΨ m ) 변화에 미치는 영향을 알아보기 위하여, 하기와 같이 실험을 수행하였다. The effect on membrane potential, which is one of intracellular organelles in the process-induced cell death in school morpholin mitochondria (ΔΨ m) Change In order to find out, the experiment was performed as follows.

미토콘드리아가 세포죽음 신호를 받으면 미토콘드리아 막전위차(ΔΨ m )의 감소와 투과성으로 인해 캐스파아제 활성제들이 세포질로 급격히 방출되며(Zamzami N., et al., Reduction of mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J. Exp. Med., 181, pp.1661-1672, 1995), 캐스파아제 활성제 중 하나인 시토크롬(cytochrome) c가 세포질로 확산된다(Von Ahsen O., et al., The ‘harmless’ release of cytochrome c. Cell Death Differ., 7, pp.1192-1199, 2000). 또한, 세포질로 확산된 시토크롬(cytochrome) c는 세포질에 존재하는 Apaf-1과 프로캐스파아제(procaspase)-9와 결합하여 아폽토좀 복합체를 형성하고, 이는 프로캐스파아제(procaspase)-9을 활성형 캐스파아제(cleaved procaspase)-9으로 유도한다. 활성형 캐스파아제(cleaved procaspase)-9은 직접영향인자인 캐스파아제 (caspase)-3, 캐스파아제 (caspase)-6 및 캐스파아제 (caspase)-7의 활성을 유도하여 세포사멸을 유발한다(Li P., et al., Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade, Cell, 91, pp.479-489, 1997).When mitochondria receive a cell death signal, caspase activators are rapidly released into the cytoplasm due to the decrease and permeability of the mitochondrial membrane potential difference ( ΔΨ m ) (Zamzami N., et al., Reduction of mitochondrial potential origins an early irreversible step of programmed lymphocyte death in vivo. J. Exp. Med ., 181 , pp. 1661-1672, 1995), cytochrome c , one of the caspase activators, diffuses into the cytoplasm (Von Ahsen O., et al., The 'harmless' release of cytochrome c . Cell Death Differ ., 7 , pp. 1192-1199, 2000). In addition, cytochrome c diffused into the cytoplasm combines Apaf-1 and procaspase-9 present in the cytoplasm to form an apoptosome complex, which leads to procaspase-9. Induced with active cleaved procaspase-9. Active cleaved procaspase-9 induces apoptosis by inducing the activity of caspase-3, caspase-6 and caspase-7, which are direct effectors. (Li P., et al., Cytochrome c and dATP-dependent formation of Apaf-1 / caspase-9 complex initiates an apoptotic protease cascade, Cell , 91 , pp. 479-489, 1997).

유파폴린이 HeLa 세포의 세포사멸 유도 중 미토콘드리아 막전위차(ΔΨ m )의 감소 및 미토콘드리아 막 투과성을 확인하기 위해서, HeLa 세포(1.0×105 cell/well)에 미토콘드리아 투과성 저해제인 CsA(5 μM cyclosporin A)를 30분 동안 전처리하고, 유파폴린을 30 μM농도로 처리하여 48 시간 동안 배양하였다. 그 후 미토콘드리아 전압차에 의존적인 염색제 DiOC6를 50 nM 농도로 30분동안 처리하여, PBS에 2번 세척하고 유세포 분석기로 분석하였고, 100 μM CCCP 처리군을 양성 대조군으로 설정하였다.In order to confirm the reduction of mitochondrial membrane potential ( ΔΨ m ) and mitochondrial membrane permeability during the induction of apoptosis of HeLa cells, hepapoline was applied to HeLa cells (1.0 × 10 5 cell / well), CsA (5 μM cyclosporin A, an inhibitor of mitochondrial permeability). ) Was pretreated for 30 minutes, and eupapoline was treated at 30 μM and incubated for 48 hours. Thereafter, the mitochondrial voltage difference-dependent staining agent DiOC 6 was treated at 50 nM concentration for 30 minutes, washed twice in PBS, analyzed by flow cytometry, and the 100 μM CCCP treated group was set as a positive control.

또한, 유파폴린이 캐스파아제 활성제인 시토크롬(cytochrome) c와 Apaf-1, 캐스파아제 저해제인 XIAP(X-linked inhibition of apoptosis protein)의 발현에 미치는 영향을 알아보기 위하여 하기와 같은 실험을 수행하였다. In addition, the following experiments were carried out to investigate the effect of papapoline on the expression of the caspase activator cytochrome c and Apaf-1 and the caspase inhibitor XIAP (X-linked inhibition of apoptosis protein). It was.

HeLa 세포(1.0×105 cell/well) 세포에 유파폴린(10, 20, 30, 40 및 60 μM)를 각각 처리하고 48시간 동안 배양하여, 600 g에서 5분 동안 4℃로 원심분리 하였다. 각각의 세포를 수집하여 차가운 PBS로 2회 세척한 후, 다시 600 g에서 5분 동안 4℃로 원심분리 하였다. 500 ㎕의 세포질용액(cytosolic buffer)를 첨가하여 얼음에서 15분 동안 반응시키고, B-형 페슬(80회)을 이용하여 균질화 시킨 후, 4℃에서 10,000 g로 20분 동안 원심분리하여 상등액(세포질 분획군(C))을 취한 후 미토콘드리아 분획군(M)인 침전물은 미토콘드리아 용해 용액에 균질화시켜 실험하였다. 이렇게 획득한 세포질 분획군(C)과 미토콘드리아 분획군(M)은 단백질 정량을 통해 동량의 단백질로 맞춘 뒤 12% SDS-PAGE로 분리한 후 상기 실험예 3-1과 동일한 실험방법으로 수행하였다. 이때 1차 항체로 시토크롬(cytochrome) c, Apaf-1 및 XIAP를 사용하였으며, 미토콘드리아 분획군(M), 세포질 분획군(C), 일반 단백질의 내부 대조군으로 각각 VDAC,α-tubulin 및 β-actin을 사용하였다.HeLa cells (1.0 × 10 5 cell / well) cells were treated with papapoline (10, 20, 30, 40 and 60 μM), respectively, and incubated for 48 hours, and centrifuged at 4 ° C. for 5 minutes at 600 g. Each cell was collected, washed twice with cold PBS, and then centrifuged at 4 ° C. for 5 minutes at 600 g. After 500 μl of cytosolic buffer was added, the mixture was reacted on ice for 15 minutes, homogenized using B-type flask (80 times), and then centrifuged at 10,000 g for 20 minutes at 4 ° C. After taking the fraction group (C)), the precipitate of the mitochondrial fraction group (M) was tested by homogenizing in the mitochondrial dissolution solution. The cytoplasmic fraction group (C) and mitochondrial fraction group (M) thus obtained were adjusted to the same amount of protein by protein quantification and separated by 12% SDS-PAGE, followed by the same experimental method as Experimental Example 3-1. At this time, cytochrome c , Apaf-1 and XIAP were used as primary antibodies, and VDAC, α-tubulin and β-actin as internal controls of mitochondrial fraction group (M), cytoplasmic fraction group (C), and general protein, respectively. Was used.

실험결과, 도 9-A에 나타난 바와 같이 HeLa 세포에 유파폴린을 처리한 군은 CCCP (양성대조군)와 마찬가지로 미토콘드리아 막전위차(ΔΨ m )가 감소하였고, CsA의 전처리 한 후 유파폴린을 처리한 군은 유파폴린으로 유도된 막전위차(ΔΨ m ) 감소 억제반응을 보였다. 또한 도 9-B에 나타난 바와 같이 유파폴린에 농도 의존적으로 HeLa 세포내 미토콘드리아 분획군(M)의 시토크롬(cytochrome) c 단백질 발현양이 줄어들고 세포질 분획군(C)의 시토크롬(cytochrome) c단백질 발현양이 늘어남을 확인하였다. 또한 유파폴린에 의해 HeLa 세포의 Apaf-1의 발현은 증가되었으나, 캐스파아제 저해제인 XIAP의 발현은 감소되는 것으로 나타나, 유파폴린이 HeLa 세포의 세포사멸을 유도할 때 미토콘드리아 세포사멸 경로를 통해 이루어지는 것을 알 수 있다(도 9 참조).As a result, as shown in FIG. 9-A, the group treated with HeLa cells with eupapoline decreased mitochondrial membrane potential difference ( ΔΨ m ), similar to CCCP (positive control), and treated with eupapoline after pretreatment of CsA. Inhibited the membrane potential difference ( ΔΨ m ) induced by papapoline . In addition, as shown in FIG. 9-B, the amount of cytochrome c protein expression in the mitochondrial fraction group (M) in HeLa cells decreased in concentration-dependent manner in heLa cell, and the amount of cytochrome c protein expression in the cytoplasmic fraction group (C). This increase was confirmed. In addition, the expression of Apaf-1 in HeLa cells was increased by the papapoline, but the expression of XIAP, a caspase inhibitor, was decreased. Thus, when papapoline induces apoptosis of HeLa cells, the mitochondrial apoptosis pathway occurs. It can be seen (see Fig. 9).

실험예 5. 유파폴린의 의한 Bcl-2 단백질 발현 측정 Experimental Example 5. Measurement of Bcl-2 Protein Expression by Euphapoline

Bcl-2 패밀리 단백질들은 크게 세포사멸을 억제하는 유전자(대표적으로 Bcl-2)와 세포사멸을 유발하는 유전자(대표적으로 Bax, Bak, Bid 등)로 나누어지며(Reed J. Bcl-2 and regulation of programmed cell death. J Cell Biol., 124, pp.1-6, 1994.), 세포사멸 과정에서 Bcl-2 단백질의 세포내 균형은 미토콘드리아 막의 유지여부에 중요한 지표가 된다(Oltvai ZN., et al., Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell, 74, pp.609-619, 1993). Bcl-2 family proteins are largely divided into genes that inhibit apoptosis (typically Bcl-2) and genes that induce apoptosis (typically Bax, Bak, Bid, etc.) (Reed J. Bcl-2 and regulation of programmed cell death.J Cell Biol., 124 , pp.1-6, 1994.), Intracellular balance of Bcl-2 proteins during apoptosis is an important indicator of the maintenance of mitochondrial membranes (Oltvai ZN., et al. ., Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell, 74, pp.609-619, 1993).

유파폴린에 의한 HeLa 세포의 세포사멸 기전과 관련된 중요 조절인자인 Bcl-2 단백질의 발현변화를 알아보기 위하여 상기 실험예 3-1, 4와 동일한 실험방법으로 수행하였다. 이때 1차 항체로 Bid, Bcl-2 및 Bax를 사용하였으며, α-tubulin 과 β-actin을 내부 대조군으로 사용하였다. In order to determine the expression changes of Bcl-2 protein, which is an important regulator related to the apoptosis mechanism of HeLa cells by eupapoline, it was performed by the same experimental method as Experimental Examples 3-1 and 4. At this time, Bid, Bcl-2 and Bax were used as primary antibodies, and α-tubulin and β-actin were used as internal controls.

실험결과, 도 10에 나타나는 바와 같이, HeLa 세포군의 미토콘드리아 분획군(M)에서 Bcl-2 패밀리 단백질들 중 세포사멸 유발 단백질인 Bak, Bid의 발현이 유파폴린 처리농도 의존적으로 증가되고 세포질 분획군(C)에서 감소됨을 확인하였으나, Bax는 발현 변화가 없었다. 또한 유파폴린에 의해 세포사멸 억제 단백질인 Bcl-2의 발현이 감소되었음을 확인하였다. As a result, as shown in Figure 10, in the mitochondrial fraction group (M) of the HeLa cell group, the expression of Bak, Bid, which are apoptosis-inducing proteins among the Bcl-2 family proteins, was increased depending on the concentration of eupapoline treatment and the cytoplasmic fraction group ( It was confirmed that the decrease in C), but Bax did not change expression. In addition, it was confirmed that the expression of Bcl-2, which is an apoptosis inhibitory protein, was reduced by euphapoline.

상기의 실험을 통해 유파폴린에 의해 Bcl-2 패밀리단백질 중 세포사멸 유발 단백질인 Bak, Bid와 세포사멸 억제단백질인 Bcl-2 발현의 변화되고 HeLa 세포의 미토콘드리아 막 균형이 붕괴되어 세포사멸 영향인자인 캐스파아제(caspase) 단백질이 활성화 됨을 확인하였다. 또한 유파폴린으로 인해 활성화 된 캐스파아제(caspase) 단백질에 의해 핵내 DNA를 수복하는 PARP 단백질과 핵막을 구성하는 Lamin A/C 단백질이 분해되어 최종적으로 HeLa 세포 세포사멸을 초래하는 것을 확인함으로써, 유파폴린이 암세포의 증식을 억제하는 탁월한 항암효과를 바탕으로 암 예방 및 치료용 조성물로 이용될 수 있음을 확인하였다.Through the above experiments, expression of apoptosis-inducing proteins Bak and Bid and apoptosis-inhibiting protein Bcl-2 in Bcl-2 family proteins was altered by ufapoline, and the balance of mitochondrial membranes in HeLa cells was disrupted, resulting in apoptosis-inducing factors. It was confirmed that caspase protein is activated. In addition, PARP protein repairing DNA in the nucleus and Lamin A / C protein constituting the nuclear membrane are decomposed by the caspase protein activated by papapoline, resulting in HeLa cell apoptosis. Pauline was confirmed that it can be used as a cancer prevention and treatment composition based on the excellent anti-cancer effect of inhibiting the proliferation of cancer cells.

하기에 본 발명의 조성물을 포함하는 약학조성물의 제제예를 설명하나, 본 발명은 이를 한정 하고자 함이 아닌 단지 구체적으로 설명하고자 함이다.Hereinafter, an example of the preparation of a pharmaceutical composition comprising the composition of the present invention will be described, but the present invention is not intended to limit the present invention but is only specifically intended to be described.

제제예 1. 산제의 제조Formulation Example 1 Preparation of Powder

유파폴린 20 mgEuparoline 20 mg

유당 100 mgLactose 100 mg

탈크 10 mgTalc 10 mg

상기의 성분들을 혼합하고 기밀포에 충진하여 산제를 제조한다.The above ingredients are mixed and filled in an airtight cloth to prepare a powder.

제제예 2. 정제의 제조Formulation Example 2 Preparation of Tablet

유파폴린 10 mgEuparoline 10 mg

옥수수전분 100 mgCorn starch 100 mg

유당 100 mgLactose 100 mg

스테아린산 마그네슘 2 mg2 mg magnesium stearate

상기의 성분들을 혼합한 후 통상의 정제의 제조방법에 따라서 타정하여 정제를 제조한다.After mixing the above components, tablets are prepared by tableting according to a conventional method for preparing tablets.

제제예 3. 캅셀제의 제조Formulation Example 3 Preparation of Capsule

유파폴린 10 mgEuparoline 10 mg

결정성 셀룰로오스 3 mg3 mg of crystalline cellulose

락토오스 14.8 mgLactose 14.8 mg

마그네슘 스테아레이트 0.2 mgMagnesium Stearate 0.2 mg

통상의 캡슐제 제조방법에 따라 상기의 성분을 혼합하고 젤라틴 캡슐에 충전하여 캡슐제를 제조한다.According to a conventional capsule preparation method, the above ingredients are mixed and filled into gelatin capsules to prepare capsules.

제제예 4. 주사제의 제조Formulation Example 4 Preparation of Injection

유파폴린 10 mgEuparoline 10 mg

만니톨 180 mgMannitol 180 mg

주사용 멸균 증류수 2974 mgSterile distilled water for injection 2974 mg

Na2HPO412H2O 26 mgNa 2 HPO 4 12H 2 O 26 mg

통상의 주사제의 제조방법에 따라 1 앰플당(2㎖) 상기의 성분 함량으로 제조한다.According to the conventional method for preparing an injection, the amount of the above ingredient is prepared per ampoule (2 ml).

제제예 5. 액제의 제조Formulation Example 5 Preparation of Liquid

유파폴린 20 mgEuparoline 20 mg

이성화당 10 g10 g of isomerized sugar

만니톨 5 g5 g of mannitol

정제수 적량Purified water

통상의 액제의 제조방법에 따라 정제수에 각각의 성분을 가하여 용해시키고 레몬향을 적량 가한 다음 상기의 성분을 혼합한 다음 정제수를 가하여 전체를 정제수를 가하여 전체 100㎖로 조절한 후 갈색병에 충진하여 멸균시켜 액제를 제조한다.After dissolving each component in purified water according to the usual method of preparing a liquid solution, adding lemon flavor appropriately, mixing the above components, adding purified water, adjusting the whole to 100 ml by adding purified water, and then filling into a brown bottle. The solution is prepared by sterilization.

제제예 6. 건강 음료의 제조Formulation Example 6 Preparation of Healthy Drink

유파폴린 100 ㎎100 mg of papapoline

비타민 C 15 g15 g of vitamin C

비타민 E (분말) 100 g100 g of vitamin E (powder)

젖산철 19.75 gIron lactate 19.75 g

산화아연 3.5 g3.5 g of zinc oxide

니코틴산아미드 3.5 gNicotinamide 3.5 g

비타민 A 0.2 g0.2 g of vitamin A

비타민 B1 0.25 g0.25 g of vitamin B1

비타민 B2 0.3 g0.3 g of vitamin B2

물 정량Water quantification

통상의 건강음료 제조방법에 따라 상기의 성분을 혼합한 다음, 약 1시간동안 85℃에서 교반 가열한 후, 만들어진 용액을 여과하여 멸균된 2ℓ용기에 취득하여 밀봉 멸균한 뒤 냉장 보관 한 다음 본 발명의 건강음료 조성물 제조에 사용한다. After mixing the above components according to a conventional healthy beverage production method, and then stirred and heated at 85 ℃ for about 1 hour, the resulting solution is filtered and obtained in a sterilized 2 L container, sealed sterilization and then refrigerated and stored in the present invention For the preparation of healthy beverage compositions.

상기 조성비는 비교적 기호음료에 적합한 성분을 바람직한 실시예로 혼합 조성하였지만 수요계층이나, 수요국가, 사용용도 등 지역적, 민족적 기호도에 따라서 그 배합비를 임의로 변형 실시하여도 무방하다.Although the compositional ratio is relatively mixed with a component suitable for a favorite drink, it is also possible to arbitrarily modify the compounding ratio according to the regional or national preference such as the demand class, the demanding country, and the use purpose.

도 1는 전기영동법을 이용하여 유파폴린에 의한 HeLa 세포의 DNA 절편화를 나타낸 도이고,Figure 1 is a diagram showing the DNA fragmentation of HeLa cells by euphapoline using electrophoresis,

도 2는 유세포 분석기를 이용하여 HeLa 세포에서 유파폴린에 의한 세포수의 증가효과를 나타낸 도이며,Figure 2 is a diagram showing the effect of the increase in the number of cells by papapoline in HeLa cells using a flow cytometer,

도 3은 DAPI 염색법을 이용하여 HeLa 세포에서 유파폴린에 의한 세포사멸을 나타낸 도이고,Figure 3 is a diagram showing apoptosis by eupapoline in HeLa cells using DAPI staining,

도 4는 HeLa 세포에서 유파폴린에 의한 유전자 발현을 나타낸 도이며,Figure 4 is a diagram showing the gene expression by papapoline in HeLa cells,

도 5는 HeLa 세포에서 유파폴린에 의한 캐스파아제(caspase -3, -8, -9) 활성을 나타낸 도이고,Figure 5 is a diagram showing caspase (caspase -3, -8, -9) activity by papapoline in HeLa cells,

도 6은 유세포 분석기를 이용하여 HeLa 세포에서 유파폴린에 의한 세포주기를 나타낸 도이며,Figure 6 is a diagram showing the cell cycle by the eupapoline in HeLa cells using a flow cytometer,

도 7은 DAPI 염색법을 이용하여 HeLa 세포에서 유파폴린에 의한 유전자의 세포사멸을 나타낸 도이고,Figure 7 is a diagram showing the apoptosis of genes by eupapoline in HeLa cells using DAPI staining,

도 8은 유파폴린에 의한 HeLa 세포에서 유파폴린 및 유전자들에 의한 캐스파아제(caspase -3, -8, -9) 활성을 나타낸 도이며,Figure 8 is a diagram showing caspase (caspase -3, -8, -9) activity by the papapoline and genes in HeLa cells by papapoline,

도 9는 유파폴린에 의한 HeLa 세포 내 유전자에 의한 막전위 및 시토크롬(cytochrome) c 효과를 나타낸 도이고,9 is a diagram showing the membrane potential and cytochrome ( c ) effect by the gene in HeLa cells caused by papapoline,

도 10은 유파폴린에 의한 HeLa 세포 내 Bcl-2, Bid 및 Bax의 발현량을 나타낸 도이다.Figure 10 is a diagram showing the expression level of Bcl-2, Bid and Bax in HeLa cells by euapolin.

Claims (5)

사자발쑥(Artemisia princeps Pampanini)으로부터 분리된 하기 구조식 (1)의 유파폴린을 유효성분으로 함유하는 암 질환의 예방 및 치료용 약학조성물;Pharmaceutical composition for the prevention and treatment of cancer diseases containing eupapoline of the following structural formula (1) isolated from Artemisia princeps Pampanini as an active ingredient;
Figure 112008089414941-PAT00002
(1)
Figure 112008089414941-PAT00002
(One)
제 1항에 있어서, 상기 암 질환은 위암, 결장암, 유방암, 폐암, 비소 세포성폐암, 골암, 췌장암, 피부암, 두부 또는 경부암, 피부 또는 안구 내 흑색종, 자궁암, 난소암, 대장암, 소장암, 직장암, 항문부근암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 호지킨병(Hod gkin's disease), 식도암, 소장암, 임파선암, 방광암, 담낭암, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 음경암, 전립선암, 만성 또는 급성 백혈병, 림프구 림프종, 방광암, 신장 또는 수뇨관 암, 신장세포 암종, 신장골반 암종, 중추신경계(CNS; central nervous system) 종양, 1차 CNS 림프종, 척수 종양, 뇌종양, 뇌간 신경교종 또는 뇌하수체 선종으로 구성되는 군으로부터 선택되는 하나 이상의 질환인 약학 조성 물.The method of claim 1, wherein the cancer disease is gastric cancer, colon cancer, breast cancer, lung cancer, non-small cell lung cancer, bone cancer, pancreatic cancer, skin cancer, head or neck cancer, skin or eye melanoma, uterine cancer, ovarian cancer, colon cancer, small intestine cancer , Rectal cancer, anal muscle cancer, fallopian tube carcinoma, endometrial carcinoma, cervical carcinoma, vaginal carcinoma, vulvar carcinoma, Hodgkin's disease, esophageal cancer, small intestine cancer, lymph gland cancer, bladder cancer, gallbladder cancer, endocrine cancer, thyroid cancer, Parathyroid cancer, adrenal cancer, soft tissue sarcoma, urethral cancer, penile cancer, prostate cancer, chronic or acute leukemia, lymphocytic lymphoma, bladder cancer, kidney or ureter cancer, renal cell carcinoma, renal pelvic carcinoma, central nervous system (CNS) A pharmaceutical composition, which is one or more diseases selected from the group consisting of tumors, primary CNS lymphomas, spinal cord tumors, brain tumors, brainstem glioma or pituitary adenoma. 제 1항에 있어서, 조성물 총 중량에 대하여 상기 추출물을 0.1 내지 50% 중량으로 포함됨을 특징으로 하는 약학조성물.The pharmaceutical composition according to claim 1, wherein the extract comprises 0.1 to 50% by weight of the total weight of the composition. 사자발쑥(Artemisia princeps Pampanini)으로부터 분리된 유파폴린을 유효성분으로 함유하는 암 질환의 예방 및 개선용 건강기능식품.A health functional food for the prevention and improvement of cancer diseases, which contains eupapoline , isolated from Artemisia princeps Pampanini , as an active ingredient. 제 4항에 있어서, 분말, 과립, 정제, 캡슐 또는 음료인 건강기능식품.The dietary supplement of claim 4 which is a powder, granule, tablet, capsule or beverage.
KR1020080134726A 2008-12-26 2008-12-26 A composition comprising eupafolin isolated from artemisia princeps pampanini for preventing and treating cancer disease KR20100076614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080134726A KR20100076614A (en) 2008-12-26 2008-12-26 A composition comprising eupafolin isolated from artemisia princeps pampanini for preventing and treating cancer disease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080134726A KR20100076614A (en) 2008-12-26 2008-12-26 A composition comprising eupafolin isolated from artemisia princeps pampanini for preventing and treating cancer disease

Publications (1)

Publication Number Publication Date
KR20100076614A true KR20100076614A (en) 2010-07-06

Family

ID=42638311

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080134726A KR20100076614A (en) 2008-12-26 2008-12-26 A composition comprising eupafolin isolated from artemisia princeps pampanini for preventing and treating cancer disease

Country Status (1)

Country Link
KR (1) KR20100076614A (en)

Similar Documents

Publication Publication Date Title
KR101797813B1 (en) Compositions for preventing or treating bladder cancer comprising citrus fermentd broth with Kombucha as an active ingredient
KR100767238B1 (en) Composition comprising the extract and fraction of Salvia miltiorrhiza BGE for the prevention or treatment of atherosclerosis
Lo et al. Effect of Hibiscus anthocyanins‐rich extract induces apoptosis of proliferating smooth muscle cell via activation of P38 MAPK and p53 pathway
Usha et al. Pomegranate peel and its anticancer activity: A mechanism-based review
US11007169B2 (en) Cis-gnetin H and trans-gnetin H as therapeutic agents
Sayed et al. Antiproliferative potential of Physalis peruviana-derived magnolin against pancreatic cancer: A comprehensive in vitro and in silico study
KR20090091477A (en) Composition comprising the extract of litsea japonica jussieu for preventing and treating cancer disease
Kim et al. The grape component piceatannol induces apoptosis in DU145 human prostate cancer cells via the activation of extrinsic and intrinsic pathways
KR100799266B1 (en) A composition comprising widdrol isolated from the extract of juniperus chinensis for preventing and treating cancer disease
Yang et al. Molecular mechanisms of denbinobin-induced anti-tumorigenesis effect in colon cancer cells
KR100673574B1 (en) Composition comprising cedrol isolated from juniperus chinensis for the prevention and treatment of cancer disease
JP7317309B2 (en) Autophagic cell death inducer
KR101242635B1 (en) Composition for Prevention or Treatment of Osteoporosis Comprising Extract of Selaginellae Herba
KR100931527B1 (en) Composition for the treatment and prevention of liver disease containing oroxylin A as an active ingredient
WO2012144711A2 (en) Composition containing caryopteris incana extracts or a compound isolated therefrom for preventing and treating hepatotoxicity
KR100542587B1 (en) Composition containing an extract of Zingiber cassumunar or the compound isolated therefrom for preventing and treating cancer disease
KR20100076614A (en) A composition comprising eupafolin isolated from artemisia princeps pampanini for preventing and treating cancer disease
KR20220124040A (en) Anti-cancer use of sea cucumber gonad extract or the compound derived from the same
KR101418164B1 (en) A pharmaceutical composition comprising extract of UV-induced rice for preventing or treating a colon cancer
Hsu et al. Cytotoxic effect of Anisomeles indica extract on human pharynx squamous cancer cells
KR20110001360A (en) A composition comprising an extract of combination comprising black garlic for preventing and treating cancer disease
KR20050047208A (en) Composition containing the compound isolated from an extract of zingiber cassumunar for preventing and treating cancer disease
KR100784628B1 (en) A compound having an effect of death for cancer cell and a pharmaceutical composition for preventing together with treating cancer disease containing thereof
KR20060028076A (en) Composition containing yuanhuacine compound having an anti-cancer activity
KR102295141B1 (en) Cancer preventive and therapeutic composition comprising Mori Cortex Radicis extract and Adenophoratriphylla var. japonica Hara extract

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application